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Abstract—Corner detection has shown its great impor-
tance in many computer vision tasks. However, in real-
world applications, noise in the image strongly affects the
performance of corner detectors. Few corner detectors have
been designed to be robust to heavy noise by now, partly
because the noise could be reduced by a denoising procedure.
In this paper, we present a corner detector that could find
discriminative corners in images contaminated by noise of
different levels, without any denoising procedure. Candidate
corners (i.e., features) are firstly detected by a modified
SUSAN approach, and then false corners in noise are rejected
based on their local characteristics. Features in flat regions
are removed based on their intensity centroid, and features
on edge structures are removed using the Harris response.
The detector is self-adaptive to noise since the image signal-
to-noise ratio (SNR) is automatically estimated to choose
an appropriate threshold for refining features. Experimental
results show that our detector has better performance at
locating discriminative corners in images with strong noise
than other widely used corner or keypoint detectors.

Keywords-corner detector; noisy image; signal-to-noise
ratio; feature detection

I. INTRODUCTION

In the field of computer vision, local invariant point
features, including corners, play a significant role in the
base of intellective vision tasks such as object detection
and recognition [1], [2], visual tracking [3], and image
retrieval [4]. For this reason, a robust corner detector is of
great importance.

In real computer vision applications, we face a chal-
lenge of dealing with noisy images. For example, videos
captured from the surveillance cameras are heavily con-
taminated by electronic noise, either from the sensors or
from the circuitry of the capture devices [5]. Another
example is the embedded applications of image processing
tasks, where microcontrollers (MCUs) or digital signal
processors (DSPs) are used for processing the images. In
this case, the distraction of electronic noise could be very
large during the image capturing, resulting in images with
high level noise. Few corner detectors have been designed
to be robust to heavy noise by now, partly because the
noise could be reduced by a denoising procedure. How-
ever, noise in the image could not be removed entirely
by any denoising procedure, and details of the image
would also be lost as the consequence. On the contrary, if
we abandon these denoising procedures, a large number
of features are falsely detected in noisy images, which
generates unnecessary burden for higher level processing
in the vision system.

Numerous local feature detectors have been proposed.
Harris detector [6] measures the self-similarity of an image
patch by computing a local sum-of-squared-difference ma-
trix, and locates corners where its self-similarity is low in
all directions. SUSAN [7] calculates the proportion of the
similar-to-nucleus pixels in a circular mask centered on the
nucleus, and locates the local minima as corners. SIFT [1]
convolves the image with a difference-of-Gaussian (DoG)
kernel at various scales to generate the difference-of-
Gaussian images, and detects scale-invariant keypoints by
selecting local extrema in both space and scale. FAST and
its variants [8] test the contiguous number of brighter or
darker pixels in a ring around the center pixel to find
corners, and accelerates the computation using machine
learning. These approaches have been widely studied, but
their performance in noisy images is rarely focused.

Noise level, which can be measured by noise variance,
noise standard deviation, or signal-to-noise ratio (SNR),
is an important parameter for algorithms applied to image
denoising [9], segmentation [10] and registration [11].
Pyatykh et al. [12] extract image blocks whose presented
vectors lie in the subspace of the full dimension space, and
apply Principal Component Analysis (PCA) to the vectors
for estimating the noise variance. Zoran & Weiss [13]
assume that the kurtosis of the marginal bandpass filter
response distributions remains constant throughout scales,
and estimate the noise standard deviation by optimizing
the parameters in their model based on the assumption. As
for SNR estimation, Thong et al. [14] estimate the value
of noise-free image autocorrelation from the offset of
noisy image autocorrelation, and use it to calculate image
SNR by reconstructing the formula which Frank & Al-
Ali proposed in [15]. Zou [16] proposes to calculate local
variances throughout the image to estimate the variance
of the signal and the noise, and gets the estimated SNR
by the direct ratio of the two values, with a rectification.
All of the above approaches deal with the whole image to
get an accurate estimation of noise level, which spends
excessive time for a corner detector. In contrast, our
approach sacrifices a little accuracy of the estimated SNR
to obtain computational efficiency for corner detection.

In this paper, we focus on the performance of corner
detectors in noisy images, and propose an improved corner
detector that could find discriminative corners in images
under different noise levels, without any denoising proce-
dure. Our main contributions are:

• A modified SUSAN [7] corner detector which lo-
cates corners more accurately in noise-free images



than SUSAN.
• Two simple strategies for rejecting false corners

detected in noisy images.
• An efficient method for image SNR estimation,

which is embedded to the corner detector.
• A learning algorithm for obtaining a good threshold

of Harris response to reject false corners on edge
structures with respect to different noise levels.

Note that we only deal with the signal-independent
additive white Gaussian noise (AWGN) in this paper, since
it is most widely used [12].

II. CANDIDATE CORNER DETECTOR

SUSAN corner detector has the ability to detect corners
in noisy images, since the algorithm do not compute image
derivatives. However, in real images, a large number of
corners are detected on edge structures by SUSAN. In
our detector, a small change of the principle in SUSAN
detector is made to solve the problem. For a circular mask
centered on a pixel O, we first give a label to any pixel r
except O within the mask by the following rule:

Sr =

 d, Ir< IO − t (darker)
s, IO − t ≤ Ir≤ IO + t (similar)
b, IO + t < Ir (brighter)

(1)

where IO is the brightness of the center pixel, Ir is
the brightness of the pixel r, t is a predefined thresh-
old. Then, we separate the pixels into two sets CD

and CB , with CD = {r|Sr = d or Sr = s} and CB =
{r|Sr = b or Sr = s}, and choose the one with fewer
number of pixels to be the dark-or-bright region (DOBR).
The center pixel is likely to be a corner if the area of
the DOBR is smaller than half of the mask area, which
means the spanned angle is smaller than π. Let Nc denote
the area of the DOBR, S denote that of the mask, then
the corner response Rc is calculated by:

Rc =


1

4
S −

∣∣∣∣Nc −
1

4
S

∣∣∣∣ , n1 ≤ Nc ≤ n2

0, otherwise
(2)

where n1 and n2 are constants that restrict the angle
of the corner to be detected. In our implementation,
the same circular mask as in SUSAN approach is used,
where S equals to 36 with the radius R of 3.4. We set
n1 = 2, n2 = 16 to obtain corners with their angles
ranging from [π/9, 8π/9].

Surely a restriction should be added to confirm corners,
since the algorithm could not tell if the DOBR is compact
or not. We propose to use a geometric constraint in [17].
A feature with its circular mask centered on a pixel O is
illustrated in Fig. 1, with a radius of R. Let G denote the
centroid of the DOBR, β denote the angle spanned by the
DOBR, then the following equation is obtained:

dOG =
√
x2
OG + y2OG =

4R sin β
2

3β
(3)

where β = 2πNc

S . Given the coordinates of the pixels in
DOBR, we can calculate the left side of Equ. (3); given R

O

yOG

G
2 2

OG OG OG
d x y

xOG

R

Figure 1: The circular mask centered on O. The DOBR is showed as
the dark part of the mask, and G denotes the centroid of it.

(a) (b)

Figure 2: Corners detected by (a) SUSAN (b) GDOBR in house image.
A 7×7 mask is used for nonmaximal suppression.

and Nc, we can calculate the right side of it. If these two
results are equal, the DOBR of the feature is compact. In
our implementation, we accept the feature as a corner if
the absolute value of the difference of the two results is
smaller than a threshold Ti (set to be a small value of 1),
as the mask used for detection is not ideally circular and
the corner in digital images does not have an ideal angle.

As shown in Fig. 2, SUSAN detects a large number
of features on edge structures in the noise-free image,
while the proposed approach does not. We call our method
GDOBR since it finds corners by calculating the Geomet-
rically restricted DOBR area. With its simple computation,
GDOBR is much faster than Harris or DoG detector. Since
the area of DOBR is computed, a small change of the
brightness within the mask yield little effect in locating
corners, which makes GDOBR less sensitive to noise than
FAST detector.

III. REFINE FEATURES IN NOISY IMAGES

Generally, in noisy images, corners detected by GDOBR
have two kinds of false positives: (1) features in flat
regions of the image are labeled as corners; (2) features on
edge structures are detected as corners. In this section, we
describe how our method solves these problems to obtain
robust corners in noisy images.

A. Reject False Corners in Flat Regions

As for the features detected in homogeneous regions
of the image, we use a simple measure referring to the
intensity centroid [18] to reject them. For an image patch,
the moments are defined as:

mpq =
∑
x,y

xpyqI(x, y) (4)
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Figure 3: Feature samples used for training and their corresponding OC
lengths. In the left images, the red pixel indicates the center pixel of the
features, and the dotted circle indicates the boundary of the mask. The
black line in the right image indicates the optimal value of Tc.

then the coordinates of the intensity centroid is computed
by C =

(
m10

m00
, m01

m00

)
. We utilize the modulus of the vector

from the center pixel O to the centroid C, |
−−→
OC|, which

indicates the length of OC, to reject false corners. In our
algorithm, the moments are computed within the circular
mask of radius R around the center pixel, so that x and y
range from [-R, R].

As the added noise is pixel independent, the pixels in the
mask would be uniformly affected by the noise. Therefore,
if a feature in flat regions of the image is labeled as a
corner, its intensity centroid C will locate near the center
pixel O, thus the corners should be rejected where |

−−→
OC| is

smaller than a threshold Tc. We trained for Tc using 200
negative feature samples and 200 positive ones. Features
detected by GDOBR in flat regions of noisy images were
labeled as negative samples, and those detected on real
corners in both noisy images and noise-free images were
labeled as positive ones. Fig. 3 shows the training results,
with Tc = 0.244 yielding the minimum loss.

After the intensity centroid measurement is done, the
features detected by GDOBR are divided into two groups:
“negative” and “positive”. The “negative” features are the
features rejected by the measurement and assumed to be
located in flat regions of the image, and the “positive”
ones are those accepted by the measurement. The features
in the two groups are then utilized to estimate the image
SNR, which will be described in the next subsection.

B. Reject False Corners on Edge Structures

Features located on edge structures are unstable. We find
that Harris corner response [6] is a good way to reject
these features also in noisy images. For each detected
feature, its Harris response RH is calculated within the
detection mask, with the intensity value normalized. A
feature is accepted as a corner if its RH exceeds a
threshold TH .

An ideal TH should eliminate all the false corners
on edge structures and maintain discriminative corners
meanwhile, but it changes with the strength of noise.
Thus, we develop a learning algorithm for the detector
to automatically choose an appropriate TH for images
with noise of different levels. In the following, we first
introduce our method of the SNR estimation, and then

describe the learning algorithm.

Estimating image signal-to-noise ratio. Noise level
should be estimated for automatically choosing the best
TH . Here we use SNR as the measurement of the noise
level. For a noisy image, the image SNR can be estimated
by the ratio of the signal variance to the noise variance as
Zou describes in [16], and the decibel formation is:

SNR(dB) = 10log10
Ps

Pn
≈ 10log10

σ2
s

σ2
n

(5)

The signal variance could not be obtained directly since
an image could not be treated as a stationary stochastic
process with independent and identically distributed vari-
ables. Zou [16] proposes to use image patch variance to
roughly obtain these two variances from the noisy image.
For an image patch P, its variance refers to the intensity
variance computed by all the pixels within:

σ2
P =

1

N

∑
x,y

[I(x, y)− µP ]
2 (6)

where N denotes the number of pixels in P, and µP refers
to the mean intensity of all the pixels in P. In Zou’s
method, the two variances are estimated by calculating
all the patch variances in the image, while our method
makes use of the detected features to do the estimation.

As mentioned in section III-A, the intensity centroid
measurement has divided the detected features into “neg-
ative” and “positive” ones. N1 “negative” features and N2

“positive” features are used to estimate the noise variance
and the signal variance, respectively. The minimum value
of the variances of the patches centered on “negative”
features is calculated as σ2

min, as the noise variance. The
maximum value of the variances of the patches centered
on “positive” features is calculated as σ2

max, as the signal
variance. Again, the detection mask is used as the image
patch. In the case that none of the detected features
are located in flat regions (and this is always the case
when image noise level is low), σ2

min is not a good
estimation of the noise variance. To solve this problem, we
randomly choose Nr patches in the image and calculate
their variances. Assuming that these variances are ranging
from σ2

1 to σ2
2 , then the maximum of σ2

max and σ2
2 is

the estimation of signal variance σ2
s , while the minimum

of σ2
min and σ2

1 is the estimation of noise variance σ2
n,

and SNR is computed by Equ. (5). Larger N1, N2, and
Nr may generate more accurate results, but at a cost of
higher computation. In our implementation, N1 and N2

are both set to be 20, and Nr is set to be 16.
We investigated that this estimated SNR should be nor-

malized by the mean value of the variances of the patches
centered on “positive” features, since the estimated signal
variance is “enlarged” considering the effect of noise.
Therefore, the equation for SNR estimation becomes:

SNRest(dB) = 10log10

 C
1

N2

∑
i

σ2
i

· σ
2
s

σ2
n

 (7)
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Figure 4: SNR estimation results on noisy house images. The house
image is added by zero-mean Gaussian noise with the standard deviation
ranges from 1 to 50. The groundtruth is the true value of image SNR.

where C is a trivial constant which only determines the
offset of the estimated SNR values. Note that our method
obtains a rough estimation for image SNR. For corner
detection, limited computing time restricts the accuracy
of SNR estimation. Besides, a rough estimated value is
enough to obtain an appropriate TH for further processing.

We tested our method in noisy house images, compared
with Zou’s. Fig. 4 illustrates that our method gives a good
estimation for noise levels, in spite of some fluctuations.

Learning for Optimal TH . A learning algorithm is
developed for the detector to choose an appropriate TH .
First we set up a database composed of noise-free images,
then noise of different strengths is added to each image to
produce a series of noisy images. Thus image groups are
generated, with each group containing a noise-free image
and its noisy images. The learning procedure is:

1) For the noise-free image in each group, detect
features using GDOBR. Refine the features and
estimate the image SNR. A fixed TH denoted by
TH0 is given to the refining.

2) For noisy images in the same group, do the same
detection process. For each image, search for the
TH that yields the highest F1 score (described in
section IV-A) comparing with the noise-free image
and record the corresponding SNR estimated in the
detection.

3) Get all the pairs of the optimal TH (including TH0)
and its corresponding SNR. Fit the curve of TH in
terms of SNR, making the fit error minimized.

The key of this algorithm is the curve fitting process for the
optimal TH , which can be described as to find a continuous
function that satisfies:

f̂(x) = argmin
f(x)

∥T − f(x)∥

s.t. f(x) > 0, ∀x
(8)

where ∥·∥ is the standard L2 norm in the Euclidean space.
The model is too hard to be solved because the model

function could be arbitrary, but with a given function
type we may find the solution efficiently. Details of the
algorithm are presented in section IV-B.

IV. EXPERIMENTAL RESULTS AND EVALUATIONS

A. Evaluation Criterion

The performance of point feature detectors can be
treated as a point matching problem, and the F1 score
is used for evaluation. For an image pair, a feature is a
“repeated” feature if it is detected in both images. The
precision Pre and recall Rec can be defined as follows:

Pre =
number of repeated features

number of detected features
(9)

Rec =
number of repeated features

number of potential features
(10)

where the “detected features” is the features which are
detected in the second image and appear in the region
of the first image; the “potential features” is the features
which are detected in the first image and can potentially be
detected in the second image. Then, the F1 score is defined
as F1 = 2·Pre·Rec

Pre+Rec , which measures the performance of
repeatability with respect to both images.

B. Process of the Learning

The learning algorithm for choosing optimal TH is
significantly important since the learning result determines
the noise adaptability of our detector. Details in the
algorithm are as follows. The noise-free images are 26
gray images with the size of 378×251 pixels from Cal-
tech Background image dataset [19]. Zero-mean Gaussian
noise with standard deviation from 1 to 50 is added to each
image, generating 1300 noisy images for training. Since
we mainly train for optimal TH , some other parameters
are empirically set. The brightness threshold t is set to be
15 and remains unchanged through the whole processing.
For the noise-free images, TH0 is set to be a small value
of 0.04 to maintain discriminative corners. On estimating
SNR, the constant C is fixed as 4088 since it performs
well for these images. For each noisy image, the optimal
TH is searched from 0.01 to 3, with the step of 0.01.

Values of the optimal TH in terms of estimated SNR,
and the results of the fitting curves are shown in Fig. 5.
Functions of three types are used to fit the values in our ex-
periments, which are exponential function, multi-Gaussian
function and piecewise linear function. Formations and
the parameters of the best fitting of each type are listed
in Table II, where RMSE means the root mean squared
error of the fitting curves. Piecewise linear fitting yields
the smallest RMSE among the three functions.

C. Performance Evaluation and Discussion

In order to validate our detection approach, we ran
sufficient experiments on establishing our detector. Also,
we compared our approach with other commonly used
point feature detectors on performance in noisy images.

A brief comparison on speed of GDOBR and other
detectors in noise-free images is shown in Table I. The
experiment is set up on a PC with a 2GHz Intel Core2
processer, and 51 gray images sized 378×251 from the
Background dataset are used for the test. Corner detection
is run 10 times for each image and the average time cost
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Figure 5: Results of the best fitting curves for three types of functions.

Detector FAST-9 GDOBR SUSAN Harris DoG
Time per

1.393 7.216 29.955 60.580 351.071
image (ms)

Table I: Average time cost of different detectors

per image is obtained. The results show that GDOBR is
faster than all the other detectors except FAST-9 which is
accelerated by machine learning.

Fig. 6 shows the detection results in noisy images at
different stages of our algorithm. Numerous corners are lo-
cated in flat regions and on edge structures using GDOBR
in noisy images. False corners in flat regions are rejected
by measuring the intensity centroid, and false corners
on edge structures are further rejected after thresholding
Harris response of the corners with the adaptive threshold
based on SNR.

We have applied the three best fitting functions to
our detection approach and compared their performance
against other detectors in images under different noise
levels. Another 25 gray images (except those used for
learning) sized 378×251 from the Background dataset and
those added with noise are used for the test. First the
corner detection is applied to the noise-free images and
their corresponding noisy images, then the F1 score is
obtained by comparing the detected corners in the noise-
free image with those in the noisy images. For SUSAN
detector, we use the standard implementation in [20]. For
DoG detector [1], we use the initial smoothing blur of
value 1 to yield robust results in different noise levels. For
others, feature numbers are controlled about the same by
thresholding on the response of detected corners in noise-
free images, with an average number of 240. A 7×7 mask
is applied to accomplish nonmaximal suppression for all
detectors except FAST-9, which uses a 3×3 mask [8].

Details of the performance are shown in Fig. 7. We
name our three detection approaches by the name of
fitting functions for short. Both of FAST-9 and Harris
detectors yield high F1 scores in low noise levels, but they
go through a sharp decrease when noise level increases.
The reason is that strong noise extremely distracts the
detectors, which results in locating an increasing number
of discursive features. DoG detector, as expected, is robust
to noise, but stays a lower repeatability than our detectors.

(a) (b) (c) (d)

Figure 6: Detection results at different stages. (a) Original noisy images.
(b) GDOBR result. (c) After rejecting features in flat regions. (d) After
rejecting features on edge structures using an adaptive threshold. Noise
with standard deviation 15 is added to the images.
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Figure 7: Average F1 scores for images under different noise levels.

SUSAN approach, although has a higher F1 score than
DoG detector through noise, detects numerous edge based
features, which are not stable in noise and also less
discriminative. In contrast, our detectors have a better
stability through different noise levels, and yield a higher
F1 score than other detectors in images with noise of high
levels. This stability comes from the adaptive threshold for
Harris response in our detection approach, which ensures
the repeatability of the corners detected in images under
different noise levels.

Among our three detectors, the detector built up with
the piecewise linear function performs best. Lower scores
are presented by the other two detectors when detecting
corners in low noise level images. The reason is that
the corners detected in noise-free images are the baseline
for evaluating corners detected in noisy images, and the
detector using the piecewise linear function could locate
more accurate corners in noise-free images than the other
two detectors. Therefore, a slight difference of the three
fitting curves in high SNR values (above 25dB) shows
a big difference in F1 score, which can be observed in
Fig. 5. Our detector adopts the piecewise linear function,
for its good performance and simplicity. The detector
is robust to noise as DoG, but yields a much higher
repeatability.



Function Formation Parameters for best fitting RMSE

Exponential f(x) = ae−bx a = 8.376, b = 0.148 0.5264

Multi-Gaussian f(x) = a1e
−(

x−b1
c1

)
2

+ a2e
−(

x−b2
c2

)
2

a1 = 0.823, a2 = 1.352×1012

0.5092b1 = 10.36, b2 = -310
c1 = 5.926, c2 = 60.73

Piecewise Linear f(x) =

{
a1x+ b1, 0 < x< c1
a2x+ b2, c1 ≤ x≤ c2
a3x+ b3, x> c2

a1 = -0.207, b1 = 4.059

0.5084
a2 = -0.044, b2 = 1.201
a3 = 0, b3 = 0.05
c1 = 17.53, c2 = 26.13

Table II: Formations of the three fitting functions and the parameters of the best fittings. We use two kernels for Gaussian function and three pieces
for linear function.

V. CONCLUSIONS

In this paper, we have presented a corner detector
which could locate discriminative corners in images under
different noise levels. A modification to SUSAN principle
enables our candidate corner detector to locate accurate
corners in noise-free images efficiently. Based on the
intensity centroid and the Harris response of the features,
false corners detected in noise could be removed. Com-
pared to some widely used point feature detectors, our
detector could locate more discriminative and repeatable
corners even in strong noise, which is attributed to the
automatic image SNR estimation to refine features in
noise. Since very few corner detectors is designed for noise
invariance, we hope this work gives heuristic thoughts for
noise-adaptive detection approaches. Our future work will
focus on the noise robustness of point feature descriptors.
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