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  ABSTRACT 

Uncertainty in water availability is a significant challenge to the agriculture industry.  Farmers 

and irrigators depend on novel uses of sensors and data to maximize water efficiency.  

Documented studies have demonstrated scheduling irrigation is a straightforward, deterministic 

means of achieving water efficiency.  Irrigation scheduling uses several parameters to determine 

the moment of crop water stress due to available water in the soil. However, sensors and data for 

soil moisture and matric potential, a parameter describing water available to plants, have the 

potential to train machine learning algorithms to forecast water irrigation needs based on 

previous measurements. Satellite remote-sensing is another developing technology that describes 

the environmental conditions that enable irrigation scheduling and provides data on crop health 

by allowing for calculations on collected field images.  

This project trains a learning machine with soil moisture and home-brew tensiometer 

information. To create a water management system that avoids exposing crops to stress, the 

learning machine uses previous soil water conditions to forecast crop water demand. This 

machine learning model informs the farmer of the moment maximum water depletion will occur, 

providing the farmer opportunity to irrigate in advance of crop water stress conditions. 

Additionally, this research evaluates the value of soil moisture, matric potential, and trained 

machine learning against characteristics of the specified agricultural undertaking.  Because larger 

agricultural undertakings can be managed with remote-sensing of crop health, this research 

investigates the viability of ground-sensing against satellite remote-sensing. Sensor-

improvements would be more viable for an urban agriculture system. Understanding scenarios in 

agriculture to tailor technological development will allow farmers to further maximize crop yield 

and quality with their increasingly limited water availability.  

Key Words: Agricultural Water Management, Machine Learning, Remote-Sensing  
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  Introduction  

Agricultural water management is necessary for a world constantly changing regarding 

spatiotemporal availability of water. Scheduling irrigation is a straightforward means of managing 

agricultural water, and has been undertaken deterministically using collectable data, such as wind 

speed, humidity, and solar radiation. However, machine-learning and remote-sensing are two 

approaches being further developed at academic and technological levels for increasingly intentional 

use in agricultural water management. This project uses two case studies on support vector machine 

(SVM) learning and a case study investigating satellite remote-sensing to identify more specific 

utility areas for the technology.  

Background  

Urbanization is increasing globally, and a more urbanized society correlates with higher water 

use. Estimates from 2018 estimates state predict overall population growth and increases in 

urbanization will add 2.5 million people to urban populations by 2050 (UNDESA, 2018). 

Opportunities to conserve water in cities are plentiful, with 25±4% of large cities being under 

water stress (McDonald et al., 2014). Urban agriculture, growing crops within cities for city 

inhabitants, can increase global food supply with more efficient land usage due to the projected 

increase in urban dwellers (McDougall et al., 2018).  

Evapotranspiration in urban agriculture varies temporally due to extraneous deterministic 

parameters like increased wind speeds from building arrangements and changes in shade cover 

throughout the day. These extraneous parameters need sensors to be tracked. Urban agriculture is 

undertaken in some less-developed countries (LDCs) to conserve financial capital and increase 

historically poor food security, and multiple sensors to determine the parameters for 

evapotranspiration are not within the budget of these undertakers (Mougeot, 2000). Because of 

this, urban agricultural technology will be analyzed in two technology case studies using 

machine learning on just moisture sensors and matric potential sensors. The intuition of the 

irrigator, coupled with the soil moisture and matric potential readings, will schedule the 

irrigation.  

While urban agriculture becomes more prevalent with increasing urbanization, larger scale (at 

least one acre), rural agriculture has the potential for better water management with satellite 

remote sensing. Broadband vegetation indices use the near-infrared portion of the satellite’s 

sensed spectrum to determine vegetation health (Agapiou et al., 2012). This project analyzes 

larger scale, rural agriculture in a case study using remote sensing to evaluate drought 

identification and the reliability of the multitudes of indices the industry uses.   

The normalized difference vegetation index (NDVI) is one of the most used indices for 

characterizing crop growth and health. This index requires a simple division of the difference 

between near-infrared light reflectance and red light reflectance by the sum of the light 

reflectance values. MSAVI2 and WDVI both account for soil background, the appearance of soil 

in a captured satellite image, and the way this affects the extraction of vegetation data. (Zou & 

Matti, 2017). Figure 1a shows NDVI displayed over Logan, Utah, an area with typically exposed 
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soil for a captured agricultural satellite image. Figure 1b shows NDVI displayed over San Juan 

County in New Mexico, an area explained in the methodology as ideal for this research’s case 

study due to its high drought indices, measured water salinity due to erosion, and soil 

background not covered by vegetation. The known soil background differences provide a tool to 

calibrate the calculation of vegetation indices used in agricultural water management.    

 

 Figure 1a. Logan, Utah NDVI  Figure 1b. San Juan County in New Mexico NDVI  

A parameter L used to formulate the MSAVI2 equation and used as a variable in the WDVI 

equation is the slope of the soil line, a relationship between red and near-infrared light in a 

satellite’s collected image (Xue & Su, 2017). Multiple methods exist for calculating soil line, 

such as a method that “slices” the red axis into finite increments and finds the minimum near-

infrared value at each (Fox et al., 2004).  

Drought identification would better support water management strategies for larger-scale 

development in arid climates. Katerina Michaelides from the University of Bristol mentions the 

main effect of climate change is desertification; the inversely related decrease of rainfall with 

evaporative demand (McSweeney, 2019). Some arid states would even benefit legally from a 

stronger basis in big-data for their water management. For example, Arizona, California, and 

Colorado must demonstrate adequate water supply for at least 20 years for zones to be approved 

for land development (Schreck, 2017). Multiple sources provide access to satellite data, but a 

more recently developing, programmatically robust, and cloud-based platform for accessing this 

data is Google Earth Engine.  

Google Earth Engine (GEE) is used to access satellite data for manipulation and vegetation index 

generation. GEE accesses the Landsat and Sentinel collection of satellites, the former being the 

longest continuously running space-based account of Earth's land-cover data (NASA, 2010). 
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GEE’s viability is evaluated in practice with this project’s remote-sensing case study. Both 

satellites have been calibrated in testing over control sites and are reliable for collecting land 

cover data at the scales needed for rural agriculture (Sterckx & Wolters, 2019). At larger scales, 

GEE and remote-sensing and machine-learning are leveraged together to identify crops and 

forecast crop health rather than soil. (Shelestov et al., 2017; Aboutalebi et al., 2019)  

Farmers are generally averse to technological change in the agriculture industry. The industry 

allows for intuition-based decision-making, but his research reviews areas for practical big-data 

applications by developing and implementing technology that could benefit farmers in both rural 

and urban settings. The case studies will practically apply the technologies’ principles to provide 

insight into further potential research in machine-learning and remote sensing.  

Methods  

Support Vector Machines  

Vapnik (1995) describes support vector machines (SVMs) as learning machines effective for 

classification, but his findings also prove SVMs are effective for regression modeling, the basis 

of time series prediction. With SVMs, Eq. (1) is continuously tested against the training dataset. 

In Eq. (1), y is an output vector, T transposes the weighting vector w, x provides the input vector, 

and b provides a vector that biases inputs. The objective of this model is to alter the w and b 

vectors to minimize a function outputting an error value.  

   𝑦 = 𝑓(𝑥) = 𝑤𝑇 𝑋 𝑥 + 𝑏 (1)  

The SVMs implemented in this study are ε-support vectors in the R programming language’s  

“SVM” library using a Huber loss function. The ε in ε-support vector references the model’s 

insensitive variable ε. In assuming a non-linear model accounting for short-term variations, the 

radial basis function (RBF) is used in the SVM implementation. ε support vector machines are 

capable of incurring complexity at a rapid rate, rendering the machines impractical. ε SVMs 

compare the output vector to the SVM generated vector and use the value of 𝜀 to create a 

function insensitive to both noise and bias, as shown by Eq. 2.  

   |𝑦 − 𝑓(𝑥)|𝜀 = { 
      0                   𝑖𝑓   𝑦 − 𝑓(𝑥) ≤ 𝜀

 |𝑦 − 𝑓(𝑥)|                           𝑒𝑙𝑠𝑒
  } (2)  

Vapnik optimizes the ε insensitive SVM function with a Huber loss function L, which, as shown 

in Eq. 3, normalizes the regression over time. This allows R to run the machine-learning with 

significantly fewer estimates than without the loss function (Huber, 1964). Eq. 4 is the 

optimization for a training function - output difference greater than a parameter c, while Eq. 5 is 

the optimization for a training function - output difference less than a parameter c.  
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𝐿(𝑦, 𝑓(𝑥)) = 𝐿(|𝑦 − 𝑓(𝑥)|𝜀)            (3)  

𝐿(|𝑦 − 𝑓(𝑥)|) = 𝑐|𝑦 − 𝑓(𝑥)| −  
𝑐2

2
                                       (4)  

    𝐿(|𝑦 − 𝑓(𝑥)|) =
1

2
|𝑦 − 𝑓(𝑥)|2   (5)  

SVMs are not practical for long-term time series prediction. However, seasonal crop data should 

repeat with slight deviations. The purpose of the SVMs is to provide a model capable of 

predicting soil moisture depletion for the specific agricultural area accounting for the deviations.  

SVMs use classification lines named hyperplanes to identify a feature of a data point the user 

does not know. By adjusting the hyperplane based on historical data, the SVM model used can 

increase in reliability for a continuously growing dataset.  

Using six datasets from West Weber soil moisture sensors and three trial runs of self-constructed 

tensiometer data from Utah State University’s Student Organic Farm, the ε, Huber-loss SVMs 

are tested by training on the first seven weeks of the growing season. Starting at day 40 until the 

end of the season, the SVMs will predict the remaining soil moisture values. Essentially, the 

SVMs will use soil moisture or matric potential depletion coupled with the intuition of the 

irrigator to predict values an irrigator could see, compared to a quantifiable threshold, and then 

use to forecast irrigation events.  

Satellite Remote-Sensing  

Landsat 8 satellite data is accessed through GEE to manipulate the associated image rasters. 

Remote-sensing for agricultural purposes is fundamentally based on developing indices to show 

a farmer's spatial and temporal variation in their crop health; this case study will script Google 

Earth Engine to compare multiple accepted vegetation indices. The purpose of this case study is 

to find a gap in current remote-sensing methodologies to determine areas for technological 

development for larger-scale undertakings.   

The multitudes of indices used in the industry make this case study investigate a time-dependent 

variable that would make the indices perform differently against each other. The chosen variable 

is the soil background, which alters the relation of red to near-infrared light reflectance. 

Desertification results in a change in this variable, so global desertification trends are examined 

to find a study area.   

New Mexico’s San Juan River Watershed provides land for agricultural plots. The northwestern 

corner of the state within the watershed has approximately 100,000 acres of farmland, primarily 

with center-pivot setups. The high salinity of the southern reaches of the Colorado River, higher 

wind speeds, and noticeable long-term erosion patterns make this northwestern sector of New 
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Mexico an ideal case study location to compare the three soil-dependent indices’ change due to 

desertification.  

The three vegetation indices GEE compares are NDVI, WDVI, and MSAVI2. NDVI uses Eq. 6 

to relate near-infrared light to red light. MSAVI2’s empirical assumption of the soil-line 

adjustment makes Eq. 7 the accepted relation between near-infrared light and red light for this 

index. WDVI requires the determination of the soil line by plotting red pixel values against near-

infrared pixel values. The slope of the line, L, is used to calculate the index with Eq. 8.  

To quantify desertification over time, desertification is assumed to relate to drought patterns. The 

US Drought Tracker is used to obtain San Juan County drought time series data. Drought is 

hypothesized to linearly relate to the value changes between the indices. The Landsat 8 imagery 

is collected to correspond to the US Drought Tracker collection times, as seen in a time series 

sample in Table 1. Drought scenarios D0 - D4 over San Juan County’s land area are provided.  

  

𝑁𝐷𝑉𝐼 =   
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                         (6)  

𝑀𝑆𝐴𝑉𝐼2 =   − 
(2 ∗ 𝑁𝐼𝑅 + 1)−√(2∗𝑁𝐼𝑅+1)2−8∗(𝑁𝐼𝑅−𝑅)

2
            (7)  

𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅  𝑅                   (8)  

 

The need for an intuitive technology for agricultural use makes this case study investigate the 

usability of the GEE platform. The Google Earth Engine platform requires code input in 

JavaScript. However, GEE has recently championed a Python application programming interface  

(API). The Python API allows the user to download GEE satellite data from outside the usual  

GEE web host. For this project, the platform HydroShare, developed by Utah Water Research 

Laboratory researchers from Utah State University (USU), will be used to construct a Python 

applet a farmer can use to specify their desired farm satellite images without needing to write any 

computer code.   

  

Table 1. San Juan County Percent Land Area Afflicted By Drought Scenarios  
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Results  

Support Vector Machines  

Unfortunately, the tensiometers provided data that did not track typical water demand from 

crops. The hypothesized reason is the USU Student Organic Farm waters during its season based 

on predetermined scheduling times or visual inspection of the field. A beneficial study would 

base irrigation scheduling only on the tensiometer’s identified matric potential depletion. Using 

machine learning on data collected for irrigation events based on tensiometer matric potential 

readings could allow the SVM to categorize predicted tensiometer values as requiring irrigation.   

The West Weber soil moisture case study results are shown in Figures 2a through 2f. Each 

Figure corresponds to a sample. The highest errors for the predicted values were in Sample 5, 

with a 5.2% error, Sample 4 with a 3.1% error, and Sample 1 with a 3.0% error.  
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            Figure 2a. Sample 1 for SVM Testing       

  

            Figure 2e. Sample 5 for SVM Testing                       Figure 2f. Sample 6 for SVM Testing  

 

 

 

                  -  Soil Moisture Data                 - Calculated Data From SVM Model                  - Beginning of Self Taught Data  

  Figure 2b. Sample 2 for SVM Testing 

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

Figure 2 c . Sample  3   for SVM Testing   Figure 2 d . Sample    4 for SVM Testing   
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Satellite Remote-Sensing  

A “slicing” method on a plot of NIR vs. Red bands with an interval of .005 on the axis of red 

values allows for effective calculation of the soil line. The Google Earth Engine Python API 

allows the user to input the desired satellite image to have processed according to the 

methodology in Figure 3.  

 

Figure 3. Slicing Method For NIR vs. Red, Resulting In A Linear Regression Line Used As Soil Line  

  

 Figures 4a through 4c show sample plots of the vegetation indices for San Juan County.  

WDVI’s difference from NDVI confirms our hypothesis because the difference occurs for 

drought years 2013 and 2018. However, MSAVI2 does not differ significantly in its values or 

distribution. We cannot conclusively attribute drought to erosion and desertification; more time 

spent with this project in the JavaScript API can allow for higher quantities of image iteration 

that can quantify this uncertainty. The conclusive differences between WDVI and NDVI confirm 

the soil line calculation was correct, even though it never appeared to follow the bottom 

boundary of the scatter plot as other research on soil line describes.  
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Figure 4a.  Plot of NDVI, WDVI, and MSAVI2 Values for a 2013, D4, Drought-Afflicted Image Region  

  

 

Figure 4b.  Plot of NDVI, WDVI, and MSAVI2 Values for a 2016, Drought Un-Afflicted Image Region  

 

Figure 4c.  Plot of NDVI, WDVI, and MSAVI2 Values for a 2018, D4, Drought-Afflicted Image 

Region  
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Furthermore, this uncertainty uncovers a beneficial procedural change in agricultural water 

management; the development of vegetation indices should occur both by spatial change and 

temporal change. Adjusted vegetation indices already account for soil background, spatial 

change, but the soil line, as shown in Figure 3, does not match the bottom boundary of the data. 

Because this soil line does not follow an academically accepted trend but appears to function 

correctly, new studies could determine a parameter for adjusting indices based on the temporal 

change of the soil line. Many methods for calculating soil line exist, so those that do not appear 

like accepted soil lines, like the line in Figure 3, can still be useful if adjusted against other soil 

lines calculated in the same satellite image region.   

The Google Earth Engine Python API can be leveraged for investigating understood image sets 

in a Web App environment. Lack of widget functionality can make use tougher for those not 

familiar with computer code, the intended audience of this investigation. A Jupyter Notebook 

named DroughtOut was successfully implemented and allowed the user to process and generate 

the results in Figures 4a and 4c without writing any computer code.  

  

Figure 5. Python Web App Interface Providing Farmer Access to GEE  

Word Count: 2770 
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Conclusions  

Urban agriculture can use machine-learning to investigate unknown water depletion parameters 

and predict water demand without requiring typical sensor technology. A single moisture sensor 

can use support vector machines to learn on data that accounts for all evapotranspiration 

parameters and the intuition of the irrigator. Using plots of predicted data, an irrigator can 

forecast their next irrigation events by comparing the predicted soil moisture value with the 

previous values they irrigated at. Unfortunately, the model became unreliable when the 

tensiometer case study did not have irrigation scheduling based on the tensiometer. This result 

provides new potential for studies in agricultural water management that can analyze the types of 

sensors that could schedule irrigation if coupled with intuition-based irrigation scheduling. For 

urban agriculture in areas with less financial capital, such as LDCs, needing only one type of 

sensor can significantly benefit the capital investment to the farming undertaking.  

Remote-sensing methods provide access to increasingly higher-quality land cover data that can 

locate faulty irrigation heads, mechanical issues, and erosion. Heuristic indices generated by 

remote-sensing of spectral raster data are better tailored to a longer-term analysis of specific 

geographic regions. An effective way to use soil line without concern for how the area affects 

soil line variable L’s calculation is to compare the calculated values of L over time for the 

specific geographic region. This temporal change can effectively tune a vegetation index for a 

specific field. The variation in the raster value distributions makes the temporal change in the 

crop marks important in addition to the spatial characteristics.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

REFLECTION 

 This capstone project allowed me to combine my Civil Engineering major, Computer Science minor, 

and experiences in community service to make a unique contribution to the field of irrigation 

engineering. I felt empowered to dive into a specialization of the Department of Civil and 

Environmental Engineering that is usually pursued solely for graduate studies, but I was able to have 

enough correspondence with my mentor, Dr. Alfonso Torres-Rua, to tailor my undergraduate studies 

to that specialization.  

My relationship with Dr. Torres-Rua provided me meaningful interactions that helped me decide on 

my career trajectory after graduating. By pursuing graduate studies, I could directly continue the 

work my capstone project proves needs to be done in the specified technological areas of machine 

learning and satellite remote-sensing. However, the route of study I chose allowed me to become 

exceptionally proficient with data analysis, and Dr. Torres-Rua always provided me outlets in 

industry where I could apply my skillset, even if not in irrigation work. After settling on a job for 

after graduation, Dr. Torres-Rua had a discussion with me about how to encourage students to 

experience USU in a way that would lead them down my path of study. I was honored that he put so 

much effort into engaging in my story, but I also found great joy in learning what he needed as a 

professor trying to enlist passionate undergraduates he can form future relationships with. 

This capstone project started with me building a committee to review my project after completion. 

Due to the pandemic, I could not provide them my final presentation, but the conversation I had with 

Dr. Bethany Neilson during the committee-forming phase was one of the most influential 

conversations I have had; she discussed the implications of a mentor-student relationship as being a 

weird form of a parental relationship. The way I understood it, the relationship involves trying to 

make the superior proud of work while the superior provides support and advice, but the lack of 

emotional boundaries and academic proficiency between both parties makes the output, in an 

academic sense, more exciting than what would become of a parent’s support of a child. I thought this 

was a very interesting take on mentor-student relationships, and the amount of support Dr. Torres-

Rua provided for my project and my pursuit of funding pushed me harder than some of my course 

professors even could. Due to the intellectual content of our conversations, I felt an awesome drive to 

make my mentor proud of my work and excited to expand upon the work. I have had two other 

mentors while at USU, but the Honors Program’s Capstone experience helped me develop a self-

driven project that resulted in the most intellectually stimulating mentor-student relationship I have 

had at USU. 

 

While my mentor relationship was a unique aspect of my capstone experience, the correspondence of 

my capstone with the Community Engaged Scholar Program and the USU Student Organic Farm was 

another exciting facet of the project. I worked as a full-time volunteer for the USU Student Organic 

Farm between my sophomore and junior years to accumulate around 250 hours for my 400 hour 

Community Engaged Scholar requirement. This dedication allowed me to establish a relationship 

with the farm as if I was a paid worker. I needed a capstone for the the Community Engaged Scholar 

Program, but that would have involved engaging with a community partner, probably the organic 

farm, to provide a lasting and meaningful project. That specific capstone did not necessarily require a 
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connection to my academics, but the Honors Capstone project motivated me to think critically to 

apply my academic pursuits. I eventually merged my Community Engaged Scholar Capstone and my 

Honors Capstone, and I managed to apply Civil Engineering, a field known for contracting and 

affecting large-scale infrastructure, and scaling the principles to give back to the few-acre organic 

farm.  

To scale the work I was performing, I had to construct my own electronics kits and computer 

programs to evaluate both the organic farm and West Weber (West Weber being the more useful farm 

in the report). My computer science minor helped, but I generally had to self-teach many micro-

electronics and data-analysis skills to complete this project. While going through the Honors 

Program, many of my acquaintances questioned the purpose of the transcript designation, and I began 

to concur with their statements that job opportunities would be the same regardless of the transcript 

designation. However, when I noticed the substantial increase in my self-learning drive, I very easily 

understood the worth of the Honors Program and the capstone experience. The reason I joined the 

Honors Program was to experience something more than my acquaintances in my major. This “more” 

did not have to be clearly defined; I just wanted a unique route. My capstone reinvigorated my search 

for this “more” by making me compliment my Civil Engineering skillset with skills I had to provide 

an additional drive to learn. During my senior year Civil Engineering Design project, we needed a 

means to cut Styrofoam to form a mold for our project. I very confidently offered to construct a 

resistive hot wire circuit, one that would allow a user to safely pass a current through a wire, heat the 

wire, and allow for a robust tool to cut shapes from industrial Styrofoam blocks. I did not have a 

passion for electronics before this project, but I love them now and am excited to apply the concepts 

to research studies in my new Transportation Engineering job.  

The computer and electronics skills were a fine byproduct of the project, but pondering self-learning 

brings me to the Honors Program phrase “Dare to Know”. It rolls off the tongue, it has a poetic 

quality, and it makes one excited to learn. However, this project made me reevaluate this phrase. To 

“dare” to do something implies a daunting nature to it; I was daunted by the learning required of me 

to complete my capstone. However, this project and the Honors Program seem to embrace daunting 

learning tasks as exciting. Honestly, I feel a greater comfort in self-learning after this experience even 

with several other research experiences under my belt. I appreciate what the Honors Program and this 

capstone have provided me, because having “Dare to Know” be such an important part of the 

program means the program participants should strive towards feeling excitement in the face of 

daunting tasks. I hope to take this capstone experience and use it to motivate my future intellectual 

and personal endeavors.  

Word Count: 1083 
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