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ARTICLE

Estimating population abundance with a mixture of physical
capture and PIT tag antenna detection data
Mary M. Conner, Phaedra E. Budy, Richard A. Wilkison, Michael Mills, David Speas,
Peter D. Mackinnon, and Mark C. Mckinstry

Abstract: The inclusion of passive interrogation antenna (PIA) detection data has promise to increase precision of population
abundance estimates (N̂). However, encounter probabilities are often higher for PIAs than for physical capture. If the difference
is not accounted for, N̂ may be biased. Using simulations, we estimated the magnitude of bias resulting from mixed capture and
detection probabilities and evaluated potential solutions for removing the bias for closed capture models. Mixing physical
capture and PIA detections (pdet) resulted in negative biases in N̂. However, using an individual covariate to model differences
removed bias and improved precision. From a case study of fish making spawning migrations across a stream-wide PIA (pdet ≤ 0.9),
the coefficient of variation (CV) of N̂ declined 39%–82% when PIA data were included, and there was a dramatic reduction in time to
detect a significant change in N̂. For a second case study, with modest pdet (≤0.2) using smaller PIAs, CV (N̂) declined 4%–18%. Our
method is applicable for estimating abundance for any situation where data are collected with methods having different
capture–detection probabilities.

Résumé : L’inclusion de données de détection par antennes d’interrogation passives (AIP) a le potentiel d’accroître la précision
des estimations d’abondance de populations (N̂). Les probabilités de rencontres sont toutefois plus élevées pour les AIP que pour
la capture physique. La non prise en compte de cette différence peut se traduire par un biais des valeurs de N̂. En utilisant des
simulations, nous estimons la magnitude du biais découlant de probabilités de capture et de détection mixtes et évaluons des
solutions possibles pour retirer ce biais pour des modèles de capture fermée. Le mélange de captures physiques et de détections
par AIP (pdet) produit des biais négatifs de N̂. L’utilisation d’une covariable individuelle pour modéliser les différences enlève le
biais et améliore la précision. À partir d’une étude de cas de poissons effectuant des migrations de frai captés par des AIP dans
tout le cours d’eau (pdet ≤ 0,9), le coefficient de variation (CV) de N̂ diminue de 39–82 % quand les données d’AIP sont incluses, et
il y a une réduction marquée du temps nécessaire pour détecter un changement significatif de N̂. Pour une deuxième étude de
cas caractérisée par de modestes pdet (≤0,2) et utilisant de plus petites AIP, le CV (N̂) diminue de 4–18 %. Notre méthode peut être
appliquée pour estimer l’abondance pour toute situation où les données sont obtenues par des méthodes présentant différentes
probabilités de capture–détection.

Introduction
Estimating abundance remains one of the most challenging and

important activities in the conservation and management of ani-
mals. Ecologists and managers alike want to know “how many are
there” (Williams et al. 2002), and abundance is a key indicator of
population dynamics across both space and time, with the poten-
tial to also elucidate ecological processes (Murdoch 1994; Kelt
et al. 2019). Further, population abundance criteria are often used
as guidelines for enacting or adjusting management actions and
assessing progress towards recovery of sensitive and imperiled
species (Holmes and York 2003; Osmundson and White 2017).
However, estimating abundance can be challenging analytically,
expensive, time-consuming logistically, and potentially harmful
to animals sensitive to handling, which is especially important for
threatened or endangered species (Pine et al. 2001; Al-Chokhachy
et al 2009; Fraser et al. 2017).

Recent advances in fish marking and detection technology have
resulted in dramatically increased recapture rates while not re-
quiring actual physical recapture (e.g., Skalski et al. 1998; Gibbons
and Andrews 2004; Budy et al. 2017). In the Columbia River Basin,
between 1987 and 2018 over 45 million salmon were tagged with
passive integrated transponder (PIT) tags (Pacific States Marine
Fisheries Commission 2018), and in the Colorado River Basin, con-
servative estimates are that between 1990 and 2019, >1.2 million
large river desert fish were PIT-tagged in the Upper Colorado River
basin (Species Tagging, Research and Monitoring System (STReaMS)
2019). The most recent advances in marking–detection have been
the installation of passive interrogation antennas (PIAs), permanent
or semipermanent antennas capable of detecting, identifying, and
recording an individual PIT-tagged fish (or other organism) as they
swim over, through, or near the antennas. The rapidly increasing
utilization of these PIAs has dramatically increased the numbers of
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fish detected (which can represent a capture or recapture in capture–
mark–recapture models) by several orders of magnitude, with the
added benefit of minimizing the handling stress on fish, as well as
minimizing effort in the field. Although there are potential finan-
cial and logistical constraints for PIAs, (Al-Chokhachy et al. 2009),
there are many additional advantages of collective PIT tag and PIA
technology. PIA detections can be used to estimate demographic
vital rates (Roni et al. 2012; Conner et al. 2015; Pearson et al. 2016)
and abundance (Dzul et al. 2018; Pearson et al. 2016), delineate fish
movement patterns (Bowerman and Budy 2012; Cathcart et al.
2018) and barriers (Pennock et al. 2018), as well as describe habitat
use (Roussel et al. 2000; Richer et al. 2017; Stout et al., in press),
community distributions (Cathcart et al. 2015, 2019), and spawn-
ing behavior (Pearson et al. 2016).

Despite the potential to greatly increase the detection rate and
minimize fish handling stress, the data collected with PIAs come
with several analytical challenges (Zydlewski et al. 2006; Stout
et al. 2019; Stout et al., in press). One unresolved analytical issue
associated with PIA data are heterogeneity in capture or detection
probabilities, which refers to the variation among individuals in
their probability of detection. Most capture–recapture models as-
sume capture probability is constant across individuals within a
group. When individuals vary in their capture probabilities, an-
imals with higher “capture” (detection) probabilities are likely to
be caught first and more often. This heterogeneity leads to an
overestimate in capture probability, which then results in under-
estimates (i.e., negative bias) of population abundance (N̂) (Pollock
et al. 1990; Link 2004; Lukacs and Burnham 2005). Differences in
capture and detection probabilities, which is a specific type of
heterogeneity, can be accounted for within a single closed capture
sampling session using models where recapture probability is dif-
ferent from initial capture probability (White et al. 1982). How-
ever, with PIT tag technology, captures can be via physical capture
or via PIA detection, and more often than not, the PIA detection
probability is much higher than the physical capture probability.
This is a more general form of heterogeneity, and if the two types
of capture probabilities are mixed and not accounted for analyti-
cally, the resulting estimates of N will likely be biased. Pearson
et al. (2016) presented one sophisticated solution to this problem
using multistate models. Their approach was particularly useful
for estimating survival, skipped spawning, and assessing the po-
tential to minimize physical capture, but they did not primarily
assess bias in N̂.

Here, we address the mixing of PIA detection data with physical
capture data for estimating population abundance using closed
capture models, wherein the same population of fish is sampled
by both methods during the closed capture sampling occasions.
That is, physical capture sites and PIAs are located such that fish
are vulnerable to detection by physical capture (for tagged and
untagged) and PIA (for tagged). Our overarching goals were to
(i) determine the magnitude of bias resulting from mixed capture
and detection probabilities on N̂ and its precision and offer a

potential solution and (ii) quantify the improvement in N̂ in terms
of reduced bias and increased precision resulting from addition of
PIA detection data using both simulations and two case studies of
real data. With a baseline that used closed capture models to
estimate N without PIA detections, we simulated a range of sce-
narios bracketing low to high probabilities of physical capture
and passive detection of PIT-tagged fish at PIAs, across a range of
proportions of PIT-tagged fish. For these scenarios, we demonstrate
two potential approaches for minimizing the bias in N̂ arising from
mixed capture probabilities and quantify the improvement in preci-
sion from using PIA data. Lastly, we demonstrate the improvement
in precision gained from incorporating real PIA detection data for
two case studies representing a common set of life history expres-
sions among fishes: adfluvial June sucker (Chasmistes liorus) and flu-
vial bull trout (Salvelinus confluentus), both of which are listed as
endangered and threatened under the Endangered Species Act (ESA),
respectively (US Fish and Wildlife Service 1999, 2015). These two case
studies represent common, but quite different, field situations.

Methods

Simulation cases and input parameters
We estimated precision and bias for estimates of N using the

Huggins formulation (Huggins 1989, 1991) of closed capture mod-
els (Otis et al. 1978) in Program MARK (White 2008) to quantify the
effects of combining encounter data from physical captures and
passive PIA detections. We took four different approaches for
including (or not including) PIA detections in closed capture mod-
els to estimate abundance (Table 1). The four approaches dealt
with capture heterogeneity that arose because fish that entered
the closed capture period with a PIT tag had a higher probability
of being initially detected (i.e., captured) than a fish not PIT-
tagged. We could have included an approach using the Huggins–
Pledger closed capture heterogeneity model (Pledger 2000) for two
groups. However, in our situation, where groups related to the
heterogeneity are known, the Pledger approach would not be
efficient (i.e., the precision would not be as high) because it would
predict to which group each encounter history belonged. We
knew which group each encounter history belonged to because it
depended on whether the individual was PIT-tagged at the start of
the closed capture sampling period (e.g., because it was released
from a hatchery with a PIT tag or because it had been captured and
PIT-tagged in a previous year).

Note that all approaches assume that the same population of
fish are sampled physically and by the antenna during the closed
capture periods. That is, physical capture location and antenna
locations are close enough that fish are vulnerable to detection by
physical capture (for tagged and untagged) and PIA (for tagged).
Our modeling approaches were as follows: (i) only physical cap-
ture data was included in the data set, which avoids the problem
of initial capture heterogeneity but discards PIA detections and
the potential to increase the precision of estimated abundance;

Table 1. Description of the approaches used for combining physical capture data with passive interrogation antenna (PIA) detection data
collected concurrently for use in closed capture models to estimate population abundance.

Approach Description
Model for capture and
recapture probabilitya

1. No antenna data Only fish physically captured and recaptured included in the data set p(.)=c(.)
2. All data no IC All physical captures and recaptures and passive PIA detections used in the data set, but no accounting

for heterogeneity using an individual covariate (IC)
p(.)=c(.)

3. All data with IC All physical captures and recaptures and passive PIA detections used in the data set, and an individual
covariate (PrevCap) used to account for fish already PIT-tagged at the start of the sampling period

p(PrevCap) c(.)

4. All data with groups All physical captures and recaptures and passive PIA detections used in the data set, and two groups
used to account for fish already PIT-tagged at the start of the sampling period (group 1) and fish not
PIT-tagged (group 2)

p(group) c(.)

aModel notation: p = probability of initial capture, c = probability of recapture, “.” = constant p or c for the sampling occasions, PrevCap = individual covariate for
each fish that indicates if it was previously captured and PIT-tagged (so initial capture can be from an antenna detection).

1164 Can. J. Fish. Aquat. Sci. Vol. 77, 2020

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

T
A

H
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

07
/1

3/
20

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



(ii) both physical captures and PIA detections were included, but
we did not account for the heterogeneity in the capture probabil-
ity; (iii) both physical captures and PIA detections were included,
but we accounted for capture heterogeneity using an individual
covariate (IC) to indicate animals that were PIT-tagged at the start
of the closed capture period; and (iv) both physical captures and
PIA detections were included, but we classified animals starting
with a PIT tag in one group and animals not starting with a PIT tag
in another group. While the group approach is the same underly-
ing model as the IC approach, we included it because we realize
that modeling groups is more familiar to practicing biologists and
is well described in the Program MARK literature (e.g., Cooch and
White 2018).

Because we were focusing on issues with combining capture
and detection data to estimate population abundance, we emu-
lated the field situation where physical capture and marking
occur during a closed capture period concurrently with PIA detec-
tions. In our simulations, a PIT-tagged individual could be initially
captured based on the probability of physical capture (pphy), but if
not captured physically then it could be initially “captured” based
on the probability of PIA detection (pdet). Thus, pphy and pdet were
cumulative, such that overall probability of capture was higher
than if only a single method had been used (i.e., poverall = pphy +
pdet – pphy × pdet). Recapture (c) was simulated the same way (i.e.,
poverall = coverall). However, an individual not having a PIT tag could
only be initially captured physically with probability pact. For all
approaches, we simulated a range of physical capture probabili-
ties (pphy) and PIA detection probabilities (pdet) to represent the
range typically observed in field studies. We also simulated a
range of the proportion of fish that were PIT-tagged at the start of
the sampling period. We varied the proportion of PIT-tagged fish
because there can be an increase in numbers of PIT-tagged fish
over years of PIT tagging or stocking PIT-tagged fish. Our simula-
tion inputs were as follows:

1. Probability of physical capture and recapture (pphy) = 0.1–0.3
by 0.05 increments

2. Probability of PIA detection (pdet) = 0.1–0.6 by 0.05 increments
3. Proportion of fish PIT-tagged at start of sampling period

(pmark) = 0.1–0.5 by 0.05 increments

For all simulation scenarios, we used a population abundance
(N) of 1000, three sampling occasions (e.g., river surveys or detec-
tion probabilities), a closed population during the sampling pe-
riod (no births, death, immigration or emigration were included
in the generating model), and assumed 100% tag retention.

We generated all encounter histories in program R (R Core
Team 2018) using a random Bernoulli detection process. For fish
not having a PIT tag at the start of the sampling period, we used a
random Bernoulli test for each sampling occasion to determine
whether an individual was initially captured based on pphy first. If
the individual was not captured, we moved to the next sampling
occasion and repeated the process. In the encounter occasions
following initial capture, we first tested to see whether the fish
was physically recaptured. If it was, we moved to the next sam-
pling occasion. If not, we used a second random Bernoulli test to
determine whether the fish was recaptured via a PIA detection,
based on pdet. For fish with a PIT tag at the start of the sampling
period, we followed the recapture procedure for each encounter
occasion. That is, we first tested to see whether the fish was phys-
ically recaptured. If it was, we moved to the next sampling occa-
sion. If not, we used a second random Bernoulli test to determine
whether the fish was recaptured from a PIA detection, based on
pdet.

For each simulation, we generated one data set and then ma-
nipulated it for three of the four approaches. For the first ap-
proach, we omitted all encounters that were antenna detections
and utilized only the physical encounters. For the second ap-
proach, we did not manipulate the data. For the third approach,
we added an individual covariate to the data set that indicated
whether a fish started the sampling period with a PIT tag or not,
which we call PrevCapIC (Table 1). For the fourth approach, we
added groups to the data set, with one group for fish with a PIT tag
and another for fish without a PIT tag, at the start of the sampling
period. To estimate population abundance, we analyzed the data
using the Huggins formulation (Huggins 1991) of a closed capture
model (Otis et al. 1978; White 2008). All estimating models had
constant p and c, with models appropriate to the approach
(Table 1). We note that c is not used in the estimation of N in closed
capture models and so could be any value (including 0 as in a
removal model); because the modeling of c was not important for
this purpose, we used simple models (Table 1). For all simulations,
we ran each data set using Program MARK (White and Burnham
1999, 2001), via R package RMARK (Laake 2013), and output the
estimated N and its standard error (SE). For each simulation, we
calculated percent CV�N̂� as SE�N̂�/N̂ × 100 to represent precision
and percent relative bias ��N̂ � N�/N� × 100 to represent bias. We
ran 500 iterations for each scenario; we report the mean of the
estimates and their CV�N̂� and relative bias across the simulations.

Case studies and empirical data
We evaluated the impact of PIAs for two case studies where fish

were physically captured and detected passively by PIAs during a
closed capture period and abundance was estimated. The two
studies represent very different scenarios; case study 1 had low
physical capture probabilities and very high PIA detection proba-
bilities, while case study 2 had low physical capture probabilities
and similarly low PIA detection probabilities.

Data for case study 1 are for endangered June sucker (USFWS
1999) in three tributaries to Utah Lake, Utah, USA, with data col-
lected 2008–2016. However, for simplicity we only used data for
the Provo River tributary in this example. Some fish were PIT-
tagged at the time of stocking, while others were PIT-tagged the
first time they were captured (physically) during the closed cap-
ture sampling period (see online Supplemental Information1 for
details of marking and sampling). Fish were physically captured
using trap nets, trammel nets, and spotlighting and passively de-
tected at PIAs in each sampled tributary of Utah Lake as part of the
June Sucker Recovery Program (USFWS 1999). All physical cap-
tures occurred at the confluence of Provo River, and the antenna
was located �2.9 km upstream. Although not in exactly the same
location, operationally the physical captures and antenna detec-
tions were both sampling the same population of June suckers
going upstream to spawn. That is, over the 2-week closed capture
sampling occasions, all fish were assumed to be vulnerable to
detection by physical capture and PIA, although only tagged fish
could be detected at the PIA. Data were for adult fish (95% CI of
total length was 361–545 mm) that make a targeted migration into
tributaries of Utah Lake in the spring (June–July), presumably to
spawn. The data used in the models were for a total of 2788 suck-
ers physically captured and recaptured (8%) and (or) passively de-
tected at PIAs (92%) for 3 years where physical capture data alone
(no PIA detection data) were adequate to estimate N (years 2011,
2014, 2015). Because more fish were stocked with PIT tags than
were captured and PIT-tagged over the study period, proportions
of fish initially “captured” at the PIA during the closed capture
sampling period increased and were relatively high from 2012
onward.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0326.
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Data for case study 2 are for federally threatened bull trout
(USFWS 2015) in Hells Canyon of the Snake River, Idaho, USA, with
data collected 2016–2018 (Idaho Power). In this case, bull trout
were physically captured via angling on their winter range during
January and February (and into early March for 2018) and passively
detected on portable 36-inch (1 inch = 2.5 cm) circular submersible
(wagon-wheel) PIAs (BioMark Inc., Boise, Idaho) at 15–18 physical
sampling sites across the winter range over 31 river miles (1 mile =
1.609 km; see online Supplemental Information1 for details of
marking and sampling). Data were for adult fish (95% CI of total
length was 270–560 mm). During the closed capture sampling
period, bull trout were not making targeted migrations to or from
their winter range. The data used in the models were for a total of
274 bull trout physically captured and recaptured (56%) and (or)
passively detected at PIA (44%) across 3 years (see Supplemental
Information1 for details of marking and sampling).

For both case studies, we used a Huggins formulation (Huggins
1991) of the robust-design closed capture model (Pollock et al.
1990; Kendall et al. 1995) to analyze the data. We modeled fish
entering closed capture sampling periods with a PIT tag using an
IC, analogous to approach 3 in our simulations (Table 1). To eval-
uate the impact of PIA data for each case study, we omitted all
encounters in the data set that were passive PIA detections, anal-
ogous to approach 1 in our simulations (Table 1), and then re-ran
that data set through the same models that were run for the
combined data in Program MARK. We used the top model (based
on minimum AICc) with and without PIA detections (there were
different, simpler, top models after encounters from PIA detec-
tions were removed) to compare estimates of N and its precision
for each case study.

Results
There were several common patterns across all approaches and

simulation scenarios. First, results for approach 3 (PrevCapIC was
used to account for differences in initial capture probabilities) and
approach 4 (groups were used to account for differences in initial
capture probabilities) were virtually identical; thus, for brevity we
only discuss results for approach 3 (all simulation results are avail-
able in the Supplemental Information1). Here we show an exam-
ple of the patterns for probability of physical capture (pphy) at a
low but realistic pphy = 0.1 and a relatively low and high proportion
of marked fish at the start of the sampling period (pmark) of 0.2 and
0.5, respectively (e.g., Al-Chokhachy and Budy 2008; Bowerman
and Budy 2012; Pearson et al. 2016).

In all scenarios, incorrectly including all the PIA detection data
without correction (approach 2) resulted in a negative bias in N̂.
When pmark was relatively low and probability of PIA detection
(pdet) was close to pphy (Fig. 1a), the negative bias was not as large as
when pdet was much larger than pphy (Fig. 1b). Estimates of N were
negatively biased for the uncorrected case (approach 2), and at a
relatively low pdet = 0.2, N̂ had a bias of –8% (Fig. 1a). These biases
were larger when pdet = 0.6 (Fig. 1b). Bias in N̂ had a nonlinear
change as pmark increased. That is, when pdet = 0.2, the bias in N̂
was similar for low and high pmark (Fig. 1a and Fig. 2a). However, as
pmark increased, the bias increased and then decreased (see Sup-
plemental Information, Fig. S21), with the maximum bias occur-
ring when pmark was �0.3. This pattern had the strongest pattern
for high pdet. When pdet = 0.6, the negative bias in N̂ decreased by
14% when pmark increased from 0.2 (Fig. 1b) to 0.5 (Fig. 2b).

Correctly modeling the PIA detection data using PrevCapIC
(approach 3) nearly eliminates the bias in all scenarios (Figs. 1–2,
right panels), leaving only a small positive bias of 3%–4% in esti-
mates of N, which is similar to the bias when PIA detections are

Fig. 1. Simulation results illustrating coefficient of variation (CV) and estimates of population abundance (N̂) for different approaches of
incorporating passive interrogation antenna (PIA) detections with physical capture data for closed capture models. Results are shown for a
population abundance = 1000, sampling occasions = 3, proportion of PIT-tagged fish at the start of the closed capture sampling period (pmark) =
0.2, probability of physical capture (pact) = 0.1, and (a) probability of passive antenna detection (pdet) = 0.2 and (b) pdet = 0.6. Relative bias as a
percentage of the true (input) value is shown above abundance estimates for each method; vertical bars represent 95% confidence intervals.
The four approaches (Table 1) are the y-axis labels, moving from approach 1 on the left to approach 4 on the right; IC stands for individual
covariate. [Colour online.]
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not included (approach 1). When pphy ≥ 0.2, this bias is almost 0
(i.e., ≤1%; Supplemental Information1). While bias is eliminated
with PIA data correctly included (approach 3), relatively modest
reductions in precision resulted when pdet was close to pphy. The
CV(N) is reduced by 8%–15% compared with when PIA detections
were not used (Figs. 1a and 2a), with less reduction in CV when
pmark is low (Fig. 1a). However, when pmark and pdet are relatively
high, correctly including the PIA detections reduces the CV (N̂) by
�20% (Fig. 2b). In general, the larger the gap between pphy and pdet,
the greater the reduction in CV (N̂) (Figs. 1 and 2).

Increasing pmark also increases precision, with larger gains as
pdet increased relative to pphy (Fig. 3). For pdet = 0.2, CV (N̂) was
reduced by 6%, 10%, and 20% for pmark = 0.2, 0.3, and 0.6, respec-
tively (Fig. 3a). We also included the case where pphy is doubled
(pphy = 0.2; Fig. 3b) to highlight the large improvement in precision
that comes with increasing pphy. When pphy was doubled from 0.1
to 0.2 and no PIA detections were included, the CV decreased from
16% to 7%, a reduction of 56%. In contrast, when pdet was doubled
from 0.1 to 0.2 (and pphy = 0.1) the CV was only reduced by 1%–9%,
depending on pmark (Supplemental Information1).

We observed some important consistencies in our two case
studies of real data. For adfluvial June sucker in the Provo River,
Utah, USA, correctly including the PIA data resulted in great in-
creases in precision (Fig. 4a). The CV (N̂) was reduced 39%–82% and
the width of the 95% CI was reduced by 42%–82%. In this case, the
estimated probability of first capture (p) was very low without PIA
detections (mean ≤ 0.01 over four sampling occasions) and rela-
tively high when PIA detections were included (mean ≥ 0.16 over
four sampling occasions). For fluvial bull trout in Hells Canyon of
the Snake River, Idaho, USA, the benefit of adding the PIA detec-
tions was not as dramatic but was still important (Fig. 4b). When
PIA detections were included, the CV (N̂) was reduced 4%–18% and
the width of the 95% CI was reduced by 8%–34%. In this case, the
estimated p was low without PIA detections (mean 0.04–0.06 over
four sampling occasions) and only slightly higher when PIA detec-
tions were included (mean 0.06–0.09 over four sampling occa-
sions). A more subtle improvement to the estimates of N when
including PIA data was the improved stability in model parameter
estimates from year to year (Fig. 4). Although we only had 3 years

of data where a complete comparison is possible for both case
studies, the interyear variability decreased with inclusion of PIA
detections.

Discussion
Over the last decade, there have been numerous technical ad-

vances in mark–recapture techniques and passive PIT tag detec-
tion, in particular PIAs. There has been a proliferation of PIAs for
monitoring PIT-tagged fish, resulting in data sets containing di-
verse combinations of physical captures and PIA detections of
fishes. PIA detections can be treated as captures (p) or recaptures (c)
in capture–mark–recapture models. Consequently, PIA detection
data have great potential in the estimation of vital rates and abun-
dance, as well as increasing precision of the estimates. However,
including PIA detections comes with some unique challenges
that should not be overlooked. The most important challenge
addressed herein is the inherent model bias (underestimation of
N̂) associated with mixing data with different capture probabili-
ties, such as from physical captures with PIA detections. Our goal
was to propose solutions to remove biases from the estimates of N
that are different from the multistate approach of Pearson et al.
(2016) but rely on a similar decomposition of empirical detection
probability. Our study results are predicated on the assumption
physical capture and PIA locations were located (i.e., generally
close enough in space) such that they sampled the same popula-
tion. We discuss other spatial arrangements below.

Simulations — benefit of PIA data on precision
Using simulations, we demonstrated that, relative to not using

PIA data, precision in estimates of N increased (i.e., CV (N̂) de-
creases) from slightly to substantially when PIA data are included
and capture heterogeneity is appropriately modeled. There were
greater reductions in CV (N̂) as pdet increased and when pmark
increased. These decreases in CV (N̂) increased our ability to detect
actual declines or increases in N, a critical component of monitor-
ing small or imperiled populations. Our simulations also demon-
strated that the larger the difference between pphy and pdet, the
greater the reduction in CV (N̂) as pmark increased. That is, there
was a synergy among the differences among pphy and pdet and

Fig. 2. Similar information as for Fig. 1, except that pmark = 0.5 and pact = 0.1 for (a) pdet = 0.2 and (b) pdet = 0.6. [Colour online.]
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pmark. We note that only three sampling occasions were used in
our simulations, which we considered a practical number for
many field sampling scenarios. However, if there were additional
sampling occasions, reductions in variance should be even greater
when PIA detections are included in closed capture models.

While the bull trout case study demonstrated reductions in
precision within the simulated range, the June sucker case study
exhibited much larger reductions. The differences are due to two
factors. First, for June suckers, mean pphy = 0.007 (i.e., pphy �� 0.1)
and mean pdet = 0.178, such that pdet was 25 times larger than pphy.
This difference is a larger relative difference than any of our sim-
ulation scenarios because it was not practical to simulate scenar-
ios where pphy < 0.1. When p < 0.1, a substantial proportion of

simulations fail due to random binomial variation, and N̂ becomes
unreasonably large (e.g., >20 000 when truth = 1000). Second,
there were likely a higher proportion of June suckers PIT-tagged
in the sampling population compared with bull trout. Similar to
increases in precision of abundance estimates, Pearson et al.
(2016) demonstrated a significant increase in precision of survival
probability estimates for endangered humpback chub (Gila cypha)
in the Little Colorado River when PIA detections were added to
physical capture (hoop netting) data. In their study, adding the
PIA detections nearly doubled the recapture probability but with
no concordant handling of fish. Thus, we believe our simulated
increases in capture information provided by PIAs represent a
conservative view of what is feasible in the field.

Simulations — issue with PIA data on accuracy (bias) if not
corrected

Despite the growing list of benefits of PIAs in aquatic ecology
and management, failure to properly account for heterogeneity in
mixed capture probabilities of physical capture and PIA detec-
tions can lead to negative bias in N and its variance. In simula-
tions, treating the capture types as the same resulted in a
significant simulated underestimate of N and CV (N̂), such that
coverage of the 95% CI (N̂) would be poor. For a range of inputs
likely to represent field studies (pdet = 0.1–0.6 and pmark = 0.2–0.5),

Fig. 3. Simulation results showing coefficient of variation (CV) of
population abundance versus proportion of PIT-tagged fish in the
population at the start of the closed capture sampling period for
different methods of incorporating passive PIA detections with
physical capture data for closed capture models when only physical
captures are used (no antenna data; approach 1) versus when passive
PIA detection data are incorporated using an individual covariate to
model heterogeneity in probability of initial capture (approach 3).
Results are shown for a population abundance = 1000 and sampling
occasions = 3. Results are shown for (a) probability of physical
capture (pphy) = 0.1 and (b) pphy = 0.2 with relatively low and high
levels of probability of passive antenna detection (pdet).
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Fig. 4. Estimates of population abundance (N̂) and 95% confidence
intervals based on top closed capture models, with and without the
inclusion of PIA detections for (a) female June suckers in the Provo
River, Utah, and (b) bull trout in Hells Canyon, Snake River, Idaho.
The numbers next to the estimates of N̂ are estimates of p* (probability
of being captured at least once during the four sampling occasions).
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the negative relative bias ranged from 8% to 46%. However, when
either the IC or group approach was used in the model, the rela-
tive bias dropped to a positive 3%–4% and even less as physical
capture probabilities increased. Additionally, when pphy > 0.2, the
bias was essentially 0% (Supplemental Information1). This small
positive bias was the same for the approach where no PIA detec-
tions were used and is common when p (pphy in simulations) is
low. The positive bias occurs because sometimes the estimate of p
is very low (close to 0), which results in estimates of N that are
extremely high (Otis et al. 1978; Rosenberg et al. 1995; Kery and
Royle 2016). Although it is typically more conservative to under-
estimate population abundance, underestimating the population
abundance by 8%–46% could result in misguided management
decisions. For example, this bias could lead to a conclusion that an
expensive or time-sensitive management or conservation action
had failed to have the desired effect. Similarly, harvest opportu-
nities could be missed and interesting ecological phenomenon
could be masked (e.g., density dependent regulation; Rose et al.
2001).

Both the individual and group “corrections” implemented herein
make sense biologically and are heuristically similar to modeling
approaches to correct the bias resulting from trap-happy animals
(Otis et al. 1978; White et al. 1982). However, the IC is also rela-
tively simple to incorporate and offers more modeling flexibility,
particularly for robust-design modeling of multiple years of
closed capture data (see case studies in Supplemental Informa-
tion1). As mentioned previously, one method to account for het-
erogeneity in capture probability for a robust-design model is to
use the multistate robust-design model (Pearson et al. 2016) where
state is analogous to group in our single year closed capture
model. However, the multistate model is complex, and the IC
approach may be easier to implement for biologists who are pri-
marily interested in estimates of N and survival for a study popu-
lation. In addition, an IC can be used in a multistate model to
simplify modeling when there are other states of interest. How-
ever, while the IC and group approach improved model fit for our
case studies, neither approach improved model parsimony be-
cause additional parameters need to be included (i.e., IC for pre-
viously captured fish or an additional initial capture probability
(p) for the PIT-tagged group). We note that the increase in model
parameters is why the increases in precision are modest when
pphy is similar to pdet. This issue of heterogeneity in p also can
result in biased estimates of survival, as the same recapture prob-
ability (p in survival models) among individuals is an assumption
of the Cormack–Jolly–Seber model (Pollock et al. 1990; Lebreton
et al. 1992).

Case studies — benefit of PIA data on precision, detection
of trend, and estimate stability

Our two case studies using real data demonstrate two ends of a
range of scenarios we can expect to encounter in fish studies
incorporating PIA detections for estimating N. Scenarios with a
low probability of being captured physically and a high probabil-
ity of detection at PIAs mimic the common life history expression
of an adfluvial fish like June suckers. These fish make discrete
spawning migrations through a medium-sized stream bottleneck,
thus forcing them to pass over one or multiple PIAs with a high
probability of detection. In the June sucker case, the PIAs span the
entire stream, and almost all adult spawning fish make a discrete
migration. Further, in this case, many suckers are only captured
once physically (or never, as some are stocked already tagged), and
the greatest proportion of the captures are passive detections
during the targeted spawning run into tributaries. Over four
closed capture sampling occasions, p averaged <0.01 without PIA
detections, yet averaged 0.18 with PIA detections included. The
incorporation of PIA detections reduced the CV (N̂), on average,
from 33% (no detections) to 11% (with detections). Based on the
change in the average CV (N̂), a decline ≥ 30% in N can be detected in

�6 years when including PIA detections, compared with >32 years
without PIA detections (based on � = 0.10, � = 0.80, one-tailed linear
decline; Gerrodette 1987, 1993). Thus, in the case of a fish having
very low physical capture and moderately high detection proba-
bility due to targeted spawning movements across PIA, the im-
provement gained from incorporating PIA detections into abundance
estimates is profound.

For the second case study on bull trout in Hells Canyon of the
Snake River, Idaho, USA, the effect of the addition of the PIA
detections to the abundance estimate was more subtle, but still
significant. In this case, initial capture probability (p) with PIA
detections (mean was 0.08) was closer to p without PIA detections
(mean was 0.05), because bull trout are detected less frequently on
smaller circular PIAs in a larger river, with a much lower chance
of being encountered. In this case, the incorporation of PIA detec-
tions at most reduced the CV (N̂) from 19% to 15%. This scenario
generally reflects capture and detection probabilities of fluvial
bull trout in the Pacific Northwest, where some portion of the
population migrate to tributaries to spawn and overwinter and
are detected at a PIA, and another portion of the population is
resident, resulting in a lower p (Al-Chokhachy et al. 2009; Budy
et al. 2017). However, even in the low pphy and pdet scenarios, the
precision of the estimate is still improved with no additional han-
dling of the fish. This reduction in the handling of fish is a vital
consideration for an ESA-listed fish, where numbers are naturally
low and physical capture is restricted (MacKenzie et al. 2005).

In addition, for both case studies the incorporation of the PIA
data stabilized model selection in Program MARK and reduced the
year-to-year variability in estimates of N relative to models esti-
mated with only the physical capture data. Although we lacked
sufficient years to fully quantify the reduction, this is an under-
stated but important improvement, and it occurred even when
capture probabilities that included PIA detections remained rela-
tively low (i.e., the bull trout scenario).

PIA data applications
Finally, for both populations, the reduction in CV (N̂) results in

a reduction in the time to detect declines in N when PIA detections
were used compared with when they were excluded. Even for the
modest reduction of CV (N̂) of bull trout, a decline ≥ 30% in N can
be detected in 9 years when including PIA detections, compared
with 14 years without PIA detections (based on � = 0.10, � = 0.80,
one-tailed linear decline; Gerrodette 1987, 1993). Thus, without
PIA data the population can undergo an undetected decline to
such low numbers that the risk of extirpation increases. Detecting
population declines is particularly important in small or endan-
gered populations more susceptible to extinction vortex forces
including the effects of variable environmental conditions, demo-
graphic stochasticity, and Allee effects (Gilpin and Soulé 1986;
Stephens and Sutherland 1999; Fagan and Holmes 2006). In gen-
eral, the addition of PIA data will facilitate early detection of
declines (or increases), which allows more time to implement
appropriate management actions.

Notably, in their seminal work on estimating fish survival with
mark–recapture data, Burnham et al. (1987) suggested additional
research be pursued using “high technology” PIT equipment, as
they “would not be surprised to achieve a doubling or tripling of
recapture rates with PIT tags”. Their prediction has come to frui-
tion, and now the issue is how to best utilize a mixture of capture
information to optimize estimates of vital rates and abundance.
The issue is particularly relevant for fish, since literally millions of
fish are currently (or will be) PIT-tagged, and PIAs are deployed at
dams, passages, culverts, and tributary mouths, as well as fully
spanning some large rivers such as the Columbia River (e.g., high-
profile endangered salmon; National Marine Fisheries Service
(NMFS) 2014; Conner et al 2015), the Colorado River (e.g., highly
imperiled pikeminnow (Ptychocheilus lucius); Osmundson and White
2017; Dzul et al. 2018), and very recently the Rio Grande River (endan-
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gered Rio Grande silvery minnow (Hybognathus amarus; P. Budy,
personal communication). While there are other analytical and lo-
gistical hurdles to using PIA detection data (e.g., antenna efficiency,
dead versus live tags), there are feasible solutions (Pearson et al.
2016; Stout et al. 2019; Stout et al., in press) and well-tuned and
designed PIAs that can produce detection efficiencies approach-
ing 100% (Aymes and Rives 2009). Accordingly, PIT technology
has been implemented in countless small streams and rivers
worldwide, and its use for estimating population parameters is
not limited to fish.

Thus, results of this study also have implications for non-fish
animals, as the use of internal PIT tags and passive antennas in-
cludes the study of mammals, amphibians, reptiles, birds, and
invertebrates (reviewed in Gibbons and Andrews 2004). For exam-
ple, handheld PIAs have recently been shown to be much more
effective than physical capture of Queensnakes (Regina septemvittata),
offering additional data to bolster demographic analyses (Oldham
et al. 2015). PIA detections have also been used to estimate popu-
lation parameters for penguins (P.D. MacKinnon, personal com-
munication), voles (Microtus ochrogaster and Microtus pennsylvanicus)
(Harper and Batzli 1996), bats (Kunz 2001), and desert tortoises
(Gopherus agassizii) (Boarman et al. 1998). Mark–recapture study
designs using DNA to estimate abundance, wherein systematic
hair or fecal samples are collected, along with alternative sam-
pling methods (Boulanger et al. 2008; Kendall and McKelvey 2008;
Pfeiler 2019) that have different capture probabilities, are analo-
gous to the fish scenarios we model herein. That is, this method is
generalizable to any situation where data are collected with mul-
tiple methods having different capture–detection probabilities.
However, all these examples assume the different methods are
sampling the same population of animals. We speculate our
method can be extended to estimate population size when some
animals are not vulnerable to all sampling methods. For example,
if the antenna is separated by enough distance, resident animals
may be vulnerable to only physical capture, while migrant ani-
mals may be vulnerable to physical capture and PIA detection. The
development of methods to estimate population size when sam-
pling vulnerability varies for different sampling methods would
be a logical and potentially useful extension of current models.

In summary, we present a relatively simple method whereby
population abundance can be estimated more precisely and ro-
bustly using appropriately modeled combinations of physical cap-
ture and passive detection information. Moreover, improvements
from including PIA data do not pose any additional handling
stress to fish populations and can improve the ability to detect
population trends over shorter time periods. These attributes
make including PIA data an attractive option for many situations
but particularly for sensitive and imperiled fish sampling re-
gimes. The results of this study have implications for estimating
abundance for any situation where data are collected with meth-
ods having different capture–detection probabilities.
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