On Demand Vicarious Calibration for Analysis Ready Data: The FLARE Network

Christopher Durell, Dr. Brandon Russell Labsphere, Inc. 231 Shaker St. North Sutton, NH 03260; C: (858) 414-1885 cdurell@labsphere.com

ABSTRACT

This paper introduces a new capability for performing the vicarious radiometric calibration of high, medium and low spatial resolution sensors. The SPecular Array Radiometric Calibration (SPARC) method employs convex mirrors to create calibration targets for deriving absolute calibration coefficients of Earth remote sensing systems in the solar reflective spectrum. ¹⁷ The combination of these mirror arrays with a targeting station is the basis for a new, ondemand commercial calibration network called FLARE.

SPARC METHOD - AN INNOVATION IN **CALIBRATION**

Current best practice for verifying absolute radiometric requirements of remote sensing imaging systems is always based on viewing a traceable extended source that uniformly illuminates many if not all detectors on the focal plane. This holds true whether the calibration images are recorded in pre-flight testing or in-flight viewing on-board or vicarious sources. Illuminating a large number of detectors establishes a mean response to the calibration radiance with high precision and averages out the blurring effects induced by the sensor's optical system. The procedure derives radiometric gain coefficients with uncertainties that can be maintained through the image processing chain to higher level products but only for extended uniform scenes for which the response is unaffected by the sensor's image quality performance.

to a few pixels in diameter. As a result, the spatial performance of the sensor and any pixel resampling performed in the processing chain can become a significant error contributor to the radiometric knowledge of small targets in the scene. This leads to several factors to be accounted for in the accuracy and

Many targets of interest are small, typically subpixel up

traceability book-keeping specific to small targets.

View metadata, citation and similar papers at core.ac.uk

In this effect, the shape of the small target image profile projected on the focal plane detectors produces a high contrast relative to the scene background in which a single detector may ultimately respond differently because of high spatial frequency illumination gradients across the detector not present when under calibration.

Sensor Blurring

sensor blurring, the energy originating geometrically within the projected ground location of a

single detector, containing the small target, becomes recorded by adjacent detectors outside the target area because of the system point-spread function (PSF). This induces a probabilistic uncertainty in the location of the signal's origin and, thus, also the target radiance without some a priori knowledge of the targets shape and size.

Effects of Post-Processing on Image Quality

In post processing, band-to-band registration and geometric calibration apply resampling methods that ultimately introduce increased radiometric uncertainty. The result is additional spatial smearing of information between the small target and its background specific to the resampling kernel and routine used to redefine individual pixel digital values, size and orientation.

SPARC Method for Small Targets

Due to these factors, there is a need to develop a comprehensive radiometric error propagation analysis process for small targets that can benefit by introducing vicarious ground references that reveal and validate these artifacts within image data collected under operational conditions. Further, the radiometric and spatial resolution metrics of a sensor are subject to change on launch and drift over mission duration, necessitating ongoing characterization and calibration

brought to you by ... CORE

The vicarious canoration technique known as the SPecular Array Radiometric Calibration (SPARC) method is demonstrated to provide a highly flexible and robust approach for characterizing the performance of a sensor imaging small targets. Its general use is shown in Figure 1.



Figure 1: FLARE Station Relay of Measured Solar Radiance to Satellite

This technology is the invention of Dr. Stephen Schiller of Raytheon and has a well-documented record of published performance. 17,13,12,8,6 SPARC delivers small intensity reference targets, made from a collection of facets consisting of convex mirrors, which can be built to any size, shape, brightness or spectral composition with accurate radiometric traceability to the solar radiometric scale. These types of synthetic targets may be a dynamic replacement for naturally observed phenomena (PICS sites, deserts, etc.) and, potentially, bulky and expensive on-board calibration equipment.

THE FLARE NETWORK – ON DEMAND LOW COST CALIBRATION

Labsphere has created a new automated calibration network called FLARE based on the SPARC mirrors and their established radiometric technique. FLARE is an acronym that stands for Field, Line-of-sight Automated Radiance Exposure. The benefit of FLARE is a point-able system with improved radiometric performance knowledge compared to other in-flight vicarious techniques through reduced uncertainties in target reflectance, atmospheric effects, and temporal variability. The only ground truth needed is the measurement of atmospheric transmittance (although upwelling and downwelling radiance, surround reflectance, and mirror characteristics are also collected by FLARE stations).¹⁷ These mirror arrays are subpixel size. The simplification of calibration targets and ground truth collection in the FLARE Network makes the deployment more cost effective and/or portable. FLARE creates the opportunity to strategically locate and imbed spectral, polarized, spatial, and radiometric targets at study sites providing references that improve a sensor's interactivity as a phenomenological tool. This technology is patented by Raytheon Inc. and licensed to Labsphere, Inc. in order to create a commercially available network for calibration.

The FLARE Network concept is an innovative, automated, on-demand, ground-based radiometric calibration station for in-flight sensors. These mirror stations will track and point to sensor (satellite/airborne) locations and provide absolute ground-truth calibrations as in Figure 2.

Figure 2: Active Solar tracking of a FLARE Station

Initial development of the commercial FLARE network is targeting an ALPHA system for evaluation by university and commercial partners in early calendar year 2020. The ALPHA will be followed by a more feature-rich BETA system by Summer of 2020. The network will expand as quickly as the market uptake of the concept allows. A model of (6) worldwide sites creates hundreds of validation opportunities for Landsat-8.

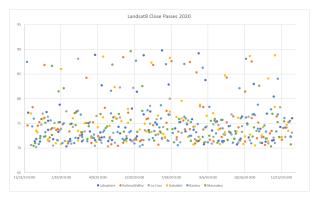


Figure 3: Model of (6) FLARE Sites for (400) Calibration Opportunities for Landsat 8

These stations hold the promise to provide standardization among imaging satellites and Analysis Ready Data (ARD) at a first level of image capture (L0 or L1). The extended network of these systems will be the basis for fractional-cost calibrations, digital subscription services and worldwide common calibration operation for all airborne sensors and satellites.

ENHANCING CURRENT VICARIOUS CALIBRATION METHODS WITH FLARE

The FLARE network will offer a breakthrough technology to the satellite and airborne imagery community in many ways that are not readily available today:

- Tailored to imagers, FOVs & instruments (GSD, angle independent, & bands)
- Agile system configuration, innovative uses and universal placement capability
- Tied to "Big Satellite" methods: Same or better traceability, uncertainty & quality metrics
- Traceably link satellite (lower resolution) to higher resolution airborne, UAV high resolution "under-fly" data.
- Provide on-demand calibration services: when and where needed...and as often as needed
- Subscription and per-look business model: Fractional & controlled cost versus conventional calibration methods.
- Enables Analysis Ready Data as close as possible to the initial image processing levels.

Additionally, FLARE can offer*revolutionary* capability to solve problems that are not currently addressable by common techniques. A discussion of specific problems and solutions is embedded in Table 1 through Table 5 below.

Table 1: Inherent problems for current calibration methods and how FLARE can help along with citations of reference work.

PROBLEM	CURRENT	CITATION
AREA	VICARIOUS FLARE	OR STATUS
	SOLUTION	
Limited by	FLARE stations can have	17, 14, 6
GSD, &	multiple mirror sets so	17, 14, 0
Bands	that looks are GSD	
	Specific. The mirrors are	
	broadband, characterized	
	and have a spectrally	
	neutral coating (e.g.	
	aluminum) so that they	
	are only relaying the	
	measured solar spectrum.	
One-site, one	FLARE sites can have	15, 12, 6
type of	multiple mirror bays with	13, 12, 0
calibration	independent controls.	
	Different mirrors in	
	different bays can allow	Pending – rapid
	different calibrations for	sequential
	GSDs or polarization or	testing with
	other factors. Or, different	different
	mirrors could	platforms.
	simultaneously or	Plationis.
	sequentially track	
	different targets imagers	
	providing a common	
	calibration.	

M:4-11	EL ADE :- 4-:11 d-44-	
Mis-matched	FLARE is tailored data to each GSD and is a	17, 14, 7
Radiometry and FOV	subpixel point source –	
androv	this removes the	
	dependence of each	
	satellites' GSD and FOV	
	(and target BRDF). Any	
	mismatching of bands due	
	to angular and spatial	
	registration is readily	
	apparent in FLARE	
	images and can be	
	quantified and corrected.	
Follows the	Since the FLARE systems	17 14 12 9 7
Big Satellites	can point and can be	17, 14, 13, 8, 7,
for SNO	placed at any	O .
	advantageous location,	
	and utilize TOA sunlight,	
	a Simultaneous Nadir	
	Overpass (SNO) is not	
	necessarily needed with	Pending – test
	Big Satellites to establish	with campaigns
	traceable measurements for small satellites. Small	with small
	satellites could choose	satellites.
	orbits and calibration	
	scenarios to achieve	
	objectives without being	
	tied to big satellite orbits.	
Limited &	Current calibration sites	15 11 0 5 6
Large Sites	are large deserts and	17, 14, 8, 7, 6
	natural areas to	
	accommodate the large	
	pixel sizes of the big	Pending – test
	satellites. FLARE	with Alpha and
	synthetic targets can be	Beta units &
	placed in any location	campaigns
	fields, parking lots, tops	w/small
	of buildings, mountains.	satellites.
	Any measured semi-	
	uniform surface has the	
	potential to be a	
	calibration site with a static or mobile FLARE	
Coxommant	station.	
Government	FLARE is a commercially available system. It is a	FLARE
Program Dependent	going-concern based on	commercialized
Dependent	its own utility and	services to start
	economic merits as a paid	in CY2020.
	service to its customers. It	
	is not inherently reliant on	
	government funding	
	sources.	

Table 2: Atmospheric and Situational Problems for current calibration methods and how FLARE can help along with citations of reference work.

PROBLEM	ATMOSPHERIC &	CITATION
AREA	SITUATIONAL	OR

	FLARE SOLUTION	STATUS
Low	The atmospheric	17, 9
uncertainty	variance is usually one	
calibration	of the largest	Pending -
	uncertainties in any	Planned for
	image capture. High	site
	Altitude placement of	placement
	FLARE sites to reduce	in
	atmospheric	2020/2021.
	transmittance and	
	uncertainty to fractional	
	levels. FLARE mirrors	
	could also be placed in	
	space (at GEO or on	
	other LEO satellites).	
Atmospheric	Reducing atmospheric	16
extinction	effects to only	
	transmittance allows	Pending –
	accurate atmospheric	FLARE can
	characterization using	be tied to
	Aeronet-style	Aeronet for
	instruments alone.	comparison.
	Atmospheric values are	1
	measured not modelled.	
	FLARE could be an	
	expansion or possible	
	improvement to the	
	Aeronet readings	
	because the full	
	atmospheric path length	
	is measured.	
Partially	The at-sensor signal	17, 14
cloudy days	contains only the direct	
	solar contribution and,	Pending -
	thus, does not require a	Planned
	completely clear sky,	campaigns
	only a clear line-of-sight	with
	as defined by the mirror	Universities
	pointing.	and
		commercial.
Variable	The FLARE system	16, 8
angle	continuously tracks the	
atmospheric	satellite through its	Pending –
passes	orbital path so that the	Possible
	target can be imaged	using
	anywhere along the path	tracking
	across the sky.	capability of
	Atmospheric	FLARE and
	transmittance is	pointing
	measured. Knowledge	satellites.
	of the exact position in	
	the sky at which the	
	ground target is imaged	
	is not necessary to	
	obtain a calibration	
	collect.	

Mobility	Current calibration sites	8, 1
	are large and immobile.	
	FLARE mirror sets and	
	pointing stations are	
	generally small and easy	
	to move (size is GSD	
	specific). They can be	
	placed on mobile	
	vehicles or tripods to	
	move them where the	
	measurements need to	
	be made. Sites can be	
	man-made (buildings,	
	parking lots) or natural,	
	as long as the	
	background is	
	characterized and/or low	
	reflectance.	

Table 3: Spatial and Spectral Problems for current calibration methods and how FLARE can help along with citations of reference work:

PROBLEM	SPECTRAL &	CITATION
AREA	SPATIAL FLARE	OR
	SOLUTION	STATUS
Unconventional	Currently small	8, 5
orbits	satellites generally	
	have no on-board	Pending -
	calibration capability	Possible due
	and must rely on	to the
	vicarious calibration	mobility
	methods and orbit	and small
	paths of big satellites	footprint of
	to verify image	systems.
	uncertainty. FLARE	
	sites could be placed	
	in convenient	
	locations	
	(permanently or	
	temporarily) to allow	
	low or high	
	inclination orbits for	
	frequent revisit or	
	task-specific	
1	purposes.	
BRDF of	If FLARE	17, 14, 8
targets	continuously tracks	
	the satellite through	Pending –
	its orbital path,	Possible
	atmospheric	using
	measurement can be	tracking
	extracted. The	capability of
	satellite would need	FLARE and
	to point back at the	satellite
	same point of the	pointing.

	earth in a repeated	
	fashion and then back	
	at FLARE. This	
	successive series of	
	looks and	
	atmospheric	
	measurement may	
	allow BRDF of a	
	target to be extracted	
	from this data set.	
Large footprint	FLARE targets, being	17, 14, 13,
targets	intensity sources	8, 7, 5, 4
8-1-	rather than radiance	,,,,,,
	sources, can be kept	
	small and do not	
	require multiple	
	pixels for calibration.	
Polarization	Mirrors with known	15
	polarization states (S,	
	P, both or other) can	Pending –
	be introduced into the	test with
	FLARE stations by	ocean
	the mirror surfaces.	clients and
	Look angle	others sites.
	orientation and angle	
	of incidence of the	
	sun on the mirror can	
	be controlled	
	independently to	
	provide different	
	1 *	
	degrees of linear	
	polarization in different states.	
N. 1 '		17 14 12
Natural site	FLARE sites are	17, 14, 13,
spectral	synthetic targets that	8, 7, 6
variation	provide engineered	
	spectral responses.	
	Synthetic sites will	
	reduce variation in	
	imagers response and	
	band-to-band	
	uncertainty.	<u> </u>
Spectral	Multiple mirrors are	4, 3
signatures	usually populated in a	
	bay with one coating.	
	It each mirror had a	
	bandpass (coating)	
	then the summation	
	radiance signature of	
	the mirrors would be	
	a convolution of the	
	independent mirror	
	bands. This capability	
	creates tunable mirror	
	spectral signatures	
	that can be designed	

to emulated reflected	
signatures or unique	
task identification	
signatures.	

Table 4: Imaging and Inter-Calibration problems for current calibration methods and how FLARE can help along with citations of reference work.

PROBLEM AREA	IMAGING & INTER- CALIBRATION	CITATION OR STATUS
	FLARE	
	SOLUTION	
Ocean	These mirror sites	15, 4, 2
leaving	could be placed onto	
radiance	structures (like oil	
	platforms) that	
	provide a bright target with dynamic	
	range control on top	
	of a large dark	Pending -
	background (ocean).	Creation of
	The line-of-sight	large-scale sites
	path provides	for ocean
	extremely well	programs. like
	understood	PACE or
	atmospheric	GLIMR.
	information.	
	Additionally, these mirrors have shown	
	to be able to be used	
	on water and still	
	provide point	
	sources – even with	
	wave action - due to	
	spherical shape.	
	Polarization	
	capability with different mirrors can	
	be installed.	
	Additionally, mirrors	
	even the ability to	
	submerge for	
	bathymetry radiance	
	and you have a	
	complete tool set that	
	may be able to	
	finally solve the Ocean Leaving	
	Radiance problem –	
	or at least provide a	
	well understood	
	uncertainty that is	
	not possible with	
	today's methods.	

DOE MEE	DI ADE	17.0.1
PSF, MTF	FLARE targets	17, 8, 1
and	provide a true point	
Empirical	source with	
Line Method	calibrated radiance.	
	Arrays or patterns of	
	these targets can	
	provide PSF, MTF	
	or other image	
	related quality	
	information. Using	
	different numbers of	
	mirrors in different	
	clusters, captured in	
	a single image,	
	provides different	
	brightness points to	
	create an accurate	
	linear calibration	
	over the full dynamic	
	range of the sensor.	
Under-Fly	FLARE stations can	15, 12, 6
and Over-	have multiple mirror	
Fly with	bays with	
different	independent	Pending – Tests
instruments.	controls. Different	with small sat
	mirrors in different	and UAV
	bays allow different	providers.
	calibrations for	1
	GSDs or polarization	
	or other factors. Or,	
	different mirrors	
	could simultaneously	
	track different	
	targets imagers at the	
	same time providing	
	a common 2	
	calibration.	
	Response of the	
	sensors is	
	independent of	
	altitude as long as	
	the GSDs are	
	similar.	
GEO & LEO	To a GEO imager, a	14, 9
intercalibrati	FLARE system	_
on	would be like a	
	constant solar	
	reference, which	
	means the GEO	Pending –
	imager constantly	Testing and
	monitors the solar	research needs
	transmittance	to be done but
	providing real-time	theoretically
	atmospheric and	possible.
	radiance data. As a	1
	result, GEO sites	
1	, , ===	

	observing these	
	FLARE sites could	
	then be linked or	
	correlated to	
	simultaneous LEO	
	overpasses and the	
	GEO data could	
	calibrate the LEO	
	satellites.	
	Conversely,	
	telescopes on earth	
	could use a SPARC	
	at near-GEO to cross	
	calibrate with each	
	other	
	radiometrically. Or,	
	LEO satellites with	
	FLARE mirrors	
	might be able to	
	cross-calibrate each	
	other.	
AM/PM &	The FLARE systems	
Night	are only reliant on	Pending –
Calibration	having a constant	Radiometrically
	point source of	possible, has
	radiance. Solar looks	not be tested.
	at the beginning and	
	end of the day could	
	be possible to	
	provide atmospheric	
	information or	
	dawn/dust spectral	
	calibrations.	
	Additionally at night,	
	the moon can be	
	used to calibrate	
	night vision or	
	day/night band type	
	systems.	

Table 5: Commercial and Economic Problems for current calibration methods and how FLARE can help.

PROBLEM	COMMERCIAL &	CITATION
AREA	ECONOMIC	OR STATUS
	FLARE SOLUTION	
Maintain	Traceable calibration	Pending -
Calibration	is available on an as-	Commercializ
Team or	needed basis and costs	ed
calibration	can be controlled to	subscription
campaigns	suit constellation or	service and
1 0	individual satellite	on-demand
	needs. High precision	"looks"
	and repeatability allow	pricing.
	for rapid and frequent	

	4 * 4 * 4 *	
	on-orbit validation.	
Maintain Image Processing Team (IPT)	Frequent calibrated images with instrument specific GSD band independence and FOV information will lead to analysis ready data on each overpass and less processing time and resources.	Pending – studies with current providers to show cost reduction and efficient ARD products.
There is no ARD "Standard"	Highly defined and agile FLARE methodology provides a basis to establish an ARD standard or multiple ARD definitions. Availability and agile configuration of FLARE network and systems will enable affordable and easy ARD standard compliance.	Pending – Work with CEOS and other Government organizations to help determine a feasible ARD standard.
Low frequency of valid opportunities	Frequency of FLARE looks could drive down individual systemic uncertainty just through gross statistics. Frequency and trending will enable innovation and new capabilities.	Pending – FLARE commercializ ation and utilization studies.
Human intervention	The amount of data today requires full automation (AI and ML) to achieve the data's value potential. Even with free Big Satellite calibrated data, today, significant human intervention on the imagery and calibration quality is required. FLARE will enable fully automated and cloud-based services with verified performance with minimal human resource intervention.	Pending – FLARE use study on reduction of human intervention and data quality.

PRELIMINARY RESULTS FOR FLARE ALPHA STATION TRACEABILITY & UNCERTAINTY

Achieving true Analysis Ready Data requires complete interoperability of data streams at the lowest level of processing possible. An important requisite to achieving this in radiometric space is gain coefficients relating to absolute physical units (e.g. W/m²/nm/sr), traceable to a national metrology institute like the US NIST. The FLARE system provides a traceable radiance signal, enabling comparison between sensors (and the same sensor over time) at lower levels of data processing. Understanding and lowering radiometric uncertainty is critical to scientific Earth observation and is also of great importance to economic modeling and exploitation of remote sensing data. The potential value of reducing uncertainty to the levels possible with FLARE is estimated at over \$10 trillion USD, with up to 50:1 investment on return^{19,20}. A full uncertainty budget for FLARE is in development, which identifies and describes the contributions of all sources of error or variance in the measurement chain. Preliminary estimates indicate a radiometric uncertainty of ~3% relative uncertainty for a system at sea level, with a reduction to ~1.5% uncertainty for a FLARE node at a high-altitude site (in planning).

CONCLUSIONS

The amount of airborne and satellite data available today is expanding exponentially, but its inherent quality and radiometric uncertainty is not matching pace. Better data is needed, not just more data. Accelerating the quality of the data demands a new breakthrough system of a high-frequency, reliable, and practical system calibration. SPARC is a proven technical solution for calibration. FLARE systems are synthetic targets that offer a huge range of engineered, stable and calibratable solutions that current natural sites methods do not. Rapid expansion of the FLARE network will result in automation of calibration and inherently better image quality and data. As the world grapples with the "big data" era, fundamentally improving the ARD baseline of that data will enhance the inherent value to customers. Better data will save valuable man hours, enhance data extraction techniques (AI and ML) and allow data-driven systems to make better decisions and develop new capabilities. The FLARE network is the revolutionary new tool in the "calibration tool-kit" to advance the quality of the world's aerial and satellite image products.

Acknowledgments

Labsphere wishes to thank the diligent and continued efforts of Dr. Stephen Schiller who's ideas formed the backbone of this work. We also wish to acknowledge the team efforts of the Raytheon Space and Airborne Systems group for supporting the intellectual, legal and technical work that established this patented technology. Finally, acknowledgements to the Labsphere FLARE team for their creative engineering.

References

- ¹ Schiller, S.J., "Demonstration of the Mirror-based Empirical Line Method (MELM)" 18th Annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop, Reston, Virginia, Sept. 24-26, 2019Schiller, S.J..
- ² Ortiz, Joseph, et. al., Evaluating visible derivative spectroscopy by varimax-rotated, principal component analysis of aerial hyperspectral images from the western basin of Lake Erie, Journal of Great Lakes Research, Volume 45, Issue 3, Pages 522-535, February 2019.
- ³ Silny J., and Schiller, S., Method and system for spectral calibration of a remote sensing sensor and a synthetic target having a tunable spectral composition, US8507843, United States Patent and Trademark Office, 13 Aug. 2013.
- ⁴ Ortiz, Joseph, et. al., Inter-comparison of Approaches to the Empirical Line Method for Vicarious Hyperspectral Reflectance Calibration, Frontiers in Marine Science 4:296, August 2017.
- ⁵ Stephen Schiller, John Silny and Marcus Teter "Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Radiometric Calibration (SPARC) Method", Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, 2017, Logan Utah.
- ⁶ Stephen J. Schiller and John Silny, 2016 GOINT Electro-Optical Technical Symposium (GEOTS), National Geospatial-Intelligence Agency, Springfield, VA. "Characterizing The Small Target Radiometric Performance of Remote Sensing Imaging Systems", Dec 12, 2016.
- ⁷ Schiller, S., and Silny J., "Using Vicarious Calibration to Evaluate Small Target Radiometry" 25th Annual Meeting on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, Utah, 2016.
- ⁸ Schiller, S. and Silny, J. "Application Of The Specular Array Radiometric Calibration (SPARC) Method For The Vicarious Calibration Of Landsat Sensors", 15th Annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop, Fort Worth, Texas, April 12-14, 2016.

- ⁹ Rudy, R.J., et. al., "Absolute Radiometric Calibration Using a Solar Reflector in Near-Geosynchronous Orbit" 24th Annual Meeting on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, Utah, 2015.
- ¹⁰ Stephen J. Schiller, John Coogan, David McCoy and Robert Opalecky, 2013 GOINT Electro-Optical Technical Symposium (GEOTS), National Geospatial-Intelligence Agency, Springfield, VA. "A Fresh Look At Small Target Radiometry: Measurement of Net Radiated Power".
- ¹¹ Schiller, S. and Silny, J. "In-Flight Performance Assessment Of Imaging Systems Using The Specular Array Radiometric Calibration (SPARC) Method", 11th Annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop, Fairfax, Virginia, April 18, 2012.
- ¹² Schiller, S., Silny, J. and M. Taylor, "The Specular Array Radiometric Calibration (SPARC) Technique As A Vicarious Methodology For Accurate Inter-sensor Calibration" 21st Annual Meeting on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, Utah, 2012.
- Specular Array Radiometric Calibration (SPARC)
 In-Flight Sensor Performance Assessment
 SAEF/SMUG Conference (Classified conference), SI
 Stonegate Facility, Chantilly, Virginia, June 26, 2012
- ¹⁴ Schiller, S.J., Specular array for radiometric calibration and method, US8158929, United States Patent and Trademark Office, 17 April 2012.
- ¹⁵ Silny J., and Schiller, S., Polarimetric calibration of a remote sensor, US9372119, United States Patent and Trademark Office, 21 June 2016.
- Stephen J. Schiller, John Silny, "Measuring Atmospheric Optical Depth Directly from Satellite Imagery", JACIE 2011 Civil Commercial Imagery Evaluation Workshop, Boulder, CO, March 29-31, 2011.
- The Specular Array Radiometric Calibration (SPARC) method: a new approach for absolute vicarious calibration in the solar reflective spectrum, Schiller, Stephen J.; Silny, John; Remote Sensing System Engineering III. Edited by Ardanuy, Philip E.; Puschell, Jeffery J. Proceedings of the SPIE, Volume 7813, pp. 78130E-78130E-19 (2010).
- ¹⁸ Helder, D., Choi, T, and M. Rangaswamy, "In-flight characterization of spatial quality using point spread functions", in Post-Launch Calibration of Satellite Sensors, Proceedings of the International Workshop on Radiometric and Geometric Calibration, December 2003, Mississippi, USA., Eds., Stanley A. Morain, Amelia M. Budge, CRC Press, 2003.

¹⁹Wielicki, B. et al., "Economic value of a more accurate climate observing system." 26th Annual Meeting on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, Utah, 2017.

²⁰Hope, C. et al. "The \$10 trillion value of better information about the transient climate response. Phil. Trans. R. Soc. A 373: 20140429. (2015).