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The mustard family (Brassicaceae) comprises several dozen monophyletic clades
usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research
due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe,
largely confined to western North America, harbors nine genera and c. 130 species,
with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid
and triploid Boechera hybrids have spurred interest in this genus, but the remaining
Boechereae genomes remain virtually unstudied. Here we report on comparative
genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium,
Nevada, and Sandbergia) and three Boechera species as revealed by comparative
chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome
genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed
that the ancestral Boechereae genome (n = 7) was derived from an older n = 8
genome by descending dysploidy followed by the divergence of extant Boechereae
taxa. As tribal divergence post-dated the origin of four tribe-specific chromosomes,
it is proposed that these chromosomal rearrangements were a key evolutionary
innovation underlaying the origin and diversification of the Boechereae in North
America. Although most Boechereae genera exhibit genomic conservatism, intra-tribal
cladogenesis has occasionally been accompanied by chromosomal rearrangements
(particularly inversions). Recently, apomixis was reported in the Boechereae genera
Borodinia and Phoenicaulis. Here, we report sexual reproduction in diploid Nevada,
diploid Sandbergia, and tetraploid Cusickiella and aposporous apomixis in tetraploids
of Polyctenium and Sandbergia. In sum, apomixis is now known to occur in five of the
nine Boechereae genera.

Keywords: apomixis, apospory, autopolyploidy, Cruciferae, descending dysploidy, karyotype evolution, North
America, speciation

INTRODUCTION

Geographically well-defined clades provide ideal study systems for understanding the role
of whole-genome duplications (WGDs, polyploidy) and chromosomal rearrangements in
speciation and diversification. Frequently, a group of species confined to an island, mountain
range, or (sub)continent is assumed to have originated in this region, perhaps following
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an earlier dispersal event from another part of the world (e.g.,
Linder and Barker, 2014; Givnish et al., 2016). With the advent of
molecular phylogenetics, in many cases, the inferred monophyly
of a group has confirmed its geographical determinant and helped
to elucidate its origin as well as directionality of later migrations
and dispersals (e.g., Cowie and Holland, 2008; Ogutcen and
Vamosi, 2016; Huang et al., 2018; Carter et al., 2019; Kim et al.,
2019). A geographically restricted clade might be supported by
different synapomorphies, such as morphological traits, specific
metabolic pathways, pollination syndromes, or a shared WGD,
some falling in the category of rare genomic changes (RGCs,
Rokas and Holland, 2000). Structural chromosomal changes
may underlie incipient reproductive isolation inducing species
splits and the evolution of separate gene pools, i.e., cladogenesis
(Faria and Navarro, 2010). Dysploidal (i.e., chromosome number
changes caused by fusions and fissions) as well as non-dysploidal
(i.e., deletions, duplications, inversions, and translocations)
chromosomal rearrangements can modify recombination
frequency, gene expression, the duration of cellular processes
(replication, mitosis, and meiosis), and the degree of infertility of
heterozygous hybrids. Thus, some chromosomal rearrangements
may precipitate lineage splitting yet occur within a monophyletic
clade (Freyman and Höhna, 2017).

The economically important mustard family (3977 species in
351 genera, BrassiBase1, accessed on February 1, 2020) radiated
into four (Franzke et al., 2011) to six (Huang et al., 2016)
lineages or super-tribes ∼23 million years ago (Hohmann et al.,
2015). These lineages have been divided into 52 monophyletic
tribes (BrassiBase) ranging in size from the monospecific
Shehbazieae (German and Friesen, 2014) to the Arabideae, which
harbors more than 390 species (Jordon-Thaden et al., 2013;
Karl and Koch, 2013). Many crucifer tribes do not differ in
their basal or ancestral chromosome numbers. For example,
tribes of lineage II/B and lineage III/E have the same number
of ancestrally shared linkage groups and the same dysploid
chromosomal rearrangements (Mandáková and Lysak, 2008;
Mandáková et al., 2017a). By contrast, tribes of lineage I/A,
such as Boechereae (x = 7), Descurainieae (x = 7), Erysimeae
(mostly x = 7), Turritideae (x = 6), and Yinshanieae (x = 6
and 7) (Warwick and Al-Shehbaz, 2006; BrassiBase), appear to
represent tribes that originated after independent reductions of
the ancestral chromosome number (n = 8) to n = 7 and n = 6.
None of the diploid Brassicaceae tribes with a clade-specific
descending dysploidy have been investigated genomically, so
it remains unclear whether intra-tribal diversification (i.e.,
speciation and origin of new genera) has involved non-dysploidal
chromosomal rearrangements.

Here we focus on the tribe Boechereae which harbors c. 130
species. The vast majority of Boechereae taxa occurs only in
North America, with one of these extending to Greenland and
three species being endemic to the Russian Far East (Alexander
et al., 2013; Doudkin and Volkova, 2013). Molecular studies
(Beilstein et al., 2010; Nikolov et al., 2019) using various
chloroplast and nuclear gene markers support the Boechereae
(with a shared chromosome base number of x = 7) as a

1https://brassibase.cos.uni-heidelberg.de/

monophyletic clade sister to the New World tribe Halimolobeae
(x = 8; 39 species in five genera, Al-Shehbaz, 2012). Alexander
et al. (2013) recognized nine genera of Boechereae, seven of
which (Anelsonia J. F. Macbride and Payson, Cusickiella Rollins,
Nevada N. H. Holmgren, Phoenicaulis Nuttall, Polyctenium
Greene, Sandbergia Greene, and Yosemitea P. J. Alexander and
Windham) are mono- or bispecific, and, except for Sandbergia
whitedii (Piper) Greene, restricted to the western United States.
Boechera Á. Löve and D. Löve is by far the most diverse genus
of the tribe, largely confined to the western part of the North
American continent (Alexander et al., 2013). One group of eight
species often assigned to Boechera was transferred to the genus
Borodinia N. Busch by Alexander et al. (2013). This species group
has the most discrete geographic range, apparently restricted
to eastern North America and the Russian Far East [Borodinia
macrophylla (Turcz.) O. E. Schulz]. Despite their largely allopatric
distributions, Boechera and Borodinia species have hybridized in
nature to produce one widespread sexual tetraploid and a series of
apomictic triploids and tetraploids that erase any morphological
distinctions between the two genera (Windham et al., 2014).
When subsumed within Boechera, these lineages are informally
designated the “western” and “eastern” clades, respectively.

The species now assigned to Boechera (x = 7) were
originally included in Arabis L. (tribe Arabideae; x = 8), but
a series of molecular analyses (Koch et al., 2000; Beilstein
et al., 2010; Nikolov et al., 2019) has shown that these
genera belong to different major lineages of Brassicaceae.
Boechera is phylogenetically closely related to the model genus
Arabidopsis Heynh. (Figure 1A) and is best known for its
classic agamic complex consisting of numerous, morphologically
diverse, facultative, and obligate gametophytic apomicts. These
are generally of hybrid origin, arising from a diverse array
of sexual diploids with more restricted habitats. The genus is
named for Danish botanist Tyge Böcher, who first documented
apomixis in Boechera holboellii (Hornem.) Á. Löve and D. Löve
(Böcher, 1951). The relatively close relationship of these species
to Arabidopsis, combined with its diversity of ploidies (Alexander
et al., 2015) and apomixis types, at both the diploid and polyploid
levels (Carman et al., 2019), have made the genus a major focus
for apomixis research (e.g., Naumova et al., 2001; Schranz et al.,
2005; Lee et al., 2017; Kliver et al., 2018; Rojek et al., 2018;
Brukhin et al., 2019). Until recently, apomixis within Boechereae
was thought to be confined to the large genus Boechera. However,
Mandáková et al. (2020) documented the occurrence of apomixis
at the diploid, triploid, and tetraploid levels in one of the smaller
genera of Boechereae (Phoenicaulis), raising the possibility that
apomixis might also occur in other Boechereae genera.

In flowering plants, apomixis can be defined as asexual seed
formation where clonal embryos originate either from unreduced
eggs produced in unreduced female gametophytes (gametophytic
apomixis) or from somatic cells of the ovule wall without
an intervening unreduced gametophyte generation (sporophytic
apomixis). In sporophytic apomixis, a reduced gametophyte
forms, which supports the clonal embryo while it develops. The
reduced gametophyte may or may not contain a sexually derived
embryo (Asker and Jerling, 1992; Hand and Koltunow, 2014).
Gametophytic apomixis is a prominent mode of reproduction
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FIGURE 1 | (A) Phylogenetic position of the Boechereae in the Brassicaceae based on Nikolov et al. (2019). In parentheses, the number of genera and species is
given based on data from BrassiBase (https://brassibase.cos.uni-heidelberg.de/). (B) Generic relationships within the Boechereae based on Beilstein et al. (2010)
(Sandbergia and Yosemitea not shown).

in Boechera (Böcher, 1951; Roy, 1995; Naumova et al., 2001;
Schranz et al., 2005), where it has greatly increased the diversity
of genotypes and phenotypes by stabilizing the products of
reticulate evolution (Beck et al., 2012; Carman et al., 2019). Three
types of gametophytic apomixis occur in Boechera, and these are
differentiated based on where the unreduced gametophyte forms:
(i) if from a megasporocyte [megaspore mother cell (MMC)],
it is referred to as Antennaria type diplospory, (ii) if from an
apomeiotic dyad member of a first division meiotic restitution
event, it is referred to as Taraxacum type diplospory, and (iii) if
from a nucellar or parietal cell, it is referred to as Hieracium type
apospory (Carman et al., 2019). The Antennaria type appears to
be an oddity in Boechera that has been observed only rarely in

plants that otherwise reproduce by Taraxacum type diplospory.
In contrast, Taraxacum type diplospory and apospory are more
commonly encountered in natural populations of Boechera than
is sexual reproduction (Carman et al., 2019).

In the light of the fragmentary knowledge of genome evolution
and reproductive modes in the Boechereae, we embarked on
comparative cytogenetic and embryological analysis of several
taxa representing the tribal diversity. We followed several aims:
(1) To expand cytogenomic sampling of the species and genera
of Boechereae to provide a more complete understanding of
chromosomal evolution in the tribe, (2) to determine whether
diversification within the tribe was accompanied by clade-specific
chromosomal rearrangement, (3) to test whether an ancestral
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n = 7 genome inferred for Boechera and Phoenicaulis (Mandáková
et al., 2015b, 2020) provides an accurate reconstruction of the
ancestral genome of the tribe as a whole, and (4) to gain insights
into the reproductive modes of previously unsampled Boechereae
genera by conducting embryological analyses on most of the
species analyzed cytogenomically.

MATERIALS AND METHODS

Species Analyzed
Ten Boechereae species were selected to span the phylogenetic
diversity of the tribe (Figure 1). These included Boechera formosa
(Greene) Windham and Al-Shehbaz (2n = 14), Boechera gracilipes
(Greene) Dorn (2n = 14), Boechera oxylobula (Greene) W.
A. Weber (2n = 14), Borodinia missouriensis (Greene) P. J.
Alexander and Windham (2n = 14), Cusickiella douglasii (A.
Gray) Rollins (2n = 28), Nevada holmgrenii (Rollins) N. H.
Holmgren (2n = 14), Phoenicaulis cheiranthoides (2n = 14, 21, 28),
Polyctenium fremontii (S. Watson) Greene (2n = 28), Sandbergia
perplexa (L. F. Henderson) Al-Shehbaz (2n = 14), and S. whitedii
(2n = 21). As the tribe Halimolobeae was repeatedly retrieved as
a sister clade to Boechereae (e.g., Beilstein et al., 2010; Couvreur
et al., 2010; Alexander et al., 2013), Pennellia micrantha (A. Gray)
Nieuwland (2n = 16) was selected to represent the Halimolobeae
clade outgroup. The origins of the analyzed populations are listed
in Supplementary Table S1; multiple individuals were analyzed
from each population.

The analyzed plants were either collected in the wild or grown
in a growth chamber from seeds collected in the wild. Young
inflorescences of the analyzed plants were collected and fixed
in freshly prepared fixative (ethanol: acetic acid, 3: 1) overnight,
transferred to 70% ethanol and stored at−20◦C.

Chromosome Preparation
Chromosome spreads from fixed young flower buds containing
immature anthers were prepared according to published
protocols (Lysak and Mandáková, 2013; Mandáková and Lysak,
2016a). Chromosome preparations were treated with 100 µg/ml
RNase in 2× sodium saline citrate (SSC; 20× SSC: 3 M sodium
chloride, 300 mM trisodium citrate, pH 7.0) for 60 min and with
0.1 mg/ml pepsin in 0.01 M HCl at 37◦C for 5 min, then post-
fixed in 4% formaldehyde in distilled water, and dehydrated in an
ethanol series (70, 90, and 100%, 2 min each).

DNA Probes
The BAC clone T15P10 (AF167571) of Arabidopsis thaliana (L.)
Heynh. bearing 35S rRNA gene repeats was used for in situ
localization of nucleolar organizer regions (NORs), and the
A. thaliana clone pCT4.2 (M65137), corresponding to a 500 bp
5S rDNA repeat, was used for localization of 5S rDNA loci. For
Comparative Chromosome Painting (CCP), 674 chromosome-
specific BAC clones of A. thaliana (The Arabidopsis Information
Resource, TAIR2) were used to establish contigs corresponding

2http://www.arabidopsis.org

to the 22 genomic blocks (GBs) and eight chromosomes (AK1–
AK8) of the Ancestral Crucifer Karyotype (ACK; Lysak et al.,
2016). See Supplementary Tables S2–S8 for the list of BAC clones
used to identify the 22 GBs on chromosomes of the Boechereae
species. To determine and characterize inversions and split
GBs, some BAC contigs were split into smaller subcontigs and
differentially labeled (e.g., Aa, Ab, Ca, Cb, see Supplementary
Tables S3–S8). All DNA probes were labeled with home-
made biotin-dUTP, digoxigenin-dUTP, or Cy3-dUTP by nick
translation as described by Mandáková and Lysak (2016b).

Comparative Chromosome Painting
(CCP)
DNA probes were pooled to follow the design of a given
experiment, ethanol precipitated, dried, and dissolved in 20 µl
of 50% formamide and 10% dextran sulfate in 2 × SSC. The
20 µl of the dissolved probe were pipetted on a chromosome-
containing slide and immediately denatured on a hot plate
at 80◦C for 2 min. Hybridization was carried out in a moist
chamber at 37◦C overnight. Post-hybridization washing was
performed in 20% formamide in 2 × SSC at 42◦C three
times (5 min each time). Hybridized probes were visualized
either as the direct fluorescence of Cy3-dUTP or through
fluorescently labeled antibodies against biotin-dUTP and
digoxigenin-dUTP following Mandáková and Lysak (2016b).
Chromosomes were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI, 2 µg/ml) in Vectashield antifade.
Fluorescence signals were analyzed and photographed using a
Zeiss Axioimager epifluorescence microscope with a CoolCube
camera (MetaSystems). Images were acquired separately for all
four fluorochromes using appropriate excitation and emission
filters (AHF Analysentechnik). The four monochromatic images
were pseudocoloured, merged, and cropped using Photoshop CS
(Adobe Systems) and ImageJ (National Institutes of Health).

In silico Sequence Analysis
Boechera stricta (Graham) Al-Shehbaz (v1.2; Lee et al., 2017),
Arabidopsis lyrata (L.) O’Kane and Al-Shehbaz (v2.1; Hu et al.,
2011), and A. thaliana (TAIR 10) genome assemblies and
annotations were downloaded from the Phytozome webpage3.
Inter-genome collinearity was analyzed by SynOrths, identifying
whether two homeologous genes are a conserved syntenic
pair based on their sequence similarity and the support of
homeologous flanking genes (Cheng et al., 2012).

Embryological Analyses
Clusters of pre-anthesis staged floral buds were fixed in 3:1
fixative for 48 h and stored in 70% EtOH. Ovaries were
excised, cleared, measured, and mounted following Mandáková
et al. (2020). An Olympus (Center Valley, PA, United States)
BX53 microscope with differential interference contrast (DIC)
optics and equipped with a DP74 digital camera with cellSens
Dimension 1 software (Olympus) was used to investigate parietal
cell, MMC, and female gametophyte origins.

3https://phytozome.jgi.doe.gov/pz/portal.html
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RESULTS

Based on the ACK, and on previously analyzed Boechereae
species (Mandáková et al., 2015a, 2020), detailed comparative
cytogenetic maps were constructed by CCP for each of the
10 Boechereae species and for P. micrantha (Figure 2 and
Supplementary Tables S2–S8).

The Outgroup Pennellia micrantha
Genome Structurally Mirrors the ACK
Comparative chromosome painting in P. micrantha (2n = 16,
Halimolobeae) was successful in identifying all 22 conserved GBs
making up the eight chromosomes (Hal1–Hal8, Figures 2, 3
and Supplementary Table S2). The ACK-like Pennellia genome
further corroborrated the earlier assumption (Mandáková et al.,
2015b, 2020) that the Most Recent Common Ancestor (MRCA)
of Boechereae and Halimolobeae had eight chromosomes and
structurally resembled the ancestral genome of crucifer lineage I.

Overall Structural Stasis of Boechereae
Genomes
Comparative chromosome painting with painting probes
designed according to the structure of the seven linkage
groups in Boechera (Mandáková et al., 2015a) and Phoenicaulis
(Mandáková et al., 2020), were effective in identifying all seven or
14 chromosome pairs among the 10 Boechereae species analyzed.
All 10 genomes had a very similar organization (Figure 2), except
for a few species-specific chromosomal rearrangements (see
below). The overall structural genome similarity among different
Boechereae genera allowed us to reconstruct the genome of the
MRCA of Boechereae.

Ancestral Boechereae Genome
By comparing the 10 Boechereae genomes studied herein with
those of three diploid Boechera taxa (Mandáková et al., 2015b),
Phoenicaulis (Mandáková et al., 2020), and P. micrantha, we
inferred the ancestral Boechereae genome with seven pairs of
chromosomes (Boe1–Boe7, Figures 2, 3). Three of these pairs
(Boe4, Boe6, and Boe7) retained their ancestral structure as in
the ACK, or Halimolobeae, whereas four pairs (Boe1–Boe3 and
Boe5) are specific to the Boechereae genomes (Figures 2–4 and
Supplementary Table S3).

CCP chromosome painting analyses allowed us to reconstruct
the origin of the four Boechereae-specific chromosomes. The
origin of chromosomes Boe1 and Boe2 (Figure 4A) most likely
included an initial 0.52-Mb pericentric inversion on ancestral
chromosome AK1 with breakpoints within GBs A [between
BAC clone F13B4 (At1g13620) and T16N11 (At1g15410)] and
C [between F8L10 (At1g53170) and F12M16 (At1g53160)]. The
size of this inversion and other documented rearrangements were
inferred from the physical length (Mb) of A. thaliana BAC contigs
spanning these chromosome regions. The inversion-bearing
AK1 chromosome underwent a whole-arm translocation with
paleochromosome AK2 resulting in chromosomes Boe1 (GBs Aa,
Ca, and D) and Boe2 (Cb, Ab, B, and E). Chromosome Boe3 (F,
G, W, and X) originated by a whole-arm translocation between

paleochromosomes AK3 and AK8 (Figure 4B). The second
translocation chromosome (GBs V and H) was involved in
an end-to-end translocation with chromosome AK5, mediating
the chromosome number reduction (8 → 7) in Boechereae.
The collinearity of GBs K-L and M-N and the absence
of the original centromere suggest that the “chromosome
fusion” was accompanied or followed by a removal of the
AK5 paleocentromere (Figure 4B). Remnants of the AK5
paleocentromere, apparent as heterochromatic knobs and/or
unpainted chromosome segments, were not observed in any of
the analyzed species (Figures 3, 4B).

Clade-Specific Chromosomal
Rearrangements
The ancestral Boechereae genome remained conserved in the
diploid B. gracilipes (Figures 2, 3 and Supplementary Table S3)
and the tetraploid P. fremontii (Figure 2 and Supplementary
Table S3). Given that both Polyctenium subgenomes had identical
chromosome structure and the pachytene chromosomes formed
quadrivalents (Figure 5), the analyzed accession of P. fremontii
was most likely of autotetraploid origin.

In the three cytotypes of P. cheiranthoides (2x, 3x, and
4x; Mandáková et al., 2020), diploid N. holmgrenii, diploid
S. perplexa, and triploid S. whitedii, chromosome Boe4 was
altered by an 8.24-Mb paracentric inversion spanning the
entire block J (whole long arm). The breakpoints were
located in the pericentromeric and subtelomeric regions
(Figures 2, 6 and Supplementary Tables S4, S5). The absence of
subgenome differentiation in the analyzed triploid and tetraploid
populations of Phoenicaulis and S. whitedii suggests intra-
specific, autopolyploid origins for these polyploids. Additionally,
N. holmgrenii exhibited a 2.55-Mb whole-arm pericentric
inversion on Boe5. In this population, the short arm (GB V)
was inverted, rendering the acrocentric chromosome telocentric
(Figures 2, 6 and Supplementary Table S5).

Chromosome Boe4 of tetraploid C. douglasii also displayed
inversions (Figure 2 and Supplementary Table S6). A 2.06-
Mb pericentric inversion, spanning the whole short arm (GB
I), converted the chromosome from acrocentric to telocentric.
Boe4 was also modified by a 5.35-Mb paracentric inversion
[breakpoint between blocks I and J, and within block J—
between T28M21 (At2g40090) and T3G21 (At2g40240)]. The
Cusickiella population analyzed for this study was most likely
of autotetraploid origin given that both subgenomes were
structurally similar, including a reshuffling of Boe4 (data not
shown). Finally, in B. formosa and B. oxylobula, Boe5 was altered
by a 9.83-Mb pericentric inversion with breakpoints within block
V [between K14A3 (At5g47175) and MQL5 (At5g47150)] and
K-L [between MQP15 (At3g30655) and MED5 (At3g30663)],
converting the chromosome from acrocentric to metacentric
(Figures 2, 6 and Supplementary Table S7).

Borodinia missouriensis had the most reshuffled genome
encountered among the taxa analyzed (Figures 2, 6 and
Supplementary Table S8). A whole-arm translocation between
Boe1 (GBs Aa, Ca, and D) and Boe3 (F, G, W, and X) produced
two B. missouriensis-specific translocation chromosomes. The
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(Boe1–Boe7). The ancestral Boechereae genome (n = 7) originated from a Halimolobeae-like genome (n = 8) through descending dysploidy mediated by an
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Supplementary Tables S2, S3, respectively. Chromosomes were counterstained by DAPI. The fluorescence signals of the painting probes were captured as black
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species also shared a 2.55-Mb whole-arm pericentric inversion
spanning block V of Boe5 with N. holmgrenii. In B. missouriensis,
this was followed by a small 0.57-Mb pericentric inversion
splitting block V into Va and Vb and placing the Boe5
centromere close to the chromosome terminus between BACs
K24F5 (At5g43211) and MNL12 (At5g43190).

Localization of rDNA Loci
In P. micrantha, NORs (35S rDNA loci) were localized on
the termini of five chromosomes (Hal1, Hal3, Hal4, Hal6,
and Hal7) and two 5S rDNA loci were adjacent to the
pericentromeric heterochromatin of chromosomes Hal4 and
Hal6 (Supplementary Figure S1). A single NOR and 5S rDNA
locus were identified in eight Boechereae species analyzed; two
NORs were found in Cusickiella and two 5S loci in Nevada

(Supplementary Figure S1). NORs were located terminally
on the short chromosome arm of Boe4 (Boechera spp. and
Cusickiella) or Boe5 (Borodinia, Cusickiella, Polyctenium, and
Nevada). In Phoenicaulis and both Sandbergia species, NORs
were located interstitially, close to the pericentromere of Boe6.
This supports the close relationship between Phoenicaulis and
Sandbergia. Interestingly, all telocentric chromosomes were
NOR-bearing (Boe4 in Cusickiella and Boe5 in Borodinia and
Nevada). 5S rDNA loci were found positioned interstitially,
close to the pericentromere of Boe5 (Cusickiella, Nevada, and
Phoenicaulis), Boe6 (Boechera spp. and Polyctenium), and Boe7
(Borodinia, Nevada, and both Sandbergia spp.).

In triploid (Phoenicaulis, S. whitedii) and tetraploid
(Cusickiella, Phoenicaulis, Polyctenium) taxa/cytotypes, the
position of rDNA gene loci at the same chromosomal positions
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within three (triploid) or four (tetraploid) chromosome
sets, further supported the purported autopolyploid origins
of these genomes.

The Inactive Centromere Between
Genomic Blocks K-L and M-N in
Boechera stricta
The B. stricta genome contains an inactive centromere between
GBs K-L and M-N on chromosome Boe5. To characterize this
region at the sequence level, we compared scaffold 556 in the
B. stricta assembly with orthologous genes on homeologous
chromosome 3 and 5 in A. thaliana and A. lyrata, respectively
(Figure 7A). The centromeric region is delimited by genes
of the Peroxidase superfamily (loci At3g32980) and genes
of the Transducin family (loci At3g33530). In B. stricta, the
site of the eliminated (AK5) paleocentromere corresponds

to a 13-kb region between orthologs Bostr.0556s0638
and Bostr.0556s0640. This region contains a single gene
(Bostr.0556s0639), which is presumably paralogous to gene
Bostr.13158s0074 (homology of 84.9%), located in the distant
part of block M-N on the same chromosome. In the Arabidopsis
genomes, orthologs of Bostr.13158s0074 are located within M-N
on chromosomes At3 (At3g60740; At3: 22,447,245-22,453,364)
and Al5 (scaffold_503309.1; Al5: 20,028,781−20,034,751),
respectively. Additionally, the A. lyrata genome possesses
a paralog, Al_scaffold_0002_1021, located on Al2 in GB E
(position 9,412,104-9,422,712). No remnants of tandem repeats
were detected within the 13-kb region (Figure 7B). Comparable
distribution of transposable elements and their remnants was
observed within the former centromeric region, in upstream and
downstream 20 kb regions (Figure 7C) and along the whole Boe5
pseudo-chromosome. The absence of repeat segment enrichment
within the short 13-kb region supports an almost complete
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removal of the AK5 paleocentromere after the end-to-end
“chromosome fusion” (Figure 4B).

The Heterochromatic Het Chromosome
Was Absent in the Analyzed Boechereae
Species
In apomictic Boechera species (2n = 14) and Phoenicaulis
cytotypes (2n = 21 and 28, but not apomictic 2n = 14), one
of the Boe1 homologs (a Het chromosome) displayed expanded
regions of pericentromeric heterochromatin (Mandáková et al.,
2015a, 2020). In all analyzed species of the present study,
pericentromeric heterochromatin regions of the Boe1 homologs
were comparable in size.

High Frequency Apospory Occurs in
Polyctenium and Sandbergia
Six accessions (Supplementary Table S1), representing five
species distributed across four genera, were embryologically
analyzed (Figure 8). Tetraploid C. douglasii, diploid
N. holmgrenii, and diploid S. perplexa, were sexual. Tetraploid
P. fremontii (MDW 2055, ES 1078) and triploid S. whitedii were
highly aposporous. In the P. fremontii population ES 1078, the
dyad to tetrad ratio was high (Figure 8), which in Boechera would
generally indicate diplospory (Carman et al., 2019). However,
three of the four observed gametophytes were forming from
nucellar cells (apospory), and the fourth was forming from the
surviving megaspore of a sexual tetrad. While this sample size is
too small to rule out diplospory, our observations indicated that
apospory initiates early during ovule development with meiosis
regularly terminating as early as the sexual dyad to early tetrad
stages. Such termination may have inflated the dyad to tetrad
ratio (Figure 8).

Parietal cell frequencies were ≥ 70% for five of the six
taxa studied (Figure 8). These frequencies are similar to

those observed in Phoenicaulis (Mandáková et al., 2020),
but they are much higher than those generally observed
in Boechera (<50%) (Naumova et al., 2001; Carman et al.,
2019). The ES 1078 P. fremontii sample was too small to
determine this frequency. Parietal cells form from the distal
daughter cell of the mitotic division of the archesporial
cell. In these cases, the MMC forms from the proximal
daughter cell (Figures 9A,B). In ovules of tenuinucellate
species, the opposite normally occurs, i.e., the MMC
differentiates distally, and the proximal cell is considered
nucellar (Johri et al., 1992). In this respect, the Boechereae
show tendencies toward crassinucellate development, with
parietal cells sometimes undergoing further division to produce
a parietal tissue that positions the meiocyte deeper within the
ovule (Figures 9C–G).

Sexual and aposporous gametophyte formation were of
the eight-nucleate Polygonum type (Figures 9H–J). In the
aposporous taxa, one or more nucellar cells, and sometimes
parietal cells, initiated vacuolate gametophyte formation as
early as MMC differentiation (Figures 9K,L). As described
above, this may have terminated meiosis prior to MII and
caused the abnormally high sexual dyad to tetrad ratio
observed for the P. fremontii population ES 1078 (Figure 8).
Nucellar, parietal, and nucellar epidermis cells degenerated
quickly in front of the rapidly growing sexual or aposporous
gametophytes (Figures 9H–N).

DISCUSSION

The Ancestor of the Boechereae Had
Seven Chromosomes and Descended
From an ACK-Like Genome With Eight
Chromosomes
Using BAC-based CCP, we analyzed 14 samples of Boechereae
representing seven of the nine genera recognized by Alexander
et al. (2013). These analyses revealed a high level of genomic
stasis across the tribe, with the earliest diverging genus
Polyctenium (Figure 1; Beilstein et al., 2010; Couvreur et al.,
2010) and B. gracilipes (a member of the derived “western
Boechera clade,” Figure 1) showing identical chromosome
structures (Figure 2). Our analysis corroborrated our earlier
hypothesis (Mandáková et al., 2015b, 2020) of an ancestral
Boechereae genome with seven chromosomes (n = 7) derived
from an older n = 8 genome by descending dysploidy.
This precursor n = 8 genome structurally resembled the
ACK, an ancestral genomic arrangement present in many
tribes of crucifer lineage I (Lysak et al., 2016). Indeed,
analysis of the P. micrantha genome from the Halimolobeae,
sister group to the Boechereae, confirmed that the eight
chromosomes of Halimolobeae genomes (Bailey et al., 2007)
are homeologous to the eight chromosomes of the ACK.
While the eight ancestral chromosomes remained conserved
in Halimolobeae, the divergence of extant Boechereae appears
to coincide with or follow a descending dysploidal change
from n = 8 to n = 7.
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Tribe-Specific Descending Dysploidy
Given that all sampled Boechereae exhibit a chromosome
base number of x = 7, it is likely that the descending
dysploidy event documented above occurred prior to the initial
divergence of the extant members of the tribe approximately
8 million years ago (Couvreur et al., 2010). This reduction of
chromosome number did not result from a “simple fusion”
of two chromosomes. The first step involved the origin of a
transient translocation (AK3/AK8) chromosome by a whole-
arm translocation, followed by an end-to-end translocation
between AK3/AK8 and AK5 (→ chromosomes Boe3, Boe5).
The chromosome-arm collinearity of the resulting Boe5 points
to inactivation or loss of the AK5 centromere. Interestingly,
this paleocentromere has disappeared from many other crucifer
genomes independently, and it is the most frequently inactivated
centromere detected so far among the tribes of lineage I
(Camelineae: Lysak et al., 2016; Cardamineae: Mandáková
et al., 2016; Microlepidieae, Mandáková et al., 2010, 2017b).
As tribal divergence post-dates the origin of four tribe-specific
chromosomes, we propose that the three translocations involving
five out of eight ancestral chromosomes were a key evolutionary
innovation underlying the origin and diversification of the
Boechereae in North America.

Genus- and Species-Specific Inversions
Although reciprocal translocations clearly played a major role in
the origin of the tribe, the only additional translocation noted

within the tribe was a unique whole-arm transfer between Boe1
and Boe3 that produced two structurally unique chromosomes
in B. missouriensis (Figure 2). However, chromosomal inversions
proved to be common within the group, as they are in other
mustards (e.g., Mandáková et al., 2015a; Fransz et al., 2016)
and land plants in general (Hoffmann and Rieseberg, 2008).
Autapomorphic pericentric inversions on chromosome Boe5
were observed in both Borodinia and Nevada, while Cusickiella
exhibited unique pericentric and paracentric inversions on
Boe4 (Figure 2).

Our analyses identified three potentially synapomorphic
chromosomal rearrangements within the tribe: (1) a 9.83-
Mb pericentric inversion on Boe5 shared by B. formosa and
B. oxylobula, but not by B. gracilipes, (2) a 2.55-Mb pericentric
inversion on Boe5 shared by N. holmgrenii and Borodinia
missouriensis, and (3) a 8.24-Mb paracentric inversion on Boe4
shared by N. holmgrenii, all three ploidies of P. cheiranthoides,
and both species of Sandbergia (Figure 2). Support for
the synapomorphic status of these three chromosomal
rearrangements is equivocal in the few phylogenetic analyses of
Boechereae published to date.

With respect to the 9.83-Mb pericentric inversion apparently
shared by B. formosa and B. oxylobula, the only phylogenetic
analysis with appropriate taxon sampling is the concatenated
nuclear gene tree of Alexander et al. (2013). This tree shows
very weak support for a clade encompassing B. oxylobula and
B. gracilipes but excluding B. formosa. A close relationship

Frontiers in Plant Science | www.frontiersin.org 10 May 2020 | Volume 11 | Article 514

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00514 May 26, 2020 Time: 17:57 # 11

Mandáková et al. Genome Evolution in Boechereae

Arabidopsis lyrata
chromosome 5

Boechera stricta
chromosome 5: Scaffold556

centromere

Bostr.0556s0639

Bostr.0556s0640
 

Bostr.0556s0641
 

Bostr.0556s0642
 
 

Bostr.0556s0643
 
 

Bostr.0556s0644
 

Bostr.0556s0638

Bostr.0556s0637

Bostr.0556s0636

Bostr.0556s0635

Bostr.0556s0634

Bostr.0556s0633

 
... ... ......

 

Bostr.0556s0645
 
 

... ...
7,040,676 bp
 

4,023,845 bp
 

9,485,852 bp
 

4,108,190 bp
 

inactive centromere
AT4G08680

7,214,983 bp
 

9,419,596 bp
 

Arabidopsis thaliana
chromosome 3 

K-L M-N
centromere AT3G33530

 
AT3G32980
 

AT3G32940
  

AT3G30842AT3G30841
 

AT3G32930
 

0
... ... ......

 

... ...

AT3G33520
 

AT3G42170
 

AT3G42180
 

AT3G42630
 

AT3G42640
 

12,591,392 bp 14,728,210 bp
 

genomic block

13,529,997 bp
 

14,093,670 bp
 

0
0

bp

bp

A

B

C

14,728,210 bp
 

Al_scaffold_0005_967 Al_scaffold_0005_969 fgenesh2_kg.5__747__AT3G32940.1 

fgenesh2_kg.5__746__AT3G32930.1 

9,455,127 bp
 

 1.960105_dloffacs

fgenesh1_pm.C_scaffold_5000600 fgenesh2_kg.5__752__AT3G33520.1 

fgenesh1_pm.C_scaffold_5000603 

fgenesh1_pm.C_scaffold_5000604 

fgenesh2_kg.5__754__AT3G42630.1 

fgenesh1_pm.C_scaffold_5000607 fgenesh2_kg.5__745__AT3G30842.1

FIGURE 7 | Sequence comparison of the AK5 centromeric region on homeologous chromosomes in Arabidopsis thaliana, A. lyrata and Boechera stricta. (A) The
functional centromere on chromosome 3 and 5 in A. thaliana and A. lyrata, respectively, is located between genomic blocks K-L and M-N, between At3g32980 and
At3g33530. The 13-kb region corresponding to the inactive AK5 centromere is located between genes Bostr.0556s0638 and Bostr.0556s0640 on chromosome
Boe5. (B) A dot-plot self-comparison of the 13-kb region on Boe5 showing the absence of tandem repeat arrays. (C) Annotation of the B. stricta scaffold 556
including the 13-kb region and regions 20 kb upstream and downstream. Transposable elements and their remnants do not exhibit a higher abundance within the
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between B. oxylobula (which has the inversion) and B. gracilipes
(which does not) is congruent with morphology in this
case, and it argues against the 9.83-Mb pericentric inversion
being synapomorphic.

Concerning the 2.55-Mb pericentric inversion shared by
N. holmgrenii and B. missouriensis, the two published analyses
with appropriate taxon sampling yielded conflicting topologies.
The concatenated nuclear gene tree of Alexander et al. (2013)
provides very weak support for a sister relationship between
Nevada and Borodinia, which would favor the interpretation of
the 2.55-Mb inversion as a synapomorphic character. However,
the Boechereae phylogeny presented by Beilstein et al. (2010)

places Nevada as sister to Phoenicaulis not Borodinia, the
latter being sister to a clade comprising Boechera s.s. and
Anelsonia (Figure 1B). If this phylogeny is correct, the 2.55-Mb
inversion apparently shared by Nevada and Borodinia would have
originated independently.

The final potential chromosomal synapomorphy to be
considered is the 8.24-Mb paracentric inversion shared by
N. holmgrenii, all three ploidies of P. cheiranthoides, and both
species of Sandbergia (Figure 2). Among previously published
phylogenies, the Beilstein et al. (2010) topology hypothesizes a
sister relationship between Nevada and Phoenicaulis (Sandbergia
was not sampled). This would be congruent with the 8.24-Mb
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inversion on Boe4 being interpreted as synapomorphic. However,
the concatenated nuclear gene tree of Alexander et al. (2013)
hypothesizes a sister relationship (very weakly supported)
between Nevada and Borodinia and provides no resolution
of inter-generic relationships for Phoenicaulis or Sandbergia.
This creates a conflict between the only two inversions that
could be a synapomorphy. If the Beilstein et al. (2010)
phylogeny is correct, then the 8.24-Mb inversion discussed here
could be synapomorphic but the 2.55-Mb inversion mentioned
previously would not. On the other hand, if the Alexander
et al. (2013) topology is correct, then the 2.55-Mb inversion
could be synapomorphic but the 8.24-Mb inversion would not.
A better resolved and supported phylogeny will be needed
to assess the homology of the chromosomal rearrangements
documented herein.

Chromosomal inversions appear to be relatively common in
Boechereae, but the existence of breakage “hotspots” on several
chromosomes can make it difficult to infer homology. In our
dataset, most of the inversions detected are pericentric and occur
in just one or two samples or taxa. The only inversion that appears
to have any time depth is the 8.24-Mb paracentric inversion
on Boe4 (shared by six samples representing four species and
three genera). The others appear to be more recent, like the 8.4-
Mb paracentric inversion on chromosome Bs1 that distinguishes
the West genotype of B. stricta from other populations of the
species (Lee et al., 2017). Some of these young inversions likely
originated since the last glacial maximum, suggesting that this
type of chromosomal rearrangement may be an ongoing and
important contributor to reproductive isolation and speciation
within the Boechereae.

The Boechereae n = 8 Ancestor in a
Phylogeographic Context
Eurasia, specifically the Irano-Turanian floristic region, is
believed to be the cradle of crucifer origin (Franzke et al.,
2009). Although long-distance dispersal events contributed to

plant migrations from Eurasia to North America and in the
opposite direction (e.g., Wang et al., 2015; Huang et al., 2018),
the Bering land bridge played the key role for the spreading
of seed plants, including crucifers, from Eurasia to the North
American subcontinent (e.g., Carlsen et al., 2010; Wen et al.,
2010; Karl and Koch, 2013; Jiang et al., 2019). Among the
clades belonging to crucifer lineage I, some are endemic to
the New World (Halimolobeae and Physarieae), others have a
bi-continental distribution in Asia and America (Camelineae,
Cardamineae, Crucihimalayeae, Descurainieae, Erysimeae, and
Smelowskieae), but the Boechereae are confined to North
America with only three species occurring in the Russian Far East.
The bi-continental distribution of several tribes in the lineage I,
and tribes of other crucifer lineages (e.g., Arabideae: Karl and
Koch, 2013), makes the Bering land bridge the most plausible
colonization route for several (and perhaps all) crucifer clades
to North America.

Since the Halimolobeae are consistently retrieved as the
sister clade to Boechereae (e.g., Beilstein et al., 2010; Nikolov
et al., 2019) and Halimolobeae genomes resemble the ACK
genome with n = 8, it is likely that the ancestral genomes of
Boechereae and Halimolobeae arose from this common ancestor.
The present-day geographic ranges of the two tribes differ,
with Boechereae concentrated in the United States and Canada
(barely extending into Mexico) and Halimolobeae generally more
southern in distribution. In fact, Halimolobeae has two distinct
centers of diversity, one extending from central Mexico to the
southwestern United States, and the other in the Andes, from
Ecuador to central Argentina (Bailey et al., 2007). The geographic
ranges of the two tribes overlap in a narrow band stretching
east to west along the United States/Mexico border. As both
tribes have the closest phylogenetic affinity to the primarily
Eurasian clades of lineage I, we propose that the MRCA of
Boechereae/Halimolobeae reached North America via the Bering
land bridge. Couvreur et al. (2010) estimated that the Boechereae
and Halimolobeae diverged c. 8 mya (late Miocene) and their
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FIGURE 9 | Megasporogenesis and sexual and aposporous gametophyte formation in P. fremontii (A,K–N) and sexual C. douglasii (B,D,F,G), N. holmgrenii (C), and
S. perplexa (E,H–J). (A) Archesporial cell (AC) at the budding integument stage. (B) Mitotic division of an AC yielding a proximal MMC and a distal parietal cell (P).
(C,D) Anticlinal and paraclinal divisions, respectively, of a P to yield a two-celled parietal tissue. (E,F) Dyads (D) with one and two Ps, respectively. (G) Tetrad showing
the functional megaspore (FM) and three degenerating megaspores (DM). Also shown is a parietal tissue consisting of three Ps that formed from two paraclinal
divisions of the original P. (H) Two-nucleate sexual gametophyte (G2) showing a central vacuole (v), two of three DM, and a P. (I) Four-nucleate sexual gametophyte
(G4) with three nuclei visible. (J) Eight-nucleate sexual gametophyte (G8) showing egg apparatus formation at the micropylar end of the gametophyte. (K) 1-nucleate
aposporous gametophyte (AG1) from a nucellar cell at the MMC stage. (L) AG1 from a parietal cell (P-AG1) at the tetrad stage. (M) AG1 from a nucellar cell at the
late tetrad stage showing functional megaspore degeneration (DFM), DMs, degenerating nucellar cells, and a degenerating parietal cell (DP). (N) Two-nucleate
aposporous gametophyte (AG2) at the late tetrad stage showing a DFM, DMs, degenerating nucellar cells, a degenerating parietal cell (DP), and degenerating
epidermal cells. Scale bars, 20 µm.
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MRCA diverged from its predominantly Eurasian sister lineage
during mid to early Miocene. The Bering land bridge connected
northeastern Asia and northwestern North America from the
Cretaceous until the Pliocene (Gladenkov et al., 2002; Jiang
et al., 2019). In the latter study, rates of dispersal from Eurasia
to North America were significantly elevated throughout the
Oligocene and early Miocene (c. 34 to 16 mya), particularly
around 26 to 24 mya. These time estimates broadly coincide with
the origin and diversification of Brassicaceae lineage I in early
Miocene (∼23 to 18 mya; Hohmann et al., 2015), which likely
used the Bering land bridge to disperse from northeastern Asia
to North America.

Apomixis-Related Chromosomes in the
Boechereae
Two heterochromatic chromosomes (Het and Del) have been
previously described in Boechera apomicts (Kantama et al., 2007;
Mandáková et al., 2015a). In eudiploid apomicts (2n = 14), a Het
chromosome was identified as one of the Boe1 homologs (GBs
A, C, and D). In aneuploid apomicts (2n = 15, 22), a centric
fission partitioned Het chromosome to a larger Het‘ (GBs A and
C) and to a smaller Del (block D) chromosome (Mandáková
et al., 2015b). In P. cheiranthoides, apomictic triploids and
tetraploids contained a heterochromatic Het (GBs A, C, and
D), but it was absent in diploid apomicts (Mandáková et al.,
2020). This observation indicates that aposporic reproduction
in Phoenicaulis is not associated with the presence of a Het
chromosome. This is further corroborated herein by the apparent
absence of a Het chromosome in two other aposporous apomicts,
tetraploid P. fremontii and triploid S. whitedii.

Autotetraploids in the Boechereae
While diploid or nearly diploid (2n = 15) species and hybrids
seem to prevail in Boechereae (cf. BrassiBase4, accessed on
1 February 2020), apomictic triploid (2n = 21) or nearly
triploid (2n = 22) hybrids are very common in Boechera
(Schranz et al., 2005; Li et al., 2017) and recently discovered
in Phoenicaulis (Mandáková et al., 2020) and S. whitedii (this
study). Tetraploids (2n = 28) are rarely reported and in Boechera
all cases of tetraploidy studied to date involve interspecific
hybridization (i.e., allopolyploidy; see Windham et al., 2014; Li
et al., 2017). Autotetraploidy was previously documented only in
P. cheiranthoides (Mandáková et al., 2020), where the tetraploid
cytotype is more common and widespread than either the diploid
or triploid. Here we report two new cases of autotetraploidy in
Boechereae, involving C. douglasii and P. fremontii. Hence, bona
fide autotetraploids occur in three out of nine Boechereae genera.
The autotetraploid species/cytotypes reproduce either sexually
(Cusickiella) or, more frequently, by apomixis (Phoenicaulis
and Polyctenium). Autopolyploids often experience irregular
chromosome segregation due to the multivalent formation,
but apomixis can potentially bypass such problematic meioses
(Darlington, 1939; Stebbins, 1971; Comai, 2005; Cosendai
et al., 2011). Indeed, while the analyzed tetraploid plants of
P. fremontii show exclusive quadrivalent pairing (Figure 5), they

4https://brassibase.cos.uni-heidelberg.de/

appear to be fully fertile due to apospory (Figure 8). Hence,
apomixis appears to be stabilizing reproduction in triploids and
autotetraploids, which otherwise would suffer from semi-sterility
due to chromosome pairing irregularities.

Apomixis Originated Several Times
Independently During Brassicaceae and
Boechereae Diversification
Following the pioneering work on apomixis in B. holboellii [as
Arabis holboellii Hornem. in Böcher (1951)], Mulligan (1966)
reported its occurrence in Erysimum L. (Erysimeae) and Mosquin
and Hayley (1966) documented possible asexual seed production
in Parrya R. Brown (Chorisporeae). Mulligan and Findlay (1970)
identified several species of Draba L. (Arabideae) that they
inferred to be apomictic, and subsequent embryological and
single seed flow cytometry analyses of one of these species
(Draba oligosperma Hook.) were suggestive of apospory (Jordon-
Thaden and Koch, 2012). Detailed cytological studies of Draba,
Erysimum, and Parrya are needed to verify the regular occurrence
of asexual seed production and the specific pathway involved.
However, the available anecdotal evidence for this reproductive
pathway occurring in four distantly related crucifer tribes (and its
induction by hybridization in a fifth tribe, Brassiceae; Ellerstrom,
1983) suggests that apomixis has evolved independently multiple
times within the family.

The Boechereae appear to be a “hotspot” for the origin
and diversification of apomictic taxa. Our earlier publications
have embryologically confirmed apomixis (either diplospory or
apospory) in more than 20 diploid and triploid taxa of Boechera
(Windham et al., 2015; Carman et al., 2019), and apospory in
diploid, triploid, and tetraploid Phoenicaulis (Mandáková et al.,
2020), and in diploid Borodinia laevigata (Muhl. ex Willd.) P.
J. Alexander and Windham [as Boechera laevigata (Muhl. ex
Willd.) Al-Shehbaz in Carman et al., 2019]. Here, two new
genera are added to the list of aposporous apomicts, Polyctenium
(tetraploid) and Sandbergia (triploid). Two genera of Boechereae
(Anelsonia and Yosemitea) remain unsampled, and the exclusive
occurrence of sexual reproduction in Nevada and Cusickiella
must be confirmed by more extensive sampling. In summary,
apomixis is now known to occur in five of the nine genera of
Boechereae, and in two of these (Phoenicaulis and Polyctenium)
it is the only reproductive pathway documented to date. Based
on current sampling, Sandbergia exhibits equal proportions of
apomictic (S. whitedii) and sexual reproduction (S. perplexa).
Among Boechera species, apomictic taxa of hybrid origin greatly
outnumber their sexual diploid progenitors (Li et al., 2017), while
in Borodinia, sexual populations appear to predominate.

High frequency apospory (70% of ovules) was observed
in man-made Raphanus L. × Brassica L. hybrids (Brassiceae)
(Ellerstrom and Zagorcheva, 1977; Ellerstrom, 1983), which
is consistent with wide hybridization occasionally inducing
apomixis in otherwise sexual species (Carman, 1997). The long-
term reproductive stability conferred by apomixis to sterile or
semisterile inter-specific hybrids could provide novel genotypes
with sufficient time (possibly hundreds of years) to fortuitously
produce, by facultative sexual reproduction, recombinants that
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are more or less genomically stable (autopolyploidized, sensu
Sybenga, 1996) and sexually fertile (Carman, 1997, 2007; Carman
et al., 2019). If chromosome aberrations have occurred, the
newly formed recombinant genomes might warrant specific or
generic status. Hence, apomixis in genomically unstable taxa
may facilitate (Carman, 1997; Horandl and Hojsgaard, 2012;
Hojsgaard et al., 2014; Carman et al., 2019) rather than terminate
(Darlington, 1939; Stebbins, 1971) speciation. That apomixis is
prevalent in many large genera, e.g., among the rose, aster, and
grass families (Carman, 1997; Hojsgaard et al., 2014), as well as in
Boechera, supports this hypothesis.
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