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ABSTRACT

Computing at the edge offers intriguing possibilities for the development of autonomy and artificial
intelligence. The advancements in autonomous technologies and the resurgence of computer vision have
led to a rise in demand for fast and reliable deep learning applications. In recent years, the industry has
introduced devices with impressive processing power to perform various object detection tasks. However,
with real-time detection, devices are constrained in memory, computational capacity, and power, which
may compromise the overall performance. This could be solved either by optimizing the object detector
or modifying the images. In this paper, we investigate the performance of CNN-based object detectors on
constrained devices when applying different image compression techniques. We examine the capabilities of a
NVIDIA Jetson Nano; a low-power, high-performance computer, with an integrated GPU, small enough to
fit on-board a CubeSat. We take a closer look at the Single Shot MultiBox Detector (SSD) and Region-based
Fully Convolutional Network (R-FCN) that are pre-trained on DOTA – a Large Scale Dataset for Object
Detection in Aerial Images. The performance is measured in terms of inference time, memory consumption,
and accuracy. By applying image compression techniques, we are able to optimize performance. The two
techniques applied, lossless compression and image scaling, improves speed and memory consumption with
no or little change in accuracy. The image scaling technique achieves a 100% runnable dataset and we
suggest combining both techniques in order to optimize the speed/memory/accuracy trade-off.

Keywords: Deep Learning; Convolutional Neural Networks; Real-Time Processing; Object Detection;
Remote Sensing; Earth Observation; Image Compression

INTRODUCTION

Over the past decade, we have seen a dramatic
decrease in the cost of accessing space and a pro-
liferation of the number of satellites in orbit. The
introduction of nanosatellites, a small satellite with
a wet mass between 1 to 10 kg, has increased the
research and development in this field (Buchen and
DePasquale, 2014). As a result, more satellites are
now orbiting Earth and they are downlinking ter-
abytes of data each day. This raw data is then cap-
tured by ground stations located around the world;
an expensive process considering that not all of the
data is useful. Furthermore, the downlinking of data
can be unreliable, restricted by the data rate, and
geographically limited to the locations of ground sta-
tion networks. By developing space applications for
on-orbit processing of raw data, we can minimize
this bottleneck to save both time and money. Fur-
thermore, autonomous space systems offer many op-
portunities to continue exploring our solar system
and beyond. Space exploration provides social, eco-
nomic, and intellectual contributions to humanity.

With the recent announcements from space agencies
and companies around the world to revisit the Moon
and prepare for manned missions to Mars1, research
related to artificial intelligence and the development
of deep learning applications in space have received
increased attention.

Deep learning applications in space can have many
use cases, such as the ability to self-navigate for colli-
sion avoidance or satellite maintenance, surface ob-
servation and modeling, automated satellite dock-
ing, and asteroid mining. These applications play
a vital role for the future of space exploration and
offer many opportunities including image analysis,
classification, clustering and active learning (Mcgov-
ern and Wagstaff, 2011). This paper focuses on com-
puter vision, specifically object detection from satel-
lite imagery. Object detection deals with detecting
instances of a certain class in images. It has re-
ceived increased attention in the past years due to
the importance of its task (Tomayko, 1988), but also

1https://www.nasa.gov/feature/nasa-unveils-sustainable-
campaign-to-return-to-moon-on-to-mars
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because of the notable advances in this area with the
introduction of deep convolutional neural networks
(DCNNs) and the arrival of powerful accelerators
such as GPUs.

However, object detection from satellite imagery
remains a challenging task due to the variable sizes
of the objects in the images and complex back-
grounds. Furthermore, performing these tasks in
space on resource constrained devices provides lim-
itations, specifically in terms of memory and com-
pute capacity. Therefore, our objective is to inves-
tigate ways to improve the performance in terms
of speed and memory consumption. One approach
would be to optimize the object detection model or
other layers of the so-called Deep Learning Inference
Stack (Turner, 2018). Another approach would be
to modify the satellite data through image compres-
sion techniques.

Motivation

Space is becoming more accessible and as a result,
more companies and research institutions are inves-
tigating applications for deep learning to space data
and developing space-ready devices to place in or-
bit. Overall, deep learning applications performed
on edge computing devices in space remains largely
unexplored and only a few attempts to unveil its
opportunities have been tested in orbit. Therefore,
there are a lot of opportunities to perform further
research in this area. Specifically, there has been
little research conducted on neural networks on low-
powered GPUs, and no research, as far as we know,
on how to compress satellite data to optimize per-
formance in the context of constrained devices.

Objectives

The objective of this research is to evaluate differ-
ent image compression techniques applied to satellite
data and to find the trade-off between speed, mem-
ory consumption, and accuracy when running these
images through object detectors on constrained de-
vices. The aim is to reduce the inference time and
memory consumption without a significant loss in
accuracy. We will work with a device small enough
to fit on board a CubeSat, a standardized minia-
ture satellite which comes in a 10x10x10cm configu-
ration, and find a large, annotated dataset consisting
of satellite imagery that is pre-trained on object de-
tection models. We will establish a baseline by run-
ning the images on powerful GPUs to evaluate the
performance against. The research aims to explore
the advantages of computing at the edge in order to
expedite the development of intelligence in space.

Paper Structure

• The next section provides background informa-
tion on the different topics that will be explored
and it discusses related research that has been
conducted in this area. Specifically, it gives an
overview of deep learning and edge computing
as well as present relevant research on these top-
ics in the space sector. This provides insights
on areas to explore further and motivate this
research. We investigate running large satel-
lite images through object detection networks
on constrained devices.

• The following section provides an overview of
the project and discuss the problem in detail.

• The Design and Implementation section pro-
poses a solution with different techniques for
approaching the problem. The overall aim is
to find ways to optimize deep learning appli-
cations on constrained devices. We design and
implement methods for analyzing image com-
pression techniques on different object detection
networks. A baseline will be established to com-
pare the results against.

• In the Evaluation section, performance is as-
sessed in terms of speed, accuracy, and memory
consumption of the applied techniques and re-
sults are discussed.

• Finally, the Conclusion provides a summary of
the research, reflects on the approach to the
problem, and suggests future work in this field.

BACKGROUND & RELATED WORK

Deep Learning

Artificial Intelligence (AI) powers many aspects of
modern society. It is a technique that enables com-
puters to mimic human behavior. Machine learning
is a subset of AI that uses statistical methods for im-
proving the machine by experience. One technique
for implementing machine learning models is known
as deep learning. Deep learning algorithms permit
the machine learning application to train itself to
perform tasks by exposing multilayered neural net-
works to large amounts of data. Neural networks are
inspired by the structures of animal brains and com-
prise of ’neurons’ that combines multiple inputs to
produce an output (Goodfellow et al., 2019). Gen-
erally, these output values are then fed as input to
other neurons in a layered architecture. All neu-
ral networks consist of an input layer, output layer,
and zero or more hidden layers. The difference be-
tween a neural network and a deep neural network
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Figure 1: Deep Neural Network with multiple
hidden layers.

is that the latter has multiple hidden layers, as illus-
trated in Figure 1. Each hidden layer computes the
weighted sum of inputs through an activation func-
tion and transforms the input to produce an output.
Hidden layers are set up in different ways to gener-
ate various results. Convolutional Neural Networks
(CNNs) use convolutional layers to detect patterns,
for example in images, by applying different filters
(also called kernels). Some widely used deep learn-
ing frameworks are TensorFlow2, Keras3, PyTorch4,
MXNET5, Caffe6, Theano7, and CNTK8.

Computer Vision

A common application for deep learning is com-
puter vision. The major computer vision techniques
that help extract and analyze information include
image classification, object detection, object track-
ing, semantic segmentation, and instance segmenta-
tion. In this paper, we focus on object detection. It
is different from image classification in the sense that
it detects multiple objects in an image and identi-
fies their locations. The target location of the ob-
jects are usually presented by rectangular bounding
boxes. In satellite images, the objects typically have
various orientations and, therefore, some techniques
output oriented bounding boxes (OBB) over the ob-
jects rather than horizontal bounding boxes (HBB).
Training and evaluation require the dataset to con-
tain both the images and the corresponding labels
(the bounding box coordinates and the associated
class category).

2https://www.tensorflow.org/
3https://keras.io/
4https://pytorch.org/
5https://mxnet.apache.org/
6https://caffe.berkeleyvision.org/
7http://deeplearning.net/software/theano/
8https://docs.microsoft.com/en-us/cognitive-toolkit/

GPUs

Running CNNs is a computationally expensive
process. The networks can be accelerated by using a
graphical processing unit (GPU). These devices are
good at handling specialized computations that can
run in parallel. By dividing a task into indepen-
dent smaller computations that can be carried out
simultaneously, a GPU is perfectly suited for neural
networks. NVIDIA9 and AMD10 are two companies
that develop GPUs. NVIDIA introduced the first
GPU, GeForce 256, in the late 90’s. Since then,
GPUs have become cheaper, more powerful, and
smaller. They are now one of the core components of
deep learning. NVIDIA has developed multiple em-
bedded systems products that integrate GPUs for
autonomous solutions11. The NVIDIA Jetson plat-
form powers a range of AI applications for comput-
ing at the edge. The platform is compatible with
many of the major deep learning frameworks and
NVIDIA provides tools, such as cuDNN12 and Ten-
sorRT13, to use them. Edge computing brings the
computation and storage of data closer to the device
where the data is being gathered. The advantages
to edge computing systems is that they provide re-
duced latency and increased bandwidth, but at the
expense of capacity and dependability.

Remote Sensing

Remote sensing is the practice of making ob-
servations at a significant distance (Campbell and
Wynne, 2011). In the space industry, this applies
to meteorological, extraterrestrial, and Earth remote
sensing. Observations from space platforms can help
provide useful information and scientists are call-
ing for the space industry to provide more data at
a faster rate (Durrieu and R.F., 2013). The most
common and accessible form is Earth observation,
which can offer a lot of opportunities ranging from
various forms of surface monitoring to disaster man-
agement. Remote sensing of the environment can
be traced back to the early 1970s when Kondratyev
et al. (1973) performed research on satellite images
from Landsat 1. These remote sensing applications
include the monitoring and management of agricul-
ture, water, forests, fisheries, and the climate. The
sensors collect data from a surface area either ac-
tively, by emitting energy, or passively, by gathering
radiation emitted or reflected. It then observes the

9https://www.nvidia.com
10https://www.amd.com
11https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/
12https://developer.nvidia.com/cudnn
13https://developer.nvidia.com/tensorrt
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spectral differences in the data. Active sensors in-
clude LiDAR, GPS and RADAR, while passive sen-
sors are typically photographic.

Computers in Space

Computers have been used on spacecrafts since
the middle of the 20th century. Initially intro-
duced by NASA, the development of computing ca-
pabilities in space have served an important role in
enabling a variety of crewed and unmanned mis-
sions, and have made a significant impact on improv-
ing overall computing technology (Tomayko, 1988).
Over time, computers have been optimized in terms
of size, weight, and power consumption, all of which
are important features to take into consideration
during the development of a mission.

Space-ready GPUs

In the space industry, GPUs have mainly been
tested on the surface level. NASA uses NVIDIA
GPUs for astronaut training in combination with
VR techniques (Greenstein, 2016) as well as for run-
ning simulations in preparation for future human
missions to Mars (Salian, 2019). Some laptops on
the International Space Station (ISS) have an in-
tegrated GPU for Extravehicular Activity (EVA)
preparation. In addition, SpaceX used the NVIDIA
Tegra processor for powering touch screens on the
Dragon V2 capsule to control the ship (Caulfield,
2014). The processing environment for space-
craft computers is radically different than on Earth
(Tomayko, 1988). Putting computers in space is
challenging due to radiation threats from solar flares
or cosmic rays that have the power to ’bit flip’ and
can trigger glitches. Thus far, GPUs have been pro-
ton tested, although further testing is required to
achieve better results (Wyrwas, 2017). The com-
pany Ibeos14 has developed a radiation-hardened
GPU, EDGE15, that is small enough to fit inside a
1U or 3U CubeSat, that is yet to be tested in space
(see Figure 2).

Space Robotics

A number of intelligent robots have been brought
to and tested on the ISS, including the free flying
robots SPHERES, a personal satellite assistant, Int-
Ball, a robotics system developed by JAXA, CI-
MON, a social robot developed by ESA, and As-
trobee, a robot system able to perform Intra Ve-
hicular Activities (IVA) (Bualat et al., 2018). The
Robonaut, delivered to the ISS in 2011 by NASA

14https://ibeos.com/
15https://ibeos.com/documents/cubesat/

Ibeos CubeSat GPU.pdf

Figure 2: The EDGE GPU-based payload processor
by IBEOS

and General Motors, is capable of dexterous manip-
ulation with the future aim of exceeding hand move-
ments of suited astronauts (Bryndin 2019). Russia’s
FEDOR Skybot F-850 is a multi-functional robot ca-
pable of performing basic tasks and interacting with
the crew-members aboard the ISS (Bryndin, 2019).
It has a predefined programme with elements of arti-
ficial intelligence, but is able to be switched to fully
controlled mode if necessary. Machine learning is
used to improve mobility of these robots to support
IVAs and EVAs (Bryndin, 2019). Currently, their
capabilities are limited as to mitigate any potential
damages to the ISS.

Orbital Edge Computing

To perform real-time processing on-board a
nanosatellite, the device must be small yet power-
ful. The majority of research in deep learning ap-
plications on low power GPUs investigate different
hardware and software choices for improving perfor-
mance on these constrained devices (Loukadakis et
al., 2018; Rovder et al., 2019; Gibson, 2019; Radu
et al., 2019). Bradley and Brandon (2019) proposed
a system for implementing on orbit processing. The
Orbital Edge Computer (OEC) system replaces the
traditional bent-pipe architecture of sending satellite
data to Earth. Furthermore, it eliminates the bot-
tleneck of requiring a significant number of ground-
stations and downlinking large amounts of irrelevant
data. This system includes an NVIDIA Jetson TX2,
a small-sized board with a GPU that can fit inside a
1U CubeSat, and provides insight on software con-
siderations.

Deep Learning in Space

In regards to deep learning applications within the
space industry, most have been performed on Earth’s
surface using existing datasets or in preparation to
test in orbit. An example of such is Evers’ (2019)
work on satellite docking through object detection.
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In January 2019, researchers at the Tokyo Institute
of Technology sent a deep learning attitude sensor to
LEO and have plans on commercializing this type of
technology in the future (Titech, 2018). ESA has
been working on Mars rovers using AI and ML to
navigate around obstacles autonomously and an AI
assistant is being developed for the ISS by the Ger-
man Aerospace Center (ESA, 2020). A common ap-
plication for deep learning in the space industry is
Earth observation. The number of these applica-
tions has surged over the past years, especially as
the availability of and the quality of data has im-
proved significantly. The quality of satellite images
is measured by spatial resolution, the size of a single
pixel on the ground. The level of detail depends on
the spatial resolution and is measured by Ground
Sample Distance (GSD), influenced by the camera
focal length, pixel sensor size, and orbital altitude.
Today, companies are capturing satellite images with
a spatial resolution of less than one meter16.

Object Detection

Object detection in satellite images is a complex
task due to the inconsistencies in the background of
the images, the low object-to-pixels ratios, the ori-
entations of the objects to be detected, and the low
image resolutions. There is a wealth of open source
satellite imagery, however, not a lot of the data is
annotated. The limited amount of publicly available
satellite datasets that are annotated makes training
these object detection networks a challenging task.
Existing datasets include:

• TAS (Heitz and Koller, 2008)

• SZTAKI-INRIA (Benedek et al., 2012)

• UCAS-AOD (Zhu et al., 2015)

• HRSC 2016 (Liu and Mattyus, 2015)

• COWC (Mundhenk et al., 2016)

• VEDAI (Razakarivony and Jurie, 2016)

• 3K Vehicle Detection (Liu, Wang, Weng and
Yang, 2016)

• NWPUVHR-10 (Cheng et al. 2016)

• xView (Lam et al., 2018)

• DOTA (Xia et al., 2018)

• SpaceNET (Weir et al., 2019)

16https://www.planet.com/products/planet-imagery/

Many of these datasets are only provided in ideal
conditions and lack an adequate number of images,
instances per image, and object categories. There-
fore, most of the methods developed for object de-
tection in Earth Vision are based on transfer learn-
ing and fine-tuning networks pre-trained on large
datasets (Xia et al. 2018). Two datasets stand out in
terms of size, number of annotations, and class cate-
gories: xView and A Large-Scale Dataset for Object
Detection in Aerial Images (DOTA). xView has a
very high resolution of 0.3 meters per pixel whilst
DOTA has a variety of resolutions ranging from 0.2
to 1 GSD because of the images being collected from
different sensors and satellite missions. Both were
developed independently around the same time and
offer contests in computer vision.

The xView challenge17 took place in 2018 and was
held by the Defense Innovation Unit Experimental
(DIUx)18 with the focus on national security and
disaster response. Their work has about 40 cita-
tions on ArXiv19 and about 10 of them have the
term ‘Object Detection’ in the title. The disadvan-
tage to the xView dataset is that the number of ob-
jects are not equally distributed across the classes
providing an extreme class imbalance. DOTA have
almost 160 citations on ArXiv20, where about 60
of them have the term ’Object Detection’ in the ti-
tle. Their contests21 have run for two consecutive
years and their tasks relate to locating ground ob-
jects with either HBB or OBB. The most relevant
research includes the work by Rotich et al. (2018)
on image resizing and image splitting on the xView
dataset. They propose a framework for implement-
ing lightweight CNNs to detect and classify objects
in high-resolution images. However, the research is
conducted on a CPU and only provides insights on
the mAP scores. It does not measure performance
in terms of speed and memory consumption.

The previous background research suggests a lot
of opportunities for furthering the research on deep
learning applications in space.

PROBLEM OVERVIEW

Constrained Devices

In the space environment, everything becomes
more complex. Computers can show unexpected be-
haviors if the internal structures are changed due to
the impacts of radiation. Furthermore, deep learn-
ing applications are typically run on the cloud with

17http://xviewdataset.org/
18https://www.diu.mil/
19https://arxiv.org/abs/1802.07856
20https://arxiv.org/abs/1711.10398
21https://captain-whu.github.io/DOTA/index.html
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powerful GPUs that speed up the processing. How-
ever, in the space environment, devices are limited
in terms of power and considering the vast increase
in cost of sending a bigger and heavier satellite to
space, the size of the edge computers matters signif-
icantly. Therefore, to perform on-orbit processing
of data, the devices must be carefully considered.
There exists some off-the-shelf low-powered GPUs,
small enough in size to fit on a nanosatellite. The
low power constraint provides another challenge as
the device may be limited in the number and size of
operations it is able to perform. This means longer
execution times for processing the images.

Large Satellite Data

Satellite data can be extremely large. The pixel
dimension of the images can be up to 8,000 pixels in
height by 8,000 pixels in width and they can have
a high spatial resolution. The quality of satellite
images is continuously improving to extract more
useful data, increasing the need for large-scale on
board storage systems. Running these large images
through a network on board the satellite can take
up a lot of the available RAM. In some cases it
could cause the device to run out of memory, which
could lead to mission failure or loss. Furthermore,
the processing time of these large images could be
very long. A way to handle the problem with mem-
ory consumption and processing time is to optimize
the neural network or to modify the data. However,
when optimizing for speed and memory, it may be at
the expense of accuracy. Applying image optimiza-
tion techniques will change the features that can be
extracted from the images. This is particularly im-
portant to note for small objects with a tiny pixel
dimension.

Lack of Data and Biased Datasets

The research on deep learning applications in
space is limited and many of the neural networks
are trained on natural images. This means that the
object detection models are formed through trans-
fer learning and fine-tuning of the networks. There-
fore, finding a large dataset that contains annotated
satellite images is challenging. In addition, the im-
age data from optical sensors can vary greatly. Most
available datasets consist of images with the same
pixel dimensions. Networks that are trained on a
specific input size could be biased. Finding a pre-
trained model that is trained on images of differ-
ent sizes is very challenging and to our knowledge,
all networks that were found have been trained on
satellite images of the same size. Thus, the input
size of the network needs to be taken into considera-

Figure 3: Runnable images of the DOTA dataset on
the pre-trained SSD and R-FCN models. The figure

shows that 99.35% of the images can run on the
SSD model and 90.61% of the images can run on the

R-FCN model

tion as research by Xia et al. (2018) showed that all
images were cropped to the same size before train-
ing. Furthermore, no pre-trained network was found
that had been tested on a low-powered GPU. Object
detection in satellite images is very different from
detection in natural scenes. This is due to the in-
consistencies in the background of the images, the
low object-to-pixels ratios, the orientations of the
objects to be detected, and the low image resolu-
tions. Many existing datasets are provided in ideal
conditions and lack an adequate number of images,
instances per image, and object categories. The
dataset needs to be annotated and contain labels for
evaluating the network. The object instances can be
annotated differently, either as HBB or OBB.

Unfavorable Results

In order to run the object detectors on satellite
images in a real-time environment, we need to re-
duce the demand of resources, including both the
memory consumption and the execution time. When
we run satellite images from the DOTA dataset on
two pre-trained models, Single Shot Detector (SSD)
and Region-based Fully Convolutional Network (R-
FCN), on an NVIDIA Jetson Nano, we obtain un-
favorable results. Our initial results show that the
large images take a long time to process, sometimes
up to 7.5 seconds per image, and consume a lot of
memory, sometimes causing the device to produce
an Out of Memory (OOM) error. About 10% of the
images in the dataset on the R-FCN network are
entirely unable to be executed on the device due to
their large sizes (see Figure 3). We want to be able
to run the full dataset as well as improve the pro-
cessing speed and reduce the memory consumption.
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Figure 4: NVIDIA Jetson Nano

DESIGN AND IMPLEMENTATION

In this section we discuss the design choices and
implementations made to approach the problem of
running large images on constrained devices. We
describe the compression techniques applied to the
images to reduce the execution time and memory
consumption. We chose to work with the DOTA
and used the pre-trained object detectors SSD and
R-FCN. The parallel computing will be performed
on an NVIDIA Jetson Nano on the Deep Learning
framework TensorFlow. The results will help es-
tablish the speed/ accuracy/memory consumption
trade-off.

Device: Jetson Nano

We examine the capabilities of a NVIDIA Jetson
Nano22 (Figure 4); a low-power, high capability, effi-
cient GPU, small enough to fit on-board a CubeSat
(Venturini, 2017). This device comes with a 128-core
integrated NVIDIA Maxwell GPU and a quad-core
64-bit ARM CPU. It has 4GB of LPDDR4 memory
at 25.6GB/s and 5W/10W power modes. The de-
vice is configured by downloading and installing the
Jetson Nano Developer Kit SD card image23.

We flash an SD card with JetPack 4.2 and in-
stall the relevant packages in the same versions as
described in the GitHub repository24 that contains
the pre-trained object detection models we chose to
work with. The device is pre-configured with 4GB of
SWAP. We keep the SWAP at 4GB since the device
runs out of memory (OOM) when executing the ob-
ject detection code on 0GB of SWAP for all images
in the dataset. The device is then set up with SSH
for remote access and Jupyter Notebook is used to
run the object detection code.

22https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-nano/

23https://developer.nvidia.com/embedded/jetpack
24https://github.com/ringringyi/DOTA models

Figure 5: Samples of annotated instances and object
categories in DOTA

Dataset: DOTA

We chose to work with DOTA as it is one of
the most robust datasets, containing satellite images
from different sensors, multiple annotations, and re-
alistic settings (Xia et al. 2018). They also provide
models that are trained on the dataset with state-
of-the-art object detection algorithms. The DOTA-
v1.0 dataset consists of 2,806 images with a total of
188,282 annotated instances from 15 class categories,
as seen in Figure 5.

DOTA contains images with dimensions ranging
from about 350×350 to 7, 500×7, 500 pixels and with
natural scenes that makes this dataset relevant to
real-world applications. The images in DOTA have
a very high spatial resolution, capable of detecting
small vehicles. The images are collected from dif-
ferent sensors and platforms to eliminate biases and
are taken from a variety of locations to improve data
diversity. The dataset is split into training (50%),
validation (33.3%), and testing (16.7%) sets.

Both the training set and validation set have
ground truth labels for each image, the testing set
does not. The instances are labelled both with hori-
zontal bounding boxes (HBB for short) and oriented
bounding boxes (OBB for short). The labels are in
the following format: x1, y1, x2, y2, x3, y3, x4, y4,
category, difficulty, where (x1, y1) is a set of coordi-
nates representing one of the bounding box corners.
The frequencies of instances vary across different im-
age sizes where some small images may contain a lot
of annotated objects whilst other larger images may
only contain a handful. The average bounding box
quantity is 67.10 per image. Certain objects, such as
cars and ships, are particularly difficult to detect as

Lofqvist 7 34th Annual
Small Satellite Conference



they often appear in high density areas. This makes
it challenging to draw bounding boxes around those
objects (see Figure 6). In contrast, large objects that
do not appear in crowded areas, such as swimming
pools and tennis courts, are often easier to detect.
In this project, we use the validation set which con-
sists of 458 images and we use the labels for HBB,
since that is what the publicly available models are
trained on. The images are in PNG format and rep-
resented as 24-bit true color (RGB) images. The
input layer size of the SSD is 608×608 pixels and of
R-FCN it is 1, 024 × 1, 024 pixels. Since the images
in the dataset represent a vast variety of sizes and
there are very few squared images, this will have to
be accounted for in the evaluation.

Figure 6: Samples of crowded instances in
annotated images in DOTA using horizontal

bounding boxes (HBB)

Models: SSD & R-FCN

The pre-trained models for DOTA include the fol-
lowing with source codes available on GitHub:

• Object Detection Benchmarks for Aerial
Images25

• ROI Transfer26

• Faster R-CNN OBB27 with ResNet-101
backbone architecture

• SSD28 with InceptionV2 backbone architecture

• R-FCN29 with ResNet-101 backbone architec-
ture

• YOLOv230 with a customized GoogLeNet
backbone architecture

25https://github.com/dingjiansw101/AerialDetection
26https://github.com/dingjiansw101/RoITransformer DOTA
27https://github.com/jessemelpolio/Faster RCNN for DOTA
28https://github.com/ringringyi/DOTA models
29https://github.com/ringringyi/DOTA models
30https://github.com/ringringyi/DOTA YOLOv2

Figure 7: SSD Network Architecture

Figure 8: R-FCN Network Architecture

They all use different frameworks. In our project,
we chose to take a closer look at the pre-trained
models for Region-based Fully Convolutional Net-
work (R-FCN) and Single Shot MultiBox Detector
(SSD) trained on HBB. This is because they are both
trained on TensorFlow31, which is compatible with
the Jetson Nano board.

SSD predicts bounding boxes and confidence
scores from a single pass (Liu, Anguelov, Erhan,
Szegedy, Fu and Berg, 2016). It is a multibox detec-
tor with a single deep neural network (see Figure 7).
This means that SSD is able to predict objects of
various scales by combining different feature maps
and default boundary boxes. Feature maps at a
higher resolution are responsible for finding smaller
objects and therefore SSD performs better on im-
ages with high resolution. However, compared to
other detection methods, the SSD network gener-
ally performs worse on small objects (Zhao et al.,
2019).

R-FCN crops features from the last layer, prior
to prediction, which means that per region compu-
tation is minimized which optimizes the speed. The
cropping mechanism is location sensitive which im-
proves the confidence score (Dai et al., 2016). Since
the backbone architecture is the ResNet-101 model,
R-FCN has 100 convolutional layers that are used to
compute the feature maps, as seen in Figure 8 (Dai
et al., 2016).

31https://www.tensorflow.org/
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Deep Learning Framework: TensorFlow

TensorFlow (Abadi et al., 2015) belongs to the
group of most widely used deep learning frameworks.
It is an open-source library with a flexible design
that can run on the NVIDIA GPU through opti-
mized kernels. The NVIDIA CUDA architecture
provides the parallel computing platform for the ex-
ecution of these kernels.

TensorFlow Object Detection

SSD and R-FCN were trained using the publicly
available TensorFlow Object Detection repository32.
Since both models were trained in 2017, they used
an older version of the TensorFlow Object Detec-
tion code. In order to be consistent, we use the
same version as what the networks were trained on
and make slight modifications to the code. In short,
the code imports the model, including the config file
and frozen detection graph (CKPT), and the DOTA
label map to add the correct label for each box de-
tected. The threshold is set to 0.01, meaning that we
capture close to 100% of all detected objects. The
network predicts the object by providing the con-
fidence score, class probability, and bounding box
coordinates at the final layer of the networks. The
results are saved to a file to be used later for evalu-
ation. The procedure is as follows:

1. Start up the system

2. Remove all SWAP to ensure no addi-
tional SWAP has been allocated with $ sudo

swapoff -a

3. Add the SWAP back with $ sudo swapon -a

4. Connect to the Jetson Nano via SSH

5. Open the Jupyter Notebook .ipynb file where
the object detection code is located

6. Run the image, record the SWAP memory and
save the output

7. Clear the output of the kernel

8. Restart the system by writing $ sudo reboot

The SWAP allocation is validated through the
program htop33, as illustrated in Figure 9. The first
image that runs through the object detection code
always takes longer as the system is warming up.
So, we always discard the first image and, therefore,

32https://github.com/tensorflow/models/tree/master/
research/object detection

33https://hisham.hm/htop/

Figure 9: The htop Program Displays Memory
Usage, Including SWAP

use the smallest image in the set to warm-up the
system. We run each image 5 times for the baseline
and 3 times for the modified images. We record the
speed and memory consumption and then calculate
the averages.

Image Manipulation

Many of the images in DOTA are very large and
therefore would take a long time to run on the
CNNs and would consume a lot of memory on the
constrained device that could lead to OOM errors.
Previous work on this data crops the images into
608x608 or 1024x1024 patches (Xia et al., 2018).
Cropping the images may not always be the best
option as data may be lost if objects are cut into
multiple parts and it could end up taking up more
memory on the device. Therefore, we will instead be
looking into different ways of modifying the images
to decrease their size. These techniques are used to
reduce the amount of data without compromising
the quality of the image.

Image Compression

Compression techniques can be divided into two
classes; lossy compression and lossless compression.
These techniques are used for reducing the file size
while pixel dimensions are kept the same. Some data
is lost when images are compressed using the lossy
compression method, while lossless compression can
recover all data exactly to its original format. The
mathematical basis of the two compression meth-
ods is information theory and different algorithms
have been developed to implement them (Sayood,
2006). The algorithms encode the information in
fewer bits than the original image, which makes the
file size smaller. The unpredictable part, known as
the prediction error, in this process is transmitted
to the decoder that reconstructs the image based on
a prediction model. This process is known as pre-
dictive coding. It captures the correlation amongst
image pixels. The value of a pixel can be predicted
based on some previous pixel values. An error im-
age is given by subtracting the predicted pixel value
from the current pixel value at the same spatial lo-
cation. For lossless compression, the encoding pro-
cess is error free. This can be achieved using tech-
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niques such as Huffman coding and arithmetic cod-
ing (Bawa, 2010). For lossy compression, the image
is first quantized before the information is encoded.
The level of compression can be predetermined and
it is a trade-off between file size and the speed of
encoding/decoding.

Image Scaling

A scaling technique will be applied to modify the
pixel width and height of the image. The image ra-
tios remain the same. This technique is also known
as image interpolation, which works by using exist-
ing data to predict values at unknown points. It tries
to achieve the best approximation by using infor-
mation from surrounding pixels. There are several
interpolation algorithms that can be grouped into
adaptive algorithms and non-adaptive algorithms
(Kim et al., 2009). The adaptive algorithms changes
while the non-adaptive treats all pixels the same.
Examples of adaptive algorithms include Bilinear
and Nearest Neighbor (Kim et al., 2009). The Bi-
linear method provides better quality of the image,
while the Nearest Neighbor is faster. The quality of
the downsized image depends on the original image.
Many details and a high resolution of the original
image will not reduce the quality significantly.

Our Implementation

We evaluate lossless image compression and the
scaling technique to the images in the dataset. The
largest image in the dataset is resized to a size that
allows it to run successfully on both models. Other
images will be resized and compressed to 30%, 50%,
and 80% of the original image size to evaluate the
changes to the performance. The images will be re-
sized using the Microsoft Photos App34, which al-
lows for free modification of the pixel dimensions
(height and weight). The original images have a bit
depth of 24 (True Color, RGB), however, the Mi-
crosoft Photos app saves the resized images with a
depth color of 32 (True Color, RGBA, transparent).
Since the object detection networks take an input
of images with a 24-bit color, the images need to
be converted. A free online image converting plat-
form35 proves to be useful for performing this task.
The lossless compression technique is applied to the
images using an online tool where specifying the
compression level is possible and the PNG format
is sustained.

34https://www.microsoft.com/en-us/p/microsoft-foton/
9wzdncrfjbh4

35https://online-converting.com/image/

Figure 10: Instances Detected in Image P2310 after
Running it through Model SSD. Each Instance has a

Bounding Box with the Associated Class and
Confidence Score

Evaluation Methods

The performance is evaluated according to mem-
ory consumption, speed, and accuracy. The mem-
ory consumption is observed by running the program
htop and observing the SWAP memory at the end of
the object detection process. The results in terms of
inference and information about the object detected
in each detection are given as output after running
the TensorFlow object detection code. The inference
speed is recorded by adding a time function before
and after the detection part of the code is executed.
The detection output provides the confidence score,
class category, bounding box coordinates, and the
image with the detected bounding boxes, as illus-
trated in Figure 10. The confidence score is pro-
vided as a percentage in a range determined by the
threshold set in the code (between 1% and 100% for
a threshold of 0.01). Class categories are predeter-
mined and provided by the dota label map.pbtxt

file that maps an id to a name. The coordinates of
each bounding box are calculated and returned in
the form (xmin, xmax, ymin, ymax). This infor-
mation is then stored in .txt files to be retrieved by
the evaluation scripts. The methods for evaluating
the results include precision, recall, average precision
(AP), and Intersection over Union. The code was de-
veloped to implement each of these techniques and
the scripts were run on Colab36.

36https://colab.research.google.com/
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Precision and Recall

Precision and recall are two common metrics to
use in evaluating the performance of a given clas-
sification model. Typically, this is established after
first creating a confusion matrix of True/False and
Positive/Negative values. TP stands for True Pos-
itive, FP stands for False Positive, TN stands for
True Negative, and FN stands for False Negative.

Precision calculates the positive predicted values
given by the ratio of true positive values (TP) and
the total value of positive predictions. The formula
for precision is as follows:

Precision =
TP

TP + FP
(1)

Recall calculates the true positive rate or sensi-
tivity given by the ratio of true positive values (TP)
and the total ground truths positives. The formula
for recall is as follows:

Recall =
TP

TP + FN
(2)

Mean Average Precision

The mean average precision (mAP) is a method
for evaluating the accuracy of a network and is cal-
culated by finding the area under the curve. The av-
erage precision (AP) is the precision averaged across
recall values between 0 and 1.0. The general defini-
tion for AP is as follows:

AP =
1

11

∫ 1

0

p(r)dr, (3)

where AP is the average precision, p is the preci-
sion, r is the recall, and dr is set to 1 if the rth item
has the same label as the previous one, otherwise it
is set to 0.

Since precision and recall are always between 0
and 1, so is the AP score. There are two ways for
calculating the AP; Interpolated AP and AP (Area
Under Curve AUC). We use the first approach and
implement a function for this. This is done by find-
ing the precision value for 11 points from 0 to 1.0
on the recall axis and then calculating the average.
The Mean Average Precision (mAP) is calculated by
averaging across all categories. We make no distinc-
tion between AP and mAP since the AP will already
be averaged over all categories.

Intersection over Union (IoU)

Typically, when calculating the AP for object de-
tection, intersection over union (IOU) is used. This
is the ratio of the area of intersection and area of

Figure 11: The IoU Calculation

overlap of a predicted bounding box and ground
truth bounding box, as illustrated in Figure 1137.
This is then used to determine whether the predicted
bounding box is TP , FP , TN , or FN according to
the IoU threshold. The threshold represents the level
of intersection. For example, an IoU threshold of 0.5
considers bounding boxes to be correct if the inter-
section is above 50%. The prediction is classified as
a TP when the IoU is above the threshold, an FP
when IoU is below the threshold or when there are
duplicate bounding boxes, a TN when there are no
objects in the image, and an FN when IoU is above
the threshold but has the wrong classification.

COCO38 presents three methods for calculating
the AP value using the IoU threshold:

• AP: AP at IoU= 0.50: 0.05: 0.95 (IoU starts at
0.50 and increases to 0.95 with steps of 0.05)

• AP@IoU=0.50 (traditional way of calculating)

• AP@IoU=0.75 (IoU of BBs need to be > 0.75)

There are also other ways of determining the IoU
threshold. R-FCN uses a threshold of 0.3 IoU while
SSD uses one of 0.5 IoU. We calculate the IoU at 0.1
to get all possible values and we then apply methods
for calculating the mAP using different IoU thresh-
olds. Furthermore, we also consider the confidence
scores of the detected objects, often not considered
by other evaluations. There are also classes in the
code that display the image with the ground truth
bounding box (in green) and predicted bounding box
(in blue) as illustrated in Figure 12. The image also
displays the IoU (in green text), the object num-
bering (in red text) with the ground truth object
number to the left and predicted to the right, and
the confidence score (in blue text). The accuracy
of the predictions (the number of objects accurately
detected) are calculated by combining the IoU and

37https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/

38http://cocodataset.org/#detection-eval
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Figure 12: Image P2794 with the IoU output of
82.19 % and Confidence Score of 96.84% for the

detected ‘ground-track’ class

confidence scores. Since there may be duplicate pre-
dictions for a given ground truth bounding box, we
take the one with the highest product of IoU and
confidence score.

Baseline System

The performance of the Jetson Nano is compared
against a baseline. This baseline measures the in-
ference of the models by running them on a cluster
containing two GPUs; an NVIDIA Titan RTX and
an NVIDIA Titan V. Table 1 shows the technical
specifications of the cluster and the Jetson Nano.

Firstly, the images are organized by total pixel
size, since the memory consumed and inference time
of running the images on the networks is influenced
by the number of pixels in an image rather than the
size of the file. This value is calculated by multiply-
ing the pixel height and pixel width of each image.
The reason for this is to find the largest images in
the dataset and test whether they are able to run
successfully on both models in order to determine
what percentage of the dataset is runnable. By ‘suc-
cessfully’ we mean that the images do not cause an
Out of Memory (OOM) error. The largest image in
the validation set is P1854 and the smallest image is
P2310. Since all images are able to run successfully
on the cluster, we begin by assessing the percentage
of images that are capable of running on the Jetson
Nano. Images that cause an Out of Memory (OOM)
error on the Jetson Nano are recorded. The OOM
error (also displayed as Resource Exhaust) means
that both the RAM and the SWAP memory were
consumed, which causes the Jupyter Notebook to
shut down. In graphs to follow, images that cause
an OOM error will be represented by a red ‘X’.

Table 1: Hardware Platforms

Titan RTX Titan V Jetson
Nano

GPU
Memory

24GB GDDR6 12GB HBM2 4GB
LPDDR4

Cores 4608 (CUDA),
576 (Tensor),
72 (RT)

5120 (CUDA),
640 (Tensor)

128
(CUDA)

Memory
Band-
width

672 GB/s 652.8 GB/s 25.6 GB/s

TFLOPs 130 110 0.5

Figure 13: Average Speed (in seconds) of images
P2310 and P2794, models SSD and R-FCN,

compared to the baseline (cluster)

We find that about 1% of the images on the SSD
network and 10% of the images of the images on the
R-FCN network are unable to run (see Figure 3).
The difference in the values between the two models
is because R-FCN is a more resource consuming net-
work due to its additional number of convolutional
layers. The largest runnable image on the R-FCN
network is P2794.

Next, we run the smallest image and largest
runnable image on both the cluster and the Jetson
Nano to compare the inference time. The results
show that the speed is significantly compromised on
the Jetson Nano for both images and models (see
Figure 13). The two images are on average 16x
slower on the SSD model and 5x slower on the R-
FCN model. These results are unfavorable.

By applying different compression techniques to
the images, the inference time is expected to im-
prove. We also assess the impact on performance in
terms of accuracy and memory consumption. The
performance of the compressed images are compared
against a baseline established by running the origi-
nal images on the Jetson Nano before applying any
compression technique. The following images will be
assessed (see Figure 14):

• Smallest Image: P2310 - 259,350 pixels (475×
546) - size 209kB

• Largest Image: P1854 - 57,372,921 pixels
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(a) P2310 (b) P2794

(c) P1854

Figure 14: Images in the DOTA dataset where a) is
the smallest image in the validation set, b) is the
largest image capable of running on both models,
and c) is the largest image in the validation set

according to pixel size

(13, 383 × 4, 287) - size 41.7MB

• Largest Runnable Image: P2794 - 19,504,872
pixels (4, 392 × 4, 441) - size 97.8MB

The baseline results show that the smallest im-
age, P2310, runs faster than the largest runnable
image, P2794, on both networks, as expected (see
Figure 13). Image P2310 is 4 seconds (almost 4
times) faster than P2794 on the SSD network and
about 2 seconds faster on the R-FCN network. The
SSD model is faster than the R-FCN model for both
images. This is due to the architectures of the net-
works, as discussed in an earlier section and will be
further detailed below. The memory consumption
shows a similar relationship between the images and
models (see Figure 15). Less memory was consumed
by the smallest image compared to the largest im-
age in both models as well as for SSD compared to
R-FCN. Applying compression techniques to these
images should decrease the file size and thus con-
sume less memory. In terms of accuracy, the value
was established by calculating the number of accu-
rate objects detected with a confidence score of 50%
or more, using the IoU tool. Across all images, the
R-FCN network showed higher accuracy than the
SSD network (see Figure 16).

Overall, the results show that the R-FCN net-
work can solve more complex problems, although
it is slower at detecting the objects and consumes
more memory. This is explained by the differences

Figure 15: Memory Consumption (in Megabytes) of
images P2310 and P2794, models SSD and R-FCN

Figure 16: Average Accuracy of images P2310 and
P2794, models SSD and R-FCN

in the network architectures. R-FCN is fully convo-
lutional with multiple hidden layers, more than SSD.
Furthermore, since SSD is a single stage detector, it
means that it will typically perform worse in terms
of accuracy compared to a multi-stage detector such
as R-FCN (Wu and Li, 2019). In the results by Xia
et al. (2018), we can see that the mAP of R-FCN
(52.58) is about 2x higher than that of SSD (29.86).
Therefore, higher accuracy of R-FCN and faster pre-
diction of SSD are expected. Our baseline results on
the Jetson Nano show that the mAP for R-FCN on
the smallest image is 27.6 and for SSD is 23.3. R-
FCN also has a higher mAP for the largest runnable
image (24.0) compared to SSD (2.3). The average of
the mAP over the two images for each model shows
that the mAP for R-FCN (25.8) is twice as high as
for SSD (12.8). This is consistent with the results
presented by Xia et al. (2018).

The higher accuracy in image P2310 compared to
image P2794 is associated to the differences in ob-
jects with respect to instance sizes. This is what
makes predictions of objects in satellite images a
challenging task. Most of the objects detected cor-
rectly in image P2794 on the R-FCN network were

Lofqvist 13 34th Annual
Small Satellite Conference



Table 2: Size Specifications for the Modified Images

Resized Image Compressed Image
P2310 80% 110 KB 165 KB
P2310 50% 53.3 KB 157 KB
P2310 30% 23.6 KB 154 KB
P2794 80% 21.0 MB 31.8 MB
P2794 50% 9.18 MB 31.7 MB
P2794 30% 3.40 MB 31.0 MB
P1854 80% 49.1 MB 70.0 MB
P1854 50% 22.0 MB 67.9 MB
P1854 30% 8.57 MB 64.9 MB

large and included object categories such as ’ground-
track-field’ and ’ships’. None of the 90 objects un-
der the category ’small-vehicles’ were detected. On
the contrary, the object under the category ’ground-
track-field’ was accurately detected and 25 out of
the 54 (46%) objects under the category ’ships’ were
detected. The SSD network only detected the ob-
ject under the ’ground-track-field’ category, which is
about 15 times larger in pixel size than the second
largest object that was accurately detected. For this
reason, some networks are evaluated using different
AP scores, according to small, medium, and large
sized object categories.

The differences in time and memory consumption
between the smallest image and largest runnable im-
age suggests that improvements can be achieved by
modifying the images. We want to achieve this with-
out compromising the accuracy. The first task is to
successfully run the full dataset. This is done by
determining at what percentage the largest image,
P1854, needs to be compressed to in order for it
to run successfully on both models. We then apply
both compression techniques to retrieve three new
images at 80%, 50%, and 30% of the original image
(see Table 2).

EVALUATION

Run Full Dataset

In order to run the full dataset, we resize the
largest image, P1854, until it is capable of running
on the slower R-FCN network. The results show that
when the largest image is resized to 59% of its orig-
inal size, with a pixel dimension of 7896 × 2529, the
image is able to run on both networks without any
OOM errors. The average time for this resized image
on the R-FCN network is 8.23 seconds, and 60 out
of 221 objects (27%) were detected accurately. The
lossless compression technique was unable to com-
press this image to a small enough size for it to run
successfully on both models. Applying a lossy com-
pression technique would solve this issue, however,
this technique is typically unfavorable as the images
are unable to be restored to their original version.

(a) SSD

(b) R-FCN

Figure 17: Average Speed (in seconds) of the
compressed images in both models. The ‘X’ means

that the GPU ran out of memory (OOM). The
images improve in speed when resized to a smaller

version

Image Compression

The results of compressing the images to 80%,
50%, and 30% show that in the majority of cases,
the speed was improved when the compression rate
increased (see Figure 17). Image P1854 was unable
to run on either of the two models due to the remain-
ing large size after the compression technique had
been applied, leading the device to run out of mem-
ory (OOM). Image P2794 improved significantly in
speed from the original image to the first compressed
image for SSD. Image P2794 improved with 2.14 sec-
onds for SSD and 1.16 seconds for R-FCN from the
original image (100%) to the most compressed image
(30%). Image P2310 improved with 0.24 seconds for
SSD and 0.18 seconds for R-FCN from the original
image (100%) to the most compressed image (30%).

In terms of accuracy, the performance was iden-
tical to that of the original image for the number
of objects detected and their respective confidence
scores (see Figure 18). This would suggest that the
accuracy correlates to the total pixel size. We test
this on a resized image, P2794 resized to 50%, to see
if the accuracy differs when applying a lossless com-
pression technique to this image. Results show that
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(a) SSD

(b) R-FCN

Figure 18: Objects Accurately Detected in the
compressed images in model SSD. The ‘X’ means

that the GPU ran out of memory (OOM)

the two images do not differ in terms of accuracy,
however, the inference time and memory consump-
tion are reduced. This makes sense since the image
size is less and it contains less data after the lossless
compression technique has been applied.

Image Resize

The results of resizing the images to 80%, 50%,
and 30% show that in the majority of cases, the
speed was improved after applying this compression
technique (see Figures 19a and 19b). Image P2794
improved with 2.77 seconds for SSD and 1.28 sec-
onds for R-FCN from the original image (100%) to
the most compressed image (30%). Image P2310 im-
proved with 0.34 seconds for SSD and 0.13 seconds
for R-FCN from the original image (100%) to the
most compressed image (30%). The inference time
for the compressed images did not match that of the
baseline and further compression would be necessary
in order to reach those results.

The memory consumption also decreased for the
compressed images (see Figures 20a and 20b). Im-
age P1854 was able to run on both networks when
compressed to 50% or more, and only on the SSD
network when compressed to 80%. The correlation
between inference time and memory consumption

(a) SSD

(b) R-FCN

Figure 19: Average Speed (in seconds) of the resized
images in both models. The ‘X’ means that the
GPU ran out of memory (OOM). The images

improve in speed when resized to a smaller version

makes sense since images with less pixels will be
quicker to analyze and require less SWAP.

However, the results in terms of accuracy were
not consistent with our hypothesis in regards to the
speed/ accuracy trade-off (see Figures 21a and 21b).
The reason for this will be discussed in the follow-
ing section. However, it was consistent with the
trade-off between memory and accuracy where the
images with larger pixel dimensions took up more of
the SWAP memory, as expected. Furthermore, the
overall time to run the full object detection code de-
creased at higher compression levels. For example,
image P1854 on model SSD at 80% took 49 min-
utes to complete the process while at 30% it took 6
minutes. Since the aim is to place this system on
a satellite that will continuously retrieve new data,
low processing time per image means that more data
can be processed and downlinked.

Aspect Ratios

A possible reason for the surprising results in
terms of accuracy for the resized images is attributed
to the shape of the images. There are a lot of
variations in the aspect ratios. For example, the
largest image, P1854, has an aspect ratio of 3.1218
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(a) SSD

(b) R-FCN

Figure 20: Average SWAP of the resized images in
both models. The ‘X’ means that the GPU ran out
of memory (OOM). The images improve in memory

consumption when resized to a smaller version

(13383:4287). Both of the neural networks are
trained on square images, therefore, we want to as-
sess the difference in performance between the origi-
nal image and by fitting the image into a square. We
also want to see the difference between this image
in a large resolution and compressed version. This
is done by splitting the original image into squares
with a 10% percent overlap to avoid any objects to
be split in half which would impact the detection.
Image P1854 is split into images with a ratio of 1:1
(4287:4287). The images are split using the open
source DOTA Devkit39. By converting the image to
a square shape and comparing it in a high resolution
(100%) we can see whether this affects the output.

The results show that both speed and accuracy
are improved in image P1854 with a square shape
compared to the original rectangle shape. The im-
proved speed and accuracy is not a surprise since the
total pixel size is decreased. However, the shape of
the bounding boxes give us some insight on the net-
work. We take a closer look at P1854 80% and P1854
with a square shape in the SSD network. P1854 80%
detected airplanes with rectangle-shaped bounding
boxes while the ground truth coordinates of this im-
age displayed squared bounding boxes (Figure 22a).

39https://github.com/CAPTAIN-WHU/DOTA devkit

(a) SSD

(b) R-FCN

Figure 21: Objects Accurately Detected in the
resized images in both models. The ‘X’ means that

the GPU ran out of memory (OOM)

Therefore, when the threshold was set to 0.5, only
one out of the 221 (4.5%) objects were accurately
detected. On the contrary, when we analyze the
IoU of the squared image with the same threshold
of 0.5, 32 out of 74 (43.2%) objects were accurately
detected (we include the plane in the upper-right
side since the detected bounding box was cropped
where the squared image ended). We can also see
that the bounding boxes of the objects detected in
the squared-shaped image are more similar to that
of the ground truths (see Figure 20b). The same
happens for R-FCN and the reason for this is that
both networks have been trained on squared images
so the input images in the testing are fitted into a
square resolution (Mendoza and Velastin, 2018).

To explore this further, we take into account that
the total pixel size of the squared image (18,378,369)
is significantly smaller than that of the original im-
age (57,372,921). Therefore, we resize the original
image to a pixel size comparable with the squared
image while keeping the aspect ratio the same.
This resized image has the pixel size of 18,376,950
(7575×2426)40. According to the architecture of the
SSD network, the size of the input should not mat-
ter as it does not require a fixed input size. How-

40It was not possible to get the exact same pixel size as the
squared image due to the arbitrary ratio of image P1854.
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(a) Objects detected in image P1854 original shape,
75% resized

(b) Objects detected in image P1854 squared to
4287x4287

Figure 22: Objects detected (in blue) and ground
truth objects (in orange) in image P1854. The

bounding boxes for the detected objects in image a)
have a more rectangular shape than the ground

truth ones, whilst in image b) they seem to match
better

ever, compressing an image does reduce the quality
which could impact the confidence score. We test
this out by running a squared image of a lower reso-
lution (608× 608 dimension). The results show that
the inference time improved by 5.7 seconds (from
6.91 seconds to 1.21 seconds), SWAP was 1.20GB
smaller, and the accuracy did not change. In this
way, the predictions are made on a square grid and
the input images are squared as well. However, very
few of the original images in the dataset are square
and fitting these images into a square unfortunately
takes away the uniqueness of this dataset.

CONCLUSION

Summary

In this paper we investigated two pre-trained
models, SSD and R-FCN, and two compression
techniques, image scaling and lossless compression.
These were then applied to the validation set of
DOTA (A Large-scale Dataset for Object Detec-
tion in Aerial Images). We developed a baseline
by running the images on a cluster for which the
performance of the Jetson Nano could be compared
against. From the baseline we saw that the inference
time was significantly slower when the models ran
on the Jetson Nano compared to the cluster. Thus,
we applied two compression techniques that mod-
ified the images in order to improve the inference
time and decrease the memory consumption with-
out a significant loss in accuracy. The accuracy was

evaluated against a baseline established from run-
ning the original size of the images on the Jetson
Nano and making a comparison to when the images
were modified to 80%, 50%, and 30% of the original
image . This baseline showed that a portion of the
images in the dataset were not able to run on the
constrained device due to their large pixel size and
the images generally had a high inference time and
consumed a lot of memory. We, therefore, first ap-
plied a compression technique to resize the images
in order to run the full dataset. Other images in
the dataset were resized to assess their performance
in terms of speed, memory consumption, and accu-
racy so that a speed/ memory/ accuracy trade-off
could be determined. The second compression tech-
nique applied lossless compression. These images
retained the total pixel size, although the file size
was decreased. The results showed that by apply-
ing this compression technique, the inference time
significantly decreased without any impact on ac-
curacy. The first compression technique decreased
the inference time for the large image P2794 by 2.77
seconds for SSD and 1.28 seconds for R-FCN, while
the second compression technique decreased the in-
ference time by 2.14 seconds for SSD and 1.16 sec-
onds for R-FCN. This suggests that image scaling is
a more effective technique for optimizing the speed.
However, when taking a look at the accuracy, the
lossless compression showed favorable results as the
accuracy was not compromised from applying the
compression technique. Therefore, an efficient way
to compress the images could be to apply a combina-
tion of both compression techniques. First applying
lossless compression to the image, then if inference
time and memory consumption need to be decreased
further, to resize the image.

Furthermore, we developed a way to efficiently as-
sess the accuracy using intersection over union to
help determine the average precision. Results shows
that 10% of the images in the dataset are unable
to run due to their large pixel dimensions. Further-
more, the processing time and memory consumption
of other images in the dataset are unfavorable. By
compressing the images by 59%, we can achieve a
completely runnable dataset. By testing out the
resized images, we found that memory consump-
tion and speed improved, and accuracy improved in
some instances while showing questionable results in
other. It was found that on average the processing
time decreased by 2 seconds and 1050M less mem-
ory was used across both models after applying the
image scaling technique. There was no significant
decrease in accuracy. However, the overall execu-
tion time decreased by more than 40 minutes after
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resizing the largest images in the dataset. The R-
FCN model performed better in terms of accuracy,
but was slower and consumed more memory than
the SSD model. Due to the architecture of the net-
works, we found that the accuracy of square-shaped
images was higher (43.2%) than rectangle-shaped
images with large differences in width and height
(4.5%). Although accuracy was not significantly im-
proved, applying compression techniques did indeed
decrease the inference time and memory consump-
tion, two aspects which are highly important to con-
sider for implementing deep learning applications on
constrained devices in space.

Future Work

The next step of this research will evaluate more
images from DOTA and other datasets. The GSD
of the images could be taken into account as well as
the sizes of the object instances and class categories.
Future work could look into other constrained de-
vices, compression techniques, such as lossy com-
pression and other forms of lossless compression, and
datasets. Other object detection networks, such as
SSSDet (Mandal et al., 2019) or any from the Xia
et al. (2018) research, could be evaluated. Further-
more, the overarching aim would be to implement
the Jetson Nano on a satellite and thus working with
other aspects of the device to make it space-ready
would provide useful research. To do this, investi-
gating the Orbital Edge Computing (Bradley and
Brandon, 2019) implementation further or testing
out the capabilities of the NVIDIA Jetson Nano or
a similar device in space.
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