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Abstract: The quality of environmental decisions are gauged according to the management objectives of a
conservation project. Management objectives are generally about maximising some quantifiable measure of
system benefit, for instance population growth rate. They can also be defined in terms of learning about the
system in question, in such a case actions would be chosen that maximise knowledge gain, for instance in
experimental management sites.

Learning about a system can also take place when managing practically. The adaptive management framework
(Walters 1986) formally acknowledges this fact by evaluating learning in terms of how it will improve
management of the system and therefore future system benefit. This is taken into account when ranking
actions using stochastic dynamic programming (SDP). However, the benefits of any management action lie on
a spectrum from pure system benefit, when there is nothing to be learned about the system, to pure knowledge
gain. The current adaptive management framework does not permit management objectives to evaluate actions
over the full range of this spectrum. By evaluating knowledge gain in units distinct to future system benefit this
whole spectrum of management objectives can be unlocked.

This paper outlines six decision making policies that differ across the spectrum of pure system benefit through to
pure learning. The extensions to adaptive management presented allow specification of the relative importance
of learning compared to system benefit in management objectives. Such an extension means practitioners
can be more specific in the construction of conservation project objectives and be able to create policies for
experimental management sites in the same framework as practical management sites.
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1. INTRODUCTION

Environmental decision making in conservation biology is concerned with figuring out how to effectively
monitor and manage ecological systems. Our ability to make good decisions is limited by money, time and
knowledge. Inadequate conservation funds mean resources are stretched thinly and short funding periods
are unsympathetic to the effective study of gradually changing ecological processes (James, Gaston &
Balmford 2001, Willis & Birks 2006). Uncertainty may be present in a variety of ways: natural variation of the
system, imperfect monitoring of the system, limitations of management on the system (partial controlability)
and inadequate mathematical models of the system (structural uncertainty) (Williams 1982). We may reduce
uncertainty using monitoring alone or using monitoring in combination with management.

Monitoring informs us of three things: (1) our performance with respect to our management objectives, (2) the
state of our system so that we can decide our next management action, and (3) the relative credibility of our
models of system function (Nichols & Williams 2006, Field, O’Connor, Tyre & Possingham 2007). Monitoring
is therefore an essential part of any decision making process where the efficacy of an action depends on the
current state of the system.

The interconnected relationship between management action and monitoring within any conservation project
has been highlighted since the introduction of the adaptive management framework in the 1980s (Walters 1986).
The adaptive management framework recognises that management action, in combination with a monitoring
system, can be a catalyst in reducing uncertainty by acting deliberately to solicit particular information from
a system. The framework includes a management objective, a plan for monitoring the system and a regime
to implement management action (Parma & the NCEAS Working Group on Population Management 1998,
Walters 1986). Management objectives, defined by practitioners of adaptive management, determine what is
seen as a ’good’ decision and therefore how actions are mathematically evaluated and ranked against other
competing actions. In line with management objectives of maximising system benefit, actions in an adaptive
management framework are evaluated in terms of system benefit. The value of learning about the system
associated with each action is summarised in the same units of system benefit by calculating the expected future
system benefit as a result of the improved knowledge of the system (and thus improved future management)
(D’Evelyn, Tarui, Burnett & Roumasset 2008).

Although the adaptive management framework acknowledges that any management action may simultaneously
benefit the system and improve knowledge about the system, the capacity of the current framework to explore
the full spectrum, from pure knowledge gain through to pure system benefit, is limited. By valuing knowledge
gain in units distinct from future improvement of system benefit the algorithms commonly used to create
decision policies in adaptive management projects can be expanded to fully explore this spectrum.

We describe six decision making policies and their respective mathematical algorithms defined across the whole
range of this spectrum of management objectives. The simplest policy described is that which does not adapt
management action to new information about the system and seeks to maximise system benefit over the next
time step. Building on this, the second policy looks to maximise population growth rate over the whole length of
the conservation project and uses monitoring information to update knowledge about the system. Two popular
types of adaptive management that acknowledge multiple models of system function are outlined: passive and
active adaptive management. Finally, two algorithms that explicitly value knowledge gain, one that only values
knowledge and one that allows specification of the relative importance of both learning and system benefit in
the management objective. Using the same mathematical framework, and as each presented algorithm builds
upon the previous, the differences between the algorithms are highlighted.

2. METHODS

Uncertainty in how the system functions is described in I different models. Our confidence in each model is
summarized in a belief weight, wi which is defined as the probability we believe model i to be true. Thus,∑I
i=1 wi = 1. At each time step, t, of a conservation project of T years we obtain monitoring information

about the system, update our belief about our models and implement an action, a, from a pool of m different
actions. In this paper population growth rate has been chosen as the measure of system benefit although other
quantifiable measures may be chosen. The geometric mean population growth rate over T years is

G =
(
ΠT
t=1λt

) 1
T and lnG =

1
T

ΣTt=1 ln (λt) ,
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where λt denotes the population growth rate at time t. We assume the population growth rates are uncorrelated
over time and so we can collapse the array of mean geometric growth rates to essential information at each time
step:

Lt = Σtl=1 lnλl.

The state of the system is a triplet (wt, Lt, t): a vector of the current belief weights, wt, the mean geometric
growth rate so far, Lt, and the number of time steps elapsed, t. Actions are chosen from a pool of J possible
actions according to the current state of the system and a utility function, Vj(wt, Lt, t), j ∈ {1, 2, · · · , J}
defined for each decision making policy. For each state, the optimal action and corresponding optimal utility
are denoted with an asterisk, a∗ and V ∗(wt, Lt, t) respectively.

2.1 Non Adaptive Management (NAM)

At the beginning of the management project choose the model that has the highest associated belief weight and
at all time steps implement the action that will maximise current system benefit under that model. This policy
does not adapt management strategy according to new information that becomes available at each time step.
The inclusion of NAM illustrates a policy that has been implemented in the field of conservation in the same
Markov decision process (MDP) framework as other proposed policies.

Algorithm. At the beginning of the project choose the most likely model

iM = arg max
i

w0. (1)

Choose an action, a∗, that maximises population growth rate according to model iM and apply this same action
every year. Since each λt is independent of future growth rates and actions through time, this action will
maximise lnλt at each time t during the project. The utility function and optimal action to be applied every
year are respectively

Vj(wt, Lt, t) =
∫
λ

lnλ f(λ | aj , model iM )dλ, (2)

a∗ = arg max
aj

Vj(wt, Lt, t) ∀t = 1, · · · , T, (3)

where f(λ | aj , model iM ) is the likelihood of observing a particular growth rate, λ, at time t, given model
iM is true and action aj is taken.

2.2 Myopic Adaptive Management (MAM)

At each time step choose the action that will maximise expected utility in the final time step assuming that
optimal actions are taken at all future time steps. To do so, choose the model that has the highest probability of
being true and implement the action that will maximise system benefit at the end of the project assuming this
model is true. To calculate expected utility, we need to know the optimal action and corresponding maximum
utility from the next time step, so this algorithm is initialised by calculating the utility of all system states in the
final time step and working backwards iteratively. MAM looks at the utility of actions over the whole scope of
the project, rather than just in the next time step. MAM, however, does not anticipate future learning specifically
within the utility function. This strategy is identical to choosing a non-adaptive management strategy at each
time step instead of only in the first time step. This strategy is myopic, or short-sighted, with respect to the
models of system function being considered, in the sense that MAM only considers the consequences of an
action under one model of system function.

Algorithm. This algorithm uses stochastic dynamic programming (SDP) as follows (Bellman 1957). Terminal
optimal utility is calculated as the final mean population growth rate

V ∗(wT , LT , T ) = exp
(
LT
T

)
= G. (4)

Utility at time step t and corresponding optimal action are respectively

Vj(wt, Lt, t) =
∫
λt+1

V ∗(wt, Lt+1, t+ 1)f(λt+1 | ajt, model iMt )dλt+1 (5)

a∗t = arg max
aj

Vj(wt, Lt, t), (6)
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where model iMt is the model with the highest belief weight at time t,

iMt = arg max
i

wt, (7)

and using transitions Lt+1 = Lt + lnλt+1. In forward simulations, managers update the set of belief weights
using Bayes’ theorem to passively learn

wi,t+1 =
P(λ̂t | model i, a∗t )wit∑I
k=1 P(λ̂t | model k, a∗t )wkt

(8)

where λ̂t is the observed growth rate and a∗t is the optimal management action taken at time t.

2.3 Passive Adaptive Management (PAM)

Within PAM the expected utility of an action is averaged over the whole range of possible growth rates we
might observe in the next time step and over all competing models given the current belief in each being true
(the latter point is what differentiates between the PAM and MAM algorithms). As this policy considers the
benefits of each action under each model (and weighted according to the belief in each model), the prioritisation
is ultimately with respect to actions rather than models, which is in contrast to NAM and MAM (where actions
are ranked assuming one model is true, disregarding the others).

Algorithm. Terminal utility is calculated according to equation 4. At time t utility and optimal actions are
calculated according to

Vj(wt, Lt, t) =
I∑
i=1

wit

∫
λt+1

V ∗(wt, Lt+1, t+ 1)f(λt+1 | aj , model i)dλt+1, (9)

a∗t = arg max
aj

Vj(wt, Lt, t), (10)

with transitions Lt+1 = Lt + lnλt+1.

2.4 Active Adaptive Management (AAM)

AAM is the mathematically optimal strategy for solving Markov decision processes with a knowledge state.
AAM goes beyond PAM by considering how an action helps to distinguish between competing models of
system function and how this ability to discriminate will be beneficial for the remainder of the conservation
project. AAM mathematically recognises that increased understanding of the system can mean a more
efficiently managed system. AAM assumes that managers will use Bayes’ theorem to update belief weights in
forward simulations and thus adjusts the future belief weights in the utility calculation accordingly. Learning
is active as updating of the belief weights is built into the algorithm. AAM looks at the utility of actions over
the whole scope of the project, rather than just in the next time step, therefore actions may be chosen that seem
to provide sub-optimal system benefit in the next time step but will provide benefit in the long term through
ability to distinguish between competing models.

Algorithm. This algorithm also uses SDP. Terminal utility is calculated according to equation 4. At time t
utility and optimal actions are respectively calculated according to

Vj(wt, Lt, t) =
I∑
i=1

wit

∫
λt+1

V ∗(wt+1, Lt+1, t+ 1)f(λt+1 | aj , model i)dλt+1 (11)

a∗t = arg max
aj

Vj(wt, Lt, t), (12)

with transitions Lt+1 = Lt + lnλt+1 and belief weights updated within the utility function using equation 8.
In forward simulations, managers update the set of belief weights also using Bayes’ theorem and equation 8.

2.5 Pure Learning

At each time step choose the action that will maximise the expected ability to determine the true model at the
conclusion of the project, with no regard for system benefit.
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Algorithm. This algorithm uses SDP in the same way as active adaptive management although the utility
function in the final time step quantifies learning instead of system benefit. Inability to determine the true
model is quantified using negative information entropy (Shannon 1948). Negative information entropy is a
function of the belief weights and is largest for belief states when one model has a weight of 1 and the other
models have a weight of 0 (i.e. when there is certainty in only one model being true) and is smallest when all
models have equal weight (i.e. when there is maximum uncertainty in which model is true). At the final time
step the utility function is calculated as the negative information entropy of the belief weights

V ∗(wT , LT , T ) = −
I∑
i=1

wi,T lnwi,T > 0 ∀ LT . (13)

Entropy measures disorder, thus we want to impose order on our knowledge by maximising this expression
(i.e. large negative entropy). At all previous time steps, t = 0, 1, . . . , T − 1 the utility and optimal action, a∗t
are respectively calculated using equations (11) and (12).

Belief weights are updated according to transition equation 8 and the mean geometric growth rate is updated
using the transitions Lt+1 = Lt + lnλt+1.

2.6 Experimental Learning

The extensions that we present allow expressions for a weighted mixture of pure learning and system benefit
in action evaluation. A weighting parameter, γ, is introduced to allow manipulation of the relative importance
of learning versus system benefit in our algorithm. As with the AAM and pure learning algorithms, utility is
initialised at the final time step and the algorithm iterates backward through time. Actions are thus chosen such
that utility is maximised at the end of the project. When γ = 0 this strategy is identical to pure learning, when
γ = 1 this strategy is identical to active adaptive management, between these two limits this strategy is called
experimental learning.

Algorithm. This algorithm also uses SDP similar to both the active adaptive management and pure learning
algorithms, although the utility in the final time step is a weighted combination of these other two utility
functions, the mean geometric growth rate and the information entropy. At the final time step the utility function
is

V ∗(wT , LT , T ) = γ

(
exp

(
LT
T

))
+ (1− γ)

(
−

I∑
i=1

wi,T lnwi,T

)
(14)

At all previous time steps, t = 1, 2, . . . , T − 1, the maximum utility and associated optimal action, a∗t , are
respectively calculated using equations (11) and (12).

Belief weights are updated according to transition equation 8 and the mean geometric growth rate is updated
using transitions Lt+1 = Lt + lnλt+1.

3. DISCUSSION

The differences between the policies can be summarised in a few key criteria (Table 1): whether monitoring
information updates knowledge through time; whether the policy assumes one model is true at each time step
or weights each model according to their respective belief weight; whether the policy acknowledges that a
new observation will change the current knowledge about the system; how improved model discrimination is
valued; if the relative value of learning versus system benefit can be specified.

The extensions to the adaptive management framework presented provide a tool for specifying the importance
of learning relative to system benefit within a decision making framework common to conservation. The
extensions above allow decision policies for experimental sites to be created, for example, where learning is the
only objective, using the same adaptive management framework that is used for practical sites, where benefits
such as high growth rates are desired, therefore reducing the knowledge load for practioners and unifying
two distinct areas of decision making in ecology. Only by quantifying knowledge can actions be chosen to
maximise learning.

The policies outlined were only concerned with conservation projects of finite time horizons, as such are
sympathetic to the finite funding arrangements most common in conservation projects and since system
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Criterion | Policy NAM MAM PAM AAM PL EL
Update knowledge
of system function
through time?

N Y Y Y Y Y

Acknowledge compet-
ing models of system
function in utility cal-
culation?

N N Y Y Y Y

Update knowledge
within utility function?

N N N Y Y Y

How is knowledge NA NA Future Future Model Future system benefit
evaluated? system system discrimination and model discrimination,

benefit benefit weighted by γ
Allow specification of
relative importance of
learning versus system
benefit?

N N N N N Y

Table 1. Key differences between the six decision making policies

function may change over a long period of time (Hauser & Possingham 2008). We presented policies for
choosing an optimal action in only one site and ignore costs of actions. The policies presented here can
be extended to multiple sites (for example, a metapopulation) by considering a set of J possible actions
for all possible action/site combinations and integrating over all possible combinations of observed growth
rates in the multiple sites. We have not presented a mechanism in the proposed algorithms to allow varying
monitoring effort and have assume that practitioners of the proposed decision making tools are competent with
mathematical techniques, such as using Bayes’ theorem. No guidelines are given for the choice of proposed
models of system function or list of proposed actions.

Future work includes simulating the management of a conservation project using these different policies and
comparing the efficacy of each. Such investigations will further highlight the benefits of explicit conservation
objectives and the operational considerations required for the outlined decision making policies.
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