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ABSTRACT
Comparative social science has a long history of attempts to classify societies and cultures
in terms of shared characteristics. However, only recently has it become feasible to conduct
quantitative analysis of large historical datasets to mathematically approach the study of
social complexity and classify shared societal characteristics. Such methods have the
potential to identify recurrent social formations in human societies and contribute to
social evolutionary theory. However, in order to achieve this potential, repeated studies are
needed to assess the robustness of results to changing methods and data sets. Using an
improved derivative of the Seshat: Global History Databank, we perform a clustering
analysis of 271 past societies from sampling points across the globe to study plausible
categorizations inherent in the data. Analysis indicates that the best fit to Seshat data is five
subclusters existing as part of two clearly delineated superclusters (that is, two broad
“types” of society in terms of social-ecological configuration). Our results add weight to the
idea that human societies form recurrent social formations by replicating previous studies
with different methods and data. Our results also contribute nuance to previously
established measures of social complexity, illustrate diverse trajectories of change, and shed
further light on the finite bounds of human social diversity.
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Word count: approx. 6,500 words plus approx. 100 instances of mathematics

INTRODUCTION
The emerging model of “recurrent social formations” postulates that only a small number
of stable social-ecological configurations exist for human societies [1, 2]. The basic idea is
this: one can observe a small set of the same empirical regularities in societies
cross-culturally and independent of geography or time. These regularities reflect social and
environmental conditions and how these conditions have interacted to settle into an overall
configuration.

The model of recurrent social transformations combines qualitative insights from
modern bio-economic theory with quantitative insights gained using data reduction and
algorithmic techniques from computational science. This empirical approach attempts to
avoid the pitfalls of the widely-critiqued idea that societies evolve through a linear series of
progressively more complex forms toward an ethnocentrically defined endpoint [1–4]. For
example, such computational analyses on datasets encoding information on social
formations have proven fruitful in the study of social complexity [1, 5, 6]. As these kinds of
datasets and analyses continue to emerge, the robustness of previous results to changes in
data and method should be explored. Recurrent social formations identifiable by only one
method may be nothing more than a mirage—a kind of confirmation bias similar to the
phenomenon of p-hacking (wherein a single analytical method is misused to artificially
create results that are almost certainly false-positive but construed via metrics such as
p-values to be “significant”). This article contributes to assessing the robustness of
recurrent social formations to changes in computational methods and data sets. That is, we
use a multi-dimensional clustering algorithm to explore “clumps” in data on human
societies indicative of recurrent social formations, and we then compare our results with
those identified by researchers using alternative methods and datasets.

In the remainder of this paper, we provide background on the model of recurrent
social formations, use clustering to reveal and explore statistically significant typologies of
past societies, and we discuss our findings in the context of the conceptual model of
recurrent social formations. Our results indicate that the Seshat dataset is robust in that it
produces similar results using different methods of analysis. However, our analysis also
illustrates the potential to build upon previously-developed methods. In particular,
Turchin and colleagues [5] found that the first principal component of the Seshat dataset
(PC1) can serve as a useful time-resolved approximation for a society’s overall “social
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complexity.” Our results demonstrate that the PC1 metric does not necessarily capture
nuance in the diversity of how societies are “socially complex.” Indeed, when comparing
across regions, there is significant overlap in PC1 between societies of different clusters. In
some extreme cases, societies in entirely different superclusters can have similar social
complexity factor scores. This nuance provided by a combination of PC1 and cluster
trajectories may be of importance for certain research questions. Further, we find that
plotting societies along axes of social “scale” and “non-scale” is a robust process that
reproduces the same results as a 2018 study by Peregrine [1], who similarly conducted a
social complexity cluster analysis on a sample of past societies but using different methods
and source data. In the end, multiple methods can provide an important check against
confirmation bias and open-up a broader range of research questions for comparative
social scientists.
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BACKGROUND
Comparative social science has a long history of creating typologies of human societies [7].
In anthropology, 19th century theorists proposed that the diversity of human societies
resulted from a non-Darwinian evolutionary process in which societies evolve more
“Culture” over time at different rates, and Anglo-American societies were viewed as the
apex of this universal shared Culture (e.g., [8]). The clearly ethnocentric typologies that
resulted from this theory discredited evolutionary anthropology for nearly a half century.
However, in the second third of the 20th century, anthropologists again began to study
cultural evolution and created typologies of human societies based on empirical
characteristics such as family size, levels of political decision making, and subsistence
technology (e.g., [7, 9–12]). Although many of these efforts have been criticised as
functionalist and overly simplistic, many argue that empirical “social complexity
typologies” have a place in modern scholarship [13, 14]. The idea is that comparative social
sciences must transition from typologies that are abstract and simple conceptual aids (e.g.,
band, tribe, chiefdom) to a rigorous, empirical phylogeny of cultures and the kinds of
forms they tend to take—similar to biology’s transition from pre-Linnean attempts at
organism classification to what is nowmodern biological taxonomy [13, 15].

The emerging conceptual model of “recurrent social formations” attempts to build
upon past attempts to categorize human societies in two ways. First, the model reconsiders
the theoretical foundation of empirical typologies by using complex systems theory as a
conceptual foundation. That is, the model sees typologies as a consequence of
social-ecological interactions rather than discrete “stages” of evolution. For example,
complex phenomena (such as predator-prey ecologies, gene regulatory networks, weather
systems, etc.) are often mathematically modeled as dynamical systems. These systems are
usually discussed with emphasis on the systems’ attractors—numerical values towards
which the systems tend to evolve. Using the concepts of attractor and of repellor as
metaphors, Ullah et. al. [2] use this framework to develop a cluster analysis of the
Standard Cross-Cultural Sample dataset. They observe four distinct clusters of societies
based on features of subsistence, mobility, and demographic variables which, by analogy,
may form attractors in the underlying dynamical system governing subsistence behavior.

Similarly, Peregrine conducts an exploratory study that conceptualizes variation in
human societies as reflective of adaptive landscapes [1]. Adaptive landscapes describe peaks
where the fitness of some combination of traits is high and valleys where fitness is low (e.g.,
due to the interaction of organisms and their environment). In an analysis of the Atlas of
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Cultural Evolution, Peregrine plots morphological traits of human societies in terms of a
“Technology Factor” and a “Scale Factor.” The Technology Factor is a composite of
variables concerning writing, land transport, social stratification, political integration,
technological specialization, and money; the Scale Factor is a composite of variables
concerning fixity of residence, agriculture, population density, and urbanization. This
study, too, finds two superclusters and several smaller, more refined clusters of societies in
this space that, by analogy, may reflect peaks and valleys in the adaptive landscape which
further correspond with attractors and repellers in the underlying dynamical system.

Second, researchers have begun to use computational methods to analyse human
societies and identify not only clusters of societies with related attributes but also quantify
trajectories of change in the social complexity of human societies. Rather than assuming
evolutionary stages, this approach attempts to quantify measures of social complexity
using an explicit methodology. For instance, Turchin et. al. [5] conduct a principle
components analysis of social attributes often considered indicators of social complexity.
Consistent with earlier work (e.g., a 1962 scale analysis by Carneiro [16]), they find that
these attributes all correlate and that one dimension accounts for a significant amount of
variation in social complexity traits (the first principle component of a principle
components analysis–PC1 or the social complexity factor). In essence, this PC1 metric
creates a reasonable way to quantitatively measure and compare the overall social
complexity of societies in different world regions. Although their study only performs a
cursory cluster identification of societies that share similar attributes, the study does
quantify trajectories of change in social complexity and also suggests that such trajectories
share many recurring features cross-culturally.

The above studies suggest that human societies tend to evolve toward a finite set of
recurrent social formations; however, this possibility needs further exploration. Recurrent
social formations identifiable by only one method or in one dataset may be nothing more
than confirmation bias. In the remainder of this article, we ask: Do we find recurrent social
formations in the Seshat database that also replicate the trajectories of change in social
complexity identified by Turchin and colleagues? Specifically, our study directly builds on
the studies above by using a novel clustering algorithm to evaluate how robust the
observation of super-clusters and recurrent changes in social complexity are to a change in
method and dataset.

First, we use the clustering algorithm in an attempt to replicate Turchin and
Colleagues’ results. This assesses whether their results are robust to a change in method of
data reduction. Second, we attempt to replicate Peregrine’s results of two superclusters and
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several smaller, minor clusters of societies using the Seshat Database. This assesses whether
the observation of two superclusters is robust to changing datasets. In the end, our analysis
largely replicates previous findings and adds weight to the emerging model that human
societies organize into a finite number of social-ecological configurations constrained by
ecology and social evolutionary processes.
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DATA & METHODS
We begin with the Seshat: Global History Databank [17]. This dataset encompasses
information on over 400 polities from 30 sampling locations across the globe. Seshat
encodes social complexity features pertaining to social structures, technologies,
information systems, economies, subsistence strategies, and other variables for each polity.
This database is designed to measure different aspects of societies and evaluate theories of
cultural evolution and the evolution of social complexity [5, 6, 18]. Central to evaluating
theories for the evolution of social complexity is a baseline description of differences in
social complexity across cases and over time [5].

In accordance with prior analyses, our cluster analysis is conducted on a subset of 51
variables from Seshat that the original authors of the database have deemed reliably
identifiable from the archaeological and historical records [5, 6]. These variables encode
information such as overall population, largest-settlement population, territory, hierarchy,
and boolean variables indicating the presence of various aspects of writing systems, texts in
circulation, monetary systems, public infrastructure, and government extent.

Our analysis is conducted on a derivative version of Seshat we have constructed and
named Shiny Seshat. This iteration upon the original database improves upon the
imputation methods used in previous analyses, primes the data to be more appropriately
suited for temporally-resolved, polity-wise analysis, and patches a number of human-error
typographic mistakes in the original dataset.

IMPUTATION OF MISSING VALUES

Incomplete entries in the dataset are filled in using statistical imputation—a robust
method for performing analysis on incomplete data [19, 20] that has been previously used
and explicated in the context of Seshat data [5]. Data entries containing missing
information may be subject to systemic bias that has led to their incompleteness; thus,
statistical imputation can help alleviate bias in data as opposed to simple list-wise deletion
of incomplete entries [20]. Particularly in the archaeological and historical sciences, certain
societies and cultures can tend to receive more scholarly attention than other societies and
cultures, and this can manifest in Seshat in the form of incomplete data. Therefore,
imputation is an important process to represent the greatest amount of social variation in
our analysis. However, we were unable to completely replicate the imputation method
used by Turchin and colleagues [5].

Fortunately, we managed to improve upon Turchin and colleagues’ results using a
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new open-source imputation tool for Python known as datawig, [21] version 0.1.10. This
tool utilizes a deep neural network (DNN) that is especially suited for imputing both
numeric and non-numeric data. The imputer’s parameters (such as number of hidden
layers for a feature, hyperparameter optimization options, or feature encoding options) are
customizable, but we found datawig’s default, largely automatic determination of these
parameters to be quite sufficient for our purposes. We specify only to enable
hyperparameter optimization and set the number of training epochs to 1,000.

Central to imputation efforts are the replication of nine “Complexity
Characteristics” (CCs) encoding information on polity population (PolPop), territory
(PolTerr), largest-settlement population (CapPop), hierarchy (Hier), government (Gov),
infrastructure (Infra), writing (Writing), written texts (Texts), and forms of money
(Money), respectively [5,22]. These CCs are useful in that they can serve as broad measures
of complexity within these domains even in the absence of completely encoded data. For
example, aWriting score is assigned based on the values of the “Mnemonic devices,”
“Non-written records,” “Script,” and “Written records” features, but only one of these
features need be encoded for a given polity to be assigned aWriting score.

For each complexity characteristic, we create “regression terms” to input into the
imputer in order to provide additional prediction-improving information during the
imputation training process. These terms are nearly identical to those indicated in
Turchin’s piece on fitting regression models to Seshat ( [22] pg. 46). In practice, these
terms are simply added as additional feature columns. They are:

x0,i,t =
∑
τ<t

e−(t−τ−100)/100Yi,t−τ (1)

x1,i,t =
∑
i ̸=j

e−δi,j/1100Yj,t−1 (2)

x2,i,t =
∑
i ̸=j

wi,jYj,t−1 (3)

where xn,i,t is term n for polity i at time t and Yj,t is the value of complexity
characteristic Y for polity j at time t. Here, x0,i,t helps encode the history of Y by
summing all temporally previous values with an exponential discount that grows greater
the older the value is relative to t. We use an exponential discount of e−(t−τ−100)/100 as
series in Shiny Seshat are sampled at the scale of centuries. This produces a factor of e0 for
the most recent previous value, e−1 for the second most recent value, e−2 for the third, etc.
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x1, i, t helps encode spatial diffusion of Y between polities and includes a similar
exponential discount factor; δi,j is simply the distance between polities i and j in
kilometers, and the 1100 kilometer constant originates from optimization conducted in
Turchin’s work [22]. Finally, x2,i,t helps encode linguistic distance; we letwi,j = 1 if
polities i and j share a common language,wi,j = 0.25 if they share a common language
family, andwi,j = 0 otherwise (a value between 1 and 0.25 for common linguistic genus
was not included as this is not readily coded in the current public version of Seshat).

In previous analyses [5,22], the fidelity of imputation prediction has been quantified
using the ρ2 metric [23]:

ρ2 = 1−
∑

i(Y
∗
i − Yi)

2∑
i(Y − Yi)2

(4)

Where each Yi are the actual observations in the test set, Y is the mean of all Yi, and
Y ∗
i are the predicted values. Using this function, ρ2 = 1 is a perfect prediction, ρ2 = 0 is a

prediction just as good as simply replacing missing values with the mean of known values,
and anything less than zero is a worse prediction than simply predicting all values to be the
mean of all Yi. However, when working with the Seshat data, we find on some occasions
that we encounter the edge-case of Y = Yi ∀ i (when the perfect prediction is the mean of
the data), leading to a division by zero.

Specifically, this edge-case arises during the imputer’s training step when the
equation is used to optimize predictive fit on segments of data automated via k-fold cross
validation. Every so often, the algorithm happens to sample a subset of data from an
integer-valued column (e.g., “Administrative levels”) where every data point happens to be
the same (e.g., a subsample of polity-centuries that all happen to have three administrative
levels). Thus, the perfect prediction (three administrative levels) is the mean of the data,
and a division by zero occurs and crashes the imputation program.

Thus, we modify the equation and create a new function, ρ2µ, to include this
additional case:

ρ2µ =


∑

i−|Y ∗
i − Y |

Y
+ 1 when Y = Yi ∀ i

1−
∑

i(Y
∗
i − Yi)

2∑
i(Y − Yi)2

otherwise
(5)

Should the Y = Yi ∀ i edge-case occur, this places ρ2µ = 1 as a perfect prediction of
all values being the mean with ρ2µ increasingly less than one as predicted values diverge
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from the mean. In this manner, the usefulness of the metric is maintained in all cases,
despite ρ2µ = 0 being semantically meaningless in the edge-case.

Once each regression variable is coded for, we begin training and testing the imputer
on data with known values. We estimate the fidelity of each CC prediction using 5-fold
cross-validation. Table 1 indicates these results. In practice, we find that, for this case,
ρ2µ ≈ ρ2 ≈ R2.

Table 1. Fidelity metrics for the prediction of each Complexity Characteristic (CC)
Complexity Characteristic ρ2 ≈ ρ2µ ≈ R2

PolPop 0.86
PolTerr 0.58
CapPop 0.80
Hier 0.89
Gov 0.92
Infra 0.88
Writing 0.88
Texts 0.95
Money 0.79

During exploratory analysis, we discovered that not including spatial and linguistic
distance led to better predictions for every CC except for Texts andMoney. We hypothesize
this is due to the imputer’s DNN being somewhat sensitive to including too much
irrelevant information during the training phase. This hints at the possible theoretical
consequence that cultural diffusion may, then, be a largely irrelevant factor in the
development of many societal characteristics. However, exploring this implication is
beyond the scope of this study. Thus, we leave it at that and only include x1,i,t and x2,i,t for
theMoney and Texts variables to improve the overall prediction accuracy.

After each CC is imputed, we further impute every missing value in all other
columns in Seshat, allowing the imputer to use the already-imputed CCs as input.
Additionally, the imputer allows for the possibility of imputing non-numeric values. We
utilize this to impute categorical features such as “bureaucracy source of support,” “degree
of centralization,” “linguistic family,” etc. We exclude from imputation only features
indicating proper names of cultures, places, and rituals. Predictive power for the individual
variables is comparable to that of the CCs themselves.

DATA CLEANING & REORGANIZATION

Beyond imputation of missing values, the most immediately recognizable difference
between Seshat and Shiny Seshat is that Shiny Seshat reorganizes information from
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individual listings of data points into a matrix-like format where rows are polities during a
specific century and columns are features. For brevity, we dub each “polity during a
specific century” as a “polity-century,” indicating that the row is not only sociopolitically
distinguished but temporally distinguished as well, e.g. “The Ottoman Empire
1500CE-1600CE” or “Woodland Cahokia 300BCE-200BCE.” This avoids previous
ambiguity using the term “polity” without regards to the polity’s internal chronology, as a
single polity’s features will usually take on multiple values throughout its tenure. Thus,
time-resolved analyses are done at the scale of polity-centuries rather than at the scale of
polities.

The following changes are also made:

• Seshat encodes binary features on a scale of “present,” “inferred present,” “inferred
absent,” and “absent.” Mirroring previous work [6, 22], these features are converted
to the numeric forms of 1.0, 0.9, 0.1, and 0.0, respectively

• Values encoded as ranges in Seshat are stored as medians in Shiny Seshat. For
example, if Seshat indicates that a particular polity has between 6 and 7
administrative levels (ranges such as this typically indicate uncertainty and/or
organizational complexity), we encode this as “6.5” administrative levels. For
analytic purposes, this simplifies the encoding while still representing the full
information for nearly all ranges.

• Polity-centuries spanning multiple Natural Geographic Areas (NGAs) are also more
clearly indicated as such in Shiny Seshat in the form of a simple list of NGAs for each
polity-century. If one wishes to compare NGAs instead of individual polity-century
(such as we do for cluster trajectories in the following sections), it requires only a few
simple data transformations to wrangle the dataset into an appropriate form.

• We perform a principal component analysis in the same manner as Turchin et.
al. [5] and include the first principal component (PC1) for each polity-century,
though this component differs slightly from the one from Turchin et. al.; the PC1
of Shiny Seshat only accounts for 68% of the variance (our code which performs this
is included in SI File 2 ). PC2 through PC6 account for 13%, 7%, 6%, 4%, and 2% of
the remaining variance, respectively, while PC7 through PC9 all account for less
than one percent of variance. Another difference from the original dataset is that the
eigenvalue for our PC2 exceeds the standard significance threshold of 1.0; see the
Appendix for details on the PCA.
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ALGORITHM

Sparse Subspace Clustering (SSC) is a clustering algorithm capable of efficiently dealing
with sparse, highly-dimensional data [24]. The algorithm is resilient to missing, erroneous,
and noisy data, and the algorithm is not overly sensitive to data points near subspace
intersections. The number of clusters k need not be known prior to clustering; however, a
handful of hyperparameters are still required for the algorithm to function. The algorithm
is summarized from the work of Elhamifar and Vidal [24] in Algorithm 1.

Algorithm 1 Sparse Subspace Clustering (adapted from Elhamifar and Vidal [24])
Input: Amatrix of data points Y

1. Solve the sparse optimization program (equation 8)

2. Normalize the columns ofC as ci ← ci
||ci||∞

3. Form an adjacency matrixW = |C|+ |C|T

4. Perform spectral clustering onW

Output: Cluster labels for the data points in Y

We choose to cluster using SSC as Seshat is, indeed, quite sparse in some categories
prior to imputation, highly dimensional, and contains lower-dimensional “subspaces” with
meaningful interpretations (our typologies in question).

The algorithm operates on the principle of “self-expressiveness” [24]. That is, we
start by assuming that every data point yi can be expressed as a linear combination of every
other point (with a total of n points):

yi = ci0y0 + ci1y1 + · · ·+ 0 · yi + · · ·+ cinyn (6)

In essence, a greater weight cij indicates that data point yj belongs in the same cluster
as yi, and a weight cij approaching 0 indicates that yj is in a different cluster from yi.

In the semantics of polities as data points, this means the algorithm operates on the
assumption that no human society has a single feature of social complexity that is entirely
unique. That is, a polity’s quantitative particularities can always be expressed as some
weighted mixture of the aspects of other polities.

Now, we define a matrix Y = [y1 · · ·yn] and formulate the equation
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Y = Y C + E + Z, diag(C) = 0 (7)

whereC is a matrix of weights,E is a matrix to account for error in the dataset, and
Z is a matrix to account for noise in the dataset [24]. We wish to find aC ,E, andZ that
solve equation 7, thus we frame this as a sparse optimization program

min ||C||1 + λe||E||1 +
λz

2
||Z||2F (8)

such that Y = Y C + E + Z, diag(C) = 0

where λe = αe/
√
n, λz = αz/

√
n, and F indicates the Frobenius norm [24]. We

utilize an Alternating DirectionMethod of Multipliers (ADMM) optimizer (algorithm
also provided by Elhamifar and Vidal [24]) to solve this program.

Lastly, we formulate a matrixW = |C|+ |C|T . This matrix serves as an adjacency
matrix for a graph—effectively turning linear combination weights between data points
into edge weights between nodes. Using a hyperparameterized threshold ρ to determine
when a weight is too small to indicate a connection, we are left with a graph containing a
discrete number of connected components. These components encode the clustering [24].
In practice, we simply count the number of connected components and feed the graph
into a spectral clustering function [25] to create labels for the data points in Y.

Our implementation of this algorithm is available as Python code (SI File 1).

CLUSTER OPTIMIZATION

We begin by sampling from Shiny Seshat the 51 variables of analysis used in prior works
(see Whitehouse et. al. [6] Extended Data Table 5 for a full list of these variables); this is the
subset of data that we will perform clustering on. We then normalize each of these features
using min/max normalization. SSC involves a high number of matrix multiplications, so
this prevents floating-point overflow while still maintaining sufficient information to
perform clustering. We also collapse polity-centuries into data points representing the
entire base polity by simply taking the mean across all time periods. Further, we found that
including too many highly-imputed data points diminished the algorithm’s ability to
converge on a good clustering. Thus, for the analysis, we have paired down the dataset to
only include data points with at least 75% encoding for the fifty-one features, leaving us
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with 271 polities.
Our primary means of gauging how good a clustering we have is silhouette

analysis [26]. A “silhouette coefficient” between -1 and 1 is calculated for each data point.
This coefficient is a measure of how close a data point is to the center of the cluster it has
been assigned. A silhouette coefficient close to 1 indicates that a data point is very near the
center of its assigned cluster. Conversely, a silhouette coefficient close to -1 indicates that a
data point is much closer to a different cluster’s center than it is its own cluster’s center. A
silhouette coefficient close to 0 indicates that a data point is near a boundary between
clusters roughly equidistant between the centers of its assigned cluster and another cluster.

SSC requires a number of hyperparameters. We use hyperopt, a hyperparameter
optimization library [27], to select hyperparameters and find a clustering that minimizes
the number of data points with a negative silhouette coefficient. We found, however, that
this process does not converge upon the most optimal labelling but rather a labelling that is
“fairly close” to optimal. Thus, after performing automatic clustering, we manually
optimize the labeling by iterating over data points with a negative silhouette to relocate
them to the cluster where they have the highest silhouette. Specially, we simply iterate
through each negative-silhouette data point, re-compute is hypothetical silhouette
coefficients were it belonging each of the clusters, and re-label it to whichever cluster in
which it has the highest silhouette coefficient. Alternatively, using other optimization
criteria that do not involve the silhouette coefficient such as MDL or information entropy
would perhaps provide better, more streamlined automatic clustering should this process
need to be carried out again in future analyses.

Fig 1 provides a silhouette plot for each data point. We indicate the most
“archetypal” polities for each cluster in table 2. These are the polities with the highest
silhouette coefficient in their given cluster. The average silhouette score across all clusters is
0.18. Although no standard exists for what constitutes a “significant” average silhouette
(especially in the social sciences), we can compare this score against a score distribution
obtained from performing the same clustering process on similar data sets constructed
randomly.

We construct a dataset in the same shape and general form as our clustering input
dataset, but instead filled with uniformly random values. It contains the same number of
rows and columns corresponding to each entry of actual data. For each column, we note
the minimum and maximum values taken on by the actual data, and generate a new
uniformly random number within these bounds for each entry. We then perform
optimized clustering on this dataset and calculate its silhouette score.
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Fig 1. Silhouette plot for each data point categorized into clusters. The dashed line
indicates the average silhouette of 0.18.

We repeat the above process 540 times and collect the results. We find that the mean
silhouette score from clustering each of 540 random data sets is−0.15 and that the
silhouette score exceeds 0.18 in only 3.9% of cases. In other words, there is a low
probability that we are detecting a “false positive” cluster signal in the Shiny Seshat data. In
terms of qualitative significance of the clustering, we explicate the uniqueness and
significance of individual feature distributions in the following section.

Table 2. Archetypal polities. These are the polities which have some of the highest
silhouette scores in their respective clusters.

Cluster # Archetypal Polity Approx. Era Mean PC1
0 Woodland Cahokia 600 BCE - 700 CE -2.6
1 Cahokia Proper 1100 CE - 1300 CE -1.5
2 Roman Kingdom 700 BCE - 500 BCE CE 0.8
3 Papal States 1500 CE - 1600 CE 2.6
4 Ottoman Empire 1600 CE - 1900 CE 3.0
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RESULTS
To sum up our results, we conceptually replicate previous studies. We find two equally
viable clusterings with insignificantly different average silhouette coefficients: A five-cluster
solution, and a two-supercluster solution. In this supercluster solution, Clusters 0 and 1
from the five-cluster solution are grouped into a Supercluster A and Clusters 3 and 4 form
Supercluster B, with Cluster 2 from the five-cluster solution split arbitrarily between the
two superclusters. The five-cluster solution clearly covaries with Turchin and colleagues’
PC1 social complexity factor. Similarly, we replicate Peregrine’s two supercluster
morphospaces. The observation of recurrent social formations is robust to our new
method and change in dataset. We also document that “cluster trajectories” tell regional
histories of how societies evolve and move between clusters in the longue durée. These
patterns provide a foundation for understanding the causal forces that drive changes
between forms of society.

CLUSTER ANALYSIS VS. THE SOCIAL COMPLEXITY FACTOR

Using the first principal component (PC1) of the Seshat dataset (which both our analysis
and that of Turchin et. al. [5] found to encode a majority of the data’s variance), we may
quantify each polity’s complexity in terms of the variables encoded in Seshat. The PC1
metric exemplifies the organization of the five clusters into two superclusters, with Clusters
0 and 1 having generally low PC1 values, Clusters 3 and 4 having generally high PC1, and
Cluster 2 having a large variance in PC1 “bridging the gap” between the two superclusters
(Fig 2). This trend extends to many of the distributions of the clusters’ complexity
characteristics; we generally see a “clumping” of superclusters with Cluster 2 spanning a
large variance in the middle, or a near-linear scaling of distribution means (SI Fig 1 ).

3 2 1 0 1 2 3
Mean PC1

4
3
2
1
0

C
lu
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er

Fig 2. Distribution of Social Complexity (PC1) values for clustered polities.

We also analyze the distributions of Complexity Characteristics (CCs) between
clusters (SI Fig 1). We see that, for example, social hierarchies within clusters are roughly

15



normally distributed and that more socially complex clusters tend to have taller hierarchies
(Cluster 0 has shorter hierarchies than Cluster 1, Cluster 1 has shorter hierarchies than
Cluster 2, etc). Mann-Whitney U tests indicate that nearly all distributions of Complexity
Characteristics (CCs) between clusters are unique (p < 0.05 in all cases and p < 0.001 in
nearly all cases). What is more interesting for revealing the nature of these clusters is seeing
which distributions are not likely to be unique; namely, CapPop for Clusters 1 and 2
(p > 0.26),Hier for Clusters 1 and 2 (p > 0.11),Money for Clusters 0 and 1 (p > 0.12),
Money for Clusters 2 and 3 (p > 0.21),Writing for Clusters 0 and 1 (p > 0.35), and
Writing for Clusters 3 and 4 (p > 0.26).

These results indicate two things. First, there is clear reason to differentiate
subclusters within their superclusters, but theMoney variable may bemeasuring something
that unifies clusters into superclusters in the first place. Second, it seems the development
of a written script is almost synonymous with a society existing in any of Clusters 2, 3, or 4.
Whether this relationship is causal or simply highly correlated is yet to be explored.

Table 2 lists some of the most archetypal polities in each of our four clusters. These
polities are considered among the best fit data points in their respective clusters, and are
thus especially representative of the typical quantitative characteristics of the polities in
each cluster. This allows us to discuss cluster characteristics in terms of actual historical
examples. The Seshat Knowledge Graph [17] provides qualitative info on these polities:

Exemplary of Cluster 0, Woodland Cahokia is the period prior the rise of the urban
city of Cahokia proper. Populations were small and foraging was important for subsistence
in this period. Cultures in this period practiced mound-building and pottery, and there is
evidence for some high-status burials and crop cultivation in the latter half of the period.
Cahokia proper is exemplary of Cluster 1, with the sudden emergence of Cahokia as a
immense and densely populated center with a population capable of great feats of
cooperation such as mound-building and constructing large wooden palisades.

The Roman Kingdom period stands out as a Cluster 2 society as the small, disjoint
villages of the Copper, Bronze, and Iron age (Cluster 0 societies) give way to the beginnings
of Rome as a city-state and, following the Kingdom period’s conclusion, to the rise of the
Roman Republic (a Cluster 3 society). Despite Rome’s classification as a Cluster 4 society
during the Principate and the Dominate, we see a return to Cluster 3 following the
Empire’s collapse and a thorough settling-in to this cluster as the Papal States become
quantitatively exemplary of Cluster 3 (see Fig 3 to follow this journey).

The Ottoman Empire stands out with the highest silhouette score in Cluster 4. The
vast territory of the empire stands in contrast to the relatively small region of the Italian
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peninsula encompassed by the Papal States. Although the Ottoman empire had a shorter
religious hierarchy in comparison to the Papal States, political hierarchies are matched or
greater. Further, the Ottoman Empire was consistently a unitary state throughout its
tenure, whereas the Papal States’ degree of centralization fluctuated over the centuries from
strong singular bureaucracies to loose associations of cities. Yet, both of these Supercluster
B societies represent a much greater state of social complexity than societies of Supercluster
A.

Further, the clustering allows us to create a kind of analog for the social complexity
trajectories of natural geographic areas (NGAs) provided by the PC1 metric (Figs 3,4,5,6).
These cluster trajectories illustrate a similar journey through time of cluster membership
for the polities occupying an NGA. Temporally, NGAs almost always begin in Cluster 0
and eventually move on to the other clusters. Long-term shifts in cluster membership are
usually accompanied by large shifts in PC1 (such as with Fig 3), whereas more rapid
fluctuations between clusters usually are accompanied by a relatively stable, if noisy, PC1
(such as with Fig 5). Notably, societies never remain in Cluster 2 for the amount of time
recorded for the other clusters, suggesting that societies in Cluster 2 are perhaps in an
unstable or transitional state. In all cases, time spent in Cluster 2 is typically limited to
200-500 years, whereas time spent in all other clusters can stretch on for millennia (Fig 7a).
Further, when accounting for all trajectories, we observe cluster shift frequencies that
indicate the vast majority of societies leave Supercluster A without returning, societies tend
to pass through Cluster 2 on to Supercluster B, and a majority of societies do not leave
Supercluster B once they have entered, and those that do are likely to return (Fig 7b).

Not all geographic areas are very complete in their cluster trajectories due to their
data sparseness. The trajectories presented here have been chosen as they are among the
most complete trajectories and display dynamics exemplary of their siblings (see the SI File
3 for all generated cluster trajectories).

THE SOCIAL COMPLEXITY MORPHOSPACE

Building from our cluster analysis, the data replicate the observation of an empirical
morphospace of societal scale and technology as observed in a 2018 study by Peregrine [1].
Peregrine’s study analyzes a different dataset, the Atlas of Cultural evolution, and uses a
different cluster-revealing methodology involving Guttman scaling and morphospace
analysis. The Atlas encodes similar information to Seshat; to help reduce the data’s
dimensionality, Peregrine utilizes scale and technology factors derived from the
Murdock-Provost scale of cultural complexity [28] by Chick [29]. From Peregrine’s data,
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the Technology Factor is a composite of variables concerning writing, land transport, social
stratification, political integration, technological specialization, and money; and the Scale
Factor is a composite of variables concerning fixity of residence, agriculture, population
density, and urbanization.

We present simple, roughly analogous alternatives to Peregrine’s Scale and
Technology factors derived from Seshat data alternatively named factors of “Scale“ and
“Non-scale“ for greater clarity and rigor. We categorize Seshat’s population, territory, and
hierarchy features as features of scale and all other features (such as variables concerning
infrastructure, writing, and economy) as features of non-scale. In the same manner as we
did prior to clustering, we then min/max normalize all features of scale to be between 0 and
1. We then create a scale factor for each polity by simply summing together each polity’s
normalized scale features. Since all non-scale features are binary in nature (Shiny Seshat
encodes them as present with a 1 and absent with a 0, with varying degrees of uncertainty
assigned intermediary values), we finally assign polities a non-scale factor that is analogous
to the total number of non-scale features that are listed present for each polity. This
method is further replicated by creating axes of normalized Scale CCs (PolPop, PolTerr,
CapPop, andHier) and Non-scale CCs (Govt, Infra,Writing, Texts, andMoney).

In Fig 8, we plot polities along the axes of scale and non-scale factors. This plot
shows almost precisely the same morphospace curve as Peregrine’s study [1], and the plot
also shows that our own clusters are quite clearly clumped together in this space. Density
analysis of the space exemplifies the two superclusters that polities tend to exist in, as well as
an additional, smaller smattering between the two clusters representing the centroid of
Cluster 2. These results are consistent with the proposition that human societies are well
described by recurrent social formations driven by underlying social-ecological interactions.
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Non-scale factor                                                          Sum of Normalized Non-scale CCs

Non-scale factor                                                          Sum of Normalized Non-scale CCs

Non-scale factor                                                          Sum of Normalized Non-scale CCs

Fig 8. The empirical morphospace of cultural complexity: all datapoints by cluster (top
plots), per-cluster probability density (middle plots), and overall probability density
(bottom plots).

DISCUSSION & CONCLUSION
In this analysis, we have algorithmically uncovered discrete clusters of societies based on
features of government, economy, technology, religion, military, information systems, and
population variables provided by the Seshat: Global History Databank. Analysis indicates
that solutions of two and five clusters are the best fit to Seshat’s data, with
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lower-complexity Clusters 0 and 1 in the first supercluster, higher-complexity Clusters 3
and 4 in the second supercluster. Cluster 2 is a kind of intermediary, “transient” cluster of
societies transferring between the two superclusters. Results hint at the possibility of the
development of a written script playing a role in the shift from the first supercluster to the
second, although further exploration is needed to determine if this relationship is causal or
simply highly correlated.

Our cluster trajectories indicate that, while Seshat and the corresponding Social
Complexity (PC1) metric are resilient to differing methodologies, the PC1 metric does not
always capture much of the diversity between societies. Indeed, two societies with different
technologies, social organizations, and cluster membership may be calculated to have a
near-identical PC1. Tying in cluster analysis to study societies in terms of both PC1 and
typology may be of use to scholars seeking to utilize a more comprehensive approach to
quantification. For example, large changes in PC1 were shown to cross-culturally precede
the development of judgemental deities [6], thus contradicting the Moralizing Gods
hypothesis. We hypothesize that these large changes in PC1 may also temporally coincide
with shifts in cluster membership.

We offer the interpretation of our results within the framework of dynamical
systems theory. We hypothesize that there exists an underlying model with attractors in the
space of scale and non-scale that manifests in the form of the clusters that we have found.
With this interpretation, our analysis is ultimately more exploratory than explanatory.
Though, our results offer robustness to the theory behind recurrent social formations. Our
methods and dataset differ wholly from those of the study by Peregrine [1], yet we seem to
observe the very same phenomena of social complexity morphospaces. In the future,
predictive mathematical models should be constructed to describe the attractors that lead
to clumping in the morphospaces and shed light onto the dynamics that create these
apparent “social steady-states.”
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SUPPORTING INFORMATION

PolPop

Cluster 0
Cluster 1

Cluster 2
Cluster 3

Cluster 4

PolTerr

CapPop

Hier

Govt

Infra

Writing

Texts

0.0 0.2 0.4 0.6 0.8 1.0

Money

Normalized CC

Pr
ob

ab
ilit

y 
D

en
si

ty

S1 Fig. 1 Distributions of Complexity Characteristics (CCs) across clusters. Using a
kernel-density estimation.

S1 File 1. Clustering and plot generation code. We include our Python 3
implementation of the clustering algorithm and all analysis and plot-generation code.

S1 File 2. Shiny Seshat scrubbing code. We include our Python 3 program that begins
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with the original, untampered Seshat database and performs the entire process of turning it
into Shiny Seshat (including all error correction, Complexity Characteristic creation,
imputation of missing values, etc.).

S1 File 3. A complete collection of cluster trajectories. We include trajectories for all
Natural Geographic Areas (NGAs) for which there is sufficient data (all polities with at
least 75% complete encoding for the 51 features of analysis; see the Data and methods
section for details).
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Word count: 1,089 words

REFLECTION
It has been a thrilling adventure to pull together the expertise from people at three entirely
different university departments in order to complete this project, for the project has truly
lain at the point of intersection between the my three fields of study: computer science,
mathematics, and anthropology. In this way, in combination with the research
necessitating the application of concepts from so many of my high-level courses (some of
which I even completed while concurrently working on the project), I genuinely feel that
there isn’t a more apt word to describe it than “capstone.”

My career goals lie in academic research, so this experience has unsurprisingly been
invaluable in preparing me for such a line of work. It has exposed me to the entire research
process—from background research, to exploration and discovery, to analysis, to writing,
editing, presentation, journal submission, peer review revisions, and publication. It has
taught me how to function as a researcher working with other researchers—how to
collaborate, communicate, and rely on different peoples’ differing skillsets to accomplish a
complex task.

Dr. Freeman has been an incredible mentor. He has shownme so many of the ropes
and guided me along at every step of the process. I have to particularly thank him for
helping “de-engineer” my research mindset. When I began to jump into all this, I did so at
the (mostly unreluctant) abandonment of my previous career plans of becoming an
engineer. The first time I tried to present results at one of our weekly lab meetings, I dived
straight into the mathematical details of the clustering algorithm. Dr. Freeman had to step
in and stop me—lest I bore a room of anthropologists to sleep. Since then, my scientific
presentation skills have, I hope, greatly improved. He’s really helped me convert my brain
from thinking only of the “hows” of engineering to also thinking of the “whys” of science,
and for this I am very grateful.

The project has, by necessity, given me a good taste of research from each of my fields.
It was quite a cool experience to, for the first time, have to parse through an academic paper
to take note of the mathematics driving the algorithm I’m trying to use, throw some linear
algebra libraries at it to program it all up, and have the darn thing work. A part of me didn’t
actually believe that it would work. At first it all just seemed like a bunch of arcane
incantations. Yet, there it was, right in front of me, the fruit of my efforts: clusters!
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To then also use the very methods that I learned in my data science classes, and to
then even cite some of the very papers that we had to read for Dr. Freeman’sHistory and
Theories of Anthropology course in order to make some of the points we wanted to make...
It has been so satisfying to fit together the puzzle pieces from so many different corners of
my studies.

And I’ve, of course, not only had to fit the pieces together but also critically think
about broader topics in order to understand the larger picture. I’ve had to learn how to
think about and interpret both the data and the results of my analysis to understand what
it entails for human societies at large. I’ve had to develop the crucial skill of being able to
realize when the data is saying something semantically significant—and when it isn’t.

Working so intimately with imputation has also required me to think a lot about
how useful it is to fill in missing data with what are essentially fake values. A significant
portion of the analysis was dedicated to trying to fill out those values with better estimates,
understand how to evaluate those estimates and, once its all said and done, understand the
types of things that these estimates can actually tell us. This being the first time I’d done
such a thing, I found it to be quite an exercise in data-scientific thinking.

But one of my favorite aspects of the project is how it has brought me a closer to
communities I wasn’t a part of before. Frommeeting regularly with our local USU lab, to
presenting preliminary results at the Peak fellowship symposium, to ultimately getting
involved with the PEOPLE 3,000 research group of archaeologists studying paleoclimate
and the “peopling of the Earth,” I’ve met so many brilliant scientists that I’ve been able to
converse with, bounce ideas off of, and garner new understandings from.

Although not directly related to this project, my involvement with the PEOPLE
3,000 group is a direct result of me seeking out Honors capstone mentorship fromDr.
Freeman (though some members of the group also ended up providing me with some very
good feedback on some early drafts of the manuscript). I first met the bulk of this group
through attending a workshop in Vernal, Utah, where I evolved into the token code
monkey in the room helping archaeologists construct a new database of global radiocarbon
records. Sitting in that conference room, collaborating with so many different researchers
from around the world hailing from countries like Norway, Chile, and the UK, was the
first time I honestly felt like I was a part of a kind of global community. It was an incredible
experience, and I’ve very much continued to enjoy remotely working with the group since.

But, ultimately, the raison d’être of any research, I think, is the impact that it is meant
to have on people. While this particular project is largely theoretical without any
immediately obvious applications, its true purpose is that it is but one more step into an
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emerging field of exciting research that marries quantitative methods with the study of
large-scale human behavior. The dream is for this field to one day inform policy—for
governments to be able to make decisions rooted in a comprehensive science of social
change and to be able to fully predict the long-term impacts that those decisions will have
on the social systems they are attempting to affect.

In essence, the hope is that this kind of science will be able to promote human
well-being, reduce violent conflict among nations, and allow for ecological and social
sustainability across generations. My own research is maybe a long way from being able to
do any of that, but I think it’s important to not lose sight of that goal. I hope that each
hour we work will bring us a little closer to it.
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APPENDIX
In the original principal component analysis (PCA) of Seshat conducted by Turchin and
colleagues [5], the first principal component (PC1) was found to be the only significant PC
as it was the only one with an eigenvalue above the standard threshold of 1.0. Our
replicated PCA using Shiny Seshat, however, provides us with a significant PC1 but also a
PC2 eigenvalue of 1.42— just above the significance threshold (Table 3).

The loadings across PC1 appears to also be less consistent than the prior analysis
(Table 4). This may be an artifact of differences in imputation procedure. Loadings for
PC2 indicate that it is primarily encoding theMoney complexity characteristic (CC) and
secondarily encoding theWriting CC (Table 5).

There appears to be no significant difference in PC2 between most polity-centuries
regardless of supercluster membership (SI Fig. 2). Interestingly, however, the greatest
variation in PC2 is seen in Cluster 2, the “transitionary” cluster. Whether this is perhaps a
clue about the process that causes shifts in supercluster membership, or whether it bears
any semantic meaning at all, is yet to be determined; further research and analysis is
required.

Table 3. PCA eigenvalues

PC Eigenvalue
1 7.5604
2 1.4152
3 0.7268
4 0.6183
5 0.4121
6 0.2549
7 0.0605
8 0.0227
9 0.0148
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Table 4. Loadings for PC1

Rank # CC Loading
1 Hier 0.494
2 Money 0.459
3 PolTerr 0.400
4 PolPop 0.392
5 CapPop 0.326
6 Writing 0.297
7 Texts 0.137
8 Govt 0.095
9 Infra 0.089

Table 5. Loadings for PC2

Rank # CC Loading
1 Money 0.831
2 Writing 0.115
3 Texts 0.034
4 Infra 0.032
5 Govt 0.019
6 Hier -0.231
7 PolTerr -0.259
8 PolPop -0.259
9 CapPop -0.323
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SI Fig. 2 PC2 plotted against PC1with datapoints by cluster (top), per-cluster
probability density (middle), and overall probability density (bottom).
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