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Numerical Method for Rapid Aerostructural                 
Design and Optimization  

Jeffrey D. Taylor* and Douglas F. Hunsaker† 
Utah State University, Logan, Utah 84322-4130 

During early phases of wing design, analytic and low-fidelity methods are often used to 
identify promising design concepts. In many cases, solutions obtained using these methods 
provide intuition about the design space that is not easily obtained using higher-fidelity 
methods. This is especially true for aerostructural design. However, many analytic and low-
fidelity aerostructural solutions are limited in application to wings with specific planforms 
and weight distributions. Here, a numerical method for minimizing induced drag with 
structural constraints is presented that uses approximations that apply to wings with arbitrary 
planforms and weight distributions. The method is applied to the NASA Ikhana airframe to 
show how it can be used for rapid aerostructural optimization and design-space exploration. 
The design space around the optimum solution is visualized, and the sensitivity of the optimum 
solution to changes in weight distribution, structural properties, wing loading, and taper ratio 
is shown. The optimum lift distribution and wing-structure weight for the Ikhana airframe 
are shown to be in good agreement with analytic solutions. Whereas most modern high-fidelity 
solvers obtain solutions in a matter of hours, all of the solutions shown here can be obtained 
in a matter of seconds.  

Nomenclature 

A = beam cross-sectional area 

nA  = Fourier coefficients in the lifting-line solution for the section-lift distribution, Eq. (1) 

nB  = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, Eq. (1) 

b = wingspan 

C  = shape coefficient for the deflection-limited design, Eq. (15) 

C  = shape coefficient for the stress-limited design, Eq. (5) 

c = local wing section chord length 

cr = local wing section chord length at the wing root 

ct = local wing section chord length at the wing tip 

iD  = wing induced drag 

E = modulus of elasticity of the beam material 

h = height of the beam cross-section 

I = beam section moment of inertia 

K = scaling coefficient in the equation for the fuel distribution, Eq. (22) 

L = total wing lift 

L
~

 = local wing section lift 

bM
~

 = local wing section bending moment 

an  = load factor, g 

gn  = limiting load factor at the hard-landing design limit 

mn  = limiting load factor at the maneuvering-flight design limit 

                                                           
* PhD Candidate, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Student Member 
† Assistant Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member 
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AR  = wing aspect ratio 

TR  = wing taper ratio 

S = wing planform area 

bS  = proportionality coefficient between )(
~

zW s  and )(
~

zM b  having units of length squared, Eqs. (5) and (15) 

maxt  = maximum thickness of the local airfoil section 

ft  = thickness of the local fuel-tank section 

V  = approximate volume of fuel carried in each semispan, Eq. (21) 

V  = freestream airspeed 

W = aircraft gross weight 

fW  = gross weight of fuel 

nW  = aircraft net weight, defined as sWW   

rW  = that portion of nW  carried at the wing root 

sW  = total weight of the wing structure required to support the wing bending moment distribution 

nW
~

 = net weight of the wing per unit span, i.e., total wing weight per unit span less sW
~

 

sW
~

 = weight of the wing structure per unit span required to support the wing bending-moment distribution 

w = width of the beam cross-section 

fw  = width of local fuel-tank section 

maxw  = maximum allowable width of the beam cross-section 

z = spanwise coordinate relative to the midspan 

fz  = spanwise length of the fuel tank 

  = specific weight of the beam material 

  = local wing deflection 

max  = maximum wing deflection 

 = change of variables for the spanwise coordinate, Eq. (1) 

  = air density 

f  = fuel density 

max  = maximum longitudinal stress 
 

I.   Introduction 
HEN designing a wing for minimum drag, low-fidelity tools can be useful for rapid design-space exploration 
and for gaining important insight and information about how the design variables, parameters, and constraints 

influence the optimum solution. Designers often rely on rules-of-thumb gained from analytic and low-fidelity 
numerical solutions during the conceptual and preliminary phases of aircraft design. In many cases, these solutions 
have been shown to be in good agreement with experimental data and computational fluid dynamics [1-8], while 
providing significantly more mathematical and physical insight than higher-fidelity models. For example, the well-
known elliptic lift distribution, which minimizes induced drag on an unswept planar wing with fixed weight and 
wingspan, was first identified from analytic solutions based on lifting-line theory [9,10] by Prandtl [9] and later by 
Munk [11]. The elliptic lift distribution has since been studied extensively using computational and experimental 
methods, and it remains a common benchmark in many mid- and high-fidelity computational studies [12-19]. 
However, it has been shown that the elliptic lift distribution is not the only solution for minimizing drag under all 
conditions [20-29]. In particular, when structural effects are considered, it has been shown that drag is typically 
minimized using a non-elliptic lift distribution that depends on the design constraints [12,13,16-18,30-49]. Low-
fidelity and analytic aerostructural methods are valuable for identifying these non-elliptic lift distributions and for 
understanding how structural considerations affect the minimum-drag solution. 
 There are many mid- and high-fidelity computational methods for minimizing drag under structural constraints, 
including those shown in Refs. [12,13,16-18,30-38]. Many of these methods require time-consuming and 
computationally expensive coupling between high-fidelity aerodynamic and structural solvers. However, there are 
relatively few studies that approach this multidisciplinary problem from an analytic or low-fidelity point of view  

W
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[39-49]. Prandtl seems to be the first do so, and in 1933, he identified a bell-shaped lift distribution that minimizes 
induced drag on a rectangular wing with fixed gross weight and moment of inertia of gross weight [39]. Since then, 
others have taken approaches similar to Prandtl to minimize induced drag under different constraints [39-48]. For 
example, Jones [40] sought to minimize induced drag under the constraints of fixed gross lift and root bending moment 
in cruise. Pate and German [41] constrained the root bending moment at a given off-design lift coefficient. DeYoung 
[42] replaced Jones’ root-bending-moment constraint with a constraint on the bending moment at a prescribed 
spanwise location. Jones and Lasinski [43] later constrained the integrated bending moment. Klein and Viswanathan 
[44,45] considered both root and integrated bending moment [44] and included the effects of the wing-structure weight 
[45]. Löbert [46] introduced a constraint based on the ratio of the bending-moment distribution and the wing-section 
thickness. However, it appears that none of these studies show how the planform shape affects the wing-structure 
weight, and only Klein and Viswanathan [45] directly accounted for the effects of the wing weight distribution on the 
bending moments.  
 More recently, Phillips et al. [47,48] and Taylor and Hunsaker [49] relaxed many of Prandtl’s assumptions and 
extended his approach to account for the effects of the planform shape on the wing-structure weight and the effects of 
the wing weight distribution on the bending moments. They identified lift distributions that minimize induced drag 
under constraints of fixed gross weight [47], fixed net weight [48], fixed wing loading [47,48], and fixed stall speed 
[48].  However, in order to obtain analytic solutions, Phillips et al. [47,48] limited their results to rectangular wings 
with a single ideal weight distribution, and Taylor and Hunsaker [49] limited their results to linearly and elliptically 
tapered wings with the same ideal weight distribution. In fact, all of the analytic studies discussed here are limited in 
application to wings with specific planforms and/or weight distributions.  
 The purpose of this paper is to present a low-fidelity numerical method that extends the work of Phillips et al. 
[47,48] and Taylor and Hunsaker [49] to more practical aircraft configurations with arbitrary planforms and weight 
distributions. We will apply the method to a high-endurance unmanned aircraft configuration to demonstrate how it 
can be used for rapid conceptual design and for gaining intuition about the aerostructural design space. The present 
work builds on the approach taken by Prandtl [39] and Phillips et al. [47,48]. Therefore, we will first briefly review 
the work of these authors.  

II. Analytical Foundation 
 Using Prandtl’s classical lifting-line theory [9,10], the dimensionless spanwise section-lift distribution on a finite 
wing with no dihedral or sweep immersed in a uniform flow can be described using a Fourier series of the form [47] 
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where nB  are the dimensionless Fourier coefficients. The lift distribution is, in general, linked to the wing planform 
and the wing twist. However, below stall, any lift distribution can be produced by a twisted wing of any planform, 
provided that the correct twist distribution is used [50]. Therefore, in the development presented in this paper, the lift 
distribution and the planform are treated as independent parameters, related through the wing twist. Moreover, this 
study focuses on minimizing induced drag. Therefore, we will neglect the effects of viscous drag.  
 In steady-level flight, the total lift, L, must equal the gross weight, W. Using this relation and the definition for 
drag coefficient, the induced drag predicted by Prandtl’s classical lifting-line theory in steady-level flight is 
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 Equation (2) reveals that minimizing induced drag for a given flight condition is a variational problem involving 
weight, wingspan, and lift distribution. For a fixed ratio of weight to wingspan, Eq. (2) is minimized with a lift 
distribution having 0nB  for all 1n , which gives the well-known elliptic lift distribution. If weight and wingspan 
are allowed to vary, the elliptic lift distribution no longer gives an absolute minimum in induced drag. From Eq. (2), 
it is evident that induced drag can be reduced by increasing wingspan or decreasing wing weight. However, as 
wingspan increases, the weight of the wing structure required to support the bending moments also increases, which 
increases the total weight. Because of the tradeoff between wing-structure weight and wingspan, there exists some 
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optimal wingspan that minimizes induced drag for a given lift distribution. Furthermore, certain lift distributions that 
shift lift inboard toward the wing root can alleviate bending moments near the wingtips, allowing a higher wingspan 
with no increase in wing-structure weight. Therefore, to fully minimize Eq. (2) for a given flight condition, the weight, 
wingspan, and lift distribution must all be considered. 
 Prandtl analytically solved this variational problem in 1933 [39] and identified a bell-shaped lift distribution 
having 02 B , 313 B , and 0nB  for 3n  that minimizes induced drag for rectangular wings under constraints 
of fixed gross weight and moment of inertia of gross weight. Prandtl’s 1933 lift distribution [39] was obtained under 
the assumption that the wing-structure weight distribution )(

~
zWs  is proportional to the wing bending-moment 

distribution )(
~

zM b  at each spanwise location and that the proportionality coefficient bS  between the wing-structure 
weight distribution and the bending-moment distribution is spanwise invariant, i.e., 
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This assumption implies that the geometric and structural properties of the wing structure are consistent across the 
span. However, the wing-structure geometry is typically a function of the wing thickness and chord distribution. 
Therefore, Prandtl’s assumption is best matched by a rectangular wing with a constant thickness-to-chord ratio [39]. 
Prandtl also neglected the effect of the wing weight on the wing bending moments by assuming that the bending-
moment distribution is a function of the lift distribution alone. Under the constraints of these assumptions, Prandtl’s 
1933 lift distribution allows an increase in wingspan of 22.5% and a reduction in induced drag of 11.1% when 
compared to that of the elliptic lift distribution with the same wing-structure weight. 
 Whereas Prandtl assumed that the bending moments are only a function of the lift distribution, Phillips et al. [47] 
pointed out that at each spanwise location, the wing bending moments are a function of the lift distribution, the net-
weight distribution )(

~
zWn  of all non-structural components carried in the wing, and the wing-structure weight 

distribution )(
~

zWs  according to the relation [47]  
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where na is the load factor. The wing structure must be designed to support the bending moments during a high-load 
maneuver with a positive load limit nm and during a hard landing with a negative load limit ng. For the stress-limited 
design of a wing, minimum wing-structure weight is achieved when the structure is designed such that the local stress 
at each spanwise location is equal to the maximum allowable stress max . Using this constraint and assuming that all 
of the wing bending moments are supported by a single, vertically-symmetric beam in pure bending, the weight of the 
wing structure required to support the bending moments can be written [47] 
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where c(z) is the section chord-length distribution,   is the specific weight of the beam material, ctmax  is the 
maximum-thickness-to-chord ratio of the local airfoil section, and C  is the beam shape factor for the stress-limited 
design. A list of shape factors for common beam cross sections is given in [47]. For deflection-limited designs, the 
maximum allowable stress can be related to the maximum deflection, and Eq. (5) can be rewritten as [47] 
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where C  is the beam shape factor for the deflection-limited design. 
 The total weight of the wing is the sum of the wing-structure weight and the net weight of all non-structural 
components, i.e.,  
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 ns WWW   (7) 

where the wing-structure weight Ws is found by integrating Eq. (5) or (6). The net weight Wn is found from the relation 
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where Wr is the portion of the net weight carried at the wing root. Under these assumptions, Phillips et al. [47] have 
shown that the bending moments are minimized when the net weight is distributed according to the weight constraints 
given by 
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 For a rectangular wing having the weight distribution given in Eq. (9), the proportionality coefficient bS  is 
spanwise invariant, and Eqs. (5) and (6) can be evaluated analytically. Using the result of Eqs. (5) and (6) and applying 
Eq. (7) in Eq. (2), Phillips et al. [48] showed that, if wing loading is fixed, induced drag is minimized with a lift 
distribution having 02 B , 121649833 B , with 0nB  for 3n  for the stress-limited design and 02 B , 

211499733 B , with 0nB  for 3n  for the deflection-limited design. However, Phillips et al. [47,48] only 
considered the case of a rectangular wing with the weight distribution given in Eq. (9). As will be shown, if the 
planform is non-rectangular or a weight distribution other than that given in Eq. (9) is used, the integrals in Eqs. (4), 
(5), and (6) and the maximum deflection in Eq. (6) often must be evaluated numerically. In this paper, we extend the 
work of Phillips et al. [47,48] and present a method for minimizing induced drag for wings with non-rectangular 
planforms and weight distributions other than that given in Eq. (9). However, it should be remembered that the present 
method maintains the assumptions associated with lifting-line theory, including a planar wing with zero sweep and 
moderate to high aspect ratio. For other wing configurations, modifications to this method may be needed. 

III.  Wing-Structure Weight and Induced Drag 
 For the stress-limited design of a wing with a non-rectangular planform and a weight distribution other than that 
given in Eq. (9), numerically evaluating the integrals in Eqs. (4) and (5) is straightforward. For any given flight 
condition, the wing section bending moments, as given by Eq. (4), are a function of the lift distribution, net-weight 
distribution, and wing-structure weight distribution. However, Eq. (5) shows that the wing-structure weight 
distribution is dependent on the bending-moment distribution. Because of this interdependence between the section 
bending moments and the wing-structure weight, if any weight distribution other than that given in Eq. (9) is used, an 
iterative method is required to compute the wing-structure weight. The induced drag can be found by using the wing-
structure weight and Eq. (7) in Eq. (2). An implementation of this iterative process is given by Taylor et al. [51] for 
the stress-limited design. 
 For the deflection-limited design, if the beam is designed with minimum allowable wing-structure weight, the 
deflection of the beam can be found using the relation [47] 
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where E is the modulus of elasticity of the beam material. For any spanwise-symmetric load distribution, the boundary 
conditions on Eq. (11) are 
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Equations (11) and (12) constitute a boundary-value problem from which the beam deflection can be found. Integrating 
Eq. (11) subject to Eq. (12), the deflection at any spanwise location 0z  becomes 
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If both maneuvering and hard-landing design limits are considered, maximum deflection always occurs at the wingtips. 
Using Eq. (13), the deflection at the wingtip is found to be 
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Equation (14) relates the maximum allowable deflection with the maximum stress at each section for a given beam-
height distribution, h(z). Because airfoil thickness is typically a fraction of the chord length, the beam-height 
distribution is typically related to the chord distribution. For certain beam-height or chord distributions, the integral in 
Eq. (14) can be evaluated analytically [47]. However, if the beam-height or chord distribution is an arbitrary function 
of spanwise location, Eq. (14) must be evaluated using numerical methods.  
 Using Eq. (14) to replace max  in Eq. (5), the wing-structure weight required to support the bending moments for 
the deflection-limited design can be written 
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Like Eq. (5), Eq. (15) shows that the wing-structure weight for the deflection-limited design is also coupled with the 
bending-moment distribution. Thus, an iterative solver is needed to solve for the wing-structure weight for the 
deflection-limited design. The induced drag is found by using the wing-structure weight from Eq. (15) and Eq. (7) in 
Eq. (2).   
 If Eq. (5) predicts a wing-structure weight that is greater than that predicted by  Eq. (15), the design is stress 
limited; if Eq. (15) gives a value greater than Eq. (5), the design is deflection limited. Because the limiting constraint 
is highly dependent on the design parameters, both stress and deflection limits must be considered at each spanwise 
location.  

IV. Numerical Methodology 
 Here, we present a method for iteratively solving for the wing-structure weight and describe how it can be used 
in an optimization framework to minimize induced drag. This method is similar to that given by Taylor et al. [51] for 
the stress-limited design, but here we will include the deflection-limited design and several additional constraints that 
were not considered in Ref. [51].  

A. Solving for Wing-Structure Weight 

 For this study, a simple fixed-point iteration scheme is used to solve for the wing-structure weight and bending-
moment distribution. An initial guess for the wing-structure weight is used in Eq. (4) to calculate the section bending-
moment distribution for both the maneuvering and hard-landing limits. At each section, the limit that produces a 
higher-magnitude section bending moment is the design limit. This section bending moment is used in Eqs. (5) and 
(15) to predict the section wing-structure weight for the stress-limited and deflection-limited designs. At each section, 
the design that requires greater wing-structure weight is the limiting design, and the corresponding wing-structure 
weight is used. This value is then passed back as the guess for the next iteration, and the process is repeated until the 
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wing-structure weight converges within some specified tolerance. For the purposes of this study, an initial guess of 
0)(

~
zWs  provides good results. The process can be summarized as follows: 

 
1. Input b, LzL )(

~
, Wr, )(

~
zWn , c(z), )()(max zczt , γ, E, max , max , nm, ng, C , and C .  

2. Calculate the total weight using Eq. (7). For the initial guess, use 0)(
~

zWs , Ws = 0. 
3. Calculate the total net weight using Eq. (8). 
4. Calculate the maneuvering and hard-landing bending-moment distributions using Eq. (4). 
5. Using the higher-magnitude section bending moment from step 3 in Eqs. (5) and (15), calculate the wing-

structure weight distribution for the stress-and deflection-limited designs.  
6. Calculate the total wing-structure weight by integrating either Eq. (5) or (15). 
7. Repeat steps 2 through 6 until the wing-structure weight has converged to within a specified tolerance. 

 
 Once the wing-structure weight is known, the induced drag is calculated using Eq. (2). A schematic of the process 
is shown in Fig. 1. Note that after the first iteration, step 2 is only required if the net weight is a function of the wing-
structure weight, as it is in Eq. (9). In this paper, this special case will be used for benchmarking the wing-structure 
weight solver against analytic solutions. However, it should be remembered that Eq. (9) is not meant to represent any 
physical weight distribution, and for most practical aircraft configurations, step 2 is not needed after the first iteration.  
 For wings with arbitrary chord distribution, thickness distribution, or net-weight distribution, the prediction of 
the wing-structure weight requires the numerical evaluation of multiple integrals. In general, any high-order 
integration scheme can be used to obtain valid results. However, in this study, the composite Simpson’s rule is used 
to evaluate all integrals. The wing is discretized with nodes clustered near the wingtips using the cosine clustering 
scheme given in Eq. (1), with even spacing in θ. The resulting discretization is shown in Fig. 2.  
 
 

 

Fig. 1 Schematic of the iterative wing-structure weight solver. 
 
 
 

 

Fig. 2 Discretization of a tapered semispan with 40 nodes and cosine clustering near the wing tip. 
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 In order to ensure grid convergence, the iterative wing-structure solver was used to predict the wing-structure 
weight required to support the elliptic lift distribution for a wing with the parameters 5.0TR , 0.66b  ft, 

2ft3.267S , 1875.0ct , 165.0C , 653.0C , 3
max 1025  psi, 5.3max   ft, 6100.10 E psi, 

3lbf/in10.0 , 4500rW  lbf, 7500nW  lbf, 75.3 gm nn , and the weight distribution given by Eq. (9). Results 
were compared using grids with node counts ranging between 10 and 1280, and Richardson Extrapolation was used 
to project a fully-converged value. Figure 3 shows the results of this study. With as few as 160 nodes, the wing-
structure weight predicted by the iterative algorithm falls within 0.003 % of the extrapolated value. Therefore, 160 
nodes will be used for all subsequent results. Above 40 nodes, the method shows second-order convergence. 
 The wing-structure solver was also benchmarked against the analytic solutions found by Phillips et al. [47] using 
the example wing configuration described above with a taper ratio of 1TR . The total wing-structure weight 
calculated by the solver matches the analytic solution to within 0.0025%. Figure 4 shows that the wing-structure 
weight distribution predicted by the solver is in good agreement with the analytic solution. 
 
 

 

Fig. 3 Grid resolution results for the iterative wing-structure weight solver.  
 
 

 

Fig. 4 Comparison of the wing-structure weight predicted by the numerical wing-structure weight solver and 
the analytic solution from Ref. [47]. 

B. Minimizing Induced Drag in an Optimization Framework 

 In order to minimize induced drag, the induced drag from the wing-structure solver is used as an objective function 
in an optimization framework similar to that shown in Fig. 5.  The induced drag is a function of the lift distribution, 
wingspan, and weight. It has been shown that the weight is a function of the net-weight distribution, proportionality 
coefficient, and several other parameters. Any of these parameters could be used as design variables. However, in this 
study, we will use the lift distribution and wingspan as design variables, since both variables directly affect the induced 
drag and wing-structure weight.  
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Fig. 5 Example optimization framework for minimizing induced drag using wingspan and lift distribution. 
 
 As shown by Phillips et al. [47,48], the choice of design constraints can have a significant impact on the minimum-
induced-drag solution. The methods presented in this paper are general enough to accommodate a variety of 
constraints, including those used in many of the studies mentioned in the Introduction. In the following section, we 
describe how several example design constraints can be implemented within the optimization framework shown in 
Fig 5.  

C. Example Constraints 

Throughout the development in the previous sections, the lift distribution is assumed to be all positive and 
spanwise-symmetric. Thus, any lift distribution chosen by the optimizer must also be all-positive and spanwise-
symmetric. The lift distribution can be constrained to be all-positive by ensuring that the optimizer only chooses values 
for nB  that produce a lift distribution with positive lift at every spanwise location. This can be enforced using an 
equality constraint on the minimum section-lift value. The lift distribution can be made spanwise-symmetric by setting 
all even Fourier coefficients from Eq. (1) identically to zero.  
 Phillips et al. [47,48] enforced constraints of fixed gross weight, fixed net weight, and fixed wing loading. The 
constraint of fixed net weight can be imposed by scaling the net-weight distribution at each optimizer iteration such 
that Eq. (8) is satisfied for a given value of Wn. The constraint of fixed gross weight is most easily imposed by scaling 
the net-weight distribution to satisfy the relation 
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Because the gross weight is a function of both the net weight and the wing-structure weight, the net weight should be 
scaled to satisfy Eq. (16) at the end of each iteration of the wing-structure weight solver in order to ensure that the 
solver converges on the correct wing-structure weight for the specified gross weight. The constraint of fixed wing 
loading can be implemented by scaling the chord distribution at each optimizer iteration such that  
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 It is also useful to constrain the spar dimensions such that the spar fits within the local airfoil section. For a given 
beam cross-section, the cross-sectional area roughly scales with the product of width w and height h and the moment 
of inertia roughly scales with the product of width w and height cubed 3h . Hence, if the ratio maxth   in Eqs. (5) and 
(15) is constant across the wingspan, it is also convenient hold C  and C  constant across the span. Moreover, in order 
for the beam to fit inside the airfoil, the ratio maxth  must be less than one, and a constraint must be placed on beam 
width. In general, a geometric beam-width constraint can only be evaluated after the beam width has been determined 
in conjunction with all other beam dimensions. However, for a rectangular beam with fixed )( maxth , the width can 
be determined using the relation   )()()()()()()( maxmax thzcztzwzhzwzA   in the expression )()(
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Because the size of the local airfoil section scales with chord length, it is convenient to specify a width constraint in 
terms of a ratio of maximum allowable width maxw  to chord length c. Therefore, the maximum allowable width-to-
chord ratio can be found by rearranging Eq. (18) to give 
 

 
   2

maxmax
max

)()()(

)(
~

)(
zcthzczt

zW
zcw s


  (19) 

 It should be remembered that the constraints described here are not the only useful constraints for wing design. 
However, those included here will be used in the following section to compare the results obtained using the numerical 
methods described in this section to the solutions of Phillips et al. [47,48] and Taylor and Hunsaker [49]. 

V. Results 
 As an example of minimizing induced drag for a wing with a non-rectangular planform and a net-weight 
distribution other than that given in Eq. (9), consider the NASA Ikhana airframe. Many of Ikhana’s geometric and 
weight parameters can be obtained or inferred from publicly available data [52-55]. For instance, Ikhana has a tapered 
wing with a wingspan 66b  ft. The tip airfoil has a chord length ct = 2.4 ft and max thickness 4.5max t  in. At the 
wing-fuselage junction, the airfoil has a chord length cr = 5.4 ft and max thickness of about 15.12max t  in. [54]. 
Using these values, the thickness-to-chord ratio of both airfoils is 1875.0ct . From fuselage to wingtip, each 
semispan is approximately 30 ft. Since we do not include the aerodynamic effects of the fuselage, the wing geometry 
is extrapolated to the fuselage centerline, which results in a semispan of 33 ft. Assuming that the wing is linearly 
tapered, the chord distribution can be written as 
 

  bzRczc Tr 2)1(1)(   (20) 

Extrapolating the chord distribution from known tip- and root-chord data, Eq. (20) gives a root chord of 7.5rc  ft at 
the fuselage centerline. Using this value with the wingspan and tip chord, the total area for the extrapolated wing is 

2ft3.267S  , the aspect ratio is RA = 16.296, and the taper ratio is RT = 0.421 . 
  The Ikhana airframe has an empty weight of 3700 lbf, a maximum payload of 2300 lbf, and a maximum fuel 
load of 4000 lbf. The payload can be distributed with up to 800 lbf in the nose of the aircraft and up to 2300 lbf carried 
externally on the wings [54]. The distribution of weight in the wings must be inferred. Assuming that all of the fuel is 
carried in bladders in the wings and that the cross-sectional area of the fuel bladders can be approximated by an ellipse 
with a constant thickness-to-chord ratio and a constant width-to-chord ratio, as shown in Fig. 6, the volume of a fuel 
bladder beginning at the wing root can be approximated as 
 

      
fz

ff dzzczccwzcctV
0

22 )()()(
16


 (21) 

where fz  is the spanwise length of the fuel bladder, ct f  is the thickness-to-chord ratio of the elliptic cross section, 
and cw f  is the width-to-chord ratio of the elliptic cross section. Assuming that the fuel bladders have sufficient 
volume to carry 2000 lbf of fuel in each semispan, and assuming that the density of fuel is 3lbf/in029.0f , the 
thickness-to-chord ratio of the fuel bladder is 16875.0ct f , and the width-to-chord ratio is 45.0cw f , the volume 
of fuel in each semispan can be approximated as 68,966 in3. Using this value in Eq. (21) and solving for fz  gives a 
spanwise bladder length of 328.9 in. Therefore, in order to have sufficient volume to hold 4000 lbf, the fuel bladders 
must extend to about 83.1% semispan.  
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Fig. 6 Geometric approximation of Ikhana fuel bladder cross-sectional area. 
 
 
 From Eq. (21), we see that if the fuel bladder cross-sectional area is approximated as an ellipse, the net-weight 
distribution is proportional to the square of the chord, i.e.,  
 
 2)()(

~
zKczWn   (22) 

where K is a scaling constant that depends on the length of the fuel bladder and the weight of the fuel carried in the 
wing. Using Eq. (22) in Eq. (8) gives a relationship that can be solved to find the value of K for a fuel bladder that 
extends to 83.1% semispan with a given fuel weight fW , i.e., 
 

 
2831.0

0

2)(2

b

f dzzcKW  (23) 

A generic instrumentation pod weighing 500 lbf [55] is also sometimes mounted on the wing at a hard point outboard 
of the wing root.   
 For the purposes of this study, we will consider two example configurations for the NASA Ikhana airframe in 
steady level flight at sea level with a typical cruise velocity of 287 ft/s [53]. The first configuration has 3000 lbf of 
fuel distributed according to Eq. (22) in fuel bladders spanning 83.1% semispan with no instrumentation pod. Using 
a fuel weight of 3000 lbf in Eq. (23) with a wingspan of 66b  ft gives a scaling constant 8212.2K . The second 
example configuration includes a generic instrument pod mounted on each wing at hard points located at 25% 
semispan that each cover 1 ft spanwise. In order to maintain the same fixed net weight as the no-pod configuration, 
the fuel weight is reduced to 2000 lbf for this configuration. Using this fuel weight, Eq. (23) gives a scaling constant 

8808.1K . Using this value in Eq. (22) and adding the weight distribution of the instrumentation pod gives the net-
weight distribution shown in Fig. 7. All other parameters for both configurations are given in Table 1. Note that many 
of the structural parameters for the Ikhana airframe are not publicly available. Therefore, the values for C  and C  in 
Table 1 were found using Eqs. (5) and (15) for a beam with a rectangular cross section, and the values for max , E, 
and   were selected to be conservative. The maneuvering and hard-landing load limits represent a typical load limit 
of 2.5 g with a safety factor of 1.5. The maximum deflection is just over 10% of the semispan, which is reasonable for 
a high-aspect-ratio wing. However, it will be shown that results are sensitive to changes in this parameter.  
 It has been shown that wings with taper ratios near 4.0TR  produce a nearly elliptic lift distribution with no 
aerodynamic or geometric twist [56,57]. Because the Ikhana airframe has a taper ratio of 421.0TR , we will use the 
elliptic lift distribution for the baseline design. Using the elliptic lift distribution, the wing-structure solver shown in 
Fig. 1 predicts a wing-structure weight of 1008.4 lbf  and induced drag of 54.040 lbf for the no-pod configuration. 
The total weight is 8508.4 lbf, and the wing loading is 31.831. For the pod configuration, the wing-structure solver 
predicts a wing-structure weight of 1080.5 lbf, giving a total weight of 8580.5 lbf and a wing loading of 32.101. The 
induced drag is 54.959 lbf. A summary of the results for the baseline design is included in Table 2. 

)()( zcct f

)(zc

)()( zccw f
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Fig. 7 Example net-weight distribution for the Ikhana wing carrying 2000 lbf of fuel and a generic 
instrumentation pod. 

 

Table 1 Example Specifications for the Ikhana airframe  
 S [ft2] 267.3  

B [ft] 66  

TR  0.421 

t/c 0.1875 

C  0.165 

C  0.653 

max  [psi] 3100.15   

max  [ft] 3.5  

E [psi] 6100.10   
 [ lbf/in3] 0.10  

mn  3.75 

gn  3.75 

rW  [lbf] 4500  

nW  [lbf] 7500  

fW  (No Pod) [lbf] 3000  

fW  (With Pod) [lbf] 2000  

Pod Weight [lbf] 500 ( 2 ) 
  [slug/ft3] 0.0023769  

V  [ft/s] 287.0  
    

A. Minimizing Induced Drag 

 The optimization framework shown in Fig. 5 is used to find the optimum lift distribution, wingspan, and wing-
structure weight. For all of the results presented in this paper, this framework was used in conjunction with the SciPy* 
implementation of the Sequential Least-Squares Programming [58] method. For both Ikhana configurations, the net 
weight is fixed at 7500nW  lbf, and the wing loading is fixed at 31.831 for the no-pod configuration and 32.101 for 
the pod configuration. A spar-width constraint of 1.0max cw  is also imposed. The wingspan b and the Fourier 
coefficients nB  that define the lift distribution are the design variables. However, because the lift distribution is a 

                                                           
* docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html 
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function of an infinite number of Fourier coefficients, the series must be truncated at some finite value of n. For the 
following results, the series was truncated at 29n .  Constraints are also placed on the lift distribution to ensure that 
only Fourier coefficients that give an all-positive, spanwise-symmetric lift distribution are considered.  
 The resulting optimum lift distribution for each configuration is shown in Fig. 8, along with five reference lift 
distributions labeled a, b, c, d, and e. Curve a is the elliptic lift distribution. Curve b is Prandtl’s 1933 lift distribution 
[39]. Curves c and d are the optimum lift distributions found by Phillips et al. [48] for the stress-limited design (curve 
c) and deflection-limited design (curve d) of a rectangular wing with fixed wing loading and the weight distribution 
given by Eqs. (9) and (10). Curve e is the optimum lift distribution found by Taylor and Hunsaker [49] for the stress-
limited design of a tapered wing with fixed wing loading, the weight distribution given by Eqs. (9) and (10), and a 
taper ratio of RT = 0.4.  
 Figure 8 shows that the lift distribution that minimizes induced drag for the no-pod configuration is nearly 
identical to that for the pod configuration and that both lift distributions are noticeably non-elliptic. The Fourier 
coefficients for both optimum lift distributions are included in Table 2. Note that the magnitude of the Fourier 
coefficients decreases rapidly as n increases. The same trend is shown in Refs. [51] and [49]. In fact, both lift 
distributions are primarily dominated by the 3n  terms in Eq. (1), with 091066.03 B  for the no-pod configuration 
and 084530.03 B  for the pod configuration. These values fall between the optimum values of 13564.03 B  and 

059716.03 B  found by Phillips et al. [48] for the stress- and deflection-limited designs of a rectangular wing with 
fixed wing loading.  
 Figure 8 shows that the analytical solutions for the optimum lift distribution for a rectangular wing (curve c) and 
for a wing with taper ratio RT = 0.4 (curve e) are nearly identical. As pointed out by Taylor and Hunsaker [49], this 
suggests that that the taper ratio does not significantly affect the optimum lift distribution. Moreover, the optimum lift 
distributions for the Ikhana configurations differ slightly from the analytical optimum lift distribution for a tapered 
wing with RT = 0.4. Therefore, we can infer that the difference between the optimum lift distributions for the Ikhana 
configurations and the analytic solutions given by curves c, d, and e is likely due to differences in the weight 
distribution instead of the planform shape. This inference is supported by the sensitivity study for the optimum Ikhana 
pod configuration shown in the following subsection. 
 Minimum induced drag is obtained by using the optimum wingspan, wing-structure weight, and lift distribution 
in Eq. (2). For the no-pod configuration, the optimum wingspan is 083.78b  ft with a wing-structure weight of 

6.1988sW  lbf. Using these values, along with the optimum lift distribution from Fig. 8, the induced drag is 
213.49iD  lbf. Therefore, for the no-pod configuration, using the optimum lift distribution allows an increase in 

wingspan of 18.31%, an increase in wing-structure weight of 97.21%, and results in a reduction in induced drag of 
8.93% over the baseline no-pod configuration with an elliptic lift distribution.  
 For the pod configuration, the optimum wingspan is b = 77.084 ft with a wing-structure weight of 1.2013sW  
lbf. When used in Eq. (2), this gives an induced drag of 588.50iD  lbf when the optimum lift distribution is used. 
Thus, for the pod configuration, the optimum lift distribution allows an increase in wingspan of 16.79%, an increase 
in wing-structure weight of 86.32%, and a reduction in induced drag of 7.95% over the baseline pod configuration 
with an elliptic lift distribution. Both optimum Ikhana designs are deflection-limited.  
 
 

 

Fig. 8 Solutions for the lift distributions that minimize induced drag for the example no-pod and pod 
configurations of the NASA Ikhana airframe.  
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 The wing-structure weight distributions for the baseline Ikhana designs and the optimum designs are shown in 
Fig. 9. Although Ikhana has a non-rectangular planform and a weight distribution other than Eq. (9), the optimum 
wing-structure weight for both the no-pod configuration and the pod configuration is just over 26% of the net weight. 
This agrees relatively well with the theoretical optimum wing-structure weight of 4ns WW   found by Phillips et al. 
[48] for the deflection-limited design of a rectangular wing with the weight distribution given by Eq. (9).  For both 
configurations, the maximum section width-to-chord ratio is less than the constraint of 1.0max cw . The results of 
the optimization are summarized in Table 2.  
 

 

Fig. 9 Wing-structure weight distributions for the baseline design and optimum design of the example no-pod 
configuration (black) and pod configuration (gray) of the NASA Ikhana airframe. 
 
 

Table 2 Example optimization results for the NASA Ikhana airframe 
  Without Pod With Pod 

 Baseline Optimum Baseline Optimum 

b [ft] 66  78.083  66  77.084  

S [ft2] 267.3  298.10  267.3  296.35  

AR  16.296 20.453 16.296 20.050 

sW  [lbf] 1008.4  1988.6  1080.5  2013.1  

Di [lbf] 54.040  49.213  54.959  50.588  
cwmax  0.037602  0.072507  0.039047  0.070664 

3B  0 −0.091066 0 −0.084530 

5B  0 -3101.6121 0 -3102429.1   

7B  0 -4109248.2   0 -4106259.2   

9B  0 -6101777.5   0 -5105980.3   

11B  0 -5102718.1   0 -5101619.1   

13B  0 -6101777.5   0 -6107294.4   

15B  0 -6103058.2   0 -6101291.2   

17B  0 -6103044.1   0 -6101761.1   

19B  0 -7101712.6   0 -7107982.5   

21B  0 -7108380.4   0 -7102720.4   

23B  0 -7108249.1   0 -7106479.1   

25B  0 -7103663.2   0 -7101818.2   

27B  0 -8109513.3   0 -8103079.3   

29B  0 -7104703.1   0 -7103633.1   
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 Induced-drag contours around the optimum design for each example Ikhana configuration are shown in Fig. 10 
as a function of the design variables b and 3B . In reality, because the lift distribution is a function of n Fourier 
coefficients, the design space is more than n-dimensonal. However, because the optimum lift distribution for each 
Ikhana configuration is dominated by 3B , the effect of the lift distribution on the induced drag is approximated using 

3B  alone. Recall that the wing-structure weight is related to the lift distribution and the wingspan such that as B3 
decreases, or as wingspan decreases, the wing-structure weight also decreases. Thus, the bottom left regions of the 
plot correspond to lower-weight designs. 
 Figure 10 gives some insight into the relative influence of the wingspan, weight, and lift distribution on the 
induced drag at different points in the design space. For example, for both Ikhana configurations, the induced-drag 
contours are nearly vertical around the baseline design. This means that around the baseline design, the drag is much 
more sensitive to changes in wingspan than it is to changes in lift distribution. Because the wing-structure weight 
typically increases as the wingspan increases, it is more advantageous to increase the wingspan and the weight than 
to decrease the weight by changing the lift distribution. On the other hand, there are regions in the design space where 
reducing the weight by changing the lift distribution gives a greater reduction in induced drag than changing the 
wingspan. 
 Note that near a wingspan of 66 ft, the induced drag contours for both configurations are not smooth. This is 
because for the range of 3B  shown, the wing design transitions from stress-limited to deflection-limited near this 
wingspan. If the wingspan is higher than the wingspan at which this transition occurs, the design is deflection-limited. 
If the wingspan is lower than the transition wingspan, the design is stress-limited. Thus, although the baseline design 
is stress-limited, the optimization results in a deflection-limited design for both Ikhana configurations.   
 
 

  

Fig. 10 Induced-drag contours for the example no-pod configuration and pod configuration of the NASA 
Ikhana airframe.  
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 The characteristics of the design space depend on the wing configuration, and a figure like Fig. 10 can require 
more than 100,000 function evaluations. However, using the methods presented in this paper, a visualization of the 
design space similar to that shown in Fig. 10 can be produced in seconds for a wide range of wing configurations. 
Understanding of the design space during early design phases can facilitate rapid conceptual optimization and reveal 
important aspects of the design that cannot be easily seen using high-fidelity methods alone. 

B. Sensitivity of Optimum Solution to Design Parameters 

 In general, the optimum value for B3, the optimum wingspan, and the corresponding wing-structure weight and 
minimum induced drag depend on the wing-design parameters in Eqs. (2), (4), (5), and (15). Figure 11 shows the 
percent change in minimum induced drag, optimum wingspan, optimum 3B , and optimum wing-structure weight as a 
function of the percent change in pod location, average Sb, and the parameters Wr, W/S, and TR  for the pod 
configuration of the NASA Ikhana airframe. Note that the percent change in pod location is measured in percent 
semispan.  
 
 

 

Fig. 11  Percent change in minimum induced drag and optimum wingspan, B3, and wing-structure weight 
with change in pod location and the parameters Sb, Wr, W/S, and RT for the example Ikhana pod configuration.  
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 Figure 11 shows that the optimum lift distribution, which is characterized by B3, is most sensitive to the weight 
distribution. In particular, the plots for Wr and pod location show that as the pod is shifted away from the wing root, 
or the root weight decreases, the value for B3 also decreases. Because B3 is negative, a decrease in B3 corresponds to 
a less-elliptic lift distribution, which results in an increase in the wingspan with no change in wing-structure weight. 
Thus, as the root weight decreases or the pod location is shifted outboard, induced drag decreases. This trend supports 
the result found by Phillips et al. [47] that the optimum root weight is given by Eq. (10). Whereas the Ikahana 
configurations shown in Table 1 have a root weight of 4500rW  lbf, Eq. (10) predicts a theoretical optimum root 
weight close to 3500rW  lbf. Thus, for the Ikhana airframe, we expect to see a decrease in induced drag as weight is 
shifted away from the root, as shown in Fig. 11. Note that the lift distribution is not sensitive to changes in average Sb 
or W/S and B3 only changes by about   1% with   10% changes in RT, which is consistent with the results shown in 
Fig. 8 and the observation made by Taylor and Hunsaker [49] that the optimum lift distribution is relatively insensitive 
to the taper ratio. 
 Figure 11 also shows that the optimum wing-structure weight is nearly independent of all the design parameters 
shown. In fact, the wing-structure weight does not change at all with changes in average Sb and W/S, and it changes 
by less than   0.65% with   10% changes in pod location, Wr, and RT. This supports the analytic solution found by 
Phillips et al. [48] and Taylor and Hunsaker [49] that the optimum wing-structure weight for rectangular wings with 
fixed wing loading and fixed stall speed, and for tapered wings with fixed wing loading, is independent of all other 
design parameters. 
 Note that only the optimum wingspan and corresponding induced drag are affected by changes in average Sb and 
W/S. For Sb, this is not surprising because Sb is simply a measure of how effectively the wing-structure can support 
the wing bending moments with as little wing-structure weight as possible. Thus, an increase in Sb corresponds to an 
increase in the efficiency of the wing-structural design, allowing an increase in the wingspan with no corresponding 
increase in wing-structure weight. It should be emphasized that for the range of Sb shown, the optimum design is 
deflection-limited, which means that Sb is inversely proportional to   and directly proportional to C , E, and max , as 
shown in Eq. (15). Therefore, the sensitivities shown in Fig. 11 for Sb are also characteristic of the sensitivities for   

C , E, max , and the quantity 1/ . 
 The results in this section show how the methods presented in this paper can be used for design space exploration. 
In particular, it is shown that these methods can be used to identify the optimum lift distribution, wingspan, and wing-
structure weight that minimize induced drag. Because the methods are fast, they can be used to rapidly visualize the 
coupled aerostructural design space and obtain solution sensitivities to various design parameters. It should be 
remembered that the results shown here are only valid for the two example configurations of the NASA Ikhana 
airframe given in Table 1. However, the methods presented in this paper can be used for any unswept planar wing 
with arbitrary planform and weight distribution to rapidly iterate on possible design concepts. 

VI. Conclusions 
 Low-fidelity methods are valuable for rapid aerostructural optimization during the conceptual and preliminary 
design phases. However, most modern aerostructural methods use mid- and high-fidelity solvers, which are better 
suited for later design phases. Although several analytic and low-fidelity methods exist for aerostructural optimization, 
the majority are limited in application to wings with specific planforms and weight distributions. Here, a low-fidelity 
numerical method has been presented that includes more general approximations corresponding to arbitrary planforms 
and weight distributions. The method uses an iterative solver to determine the wing-structure weight and induced drag 
for a given lift distribution and wingspan. When implemented in an optimization framework, this solver can be used 
for rapid design-space exploration and optimization.  
 Section V shows an example application of the method presented in this paper for minimizing induced drag on 
two configurations of the NASA Ikhana airframe. A summary of the optimization results, including the optimum 
wingspans, wing-structure weights, and Fourier coefficients defining the optimum lift distributions are given in  
Table 2. The optimum lift distribution for both Ikhana configurations is shown in Fig. 8. It has been shown that the 
optimum wing-structure weight for both Ikhana configurations is in good agreement with the theoretical optimum 
wing-structure weight. The optimum lift distribution for the Ikhana configurations is very similar to the analytic 
optimum lift distribution for a rectangular wing with the ideal weight distribution given in Eq. (9).  
 A visualization of the design space for each Ikhana configuration is shown in Fig. 10. It has been shown that the 
relative influence of the wingspan, lift distribution, and wing-structure weight depend on the location of the design in 
the design space. Figure 11 shows the sensitivities of the optimum design values to changes in pod location, 
proportionality coefficient, root weight, wing loading, and taper ratio for the pod configuration of the Ikhana airframe. 
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It has been shown that the optimum wingspan is primarily dependent on the proportionality coefficient and wing 
loading and that the optimum lift distribution is primarily dependent on the weight distribution. It has also been shown 
that the optimum wing-structure weight is nearly independent of all other parameters. For the Ikhana configurations 
considered here, the optimum design allows a wingspan increase of up to 18.31%, an increase in wing-structure weight 
of up to 97.21%, and a reduction in induced drag of up to 8.93% over the baseline Ikhana configuration. All results 
were obtained in a matter of seconds.  
  It should be remembered that the methods presented here were derived using the assumptions associated with 
lifting-line theory, including zero sweep and moderate to high aspect ratio. For other wing designs, modifications to 
these methods may be needed. However, the methods presented here are useful for many practical aircraft 
configurations. In early design phases, these methods can be used for rapid conceptual optimization and visualization 
of the design space. These results can provide important insight into the effects of the wing aerodynamic and structural 
properties and the wing weight distribution on the minimum-induced-drag design. 
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