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ABSTRACT
Structural equation modeling is an ideal data analytical tool for testing complex relation-
ships among many analytical variables. It can simultaneously test multiple mediating and 
moderating relationships, estimate latent variables on the basis of related measures, and 
address practical issues such as nonnormality and missing data. To test the extent to which 
a hypothesized model provides an appropriate characterization of the collective relation-
ships among its variables, researchers must assess the “fit” between the model and the 
sample’s data. However, interpreting estimates of model fit is a problematic process. The 
traditional inferential test of model fit, the chi-square test, is biased due to sample size. 
Fit indices provide descriptive (i.e., noninferential) values of model fit (e.g., comparative 
fit index, root-mean-square error of approximation), but are unable to provide a defini-
tive “acceptable” or “unacceptable” fit determination. Marcoulides and Yuan have intro-
duced an equivalence-testing technique for assessing model fit that combines traditional 
descriptive fit indices with an inferential testing strategy in the form of confidence inter-
vals to facilitate more definitive fit conclusions. In this paper, we explain this technique 
and demonstrate its application, highlighting the substantial advantages it offers the life 
sciences education community for drawing robust conclusions from structural equation 
models. A structural equation model and data set (N = 1902) drawn from previously pub-
lished research are used to illustrate how to perform and interpret an equivalence test of 
model fit using Marcoulides and Yuan’s approach.

“HOW WELL DOES YOUR STRUCTURAL EQUATION MODEL 
FIT YOUR DATA?”: IS MARCOULIDES AND YUAN’S (2017) 
EQUIVALENCE TEST THE ANSWER?
The efforts of educational research to understand and characterize the interactions of 
persons, social and policy contexts, and interventions have led it to be called the 
“hardest science” (Berliner, 2002, p. 18). Interpreting these complex relationships 
quantitatively requires the application of multivariate statistical tools capable of pre-
dicting one or more outcomes through multiple possible pathways (e.g., mediation, 
moderation). For this reason, structural equation model analyses have become com-
mon in life sciences education research (e.g., Aragón et al., 2018; Corwin et al., 2018; 
Estrada et al., 2018) to explain complex sequential relationships among several ana-
lytical variables. Structural equation modeling (SEM) is ideally suited for analytical 
models involving the testing, for example, of multiple mediated pathways (Taylor 
et al., 2008; Williams and MacKinnon, 2008). Such an analytical model, by definition, 
involves testing multiple mediation variables that are both predicted by other vari-
ables, but also subsequently predict additional variables.

For example, in evaluating the direct and indirect effects of biology instructors’ 
beliefs about student intelligence on their implementation of active-learning practices, 
Aragón and colleagues (2018) estimated instructor mindset as a latent variable using 

James Peugh†* and David F. Feldon‡

†Department of Behavioral Medicine & Clinical Psychology, Cincinnati Children’s Hospital Medical 
Center, Cincinnati, OH 45229-3026; ‡Department of Instructional Technology & Learning 
Sciences, Utah State University, Logan, UT 84322

“How Well Does Your Structural Equation 
Model Fit Your Data?”: Is Marcoulides and 
Yuan’s Equivalence Test the Answer?

Erin L. Dolan, Monitoring Editor
Submitted Feb 3, 2020; Revised Apr 8, 2020; 
Accepted Apr 23, 2020

DOI:10.1187/cbe.20-01-0016

*Address correspondence to: James Peugh 
(James.Peugh@cchmc.org).

© 2020 J. Peugh and D. F. Feldon. CBE—Life 
Sciences Education © 2020 The American 
Society for Cell Biology. This article is distributed 
by The American Society for Cell Biology under 
license from the author(s). It is available to the 
public under an Attribution–Noncommercial–
Share Alike 3.0 Unported Creative Commons 
License (http://creativecommons.org/licenses/
by-nc-sa/3.0).

“ASCB®” and “The American Society for Cell 
Biology®” are registered trademarks of The 
American Society for Cell Biology.

CBE Life Sci Educ September 1, 2020 19:es5

ESSAY



19:es5, 2  CBE—Life Sciences Education • 19:es5, Fall 2020

J. Peugh and D. F. Feldon

participant responses to multiple questions and examined the 
latent variable’s ability to predict implementation of active-learn-
ing strategies both directly and as it impacted each preceding 
stage of a hypothesized process of adoption that led to imple-
mentation. Similarly, Corwin and colleagues (2018) examined 
the ability of course features to impact students’ cognitive and 
emotional ownership, which in turn were hypothesized to pre-
dict students’ postcourse career intentions. The authors used 
SEM analyses to determine that these relationships accounted 
for 11% of the variance in the sample, independent of the influ-
ence of students’ precourse career intentions.

Such complex analytical structural equation models imme-
diately beg the question of model fit, which is broadly defined 
as the extent to which the quantified relationships among vari-
ables in the analytical model reproduce the relationships among 
the variables in the sample data. However, differently specified 
structural equation models might account for the same propor-
tion of response variable variance. To assess which might be a 
better fit to the data, it is necessary to assess both the variance 
explained and model parsimony. Conceptually, parsimony 
reflects the efficiency with which an explanation can account 
for observed data. According to the maxim of Occam’s razor, if 
two competing explanations of a phenomenon equivalently 
account for the data available, the simpler of the two is prefer-
able. In the context of SEM, parsimony can be quantified as the 
available degrees of freedom (df).

For example, a researcher might estimate a simple correla-
tion matrix for variables of interest as an analytical model, but 
such a model is not ideal for two reasons. First, by definition, a 
correlation matrix makes no independent variable or depen-
dent variable distinctions, so no directional relationships are 
tested. Second, a correlation matrix is a model that quantifies 
the extent to which every variable is related to all other vari-
ables. In SEM, such a model exhausts all df, such that df = 0 for 
a correlation matrix. In contrast, a structural equation model 
proposes specific and directional relationships among indepen-
dent and dependent analytical variables, does not exhaust all df 
(df > 0 for most structural equation models), and is more parsi-
monious (i.e., specifies fewer relationship paths).

This again begs an immediate question of model fit: How 
well does a more parsimonious structural equation model (df > 
0) reproduce relationships among variables as shown in a sam-
ple data correlation matrix (df = 0)? This is a crucial question, 
because a structural equation model is only as reliable and valid 
as its ability to accurately reproduce relationships known to 
exist.

Testing and interpreting how well structural equation mod-
els fit sample data has been a methodological challenge for 
decades. Inferential tests of model fit (e.g., chi-square) are 
biased due to sample size, and descriptive fit indices (e.g., com-
parative fit index [CFI; Bentler, 1990]; root-mean-square error 
of approximation [RMSEA; Steiger and Lind, 1980]) have no 
absolute cut-points to reliably differentiate “acceptable” from 
“unacceptable” fit (Hu and Bentler, 1999). The four purposes of 
this research methods Essay are to: 1) briefly summarize previ-
ous attempts to define, quantify, test, and evaluate model fit; 
2) describe in detail a new technique for testing and evaluating 
model fit from Marcoulides and Yuan (2017); 3) demonstrate 
this technique with a sample data set and structural equation 
model typical of the types of studies published in LSE; and 

4) offer both suggestions and cautions to researchers seeking to 
assess structural equation model fit.

Structural Equation Model Fit Defined
Structural equation model fit (see Glossary of Terms) is deter-
mined by the degree of similarity between the collective rela-
tionships specified in a given model (i.e., parameter estimates) 
and the covariance matrix (i.e., the unstandardized correlation 
matrix, which represents all pairwise relationships in the data 
set). If we denote a covariance matrix for a set of analytical 
variables obtained from a sample as S, and all parameter esti-
mates from a structural equation model analyzed using the 
same sample data collectively as Θ̂, the model fit question then 
becomes how to compare Θ̂ estimates with sample data covari-
ance matrix S to determine fit. As shown elsewhere (Bollen, 
1989), parameter estimates can be mathematically combined 
to create an alternative, or model-reproduced, covariance 
matrix, denoted ∑ Θ̂ that represents how well the structural 
equation model predicts all pairwise relationships among the 
variables analyzed. Model fit is determined by the extent to 
which the structural equation model–reproduced covariance 
matrix (∑ Θ̂) matches the sample data covariance matrix (S).

In hypothesis testing terms, this is:

H : ˆ (or equivalently, ˆ 0)0 = ∑ Θ − ∑ Θ =S S

H : S ˆ(or equivalently, S ˆ 0)A ≠ ∑ Θ − ∑ Θ ≠

where the null hypothesis states that the structural equation 
model (∑ Θ̂) accurately captures the relationships among ana-
lytical variables in the population as estimated by the sample 
covariance matrix (S). This test of model fit implies that ∑ Θ̂ 
can be statistically compared with S, and the null hypothesis of 
model fit either rejected or retained.

The test statistic (TS) needed for the above hypothesis test is 
defined as:

N fTS 1( )= −

where f is a single value that quantifies the discrepancy between 
the sample data and model-reproduced covariance matrices 
(S − ∑ Θ̂). The fit function (f) is estimated along with the 
parameters for a given structural equation model using maxi-
mum likelihood (cf. Jöreskog, 1969; Browne, 1974, as cited in 
West et al., 2012). The resulting TS is assumed to be chi-square 
(χ2) distributed and is evaluated at df equal to [p(p + 1)/2] − q, 
where p is the number of analytical variables and q is the num-
ber of SEM parameters estimated. The intent of this chi-square 
test of model fit is to quantify the extent to which the model 
covariance matrix deviates from the sample covariance matrix 
and to test that deviation against a null hypothesis of zero (i.e., 
it is not significantly different).

However, this test of model fit has both conceptual and prac-
tical limitations. Conceptually, data can be collected in ways 
that minimize sample bias, but even in best-case scenarios, it is 
highly unlikely that the samples will be exact reflections of true 
population relationships. As such, many researchers view a 
null-hypothesis test of exact model fit as both unrealistic and 
unattainable (Steiger and Lind, 1980; Jöreskog and Sörbom, 
1981; Cudeck and Henly, 1991; MacCallum et al., 2001).
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Practically, the chi-square test of model fit is strongly influ-
enced by sample size (i.e., statistical power increases as sample 
sizes increases). Smaller differences are easier to detect with 
larger samples, and larger differences can be missed in smaller 
samples. With smaller samples, the test statistic is less likely to 
be chi-square distributed, and a null hypothesis is more likely to 
be retained, even with a large discrepancy between the sample 
covariance matrix (∑ Θ̂) and the model covariance matrix (S). 
Conversely, with larger samples, the null hypothesis can be 
rejected for a negligibly small discrepancy (Tucker and Lewis, 
1973; Box, 1979; Bentler and Bonett, 1980; James et al., 1982).

Despite its bias due to sample size, the chi-square test of 
model fit holds some intuitive appeal: the model fit question 
can be posed in terms of null and alternative hypotheses, a test 
statistic and p value can be obtained from the SEM parameter 
estimation process, and model fit can be judged definitively by 
retaining or rejecting the null hypothesis. In contrast, fit indices 
(e.g., CFI, RMSEA) view model fit as points along a continuum, 
reflecting “better fit” at one end of the continuum and “poorer 
fit” at the other. Accordingly, they are not inferential tests of 
model fit, because they do not enable researchers to retain or 
reject a null hypothesis. Instead, researchers look to suggested 
cut-point values along the fit continuum with the expectation 
that such cut-points may reliably distinguish well-fitting struc-
tural equation models from poorly fitting ones. Thus, common 
practice in current applications of SEM is to forego inferential 
tests of fit in favor of decreasing potential bias due to sample 
size through the application of model fit indices, such as RMSEA 
and CFI, which we summarize next.

Fit Indices: Definitions and Problems
Many fit indices have been developed as alternatives to the chi-
square test of model fit (e.g., West et al., 2012, pp. 212–213). 
We focus in this Essay on the two of the most commonly used, 
RMSEA and CFI, which Marcoulides and Yuan (2017) used to 
develop their test of model fit. Both fit indexes are calculated 
using the SEM chi-square model fit statistic ( )χ M

2  and df ( )dfM . 
However, the RMSEA and CFI also differ in two important 
ways. First, the RMSEA uses sample size (N) in its computation, 
but the CFI does not. Second, the CFI uses the chi-square fit 
statistic ( )χ0

2  and df from a ( )df0  “null” model1 (Bentler and 
Bonett, 1980; Widaman and Thompson, 2003), but the RMSEA 
does not.

The RMSEA and CFI are computed as:

MAX df

df N
RMSEA =
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1
M M

M
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The RMSEA produces values ranging from 0 to 1 and reflects 
poorer fit as its value increases (i.e., values closer to zero reflect 

a lack of “poor fit”). The computation of RMSEA’s denominator 
includes both sample size and model df. Accordingly, RMSEA 
tends to reward complex models with high df estimated with 
large samples. It also tends to penalize simpler structural equa-
tion models estimated with fewer variables analyzed at smaller 
sample sizes (e.g., Mulaik, 2009, as cited in Kline, 2016; West 
et al., 2012).

In contrast, the CFI is an index of “good fit,” ranging from 0 
to 1, which quantifies the proportional improvement in struc-
tural equation model fit over a “null” model (e.g., Bollen, 1989; 
Bentler, 1990; Kline, 2016). One advantage of the CFI is that it 
is less influenced by sample size. Another advantage is that it 
penalizes nonparsimonious models. However, the validity of 
the “null” comparison model for the CFI has also been ques-
tioned, because even if none of the relationships specified in a 
structural equation model were supported by the data, an exter-
nally valid and parsimonious “null” model would be highly 
unlikely. Thus, it has been argued that a null model provides an 
unrealistically extreme point of contrast that could yield overly 
generous assessments of model fit.

Hu and Bentler (1998, 1999) conducted fit index Monte 
Carlo simulations to determine the cut-point values that reli-
ably distinguished “good-fitting” from “bad-fitting” structural 
equation models. Results suggested CFI values ≥0.95 and 
RMSEA values ≤0.08 distinguished well-fitting from poorly fit-
ting structural equation models. However, subsequent research 
has shown that model fit index values can also be influenced by 
sample size (Marsh et al., 2004), df (Chen et al., 2008), the 
number of variables analyzed (i.e., model complexity; Kenny 
and McCoach, 2003), and missing data (Davey, 2005; Savalei, 
2011). Despite these results and Hu and Bentler’s (1999) own 
warnings against doing so, their cut-point values have been 
accepted de facto as the SEM fit standard.

The widespread adoption of Hu and Bentler’s (1999) 
cut-point criteria has also led to a practical research problem 
(Barrett, 2007; Jellison et al., 2019). Researchers using struc-
tural equation models often provide multiple fit index values 
such as the chi-square test statistic and p value, CFI, RMSEA, 
and others. However, these fit indices may not provide uniform 
evidence for a well-fitting model, leaving readers to assess the 
strength of such a claim rather subjectively on the basis of a 
preponderance of often less than definitive evidence. For exam-
ple, with Hu and Bentler’s (1999) recommended cut-points, 
models may yield borderline values (e.g., CFI = 0.943 and 
RMSEA = 0.087) or differ from one another based on which 
side of the cut score they land (e.g., CFI = 0.97 and RMSEA = 
0.09; Marsh et al., 2004).

Papers often report fit indices that vary in terms of their abil-
ity to meet recommended cut-point criteria. As a result, authors 
characterize their findings based on personal opinion, using 
context-free descriptive adjectives such as “good,” “acceptable,” 
“close,” “adequate,” “marginal,” and so on to justify the validity 
of their SEM findings while simultaneously exploiting the 
uncertainty in the fit index empirical literature. Absent any 
additional definitive criteria, editorial decisions such as whether 
to publish a study with structural equation model fit index val-
ues that deviate to varying degrees from Hu and Bentler’s 
(1999) cut-points tend to become matters more of semantic 
subjectivity than empirical validity. As summarized by Barrett 
(2007):

1Varying approaches can be taken to specifying the null model (c.f. Widaman and 
Thompson, 2003), resulting in occasional disagreements between statistical anal-
ysis software packages. As a practical issue, this topic is briefly discussed in the 
Cautions section later in this paper.

[AQ 10]
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Indeed, one gets the feeling that social scientists cannot actu-
ally contemplate that most of their models do not fit their data, 
and so invent new ways of making sure that by referencing 
some kind of ad hoc index, that tired old phrase, “acceptable 
approximate fit” may be rolled out as the required rubber 
stamp of validity (pp. 819–820).

Ultimately, researchers who use SEM are at an impasse. 
They can either assess model fit using an inferential test with 
well-known biases and limitations, or they can provide fit 
indices that reduce bias but often cannot provide clear, reli-
able, and valid boundaries for what values indicate good fit. 
However, the gap between these approaches could be 
bridged if confidence intervals (CIs) could be placed around 
CFI and RMSEA indices. This strategy would provide a mea-
sure of how certain the CFI and RMSEA indices are for a 
given sample and model, which would inform and quantify 
for researchers how certain they could be that their struc-
tural equation model is a good or poor fit to their data. This 
measure of certainty would need to be reliable and valid 
across various sample sizes, df values, model complexities, 
and missing data rates, while acknowledging a minimally 
acceptable amount of model misfit (Kline, 2016). Marcoulides 
and Yuan (2017) and Yuan et al. (2016) have developed an 
approach that accomplishes just this: an inferential equiva-
lence test of model fit that can be used with conventional 
descriptive fit indices. In the following section, we describe 
their approach, followed by an example of how it is used to 
test model fit.

Equivalence Testing, Confidence Intervals, and Model Fit
Equivalence testing is based on two premises. First, tradi-
tional null-hypothesis statistical tests do not provide 
researchers with evidence in favor of an effect size being pre-
cisely zero in the population (i.e., it cannot prove a nega-
tive). Rather, these tests allow researchers to propose null 
hypotheses regarding the size of an effect, based on agreed-
upon definitions of what constitutes a meaningful effect 
size. If the null is rejected, the test then provides inferential 
evidence for a lack of a meaningful difference (Wellek, 
2010).

For example, if a researcher wished to compare two inter-
ventions, intervention A and intervention B, both thought to 
improve mean educational achievement ( )EA , traditional two-
sided null and alternative hypotheses could be posed as

− =H EA EA: 00 Intervention A Intervention B

− ≠H EA EA: 0A Intervention A Intervention B

In this scenario, retaining the null hypothesis does not pro-
vide evidence that the difference in effectiveness between the 
two interventions is exactly zero, but instead suggests that the 
mean difference in test scores observed between the two inter-
ventions was of insufficient magnitude to reject the null hypoth-
esis. The possibility exists that the mean difference could still 
have resulted in a meaningful effect size and that retaining the 
null hypothesis was due to low statistical power. However, in 
the field of educational achievement, if a Cohen’s d effect size 
of 0.20 is considered a small but meaningful difference, 

equivalence testing allows for “two one-sided” null-hypothesis 
tests (Schuirman, 1987) to be posed

− < −H EA EA: 0.200 Intervention A Intervention B

− >H EA EA: 0.200 Intervention A Intervention B

If both null hypotheses are rejected, the researcher can con-
clude that the observed mean difference between the two inter-
ventions falls within the bounds of a meaningful effect and that 
the two interventions equivalently improve educational 
achievement (Seaman and Serlin, 1998; Lakens, 2017).

It is through this equivalence-testing lens that Marcoulides 
and Yuan (2017) have proposed a new technique for quantify-
ing and judging model fit. Their technique begins by forming 
CIs around the observed CFI and RMSEA fit indices. In general, 
the equation for a CI for any parameter estimate is:

Parameter estimate ( )* SEcrit. ( )± α

where crit.α  is a distributional critical value that determines 
the width of the CI (e.g., assuming a unit normal distribution, 
1.96 is the distributional critical value for a two-tailed 95% 
CI) and standard error (SE) is calculated as a function of vari-
ance and sample size. The CI equation shown above can be 
rewritten consistent with Marcoulides and Yuan’s (2017) 
equivalence-testing technique as:

cFit statistic ( )*( )0.crit .
± εα

In this equation, c
crit .α  is a cumulative probability distribu-

tion critical value that specifies a 95% CI. For SEM fit equiv-
alence testing, the meaningful effect of interest is ε0, which 
quantifies a minimal acceptable value for SEM misfit 
(Wellek, 2010). Both the critical value (c

crit .α ) and the equiv-
alence-testing value (ε0) are calculated as a function of 
1) sample size, 2) chi-square fit statistics for both the analyt-
ical and null models, 3) df, and 4) the number of analytical 
variables via syntax provided by Marcoulides and Yuan 
(2017). Because the CFI is a “good fit” index, we only need 
to consider the lower bound of the 95% CI. Conversely, 
because the RMSEA is a “poor fit” index, we only need to 
consider the upper bound of the 95% CI. Together, these 
two rescaled fit indices are referred to as “T-size” statistics 
(CFIT and RMSEAT), because the chi-square model fit statis-
tic is often referred to in the SEM literature as a T-statistic. 
The T-statistic is needed to compute both the rescaled fit 
indices and their respective 95% CI bounds for use in 
equivalence testing.

It is important to note that interpreting CFIT and RMSEAT 
values in relation to conventional benchmark values for 
the CFI (0.99, 0.95, 0.92, 0.90) and RMSEA (0.01, 0.05, 
0.08, 0.10; MacCallum et al., 1996) would be inappropriate, 
because the conventional values were not generated with 
any specific model in mind. Accordingly, the conventional 
values do not take into account sample size, model complex-
ity, and df. However, Marcoulides and Yuan (2017) 
provide syntax2 that rescales the CFI and RMSEA, as well as 
their respective benchmarks,3,4 based on sample size and df, 
so model fit conclusions can be drawn with inferential 
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certainty based on both rescaled fit statistics and rescaled 
benchmarks.

A STRUCTURAL EQUATION MODEL FIT 
EQUIVALENCE-TESTING EXAMPLE
Here we describe an example of a test of SEM fit from a pub-
lished study aimed at testing the effect of viewing an instruc-
tional video on students’ postintervention self-efficacy, task 
value, and lab report quality, controlling for preintervention 
self-efficacy, task value, and scientific reasoning scores (see Fel-
don et al., 2018). The example analytical structural equation 
model used is shown in Figure 1. SEM analysis was needed for 
three reasons: 1) the research question involves four correlated 
response variables; 2) the analytical model contains complex 
relationships: “video viewing” is both predicted by MSLQ pretest 
and Lawson’s scientific reasoning and predicts MSLQ posttest 
and lab report discussion section scores; and 3) the sample (N = 
1902) has missing data (ranges from 0.9 to 31.4%) that can be 
handled correctly using maximum-likelihood estimation avail-
able in most SEM statistical analysis software packages. To show 
how to judge model fit using Marcoulides and Yuan’s (2017) 
procedure, we analyzed data from the study with both a “prop-
erly specified” model, defined as one consistent with Feldon 
et al.’s (2018) research question, and a “misspecified” model, 
defined as a model that is inconsistent with Feldon et al.’s (2018) 

research question, because it excluded a key prediction path. 
Specifically, as shown in Figure 1, the properly specified model 
included the dashed path, the misspecified model excluded the 
dashed path. We performed all analyses in Mplus (v. 8.4). The 
syntax we used to compute rescaled CFI and RMSEA fit statistic 
values and their respective rescaled benchmarks can be found 
online at www3.nd.edu/∼kyuan/EquivalenceTesting.

Analyzing the misspecified version of the structural equation 
model (Figure 1) showed the following structural equation 
model fit results: χ M

2  = 60.404, df = 7, p < 0.001; CFI = 0.964; 
RMSEA = 0.063; χ0

2 = 1515.459, df = 18, P = 7 variables ana-
lyzed. According to conventional interpretations of the CFI and 
RMSEA using Hu and Bentler’s (1999) criteria, this model 
would have acceptable fit. However, entering this information 
into Marcoulides and Yuan’s (2017) equivalence-testing syntax 
files produced the following rescaled fit statistics values: CFIT = 
0.9347 and RMSEAT = 0.0785. The generated5 interpretation 
guidelines for the rescaled CFI value (i.e., CFIT) based on res-
caled benchmarks are: “poor” ≤ 0.881, “mediocre” = 0.881–
0.903, “fair” = 0.903–0.935, “close” = 0.935–0.983, “excellent” 
≥ 0.983. Likewise, the rescaled benchmarks for RMSEAT are: 
“poor” ≥ 0.113, “mediocre” = 0.094–0.113, “fair” = 0.066–
0.094, “close” = 0.032–0.066, “excellent” ≤ 0.032. More impor-
tantly, when expressed as two one-sided null hypotheses consis-
tent with conventional equivalence testing

FIGURE 1. Example structural equation model based on Feldon et al. (2018).

2www3.nd.edu/∼kyuan/EquivalenceTesting/T-size_RMSEA_CFI.R.
3www3.nd.edu/∼kyuan/EquivalenceTesting/CFI_e.R.
4www3.nd.edu/∼kyuan/EquivalenceTesting/RMSEA_e.R.

5Interpretation guidelines are generated dynamically by the code published in 
Marcoulides and Yuan (2017) according to model parameters and sample charac-
teristics. Thus, threshold values change as appropriate for each model tested.
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= < =H : CFI 0.9347 CFI CFI “Fair” 0.935T T T0 Upper Bound

= > =H :RMSEA 0.0785 RMSEA “Fair” 0.066T0 Lower Bound

the two one-sided null hypotheses are retained, which by equiv-
alence-testing standards indicates that the model is not equiva-
lent to a “close” model that acceptably fits the sample data. 
Stated differently, the rescaled fit statistic values for both the 
CFI and RMSEA fall within their respective “fair” rescaled 
benchmark intervals, which Marcoulides and Yuan deem an 
unacceptable fit of the structural equation model to the data.

Analyzing the properly specified version of the structural 
equation model in Figure 1 showed the following conventional fit 
statistics results: χ M

2  = 28.547, df = 6, p < 0.001; CFI = 0.985; 
RMSEA = 0.044; χ0

2 = 1515.459, df = 18, P = 7 variables analyzed. 
Entering this information into Marcoulides and Yuan’s (2017) 
equivalence-testing syntax files produced the following rescaled 
fit statistics values and their respective rescaled benchmarks: CFIT 
= 0.9648 (“poor” ≤ 0.882, “mediocre” = 0.882–0.904, “fair” = 
0.904–0.935, “close” = 0.935–0.983, “excellent” ≥ 0.983) 
and RMSEAT = 0.0615 (“poor” ≥ 0.114, “mediocre” = 0.095–
0.114, “fair” = 0.067–0.095, “close” = 0.033–0.067, “excellent” 
≤ 0.033). When again expressed as two one-sided null hypothe-
ses consistent with conventional equivalence testing

= < =H :CFI 0.9648 CFI “Fair” 0.935T T0 Upper Bound

= > =H :RMSEA 0.0615 RMSEA “Fair” 0.067T T0 Lower Bound

both one-sided null hypotheses are rejected, which by equiv-
alence-testing standards indicates that the model is equivalent 
to a “close” model that acceptably fits the sample data. Stated 
differently, the rescaled fit statistic values for both the CFI and 
RMSEA fall within their respective “close” benchmark intervals, 
indicating an acceptable model fit to the data.

Two key points warrant emphasis. First, Marcoulides and 
Yuan’s (2017) equivalence-testing technique allows researchers 
to state with 95% confidence that the population CFI is greater 
than 0.9648, and the population RMSEA is lower than 0.0615. 
Second, the rescaled “fair” benchmark interval upper bound for 
the CFIT and lower bound for the RMSEAT, respectively, essen-
tially function as the new test statistics for judging structural 
equation model fit, determined on the basis of the tested mod-
el’s specific characteristics. Specifically, both the misspecified 
and properly specified models yielded results that would have 
been readily accepted under Hu and Bentler’s (1999) cut-point 
guidelines, despite the former excluding a parameter (Lawson’s 
→ Lab report: Discussion) critical to answering the research 
question. Using Marcoulides and Yuan’s strategy, clear differ-
ences were found in model fit that identified the misspecified 
model as unacceptable and the properly specified model as 
acceptable. Further, this difference was not open to criticism 
that research beliefs biased the semantic characterization of 
model fit. The tests were inferential and accounted for both 
model specification and df differences between the two models 
when calculating the criterial T-size values.

CAUTIONS
The example illustrates the benefits of applying Marcoulides 
and Yuan’s (2017) approach. However, before wholesale 

adoption of equivalence testing to assess model fit, words of 
caution are warranted. First, there is currently no agreement in 
the empirical literature as to what constitutes correct specifica-
tion for a null structural equation model—in other words, what 
an appropriate null model is (e.g., Widaman and Thompson, 
2003). Currently, the null model is used as a baseline contrast 
against the specified model tested in a structural equation 
model to yield a CFI value. For instance, CFI = 0.95 would 
reflect a 95% improvement in model fit for the specified model 
over the null. As such, because the CFI is highly reliant on the 
null model test statistic and df for computation, equiva-
lence-testing results can be greatly impacted based on how each 
SEM statistical analysis software package defines and specifies 
a null model. Researchers should note that different equiva-
lence-testing results and conclusions could occur for the same 
model estimated in different statistical analysis software pack-
ages. For example, analyzing the misspecified version of the 
structural equation model shown in Figure 1 using AMOS 
(v. 24) showed that the CFIT value fell into the “close” bench-
mark interval, indicating acceptable model fit for the misspeci-
fied model. This result can be explained by the fact that the null 
model chi-square fit statistics differed by 1300 points and 10 df 
when estimated in AMOS versus Mplus.6 Accordingly, it is both 
prudent and necessary to report the statistical analysis software 
and version employed for a given SEM analysis.

Second, researchers using SEM have long been tempted to 
delete statistically nonsignificant model parameters, add model 
parameters suspected to be statistically significant based on 
modification index values, or both. Engaging in such parameter 
deletion or addition practices in the service of improving model 
fit is referred to in the SEM literature as specification search 
activities. Such specification searches have long been known to 
produce results that subsequent research typically fails to repli-
cate (see MacCallum, 1986; MacCallum et al., 1992). A recent 
increase in dedicated software programs that automate specifi-
cation searches (e.g., Brandmaier et al., 2016; Marcoulides and 
Falk, 2018; Gates et al., 2019) for the purpose of recommend-
ing additional model specification changes that would enhance 
fit exacerbates the concern that researchers are engaging in 
“HARKing” (hypothesizing after results are known), theoretically 

6Specifically, for the misspecified model shown in Figure 1, both Mplus and AMOS 
define a null model’s df as the differences in df between the alternative (HA:) and 
null (H0:) baseline models as follows. In Mplus, the HA: baseline model has df 
values that are the sum of: 1) four variances, four means, and six covariances (14 
total) among the response variables (i.e., Video Viewing, MLQ Self-Efficacy 
Posttest, MLQ Task Value Posttest, and Lab Report: Discussion), plus 2) all possi-
ble covariances between MLQ Self-Efficacy Posttest, MLQ Task Value Posttest, and 
Lab Report: Discussion with Video Viewing (six) plus all possible covariances 
between MLQ Self-Efficacy pretest, MLQ Task Value pretest, and Lawson’s test of 
Scientific Reasoning with Video Viewing (six; 12 total) for an HA: baseline model 
total of df = (14 + 12) = 26. The H0: baseline model in Mplus has df defined as the 
sum of four means and four variances (8 total) for the response variables (i.e., 
Video Viewing, MLQ Self-Efficacy Posttest, MLQ Task Value Posttest, and Lab 
report: Discussion). As such, in Mplus, the df for the null model is (df = HA: minus 
H0: = 26 – 8 = 18). In contrast, AMOS defines an HA: baseline model as having df 
equal to the sum of all possible variances and covariances among all seven analyt-
ical variables [(7*8) / 2 = 28] plus 7 means (28 + 7 = 35 total). AMOS defines an 
H0: baseline model as having df equal to seven variances for all analysis variables. 
As such, in AMOS, the df for the null model is (df = HA: minus H0: = 35 – 7 = 28). 
This explains the ten (28 – 18 = 10) df difference, and subsequent 1300 chi-square 
point difference, in null-model definition and estimation between Mplus and 
AMOS.
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ungrounded data exploration, and p value hacking (Pan et al., 
2017), which are antithetical to scientific inquiry. A lack of 
acceptable structural equation model fit should spur a re-exam-
ination of theory, not an analytical model specification search—
the sample data “tail” should never wag the empirical “dog.” 
Shifting theoretical expectations to optimally suit the idiosyn-
crasies of a specific data sample are likely to result in significant 
findings that reflect coincidental features of the sample itself 
(i.e., sampling error) rather than those reflective of the true 
population.

Finally, this equivalence-testing example was based on a rel-
atively large sample (N = 1902). Marcoulides and Yuan’s (2017) 
illustrative example was based on a generated data set of N = 
600 hypothetical participants. These sample sizes are somewhat 
larger than the sample sizes typically seen across a variety of 
research disciplines, including studies published in LSE. Further, 
the rescaled values for the CFI and RMSEA, as well as their 
respective cut-points, are all calculated based on both the chi-
square statistics for the analytical and “null” models (which are 
affected by sample size) and the sample size itself. How well 
Marcoulides and Yuan’s (2017) equivalence-testing technique 
performs at sample sizes more commonly seen in the published 
research literature has not yet been systematically investigated.

Further, we would argue that assessing SEM fit using equiv-
alence testing is the best current practice, because it quantifies 
a minimal tolerable amount of model misspecification and 
specifies an inferential test of model fit using a strategy well 
supported by the mathematics underlying the approach. How-
ever, Marcoulides and Yuan’s (2017) equivalence-testing tech-
nique has yet to be tested extensively using wide ranges of sam-
ple sizes, model types, and data characteristics. In short, its 
status as state of the art does not mean it is infallible under all 
circumstances. As further statistical studies examine potential 
effects of sample size and other features on the precision of 
Marcoulides and Yuan’s generated T-size statistics, their appli-
cation may change. For this reason, it is advisable for research-
ers using SEM to keep at least marginally abreast of develop-
ments in this area of statistics, as they should for any method 
they use. Findings relevant to the current issue are typically 
published in journals such as Psychological Methods, Structural 
Equation Modeling, and Multivariate Behavioral Research. Not-
withstanding these potential limitations, the approach does 
reflect the most notable advance in structural equation model 
fit evaluation in over two decades and offers a new standard in 
best practice.

CONCLUSIONS
Many of us use SEM in our analyses without much thought to 
the underlying statistical mechanisms of statistical tools. Yet 
recent advances in assessments of model fit are worthy of our 
attention, because they provide a more robust basis for drawing 
conclusions regarding the validity of trends within our data. 
The equivalence-testing approach and accompanying code pro-
vided by Marcoulides and Yuan (2017) offer a ready resource 
for scholars to test and compare goodness of fit for structural 
equation models on an inferential basis. Using a CI approach for 
evaluating fit indices that incorporate characteristics of the spe-
cific model tested provides a greater level of precision for 
assessing the fit of proposed models. In turn, findings supported 
by Marcoulides and Yuan’s rigorous approach can offer greater 

benefit in both understanding the mechanisms of learning and 
informing evidence-based practices in life sciences education.

GLOSSARY OF TERMS
Covariance Matrix
Denoted by “S” in a sample of data, it is sometimes referred to 
as an “unstandardized correlation matrix,” because it quantifies 
all possible pairwise relationships among variables of interest in 
their original measurement scales, whereas a correlation matrix 
quantifies all possible pairwise relationships among variables of 
interest after all variables have been standardized (i.e., placed 
on a unit normal or z-score scale).

Parameter Estimates
Denoted collectively by Θ̂, they are the result of mathematically 
and statistically imposing a structural equation model of inter-
est upon a given sample of data. The goal of parameter esti-
mates is to answer research questions regarding population 
realities based on information obtained from samples drawn 
randomly from the population. Such population realities, or 
parameters, are termed “estimates” to acknowledge that they 
were obtained under the assumption that information gathered 
from the sample will closely approximate the reality of interest 
in the population.

Model-Reproduced Covariance Matrix
Denoted ∑ Θ̂, it is the result of using parameter estimates from 
a structural equation model of interest (Θ̂) to solve SEM-spe-
cific covariance algebra equations shown elsewhere (e.g., 
Bollen, 1989) to quantify all possible pairwise relationships (∑) 
among variables as determined by the structural equation model 
of interest (i.e., ∑ Θ̂).

Model Fit
The methodological process by which the internal validity, 
external validity, adequacy, and efficacy of a structural equation 
model is determined; model fit is defined and quantified as the 
extent to which the model-reproduced covariance matrix (∑ Θ̂) 
differs from the sample data covariance matrix (S).
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