Trajectory Optimization for the Virtual Telescope for X-Ray Observations

Introduction

The Virtual Telescope for X-Ray Observations (VTXO) is part of a new generation of distributed component, long focal length telescopes which promise to provide orders of magnitude improvement in angular resolution in the X-ray band over the current state of the art. VTXO will include Phased
Fresnel Lenses (PFL), which provide nearly diffraction-limited imaging, Fresnel Lenses (PFL), which provide nearly diffraction-limited imaging,
with around a 1 km focal length carried by the Optics Spacecraft (OSC), which will fly in a precision formation with the Detector Spacecraft (DSC) approximating a rigid telescope body. In order to maintain the precise formation approximatinga rigidteescosope body.In order to maintain the precise formation
requirements, while pointing the telescope axis at the desired astronomical requirements, while pointing the telescope axis at the desired astronomical
targets, one or both spacecraft will inherently be traveling on a non-natural orbit trajectory. These families of trajectories require one or both vehicles to maneuver regularly to maintain the desired path. If care is not taken in the trajectory design these paths can easily result in an unsustainably large
propellent consumption. $+$

Problem Statement

During astronomical observations VTXO's relative trajectories are strictly defined by the telescope focal length and pointing direction, as such there
is little opportunity for optimization beyond observation scheduling, which is little opportunity for optimization beyond observation scheduling, which is often driven by science requirements. However, there is a significant opportunity to optimize trajectories when re-arranging the formation to change
pointing directions between different astronomical targets. This paper presents pointing directions between different astronomical targets. This paper presents
an optimization scheme for re-pointing the telescope, this scheme utilizes an optimization scheme for re-pointing the telescope, this scheme utilizes a non-traditional path-based cost function, along with a linearized relative
dynamics model to solve for the propellentoptimal trajectory for repositioning dynamics model to solve for the propelient optimal trajectory for repositioning
the spacecraft between different telescope pointing directions. These optimal the spacecraft between different telescope pointing directions. These optimal
trajectories are then tested in a well validated high-fidelity flight dynamics trajectories are the the propellent consumption relative to the linearized model.
simula ..

Optimization

Baseline

*Baseline DeltaV $\sim 360 \mathrm{~mm} / \mathrm{s}$ per orbit.

* Maintains 1 km observation formation at apogee
* Moves to 20 m propellent optimal trajectory at perigee. Flies straight line constant velocity trajectory between apogee, and perigee formations.

Cartesian components of S/C position over two orbits, showing the trajectory scheme.

Optimized Results

Shows propellent optimal trajectory for moving VTXO between the first two observation formations, both targeting Sco X-1. The first two observation formations, both
Total DeltaV for this sequence is $75 \mathrm{~mm} / \mathrm{s}$.
 Shows propellent optimal trajectory moving from VTXO's 30 th observation formation targeting GX 5-1 to the 31st observatio sequence is $131 \mathrm{~mm} / \mathrm{s}$.

ConOps

* Mission performs observations near apogee where gravity gradient is minimized.
* Observations last about 10 h .
* Observation formation is broken at end of observation window.
* Propellent optimal trajectory is followed until through perigee until beginning of next observation period.

Conclusions

* Average Delta V of $\sim 90 \mathrm{~mm} / \mathrm{s} \sim$ factor of 4 improvement over baseline.
* Need to add a realistic thruster model
* Consider alternate optimization algorithms
* Need to refine constraints on optimization
* Potential applications to other trajectories with fixed start and end points

Citations

] K. Rankin, S. Stochaj, N. Shah, J. Krizmanic and A. Naseri, "VTXO - VIRTUAL TELESCOPE FOR X-RAY OBSERVATIONS," in 9th International Workshop on Satellite Constellations and Formation Flying, Boulder Colorado, 2017
[2] H. Schaub and L. J. Junkins, Analytical Mechanics of Space Systems, Reston VA.: AIAA Education Series, 2014
[3] H. D. Curtis, Orbital Mechanics for Engineering Students, Elsevier, 2014.
[4] P. C. Calhoun and N. Shah, "Covariance Analysis of Astrometric Alignment Estimation Architectures for Precision Dual-Spacecraft Formation Flying," NASA Tech Briefs,
Vols. GSC-12726-1
[5] K. Rankin, S. Stochaj, J. Krizmanic, N. Shah, and A. Naseri, "SSC19-WK VII-09 Virtual Telescope for X-Ray Observations Conference on Small Satellites," in Small Satellite Conference, Logan UT, 2019.(Logan UT), (Logan UT), 2019.and A. Naseri, \SSC19-WK VII-09 Virtual Telescopefor X-Ray Observations Conference on Small Satellites," in Small Satellite Conference, (Logan UT), 2019.

