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ABSTRACT
Given a bipartite graph G = (X,Y,E), the bipartite dot product representation of G
is a function f : X ∪Y → Rk and a positive threshold t such that for any x ∈ X and
y ∈ Y , xy ∈ E if and only if f(x) · f(y) ≥ t. The minimum k such that a bipartite
dot product representation exists for G is the bipartite dot product dimension of
G, denoted bdp(G). We will show that such representations exist for all bipartite
graphs as well as give an upper bound for the bipartite dot product dimension of
any graph. We will also characterize the bipartite graphs of bipartite dot product
dimension 1 by their forbidden subgraphs.
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1. Introduction

1Dot product graphs were independently developed by Reiterman et al [13] and
Schienerman et al [6]. A graph G = (V,E) is a k-dot product graph if there exists
a function f : V → Rk with a real number t > 0 such that for any x, y ∈ V xy ∈ E
if and only if f(x) · f(y) ≥ t. The function f is called a k dot product representation
of G. The minimum k such that G is a k-dot product graph is called the dot product
dimension of G, ρ(G).

A bipartite graph, G = (V,E), is an undirected graph where the set of vertices V can
be partitioned into two sets, X and Y , such that X and Y are disjoint independent
sets. The relation of bipartite graphs to hypergraphs and directed graphs, as well as
their applications to matching problems, leads us to consider bipartite dot product
representations.

Let G = (V,E) be a bipartite graph. As we previously mentioned, we may write
G = (X,Y,E) if V = X ∪ Y with X ∩ Y = ∅ and for any vertices x, y if xy ∈ E(G),
then x ∈ X and y ∈ Y . A bipartite dot product representation of G is a function
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f : {X,Y } → Rk and a threshold t > 0 such that for any x ∈ X and y ∈ Y xy ∈ E(G)
if and only if f(x) · f(y) ≥ t. Since t > 0, we can use t = 1 without loss of generality.
The minimum k such that a bipartite dot product representation exists for a bipartite
graph G is the bipartite dot product dimension of G, denoted bpd(G).

This definition of bipartite dot product graphs is similar to dot product graphs.
This new definition allows us to examine classes of graphs where a relaxation on the
minimum dimension can be given due to ignoring possible adjacencies. This definition
also led to several general results for bipartite dot product graphs.

2. General Results for Bipartite Dot Product Dimension

The relaxation of dot product dimension that motivated our examination of bipartite
dot product representations allows us to use the dot product dimension as an upper
bound on the bipartite dot product dimension, as proven in Theorem 2.1. This bound
also means that for any bipartite graph G there is bipartite dot product representation,
since there is a dot product representation by Theorem 2.1.

Theorem 2.1. Let G be a bipartite graph. Then bpd(G) ≤ ρ(G).

Proof. Let G be a bipartite graph and ρ(G) = k. Then there exists f : V → Rk and
such that for any x, y ∈ V xy ∈ E if and only if f(x) · f(y) ≥ 1. But since V = X ∪ Y
and xy ∈ E if and only if x ∈ X and y ∈ Y , then f is also a bipartite dot product
representation of G. Thus bpd(G) ≤ ρ(G).

This upper bound for the bipartite dot product dimension can also be found using
graph structures, namely bicliques. A biclique of a graph G is a subgraph H of G with
V (H) = X ∪ Y where X and Y are each independent sets and every vertex x ∈ X is
adjacent to every vertex y ∈ Y . Thus the minimum number of bicliques of G such that
each edge of G is contained in at least one biclique of G is the biclique cover number
of G, denoted bc(G). Biclique cover number has been extensively studied, as seen in
[1, 3–5, 11, 12].

Theorem 2.2 proves that the biclique cover number of G bounds the bipartite dot
product dimension of G.

Theorem 2.2. Let G be a bipartite graph. Then bpd(G) ≤ bc(G).

Proof. Suppose bc(G) = k. Without loss of generality, we can label the bicliques
B1, · · · , Bk. Define f : X ∪ Y → Rk such that for any v ∈ X ∪ Y f(v)i = 1 if v ∈ Bi
and 0 otherwise. Then for any x ∈ X and y ∈ Y , f(x) ·f(y) ≥ 1 if and only if x, y ∈ Bi
for some i. Thus f is a bipartite dot product dimension of G.

One of the key characteristics of dot product representations is their hereditary
property. As shown in Theorem 2.3, bipartite dot product representations also have
the hereditary property. This property allows us to characterize graphs with bipartite
dot product dimension k via forbidden induced subgraphs.

Theorem 2.3. Let G = (X,Y,E) be a bipartite graph and G′ be an induced subgraph
of G. Then bpd(G′) ≤ bpd(G).

Proof. Let bpd(G) = k. Let f : X ∪ Y → Rk be a k-dot product representation of G
and G′ = (X ′, Y ′, E′) be an induced subgraph of G. Then f ′ : X ′ ∪ Y ′ → Rk defined
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by f restricted to X ′ ∪ Y ′ is still a k-bipartite dot product representation.

3. Characterization of 1-Bipartite Dot Product Graphs

In addition to the general results, bipartite dot product dimension can be determined
for specific graphs. In particular, we will characterize the graphs of bipartite dot prod-
uct dimension 1 by their forbidden subgraphs. We will show that our list is both
necessary and sufficient.

The subsequent subsections will accomplish this characterization. We will first iden-
tify the structures that prohibit bipartite dot product dimension of 1. Then we will
algorithmically show that, provided that there are no forbidden substructures in G,
we can create a 1-bipartite dot product representation of G.

3.1. Forbidden Subgraphs of 1-Bipartite Dot Product Graphs

Our characterization will begin by showing a list of two graphs that have bipartite dot
product dimension of 2. These graphs are 3K2 and P5. These forbidden subgraphs can
be seen in Figure 1. The proof that their bipartite dot product dimension is not 1 is
shown in Lemmas 3.1 and 3.2.

Figure 1. Forbidden Subgraphs of 1-Bipartite Dot Product Graphs.

Lemma 3.1. Let G = 3K2. Then the bpd(G) = 2.

Proof. Suppose that bpd(G) = 1. Then there exists a function f : X ∪ Y → R such
that f(x) · f(y) ≥ 1 if and only if xy ∈ E(G). Label the vertices of G as shown in
Figure 2.

Figure 2. A Labeling of 3K2.

By the definition of f , f(xi)·f(yj) ≥ 1 if i = j and f(xi)·f(yj) < 1 if i 6= j. Without
loss of generality, we assume that f(x1) > 0 and f(x1) ≥ f(xk) for k ∈ {2, 3}. This
also implies that f(y1) ≥ 1

f(x1) > 0.

If f(x2) > 0, then f(y2) ≥ 1
f(x2) > 0. But f(x1) > f(x2) so f(y2) ≥ 1

f(x2) ≥
1

f(x1) .
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This implies that f(x1) · f(y2) ≥ 1, which is a contradiction since x1y2 /∈ E(G). This
implies that f(x2), f(y2) < 0. Similarly it can be shown that f(x3), f(y3) < 0.

Without loss of generality, we now assume that f(x2) ≥ f(x3). So f(y2) ≤ 1
f(x2) ≤

1
f(x3) , which implies that f(y2) · f(x3) ≥ 1. But this is another contradiction of x3y2 /∈
E(G). Thus our initial assumption that bpd(G) = 1 is false, so bpd(G) ≥ 2.

To prove that bpd(G) ≤ 2, define g : X ∪ Y → R2 such that

x1, y1 =

[
1
0

]
x2, y2 =

[
0
1

]
x3, y3 =

[
−1
0

]

A brief examination shows that this bipartite representation is valid.
Thus bpd(G) = 2.

Lemma 3.2. Let G = P5. Then the bpd(G) = 2.

Proof. Suppose that bpd(G) = 1. Then there exists a function f : X ∪ Y → R such
that f(x) · f(y) ≥ 1 if and only if xy ∈ E(G). Label the vertices of G as shown in
Figure 3.

Figure 3. P5 Labeling

Let f(y1) = α. Then f(x1), f(x2) ≥ 1
α in order for f(x1) · f(y1), f(x2) · f(y1) ≥ 1.

Similarly since x3y1 /∈ E, then f(x3) < 1
α . For f(y2) · f(x2) ≥ 1, it is necessary that

f(y2) > α. But then f(y2) · f(x1) ≥ 1, which is a contradiction of x1y2 /∈ E. Thus our
initial assumption that bpd(G) = 1 is false, so bpd(G) ≥ 2.

To prove that bpd(G) ≤ 2, we just need to note that the induced subgraphs on
{x1, x2, y2} and {x2, x2, y2} are both K1,2. Therefore the biclique cover number of a
P5 is 2, and thus bpd(G) ≤ 2 by Theorem 2.2.

Thus bpd(G) = 2.

3.2. Constructive Algorithm for 1-Bipartite Dot Product Graphs

Based on the forbidden subgraphs shown in Lemmas 3.1 and 3.2, we developed Algo-
rithm 1. This algorithm takes a bipartite graph G = (X,Y,E) along with the vertex
degrees and returns a 1-bipartite dot product representation of G, namely F . The
returned representation will fail to be valid only if bpd(G) ≥ 2.

Algorithm 1 is built on identifying the vertex of G with maximum degree. This
vertex is assigned a value equivalent to its degree. The other vertices in the same partite
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set as the vertex of maximum degree are assigned values relative to the cardinality
of the intersection of the neighborhood of each vertex and the neighborhood of the
vertex of maximum degree. The vertices in the other partite set are assigned values
based on the values assigned the vertices adjacent to each one.

The validity of Algorithm 1 is shown in Theorem 3.3. An example of how Algorithm
1 works and an example of how Algorithm 1 fails if P5 is present are given after the
proof of Theorem 3.3.

Theorem 3.3. Let G be a bipartite graph. If G does not contain 3K2 or P5 as induced
subgraph, then Algorithm 1 returns a 1-bipartite dot product representation of G.

Proof. Let G = (X,Y,E) be a bipartite graph with no induced 3K2 or P5.
First we will consider when x̂ŷ ∈ E(G) for some x̂ ∈ X and ŷ ∈ Y . There are three

cases to consider:
Case 1: Suppose ŷ ∈ N(x1).
Then N(x1) ∩ N(x̂) 6= ∅. So F (ŷ) = 1

min(F (xj)) such that ŷ ∈ N(x1) ∩ N(xj). But

since F (x̂) ≥ min(F (xj)), F (ŷ) ≥ 1
F (x̂) . Thus F (x̂) · F (ŷ) ≥ 1.

Case 2: Suppose ŷ /∈ N(x1) and N(x1) ∩N(x̂) 6= ∅.
Since N(x1) ∩ N(x̂) 6= ∅, there exists yi ∈ Y such that yi ∈ N(x1) ∩ N(x̂). By

definition of x1, deg(x1) ≥ deg(x̂). That implies that |N(x1)| ≥ |N(x1) ∩ N(x̂)| + 1.
So there exists yk ∈ Y such that yk ∈ N(x1) and yk /∈ N(x̂). Thus ykx1yix̂ŷ is a P5.
So G has a P5 as an induced subgraph, which is a contradiction.

Case 3: Suppose that ŷ /∈ N(x1) and N(x1) ∩N(x̂) = ∅.
If ŷ /∈ N(x1), then there exists an xk explained in Lines 10-12 such that ŷ ∈ N(xk).

So F (ŷ) = 1
max(F (xj)) such that ŷ ∈ N(xk) ∩ N(xj). But since F (x̂) ≥ max(F (xj)),

F (ŷ) ≤ 1
F (x̂) . Thus F (x̂) · F (ŷ) ≥ 1.

Now consider when x̂ŷ /∈ E(G) for some x̂ ∈ X and ŷ ∈ Y .
Case 1: Suppose either ŷ or x̂ is an isolated vertex.
In either case, F (x̂) · F (ŷ) = 0 < 1.
Case 2: Suppose ŷ ∈ N(x1) and N(x1) ∩N(x̂) 6= ∅.
First suppose that there exists xj ∈ X such that ŷ ∈ N(xj) and |N(x1) ∩N(xj)| ≤

|N(x1) ∩ N(x̂)|. Then there exists yk ∈ N(x1) ∩ N(x̂) such that yk /∈ N(xj). Then
xj ŷx1ykx̂ is P5 that is an induced subgraph of G. This is a contradiction.

So for any xj ∈ X such that ŷ ∈ N(xj), |N(x1) ∩N(xj)| > |N(x1) ∩N(x̂)|.
Then F (ŷ) ≤ 1

|N(x1)∩N(xj)| <
1

|N(x1)∩N(x̂)| = 1
F (x̂) . Thus F (x̂)F (ŷ) < 1.

Case 3: Suppose ŷ ∈ N(x1) and N(x1) ∩N(x̂) = ∅.
This involves the reordering from Lines 10-12 in the algorithm. If that reorder-

ing occurred at least twice, there exists non-isolated vertices xk1 , xk2 ∈ X such that
N(x1) ∩ N(xk1) = N(x1) ∩ N(xk2) = N(xk1) ∩ N(xk2) = ∅. Then 3K2 is an induced
subgraph of G, which would be a contradiction. Thus the reordering can be done at
most once.

In this case, F (x̂) < 0 and F (ŷ) > 0. So F (x̂) · F (ŷ) < 0 < 1.
Case 4: Suppose ŷ /∈ N(x1) and N(x1) ∩N(x̂) 6= ∅.
Since ŷ is not adjacent to either x1 or x̂ and ŷ is not an isolated vertex, there

exists xi ∈ X such that ŷxi ∈ E. Similarly there exists yi ∈ N(x1) ∩ N(x̂) because
N(x1) ∩N(x̂) 6= ∅.

If N(x1) ∩ N(xi) 6= ∅ or N(xi) ∩ N(x̂) 6= ∅, then P5 is an induced subgraph of G,
which would be a contradiction. Thus N(xi)∩ (N(x1) ∪N(x̂)) = ∅. Then we can label
xi as xk and F (ŷ) < 0 by the lines 20 and 27 of the algorithm. But F (x̂) > 0 since
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Table 1. Algorithm 1:Returns a 1-bipartite dot product representation of G (F), and fails if bpd(G) ≥ 2.

1 INPUT: G=(X,Y,E) and deg(v) for all v ∈ X ∪ Y
2 Vertices begin with no labels.
3 Define F as a 1-bipartite dot product representation of G.
4 if A vertex v has deg(v) = 0 then
5 Define F (v) = 0.
6 else
7 for An unlabeled vertex of maximum degree do
8 Label this vertex as x1 and the independent set X.
9 Label the remaining vertices in X such that for i > j,
10 |N(xi) ∩N(x1)| ≥ |N(xj) ∩N(x1)|.
11 if There exists k such that for i ≥ k, N(xi) ∩N(x1) = ∅, and deg(xi) > 0
12 then
13 Label the vertex of maximum degree of such vertices as xk
14 Label the vertices in X with N(xi) ∩N(xk) 6= ∅ such that for i > j,
15 |N(xi) ∩N(xk)| ≥ |N(xj) ∩N(xk)|.
16 end if
17 for All vertices in Y do
18 Label the vertices y1, y2, · · · , yn where n = |Y |.
19 end for
20 end for
21 for Each x ∈ X do
22 Define F (x1) = deg(x1) and F (xi) = |N(xi) ∩N(x1)| for i < k.
23 Define F (xk) = −deg(xk) and F (xj) = −|N(xk) ∩N(xj)| for j ≥ k.
24 end for
25 for y ∈ Y do
26 for yi ∈ N(x1) do
27 Define F (yi) = 1

min(F (xj)) where yi ∈ N(xj) ∩N(x1).

28 end for
29 for ym ∈ N(xk)
30 Define F (ym) = 1

max(F (xj)) where ym ∈ N(xj) ∩N(xk).

31 end for
32 end for
33 end if
34 return F (v) for all v ∈ V
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N(x1) ∩N(x̂) 6= ∅. Therefore F (x̂) · F (ŷ) < 0 < 1.
Case 5: Suppose ŷ /∈ N(x1) and N(x1) ∩N(x̂) = ∅.
Since ŷ is not isolated, there exists xk such that ŷ ∈ N(xk). Similarly there exists

ȳ ∈ N(x̂) since x̂ is not isolated. It can also be noted that since x1 is the vertex of
maximum degree there exists y1 ∈ N(x1) such that y1 /∈ N(xk).

If ȳ /∈ N(xk), then 3K2 is an induced subgraph of G, which would be a contradiction.
Thus ȳ ∈ N(xk). In this case, we need to consider the deg(xk) and deg(x̂). If deg(x̂) ≥
deg(xk), then there exists y2 ∈ N(x̂) and y2 ∈ N(xk). But this means that P5 is an
induced subgraph of G, which would be a contradiction. Thus deg(x̂) < deg(xk). We
can then assume that xk is the xk in line 8 of the algorithm. Thus F (x̂) = −|N(xk)∩
N(x̂)| > −deg(xk) and F (ŷ) = 1

F (xk) = − 1
deg(xk) . Therefore F (x̂) · F (ŷ) = −|N(xk) ∩

N(x̂)| · − 1
deg(xk) <

deg(xk)
deg(xk) = 1.

3.3. Example and Nonexample of How Algorithm 1 Works

For an example of how Algorithm 1 works, we will let G = (X,Y,E) be the bipartite
graph H1 in Figure 4. In H1, the grey vertices are in X and the black vertices are in
Y .

Figure 4. An Example Graph for Algorithm 1. Vertices unlabeled.

First, the isolated vertices can be assigned vectors [0], as designated in Lines 4
and 5. We will also label the vertices, as designated Lines 7-16. Figure 5 shows these
assignments and labels. It can be noted that x3 is xk.

Figure 5. An Example Graph for Algorithm 1. Vertices labeled.

Next we will assign the vertices in x ∈ X the vectors as explained in Lines 19-20.
These assignments are seen in Figure 6.

Next we will assign the vertices in y ∈ Y the vectors as explained in Lines 22-28.
These assignments are seen in Figure 7.

A brief examination of these vectors shows that this 1-dot product representation
of H1 is valid.
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Figure 6. An Example Graph for Algorithm 1. Vectors assigned for X.

Figure 7. An Example Graph for Algorithm 1. Representation given.

For a nonexample of how Algorithm 1 works, we will let G = (X,Y,E) be the
bipartite graph H2 in Figure 8. In H1, the grey vertices are in X and the black vertices
are in Y . An examination of H2 shows that 3K2 and P5 are both induced subgraphs.

Figure 8. A Nonexample Graph for Algorithm 1. Vertices unlabeled.

There are no isolated vertices in H2 so we can skip to Line 7. We will label the
vertices in X, as designated Lines 7-16. Figure 9 shows these assignments and labels.
It can be noted that x4 is xk.

Next we will assign the vertices in x ∈ X the vectors as explained in Lines 19-20.
These assignments are seen in Figure 10. For x5, we can assign F (x5) = 0 because
|N(x4) ∩N(x5)| and 5 > 4.

Next we will assign the vertices in y ∈ Y the vectors as explained in Lines 22-28.
These assignments are seen in Figure 11. However, there is no assignment for y5 since
it is not in N(x1) or N(x4).
F fails first because y5 has no assignment. Further, any assignment of y5 will not

result in a dot product with [0] to be greater than or equal to 1. Next it can be noted

8



Figure 9. A Nonexample Graph for Algorithm 1. Vertices labeled.

Figure 10. A Nonexample Graph for Algorithm 1. Vectors assigned for X.

that it F (x3) ·F (y1) = 1, which is a contradiction of the nonadjency of those vertices.
Thus F is not a valid representation when either a 3K2 or P5 are induced subgraphs
of the graph.

3.4. Primary Theorem

Our results combine to given us a forbidden induced subgraph characterization of
1-bipartite dot product graphs, as seen in Theorem 3.4.

Theorem 3.4. A bipartite graph G is a 1-bipartite dot product graph if and only if G
has no induced 3K2 or P5.

Proof. The necessity of the forbidden subgraphs are given from Lemmas 3.1 and 3.2.
The sufficiency of the forbidden subgraphs is given by Theorem 3.3.

4. Linear Algebra Relation to Bipartite Dot Product Dimension

Any bipartite graph can be thought of as a rectangular (0, 1)-matrix. Let G = (X,Y,E)
be a bipartite graph with X = {x1, · · · , xn} and Y = {y1, · · · , ym}. Then the bipartite
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Figure 11. A Nonexample Graph for Algorithm 1. Representation given.

adjacency matrix of G, denoted B(G) or simply B, is an n ×m (0, 1)-matrix, where
bij is 1 if and only if xiyj ∈ E(G). This perspective allows for combinatorial analysis
of linear algebraic or other properties of (0, 1)-matrices. To understand these matrices,
consider the bipartite graph in Figure 12.

The bipartite adjacency matrix of Figure 12 is
1 0 1
1 1 0
0 1 1
1 1 1

 .

Figure 12. An Example Bipartite Graph.

Because our bipartite graphs can be viewed as matrices, linear algebra and its theory
can be used to analyze these graphs. We will use Mm,n(R) to denote the set of all m×n
matrices with real entries.

We will utilize the linear algebra parameter real rank to analyze the bipartite ad-
jacency matrix. If A ∈ Mm,n(R), the real rank of A, denoted rank(A), is the largest
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number of columns of A that constitute a linearly independent set [9]. This set of
columns is not unique, but the cardinality of this set is unique.

The real rank of a matrix is also equivalent to the factor rank of the matrix. The
factor rank of A ∈ Mm,n(R) is the minimum integer k such that A = CF , where
C ∈Mm,k(R) and F ∈Mk,n(R). The comparison of factor rank and the bipartite dot
product dimension leads to the following theorem.

Theorem 4.1. Let G be a bipartite graph and B the bipartite adjacency matrix of G.
Then bpd(G) ≤ rank(B).

Proof. Suppose that the bipartite sets of G are X and Y , with |X| = m and |Y | = n.
Suppose that rank(B) = k. Then there exists real matrices R ∈ Mm,k(R) and S ∈
Mk,n(R) such that

B = RS =


r1,1 r1,2 · · · r1,k

r2,1 r2,2 · · ·
...

...
...

. . .
...

rm,1 · · · · · · rm,k



s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · ·
...

...
...

. . .
...

sk,1 · · · · · · sk,n

 .
Since B requires an arbitrary assignment of the vertices such that X = x1, · · · , xm
and Y = y1, · · · , yn, we can assign the vertices xi ∈ X the vector ~xi = (ri,1, · · · , ri,k)T
and the vertices yi ∈ X the vector ~yi = (s1,i, · · · , sk,i)T . By definition of matrix
multiplication, ~xi · ~yj = Bi,j , which is 1 if xiyj ∈ E and 0 otherwise. Thus there exists
a k-bipartite dot product representation of G and bpd(G) ≤ k.

This bound however is not tight for all graphs. An example of this is the graph 2K2.
This graph and a 1-bipartite dot product representation of it can be seen in Figure
13.

Figure 13. A 2K2 and its 1-Bipartite Dot Product Representation.

However the bipartite adjacency matrix of 2K2 is[
1 0
0 1

]
.

The real rank of B is 2, which is greater than the bipartite dot product dimension.
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5. Further Work

We showed the forbidden subgraph characterization of 1-bipartite dot product graphs
in Theorem 3.4. We propose using this characterization to develop a 2-SAT recognition
algorithm for 1-bipartite dot product graphs. This algorithm could then be used to
determine the complexity of determining if a given graph is a 1-bipartite dot product
graph.

We also propose finding a forbidden induced subgraph characterization of 2-bipartite
dot product graphs. Since a characterization of 2-dot product graphs has yet to be
found, this particular characterization may also be elusive [10]. If such is the case, we
propose finding a partial characterization of 2-bipartite dot product graphs similar to
the proof that a bipartite claw has dot product dimension 3 [6].

We also propose determining the dot product dimension of other classes of bipartite
graphs. such as interval bigraphs [8]. We propose creating a representation similar
to the cap-capture graphs used by Scheinerman to show that interval bigraphs have
bipartite dot product dimension 2 [6].

Another class of graphs to compare bipartite dot product graphs with is difference
graphs. A graph G = (V,E) is a difference graph if there exists f : V → R with
|f(v)| < T for each v ∈ V such that uv ∈ E if and only if |f(u) − f(v)| > T . It has
been shown that difference graphs are bipartite [7]. This representation is related to
threshold graphs, which were generalized by dot product graphs [13]. Thus we believe
that bipartite dot product graphs are a generalization of difference graphs.

In Theorem 4.1, we showed that the real rank of the bipartite adjacency matrix
of a graph G is an upper bound on the bipartite dot product dimension of G. But
the multiple ranks of matrices. We propose considering alternate ranks such as non-
negative integer rank and boolean rank.

Finally, we propose finding the maximum bipartite dot product dimension of a graph
on n vertices, similar to the dot product dimension bound conjecture in [6]. A related
question is what graphs on n vertices have attain this maximum bipartite dot product
dimension.
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