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Abstract. Climate change and urban growth impact habitats, species, and ecosystem ser-
vices. To buffer against global change, an established adaptation strategy is designing protected
areas to increase representation and complementarity of biodiversity features. Uncertainty
regarding the scale and magnitude of landscape change complicates reserve planning and
exposes decision makers to the risk of failing to meet conservation goals. Conservation
planning tends to treat risk as an absolute measure, ignoring the context of the management
problem and risk preferences of stakeholders. Application of risk management theory to con-
servation emphasizes the diversification of a portfolio of assets, with the goal of reducing the
impact of system volatility on investment return. We use principles of Modern Portfolio Theory
(MPT), which quantifies risk as the variance and correlation among assets, to formalize diversi-
fication as an explicit strategy for managing risk in climate-driven reserve design. We extend
MPT to specify a framework that evaluates multiple conservation objectives, allows decision
makers to balance management benefits and risk when preferences are contested or unknown,
and includes additional decision options such as parcel divestment when evaluating candidate
reserve designs. We apply an efficient search algorithm that optimizes portfolio design for large
conservation problems and a game theoretic approach to evaluate portfolio trade-offs that
satisfy decision makers with divergent benefit and risk tolerances, or when a single decision
maker cannot resolve their own preferences. Evaluating several risk profiles for a case study in
South Carolina, our results suggest that a reserve design may be somewhat robust to differences
in risk attitude but that budgets will likely be important determinants of conservation planning
strategies, particularly when divestment is considered a viable alternative. We identify a possible
fiscal threshold where adequate resources allow protecting a sufficiently diverse portfolio of
habitats such that the risk of failing to achieve conservation objectives is considerably lower.
For a range of sea-level rise projections, conversion of habitat to open water (14–180%) and
wetland loss (1–7%) are unable to be compensated under the current protected network. In
contrast, optimal reserve design outcomes are predicted to ameliorate expected losses relative
to current and future habitat protected under the existing conservation estate.

Key words: climate uncertainty; modern portfolio theory; multi-criteria decision analysis; reserve design;
risk management; sea-level rise; spatial conservation planning; urbanization.

INTRODUCTION

Climate change is an undeniable threat to species,
human infrastructure, and the continued production of
ecosystem goods and services. Because of the large
uncertainties associated with climate change, it also

represents a significant risk-management problem
(Intergovernmental Panel on Climate Change 2014).
Conservation organizations have recognized the need to
adapt management strategies to account for unknown
and non-stationary system change, including increased
uncertainty in climate drivers. Coastal systems are par-
ticularly vulnerable to large-scale change processes
including rising sea levels, storms, erosion, ocean acidifi-
cation, and strong human development pressures
(Mcleod et al. 2010, Thorne et al. 2015). Given the high
productivity of coastal systems, which support
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economically and ecologically important natural
resources, impacts to coastal ecosystems are of consider-
able concern (Teal 1986, Mitsch et al. 2009). Developing
long-term adaptation planning strategies to account for
uncertain threats is critical to safeguard these resources
and ensure their continued provision into the future.
Systematic conservation planning (SCP; Margules

and Pressey 2000) has been promoted as an essential
component of adaptation strategies designed to moder-
ate impacts of climate change at a resolution that is well
matched to the spatial scale of climate impacts (Groves
et al. 2012). SCP, synonymous with spatial planning or
reserve design, is defined as a set of tools and guidelines
used to structure the management of conservation pro-
grams and answer questions of where best to place con-
servation actions and which actions to implement in
these locations (Schwartz et al. 2017). SCP has been crit-
icized for relying on prioritization algorithms that fail to
account for spatial correlations among sites (Runting
et al. 2018) and uncertainties associated with underlying
biological processes (Moilanen et al. 2006b, Carvalho
et al. 2011), or for expected outcomes following an
action taken (Schwartz et al. 2017). Examples of system-
atic planning that consider uncertainty and risks to per-
formance outcomes arising from model error or natural
variation typically focus on seeking robust solutions
(Moilanen et al. 2006a), avoiding worst-case outcomes
or minimizing the difference from the best-case scenario
(i.e., maximin or minimax regret solutions, respectively,
Polasky et al. 2011), or even quantifying extreme risk
(McNeil 1999). Such approaches, however, treat risk as
an absolute by disregarding the specific decision context
and tolerance levels for accepting the range of possible
outcomes, some of which may be undesirable. The com-
mon practice of assuming that a decision maker is risk
neutral when setting priorities and selecting conserva-
tion strategies precludes the opportunity for recognizing
differences in risk attitudes and weighing trade-offs
(Tulloch et al. 2015). A risk-averse attitude, in which a
decision maker is willing to forego a higher expected
value for lower but more guaranteed benefits, can lead
decision makers to select precautionary conservation
strategies. In contrast, a higher tolerance for risk may
provide greater benefits but exposes stakeholders to
more significant losses if an undesired future unfolds.
To support investment decisions that maximize future

conservation returns while addressing important sources
of uncertainty and the impacts of risk attitude, we bor-
row theory from the field of economics and approach
climate change as analogous to an uncertain financial
market. As economic theory suggests (von Neumann
and Morgenstern 1947), expected return and risk
(as measured by the variance-covariance of returns) are
positively correlated and represent competing objectives,
assuming that we desire high returns and low risk. We
apply the principles of Modern Portfolio Theory (MPT),
first introduced in economics by Markowitz (1952,
1959), to estimate the expected return on conservation

design investments while accounting for risk. MPT pos-
tulates that an “asset” should not be evaluated for invest-
ment in isolation but, instead, that a portfolio of assets
be considered based on its estimated composite benefits
and by how each asset in the portfolio is expected to cov-
ary with all others as market conditions fluctuate. Such
an approach recognizes the advantage of using informa-
tion about the dependency structure of a portfolio over
simple diversification strategies based on individual asset
performance (Ando and Mallory 2012). MPT measures
the benefits and risk of investing under market uncer-
tainty in terms of expected return, variance, and covari-
ance of a collection of assets. By quantifying how
strongly assets are expected to move in synchrony when
the system is subjected to shocks, investors can evaluate
the trade-off between maximizing expected return for a
given level of risk or minimizing risk for a given level of
return. This characterization expands on a commonly
held understanding of risk (i.e., the losses expected as a
function of the probability of the occurrence of an unde-
sired outcome) by representing risk as portfolio volatility
(i.e., the variance and covariance among assets con-
tributing to that return). The significance of this work
was to shift focus from reliance on asset diversification
as a proxy measure of risk management, to an explicit
search for portfolios with minimal (or, preferably, nega-
tive) correlation of returns between assets. Viewing an
investment portfolio as an inter-dependent collection of
assets is an appropriate paradigm for many forms of sys-
tematic conservation planning, which aims at maximiz-
ing benefits by managing a diversity of resources over a
spatial domain.
Conservation decisions must routinely consider trade-

offs, which come in several forms including direct com-
petition between resource objectives (e.g., habitat protec-
tion vs. recreational access), between overall expected
benefits and risks, and between benefits and financial
constraints (i.e., cost). Although SCP methods tradition-
ally account for multiple objectives by embedding broad
conservation goals and quantitative targets into value
functions (Kukkala and Moilanen 2013), explicit consid-
eration of trade-offs among objectives is more a recent
feature (Watts et al. 2009). Applying an alternate
approach to that of Runting et al. (2018), we expand the
application of MPT for spatial planning by accounting
for these broad categories of trade-offs in a hierarchical
analysis using a combination of MPT and multi-criteria
decision analysis (MCDA; Wallenius et al. 2008, Steele
et al. 2009). Our framework simplifies complex prob-
lems by evaluating trade-offs first at the scale of the indi-
vidual asset and then at the scale of the problem frame
(i.e., the collection of assets). Multi-criteria decision ana-
lysis operates at the asset level (e.g., a parcel of land) to
consider trade-offs among ecosystem outcomes, such as
distinct landcover types that provision different ecosys-
tem services, to produce a composite benefit reflecting
stakeholder preferences. Differences in expected benefits
are quantified over uncertainty by predicting changes to
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the asset as a function of climate or other drivers. Mod-
ern portfolio theory applies the asset-level analysis to a
trade-off evaluation at the landscape level between
expected return and risk among candidate portfolios
(Fig. 1), and can include budget and other constraints.

Thus, the framework enables a decision maker to evalu-
ate trade-offs among resource objectives that are not val-
ued equally by stakeholders (Garmendia and Gamboa
2012), and then assess the effects of uncertainty and risk
on overall conservation performance. Integrating an
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FIG. 1. Conceptual spatial planning model using multi-criteria decision analysis (MCDA) and modern portfolio theory (MPT).
For each planning unit (parcel j), the MCDA evaluates the achievement of discrete habitat objectives, accounting for differences in
expected habitat contributions under multiple sea-level rise (SLR) scenarios. Habitat cover types (h1–h4) are quantified by area
under SLR scenario (k), weighted by relative stakeholder preference and normalized to produce a parcel value for each scenario.
Parcels are identified as belonging to either set S (currently protected conservation estate) or to set B (currently unprotected lands).
The MPT analysis quantifies the accumulated benefits and risks associated with SLR-induced variance and spatial correlation for
candidate reserve design portfolios. A heuristic search algorithm identifies the Pareto frontier, defining the set of Pareto-optimal
designs (blue line) and dominated alternatives (gray points). Hypothetical points R and T are dominated because points Q and S
represent alternatives that improve on expected return or risk, respectively, without compromising the value of the other objective.
On the Pareto frontier, point Q represents a portfolio with higher expected return relative to point S, but the increased benefit is
achieved only at the cost of greater risk.
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explicit evaluation of risk attitudes with a transparent
assessment of competing objectives into a single spatial
planning decision framework will expand the concept
and applicability of robust climate adaptation strategies.
Here, we describe specification of the MCDA-MPT

model as applied to coastal conservation planning
efforts for transition and loss of valued habitats due to
changing sea level and human development. Conserva-
tion decision makers anticipate the loss of important
habitats as a function of sea-level rise (SLR) and rapidly
expanding urban pressures. To adapt to anticipated
changes, conservation practitioners seek to identify par-
cels that will preserve a representative collection of habi-
tat types in sufficient quantity to provision future
ecosystem services. Because habitats are not static, there
is uncertainty about future landcover types and the ben-
efits produced from any given reserve design. Recogniz-
ing recent efforts to address multi-objective spatial
conservation planning problems for dynamic landscapes
(e.g., Ando et al. 2018, Runting et al. 2018), we further
extend the use of MPT by (1) structuring management
objectives hierarchically to illustrate the scale of each
analytic step, (2) considering the conservation benefits
from divesting from protected lands to reallocate funds
for protecting higher-valued parcels, and (3) applying
axioms from game theory to a bargaining solution that
identifies an optimal and equitable trade-off between
portfolio benefits and risk.
We assume that decision makers would like to maxi-

mize benefits while minimizing risk when designing a
network of protected parcels. We apply the principles of
Pareto optimality to explore this bi-objective problem. A
Pareto solution seeks to identify the frontier of non-
dominated solutions, defined as those for which
improvement on one objective can only occur with a loss
in value for another (Kennedy et al. 2008), forming the
basis for negotiating among a reduced number of equally
optimal alternatives (Fig. 1). As proposed by our goals
for the MPT analysis, the Pareto frontier describes the
set of optimal reserve-design portfolios for a range of
risk tolerance attitudes, representing trade-offs between
minimized risk for a desired level of benefits and maxi-
mized returns for any stated level of risk.
We present an approach to address a common conser-

vation challenge, applying a novel optimization algo-
rithm to solve large combinatorial problems. We
illustrate our reserve design framework by considering a
large number of parcels (N = 1,244) for an ongoing con-
servation project on the coast of South Carolina, USA,
which is threatened by sea-level rise and human develop-
ment. We offer several approaches to generalize our
findings. First, we integrate a multiple-objectives criteria
analysis into the MPT framework. Second, we apply a
game theory approach to compute a “fair point” trade-
off among objectives of risk and reward along the Par-
eto-optimal frontier. Such bargaining solutions can
address the distribution of benefits between cooperating
decision makers or can identify the Pareto-optimal

solution that balances trade-offs (“bargaining”) among
objectives. Third, we conduct a sensitivity analysis by
contrasting the bargaining solution with the effects of
variable risk attitudes on the spatial outcome of reserve
design decisions. Fourth, we identify patterns of a “no
regret” solution that is robust to risk. Finally, our quan-
titative reserve design framework considers divestment
decisions, which, until recently, have rarely been dis-
cussed in the SCP literature.

MATERIALS AND METHODS

Multi-criteria decision analysis and SLR uncertainty

To describe our model, we simplify the management
problem by considering individual habitat types as proxy
management objectives. We apply MCDA to calculate
the expected benefits of each land parcel, based on pre-
dictions of future habitat composition. We consider SLR
as a driver altering the relative quality, composition and
value of habitat in coastal landscapes (Daniels et al.
1993, Craft et al. 2009). Expected value is quantified by
normalizing habitat area across parcels to obtain relative
values under each SLR scenario, then weighted accord-
ing to stakeholder preferences, adjusted for urbanization
probability, and scaled by cost (steps 1–5). Variance of
this expectation over future sea level is measured as one
component of risk assessment.
The basic unit of data for our analysis is dhjk, repre-

senting the area (ha) of habitat type h in parcel j under
SLR scenario k. These variables come from index sets:
h 2 H, j 2 N, and k 2 R. Thus, the data required for each
of N parcels are habitat extents as elements of an H 9 R
matrix. For each h 2 H, j 2 N, and k 2 R, we perform
the MCDAusing raw data dhjk.

1) We normalize dhjk across parcels to take values
between 0 and 1, denoted by nhjk

nhjk ¼
dhjk �min

j2N
dhjk

max
j2N

dhjk �min
j2N

dhjk
: (1)

2) For each parcel j, we calculate the weighted sum of
its constituent habitat types using habitat objective
criteria weights wh and denote expected parcel values
for each SLR scenario by mjk:

mjk ¼
X

h2H
whnhjk: (2)

3) We account for complex, spatial processes leading to
land conversion using a dynamic urban growth
model (Appendix S1: Section S1). Development
probability uj is incorporated as a modifier of parcel
value to derive ljk. In this formulation, parcel return
increases proportionally with the probability of
development. This strategy promotes anticipating
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permanent loss by conserving parcels before they are
developed and recognizes that the value of sites with
lower development probabilities is more secure with-
out explicit protection

ljk ¼ mjk

1� uj
: (3)

4) We scale the value of a parcel by its cost to standard-
ize benefits by cost, and represent this value by rjk.
We treat both Eqs. 3 and 4 as linear combinations of
input variables because they make the least assump-
tions about risk and cost functions. Other formula-
tions are possible.

rjk ¼ ljk
cj
�� �� : (4)

5) Future habitat conditions are described as a function
of climate change and SLR projections. SLR proba-
bilities (pk) predict differences in the extent and con-
figuration of coastal habitat cover types. We chose
those associated with the 10th, 50th and 90th per-
centile of the local distribution estimated for 2050
(Appendix S1: Section S2; Horton et al. 2015) to rep-
resent three potential scenarios for SLR. For each, j
2 N, the expected return is calculated as a weighted
sum of rjk values over SLR scenarios:

lj ¼
X

k2R
pkrjk: (5)

MPT reserve design optimization

We extend the basic reserve design problem to con-
sider a more complex set of decisions involving both
acquisition and divestment decisions to design a future
protected area. We evaluate Pareto optimality under
both unconstrained and budget-constrained scenarios,
the latter reflecting more realistic management limita-
tions and where the benefits from divesting to acquire
other parcels may be illuminating. Let us consider a set
N of predefined parcels of land. For the basic reserve
design problem, in which only parcel acquisition deci-
sions are evaluated, the decision of whether to acquire is
conditioned on the set of currently unprotected parcels.
In our formulation, N will encompass the full study
region and include both protected and unprotected par-
cels. Let S be the set of parcels that comprise the reserve
(i.e., currently protected parcels) and let B represent the
set of parcels being considered for addition into the
reserve. For S, the decision is then whether to keep or
divest from each member of the set. For j 2 S, xj takes a
value of 1 if parcel j is sold and 0 if it is retained. Divest-
ing results in a loss of all habitat benefit but its monetary
value is added to the budget (less a 6% transaction cost;
de Fontnouvelle and Lence 2002), allowing the acquisi-
tion of other parcels. Keeping a parcel incurs no addi-
tional cost (maintenance costs are not considered) and

future habitat benefit is retained. Relative to a budget
constraint, the cost of acquiring is negative while a posi-
tive income is realized by selling a parcel. Note, however,
that in Eq. 4 we use the absolute value of cj because we
are interested in rjk as a measure of per unit value of a
parcel.
Similarly, let the complement to S be the set of par-

cels B that are currently unprotected and under con-
sideration for addition into the reserve network. We
assume that S ∪ B = N and S ∩ B = 0. The decision
is which set of parcels j 2 B to acquire. For j 2 B, xj
takes a value of 1 if parcel j is acquired and 0 if it is
not. Protecting a parcel (through purchase or ease-
ment) adds to the overall reserve benefit through its
contribution of habitat while its cost reduces the avail-
able budget. Not acquiring a parcel incurs no cost but
we consider that no conservation benefit is accrued
because it remains unprotected.
The formulation of our MPToptimization begins with

identifying the Pareto-optimal set of portfolios that
maximize the expected return while minimizing the risk
associated with a given combination of parcels,
expressed as

max
X

j2B
xjlj þ

X

j2S
1� xj
� �

lj (6)

min
X

j2B
xjr2

j þ
X

j2B

X

i2B:i[ j

2yjirjriqji

þ
X

j2S
ð1� xjÞr2

j þ
X

j2S

X

i2S:i[ j

2yjirjriqji

þ
X

j2B

X

i2S
2yjirjriqji

(7)

where lj is defined as in Eq. 5, xj is a binary variable rep-
resenting the decision to acquire (x = 1) or not acquire
(x = 0) parcel j for j 2 B, and to divest (x = 1) or retain
(x = 0) for j 2 S. Parcel variance r2j and correlation
coefficient qij for each parcel pair are derived from Eq. 4
and probability pk, using the cov.wt function in R (R
Development Core Team 2016) to calculate a weighted
variance-covariance matrix. Binary variable yji is used to
linearize the formulation (where yji is defined as equiva-
lent to xjxi) and is subject to the following constraints
for all parcel pairs j and i (parameter and variable nota-
tion is summarized in Table 1):

xj � yji � xi 8 i 2 B; 8 j 2 B; j[ i

yji � xj þ xi � 1 8 i 2 B; 8 j 2 B; j[ i

1� xj � yji � 1� xi 8 i 2 S; 8 j 2 S; j[ i

yji � 1� xj � xi 8 i 2 S; 8 j 2 S; j[ i
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1� xi � yij � xj 8 i 2 S; 8 j 2 B

yji � xj � xi 8 i 2 S; 8 j 2 B

xj 2 0; 1f g 8 j 2 N

yji 2 0; 1f g 8 i 2 B; 8 j 2 B; j[ i

yji 2 0; 1f g 8 i 2 S; 8 j 2 S; j[ i

yji 2 0; 1f g 8 i 2 S; 8 j 2 B:

We highlight that in our hierarchical formulation,
portfolio value is a function of habitat composition,
stakeholder preference, and risk of opportunity loss
(development), while portfolio risk is driven by the
uncertainty of future habitat composition under SLR.

Optimization algorithm for computing the Pareto-optimal
frontier

Issues of dimensionality represent a major challenge
for optimizing a large number of discrete decision vari-
ables (with N discrete assets to choose among, the num-
ber of portfolio combinations is equal to 2N). To
overcome this obstacle, we subset our data set to groups
of ≤ 100 parcels each, still a large but more analytically
tractable size. We combined parcels using qualitative cri-
teria: general ecosystem type (e.g., coastal, upland, river-
ine), a sufficiently large extent to reduce positive
correlation, and representation of hypothetical large-
scale planning units for individual organizations (e.g., a
National Wildlife Refuge, National Forest or municipal-
ity). For each parcel subset, we apply the Feasibility
Pump Based Heuristic algorithm (Pal and Charkhgard
2017, 2019) to compute the Pareto-optimal frontier from
Eqs. 6 and 7. Based on empirical testing of exact solu-
tions and statistical measures used to evaluate the qual-
ity of an approximated solution, this heuristic approach
finds good estimates of the true Pareto frontier in terms
of the average distance between points on the approxi-
mate and true frontier (coverage), the spread of approxi-
mated points relative to the true range (uniformity), and
identification of high benefit : risk ratios (density; Kohli
et al. 2004, Pal and Charkhgard 2017). Solutions from
each subset are combined to produce a single Pareto-
optimal frontier for the full study area. Although it is
possible that portfolio results at the subset or study-area
scale may be affected by the designation of parcel sub-
sets, it is beyond the scope of this paper to conduct a
comprehensive sensitivity analysis of parcel groupings.
Further details on the optimization approach are pro-
vided in Appendix S1: Section S3.

Trading off among Pareto-optimal portfolios

All points on the Pareto frontier are acceptable solu-
tions and represent a compromise between competing
interests. In our case study, the trade-off is between max-
imizing the expected benefits of a future conservation
area network and minimizing the risk of undesired out-
comes under climate change. In reality, when designing a
reserve this compromise likely will be negotiated among
decision makers over time, which was impractical to
consider for our analysis. Additionally, reliably assessing
a decision maker’s sensitivity to risk is notoriously com-
plex (Howard 1988, Yechiam and Ert 2011) and often
more difficult than eliciting relative preferences for dis-
crete objectives. Instead, we take several approaches to
generalize our findings in hopes of increasing decision
makers’ understanding of trade-off implications. First,
we use the Nash bargaining solution (Nash 1950) to
identify the point along the Pareto frontier that mini-
mizes disparities in the achievement of one objective
over the other. In essence, we search for a quantifiably
“fair” point that satisfies a compromise between maxi-
mum return and minimal risk (Appendix S1: Section S4,
Fig. S2; Sant�ın et al. 2017). This approach links game
theory with multi-objective decision analysis, by assum-
ing an imaginary bargaining player is associated with
each objective, to identify a Pareto-optimal that best sat-
isfies all interests (Rao 1987). This approach could also

TABLE 1. Notation of parameters and variables used in the
portfolio analysis and optimization.

Notation Definition

Parameters
N index set of all parcels in study area
B index set of parcels not currently part of the

reserve but available for protection
S index set of parcels already part of the reserve
H index set of habitat types
R index set of sea-level rise (SLR) scenarios
pk probability of SLR scenario k 2 R
wh weight of habitat type h 2 H
cj cost (+) to acquire parcel j 2 B or revenue generated

(�) by divesting j 2 S
uj probability of parcel j 2 N lost to development

(i.e., urbanization)
lj expected future return of parcel j calculated over

SLR scenarios
dhjk hectares of habitat h 2 H in parcel j 2 N present

under SLR scenario k 2 R
qji correlation coefficient for parcels j, i 2 N
rj standard deviation of parcel j calculated over

SLR scenarios
Variables
xj binary variable representing decision to buy (1)

or not (0) for parcel j 2 B, or decision to divest
(1) or not (0) parcel j 2 S

yji binary decision variable used to linearize the
optimization model; yij: = xjxi
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be applied to assist multiple, cooperating decision mak-
ers design reserve networks when each collaborator may
have a different levels of risk tolerance. Second, we con-
duct a sensitivity analysis of the effect of risk attitudes
on the spatial outcome of reserve design decisions by
comparing alternative risk tolerance levels to the Nash
solution. Finally, we identify the pattern of a “no regret”
solution that is robust to risk uncertainty (i.e., a portfo-
lio that does not vary across risk-tolerance levels;
Appendix S1: Section S4).

Budget-constrained optimization

To evaluate the sensitivity of reserve design outcomes
to budget uncertainty we propose a series of four fiscal
scenarios as a function of the proportion of total land
area not currently in conservation status. This approach
recognizes that not all unprotected parcels in the study
area will be available for protection, and that sufficient
funds are unlikely to be available to conserve all desired
land even with multiple partners involved. Because effec-
tive land conservation strategies can take several forms
(e.g., fee-simple purchase, fixed or rolling easements)
and because few organizations can individually imple-
ment effective conservation at a large scale, we had no
reasonable basis for estimating the costs of land protec-
tion or future budgets available to a new partnership.
Instead, we simplify the problem by assuming the cost of
protecting a parcel is equal to its area and set budget sce-
narios arbitrarily as a proportion of the approximately
60,000 ha of currently unprotected area in the study area
(Appendix S1: Table S3). We evaluate fiscal uncertainty
while holding risk uncertainty constant by using the
Nash bargaining solution trade-offs (Appendix S1:
Section S5).

Application and data

We apply our reserve design model to coastal South
Carolina, USA, centered on Cape Romain National
Wildlife Refuge (NWR; Appendix S1: Section S6). The
NWR consists of approximately 27,000 ha of barrier
islands, salt and freshwater marshes, sea turtle and bird
nesting beaches, and threatened maritime forest (U.S.
Fish and Wildlife Service 2010). Managers recognize
that SLR and urban development are threatening the
NWR mission for conserving critical wildlife habitat
established under the existing extent of the refuge, and
that acquiring or protecting new habitat to expand or
relocate the existing refuge footprint is needed (Johnson
et al. 2015). Acknowledging the legal and financial con-
straints limiting a major refuge expansion, Cape Romain
NWR is engaging in efforts to establish diverse, local
partnerships to develop collective understanding of
threats and opportunities, and identify common objec-
tives and potential solutions, including larger-scale con-
servation of key habitats (Johnson et al. 2015).

To translate global climate-change scenarios to parcel-
specific habitat impacts within our study area, we com-
missioned a study of SLR projections that coupled
ensemble models and multiple emission scenarios (repre-
sentative concentration pathways) with local geophysical
processes (Appendix S1: Section S2, Table S1; Lentz
et al. 2015, Horton et al. 2015). From the distribution
of these projections, we calculate discrete SLR scenarios
and their associated probabilities of occurrence for the
year 2050 (Appendix S1: Table S2, columns 1 and 2). We
then match the predicted local vertical rises to the closest
SLR estimates provided by the widely available Sea
Level Affecting Marshes Model (SLAMM; Clough
2008). To develop the scenarios used in our study, we
associate the SLR values documented in SLAMM with
their appropriate emissions scenario and year combina-
tion (Appendix S1: Table S2, columns 3 and 4) to extract
spatially resolved changes in habitat cover types over
these uncertain futures. We overlay raster output of habi-
tat projections with a spatial database of all protected
and unprotected parcels in the study area and extract
parcel-level habitat extent under each scenario using a
custom Python script run in ArcGIS (v.10.4.1; ESRI,
Redlands, California, USA; Data S1: Parcel_habi-
tat_quantification).
We consider urban growth as a threat to habitat migra-

tion and the production of ecosystem services. To inform
the reserve design model with additional information
regarding parcel value we apply a simple cellular auto-
mata model that predicts several drivers of urban growth
and estimates probabilities of land conversion (Jantz
et al. 2010, Terando et al. 2014). To quantify the risk of
habitat loss for parcels that were currently < 50% devel-
oped, we intersect parcel boundaries with the raster of
urbanization probabilities and calculate a weighted pixel
frequency to produce an area-weighted average probabil-
ity of development for each parcel (Appendix S1:
Sections S1; Data S1: Parcel_urban_prob). We apply
these probabilities to Eq. 3 to adjust estimated parcel
value.

RESULTS

Predicting habitat outcomes under SLR and current
reserve design

Model projections of future habitat extent for all
1,244 (protected and unprotected) parcels in our study
region suggest substantial transitions of important cover
types. Because wetlands are particularly susceptible to
transition under SLR, we describe our results for these
in greater detail than for other habitat types. Within the
study area, current wetland habitat, aggregated across
fresh- and saltwater types, represents 51% of the total
study area, with 82% of this total under protection
(Table 2, current extent). The projected loss of total
wetland habitat ranges from < 1% under the low SLR
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scenario to nearly 7% under high SLR (Table 2, total
future extent). The expected wetland loss, weighted by
local SLR probability estimates, is 1.5% of total extant
wetland area. Future conversion of any habitat type to
open water is predicted to be greater, ranging from an
increase of 14% to 180% from current open water extent.
Ocean beach nesting habitat is expected to increase in
area under moderate SLR (+10%) but decline by 13–
14% under low and high SLR, respectively (Table 2).
Tidal flats, in contrast, are expected to increase between
38% to 184% across SLR scenarios, and with a weighted
mean of more than doubling in size.
Based on the current protected area (PA) network, we

also evaluate the expected change in conserved habitats
under the three SLR scenarios (Table 2, 2050 existing
PA; Fig. 2 for wetland habitats). Expected outcomes dif-
fer as a function of SLR projection and habitat type,
highlighting the need to consider spatial correlation.
The extent of conserved intertidal scrub-shrub transition
marsh and brackish marsh is predicted to increase under
all SLR scenarios, while salt marsh and tidal swamp
habitats decline proportionally with sea level in all cases.
Other habitats, including swamp and freshwater marsh
either increase or decrease in protected area depending
on the scenario (Fig. 2). Changes in protected salt marsh
and scrub-shrub transition marsh represent the most
substantial impacts, with as much as 13,900 ha of salt-
marsh lost and more than 9,000 hectares of transition
marsh gained under a high SLR scenario. Combined, an
overall loss of conserved marsh habitat is predicted
regardless of future scenario, with totals ranging from
an average of �0.3% under low SLR to more than
�9.5% under high SLR (Fig. 2).

Pareto optimization

We approximated Pareto-optimal frontiers indepen-
dently for each of 14 parcel subsets (Appendix S1:
Fig. S1), first considering scenarios with no budget con-
straint. To evaluate the sensitivity of protected area
design to variation in risk preference, we selected portfo-
lio alternatives that represented the Nash bargaining
solution along the frontier of each subset (Nash 1950,
Sant�ın et al. 2017) and two additional cases representing
low- and high-risk trade-offs (Appendix S1: Section S4,
Fig. S3). For each risk scenario, we display the spatial
results of all 14 portfolios on a single map (Fig. 3) and
depict outcomes and variability for wetland habitats
under each optimal design relative to the expected
amount of habitat protection under the current reserve
network (Fig. 4).
The low-risk solution places greater emphasis on min-

imizing uncertainty and spatially correlated outcomes
than on conservation returns, resulting in extensive
divestments and moderate acquisition decisions
(Fig. 3a). Given the risk of future inundation and con-
version to open water, suggested divestment from low-
lying habitats include most of the refuge and much of

the Santee River delta. Such divestment is reflected in
the loss of substantial wetland habitat, but with reduced
risk of SLR uncertainty for those protected wetland
types (Fig. 4; left panel). Decisions to acquire or keep
parcels under a low-risk scenario range widely across
habitat types and include lands just inland from the
coast and upland from river basins (i.e., parcels with
lower uncertainty and increased ability to support future
wetlands). A high-risk scenario with no budget con-
straint seeks to maximize benefits through extensive par-
cel acquisition or retention, with minimal divestment
(Fig. 3b). Risk of damages and loss from coastal or estu-
arine inundation is outweighed by the potential contri-
bution of these habitats. In many cases, the expected
habitat benefits under the worst-case scenario of the
high-risk solution are higher than the best-case scenario
of the low-risk solution (Fig. 4; right and left panels,
respectively). Only small, interior parcels are suggested
for divestment, possibly due to their limited contribu-
tions to portfolio benefits. These extremes, however unli-
kely, demonstrate the sensitivity of candidate solutions
to risk attitude.
The Nash bargaining solution, representing a balance

between trading off risk and benefits, offers more com-
plex insights for spatial planning. In this case, the bene-
fits of coastal and estuarine habitats exceed the risk of
loss to SLR, similar to the patterns revealed under the
high-risk solution (Fig. 4; middle and right panels,
respectively). In addition, a strong pattern of parcel
acquisition recommendations is seen along the develop-
ment corridor inland from the NWR and adjacent to
zone of urban expansion (Fig. 3c, southwest corner).
Several large parcels near the refuge are identified for
divestment. The largest of which (6,000 ha of National
Forest) contains abundant freshwater swamp and
upland habitat predicted to remain relatively static over
time. Divestment from these parcels may reflect the
expectation that swamp habitat will persist in abundance
elsewhere in the study area, suggesting that higher habi-
tat diversity is achieved by surrendering such parcels
and acquiring other tracts anticipated to include future
underrepresented or higher-value habitat.
Although we limited our analysis to only three risk

scenarios, these were used to identify the set of robust
parcel decisions that are unaffected by risk uncertainty
(i.e., “no regret” solution). We found that a plurality of
parcel decisions (70.6%) did not change as a function of
risk attitude (Fig. 5). The pattern of these robust deci-
sions offers insights regarding risk–reward trade-offs,
with high-valued and unprotected parcels located just
inland from the refuge, and along the lower or upper
reaches of major river channels. Retention of currently
protected parcels follows a similar pattern, with areas of
the Santee Delta, some Refuge barrier islands, and par-
cels further inland expected to be high-value future habi-
tats. Only 1.1% of the total parcel set identified as
candidates for divestment are common across the three
risk scenarios, none of which is located near the coast.
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As a counterfactual analysis, we calculate differences
in the amount of protected future habitat under a Nash-
optimal design relative to the current reserve network,
while accounting for uncertainty in SLR (Table 2, 2050
existing PA vs. 2050 Optimal). Gains in most wetland
types under an optimal reserve design are substantial
and, in many cases, confer an improvement relative to
both current and future extent of habitat protected
under the existing conservation estate (Fig. 2; right
panel). For example, approximately one-half of the study
area’s tidal swamp is currently protected (5,800 of
11,800 ha). The future, weighted-average amount of

tidal swamp conserved under the existing reserve net-
work is only 41% of the total expected extent, whereas
the Nash-optimal design protects an average of 94% this
total available (Fig. 2, Table 2). Regardless of SLR pro-
jection, this solution conserves a greater amount of tidal
swamp than is currently protected (with a mean increase
of 58%), whereas the current design results in net habitat
loss irrespective of future scenario. Conserved area of
the three most extensive marsh habitat types in the study
area (swamp, saltmarsh, and inland fresh marsh)
increase by an average of 3–6% over the expected extent
under the existing reserve design (Fig. 2, Table 2).
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FIG. 2. Slope graphs (Tufte 1983) depicting predicted change in total available wetland habitat over the period 2010–2050 (left
panels) and future extent of protected wetlands under existing and optimal reserve designs (right panels). Polygons represent future
uncertainty regarding the degree of habitat transition or protection as a function of three sea-level rise (SLR) scenarios; heavy lines
estimate trends under a medium SLR projection, thin lines represent high and low SLR projections. Some habitats (e.g., swamp)
are predicted to increase in extent under medium SLR relative to high and low projections, hence the heavy line lying above the
polygon. Colored points (left side of left panel) depict the extent of each habitat currently protected. The right panels describe the
future protected extent of habitats under the existing protected-area network (left side; existing PA) and under a Nash-optimal
reserve design (right side). Heavy and thin lines are as before, with the shaded areas representing scenario uncertainty. Note the
change in scale (ha) on the y-axis for both upper panels (20,000 ha between tick marks compared to 5,000 ha in lower panels).
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Brackish marsh is the only wetland habitat expected to
decline in area conserved relative to the existing reserve
footprint (mean difference of �39%). Swamp, transition
marsh, and tidal swamp increase in area protected, rela-
tive to the amount currently conserved, by 4%, 249%,
and 58%, respectively. Overall, expected wetland protec-
tion increases by an average of 6% under an optimal
reserve design relative to the existing footprint, and an
average of +4% relative to the amount of wetland cur-
rently conserved. Counterfactual results are provided in
Table 2 (final column) for all 19 habitat types as the
ratio of optimal : current design. Notable results include

a nearly 50% increase in protection of estuarine beach, a
19% increase in inland shore habitat, and a 22% increase
in protection of upland undeveloped lands. Counterfac-
tual comparisons for wetland outcomes across the three
risk tolerance alternatives demonstrate the trade-offs
between expected benefits and variance (Fig. 4).

Budget-constrained optimization

We constrained the model to four hypothetical budget
limitations (as percentages of the area of unprotected
land; Appendix S1: Section S5, Table S3) for exploring

c) Nash solution

CRNWR

FMNF

Action
Decline

Acquire

Retain

Divest

a) Low risk preference b) High risk preference

FIG. 3. Potential reserve designs optimized using MPTwhen a decision maker is (a) risk-averse and prioritizes how to minimize
risk rather than achieve high returns (low risk preference), (b) is risk-seeking and considering a higher reward alternative (high risk
preference), or (c) seeks a more balanced risk–reward outcome (Nash solution). Sea-level rise (SLR) uncertainty is included and is
the same for all scenarios, thus emphasizing that differences in outcomes depicted here are driven entirely by decision-maker atti-
tudes toward risk. Potential management actions for decision makers, including managers of Cape Romain National Wildlife
Refuge (CRNWR) and Francis Marion National Forest (FMNF), include decline acquisition of an unprotected parcel, acquire an
unprotected parcel, retain a currently protected parcel, or divest from a protected parcel. See inset map for location of study region.

October 2019 RESERVE DESIGN USINGMCDA-MPT Article e01962; page 11



the effects of various levels of financial resources on
trade-offs between expected habitat benefits and risk. A
constrained optimization is more likely to provide
insights into decisions to divest from currently conserved
areas to fund acquisition of parcels that better meet
future habitat needs. For these scenarios, we do not ana-
lyze the sensitivity or counterfactuals as above, but
instead focus on inference gained through adding fiscal
constraints to the reserve design optimization, which
directly impact the equilibrium of investment decisions.
Based on allocations of total available budget under

each fiscal scenario, we approximate Pareto-optimal
frontiers for the 14 parcel subsets. We compute a Nash
bargaining solution for each subset, then combine these
for each scenario and graphically portray the global

portfolios (Fig. 6). As expected, the number of divest-
ment decisions declines as the total budget increases.
With increasing budgets, the switch from “divest” to “re-
tain” currently protected parcels is most pronounced
nearer (≤20 km) the coastline and along rivers. As bud-
gets increase, land acquisition decisions also appear to
be focused in proximity to river channels as well as near-
shore parcels inland between the refuge and the
National Forest. Both regions are likely candidates for
future wetland habitat that may replace those lost to
SLR. Additional details on budget scenario outcomes
are provided in Appendix S1: Section S5, Table S4.
Viewing budget scenario outcomes of the benefits,

associated risks and costs associated with a reserve
design strategy allows us to directly evaluate trade-offs
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FIG. 4. Slope graphs depicting counterfactual comparisons between future protected wetland habitat under the existing pro-
tected area network (left side of each panel) and three Pareto-optimal reserve designs (right side of each panel). Polygons represent
future uncertainty regarding the degree of habitat protection as a function of three sea-level rise (SLR) scenarios; heavy lines esti-
mate trends under a medium SLR projection, thin lines represent high and low SLR projections. Some habitats (e.g., swamp) are
predicted to increase in extent under medium SLR relative to high and low projections, hence the heavy line lying above the poly-
gon. Under a low-risk preference (left panels), optimal future protection is lower for all wetland habitats relative to the existing
reserve footprint, although uncertainty is considerably reduced. Under the Nash bargaining and high-risk preference solutions
(middle and right panels, respectively), all habitat types except scrub-shrub transition marsh increase in protected extent relative to
the current protected-area design. Expected benefits and variance over SLR scenarios for the high-risk solution are not substan-
tially greater than under the Nash solution, but increased variance is observed for several habitat types (e.g., tidal swamp, inland
fresh marsh). Not depicted in the figure is the projected total amount of each wetland habitat available for protection (this quantity
can be found on the right side of the left panels in Fig. 2). Note the change in scale (ha) on the y-axis for both upper panels
(25,000 ha between tick marks compared to 5,000 ha in lower panels).
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between these broad objectives (based on Nash bargain-
ing solutions and scaled for comparison; Fig. 7). As
expected, the costs of implementing a reserve design
increase linearly with available budget. Habitat benefits
increase to a threshold budget of 35% of available land,
after which they appear to level off. Perhaps surprisingly,
our risk metric declines dramatically with an increase in
budget from 10% to 20% and then appears to stabilize.
This may suggest the existence of a budget threshold
where sufficient financial flexibility allows acquiring a
diverse enough portfolio to ameliorate correlated risk.
Assessing the relative trade-offs among these three
parameters, in conjunction with spatial depictions of
alternative solutions, can aid a decision maker in decid-
ing on a land acquisition strategy that best meets their
agency’s mission (Appendix S1: Section S5).

DISCUSSION

The stability, resilience, and adaptability of a system,
whether a community, an ecosystem, or a financial sys-
tem, has been linked to diversification (Markowitz 1952,
Holling 1973, Figge 2004). Indeed, resilience theory
posits that maintenance of diversity (of assets, processes,
or governance structures) is an essential component for
ensuring the transformability and potential of complex
adaptive systems (Holling 2001, Folke 2006, Folke et al.
2010). Presaging the concerns of later resilience thinking

regarding the potential dangers of reducing system
heterogeneity through an “aggressive pursuit of effi-
ciency” (Johnson et al. 2013), Markowitz (1952) rejected
the hypothesis that an investor should seek to maximize
a discounted return because optimizing for an expected
value will fundamentally fail to recognize diversification
as preferred strategy. MPT provides a means for opti-
mizing allocation decisions by accounting for both
expected returns and the risks associated with uncertain
outcomes. This approach treats risk more comprehen-
sively than traditional diversification approaches by con-
sidering the synchrony of future outcomes between all
assets (Ando and Mallory 2012). Thus, more explicit
portfolio risk management is achieved than by consider-
ing simpler proxy representations of diversity. In our
case study, we demonstrated that although a risk-averse
solution achieves reductions in variance, it can also pro-
duce management outcomes that are substantially lower
than even the worst-case scenario under higher risk pref-
erences. Because resource managers have been character-
ized as often acting in ways consistent with risk aversion
(Howitt et al. 2005), the ability to quantify the effects of
risk preference will be invaluable to natural resource
management.
Integrating MCDAwith mean-variance portfolio opti-

mization offers a powerful analytical framework for
making efficient allocation decisions with limited bud-
gets when accounting for multiple conservation targets

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community
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FIG. 5. Reserve design solutions that are robust to uncertainty related to a decision maker’s risk preference attitude as depicted in
Fig. 3. This robust solution represents a “no regret” set of candidate decisions across this spectrum of subjective risk tolerance levels.
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and the risks of an uncertain future. The ability to iden-
tify a relatively small subset of Pareto-optimal portfolios
from the near infinite number of possible alternatives
represents a significant benefit to decision makers who
can become overwhelmed by the complexity of the port-
folio decision. An additional advantage of this approach
is the flexibility of a hierarchical objectives framework
to make explicit trade-offs among competing manage-
ment criteria at the parcel level and between return and
risk for the portfolio. The latter trade-offs, along the effi-
cient frontier, will be based on risk preferences, beliefs
about the likelihood of future climate conditions or the
desired level of resource performance, with the knowl-
edge that all identified options are Pareto optimal.
Although developed for financial applications, the

MPT framework has seen a growing number of applica-
tions for natural resource management (Koellner and

Schmitz 2006, Moore et al. 2010, Schindler et al. 2010,
Ando and Mallory 2012, Convertino and Valverde 2013,
Mallory and Ando 2014, Anderson et al. 2015), several
of which contribute important advances in spatial plan-
ning for climate change adaptation, including novel
methodological approaches for addressing multiple
objective problems (Ando et al. 2018, Runting et al.
2018). Many of these studies, however, do not take full
advantage of MPT’s analytical power. For example,
some case studies demonstrate negligible correlation
among assets (Convertino and Valverde 2013) while
others include sites that are entirely synchronous across
scenarios (Marinoni et al. 2011); both of these cases are
uninformative from a risk perspective. Other applica-
tions have reduced problem dimensionality by formulat-
ing the decision variable as continuous (e.g.,
representing the proportions of a budget to allocate to

CRNWR
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Acquire

Retain

Divest

Budget = 50%35

200
(difference from 10% budget)

(difference from 10% budget)(difference from 10% budget)

FIG. 6. Effect of budget constraints on optimal MPT reserve design portfolios. Budget constraints are represented as the pro-
portion of total area of land in unprotected status (i.e., ostensibly available for acquisition). Budgets are allocated to 14 sub-group-
ings of parcels based on the relative proportion of land acquisition decisions recommended for an unconstrained analysis. The
Nash solution was selected for each sub-group (see Appendix S1: Fig. S1) to formulate the global reserve design. Highlighted par-
cels for 20%, 35%, and 50% available land scenarios depict changes in the optimal decision relative to that under a budget of 10%.
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broad subregions or planning units; Marinoni et al.
2011, Ando and Mallory 2012), rather than a discrete
variable representing decisions pertaining to each asset
(Runting et al. 2018). We have specified an analytical
approach to be more explicit in supporting decision-
making by addressing a large set of relevant considera-
tions of coastal zone managers, including competing
objectives among multiple decision makers, an appropri-
ately scaled decision variable (e.g., the parcel-unit), an
analytical method for seeking a balance between risk
and benefits, and a means to evaluate divestment deci-
sions for more efficient, long-term planning.
Here, we apply MCDA-MPT to a case study using

simplified resource objectives and a small number of cli-
mate-change scenarios to demonstrate an approach that
we believe will be useful in supporting coordination of
conservation planning at the scale of actual decisions
made by state, federal, and non-governmental land man-
agers. The uncertainty of climate change impacts to nat-
ural resources and ecosystem goods and services, and
variation in stakeholder willingness to accept the inher-
ent risk of any management decision, suggest this as an
appropriate approach for evaluating adaptation actions
such as designing new protected area networks. The
results from our study indicate that changes in impor-
tant habitat types could be substantial in coastal South

Carolina, and that losses of protected wetlands under
the current conservation network will be highly variable
as a function of SLR, possibly exceeding 9% of current
extent. The expected improvements to future habitat
preservation under an optimal portfolio design are able
to counteract many of these losses. Importantly, in some
cases the MPT solution produced a net gain of
conserved habitat relative to the amount currently under
protection, regardless of SLR scenario, whereas the cur-
rent reserve footprint resulted in an overall loss of this
habitat. Our analysis reveals that parcel-level decisions
may be somewhat robust to differences in risk attitudes,
with nearly three-quarters of parcel decisions remaining
unchanged across a moderate range of risk tolerances.
Evaluating the dynamics of portfolio cost, risk and
return over several hypothetical budget scenarios pro-
vides additional insights into the trade-offs and interac-
tions among management objectives when constraints
were imposed. The dynamics of investment and divest-
ment decisions are strongly governed by both fiscal
resources and risk attitude. Identifying changes in the
rate of marginal return, either along the Pareto frontier
or as a function of changes in constraints (e.g., invest-
ment levels), is an additional strength of portfolio analy-
sis (Polasky et al. 2008). For our case study, identifying
the investment threshold resulting in substantial
increases in return with a marginally smaller increase in
risk represents such an inflection point. Considering the
Pareto frontier, representing direct trade-offs between
management return and risk, the Nash bargaining solu-
tion provides an analytical means to locate the point of
diminishing marginal returns (Appendix S1: Fig. S3) on
either objective, which can be a useful place to begin
negotiations. To our knowledge this is the first applica-
tion of such an approach to SCP.
There are several considerations that should be

addressed prior to implementing decisions based on this
portfolio optimization framework. Importantly, the
basis by which we evaluated reserve portfolios was a
function of SLR and subsequent habitat transition pro-
jections, which originated from simple SLAMM model
output. Although widely used, this model has been criti-
cized for limitations in how input data (e.g., DEMs) are
used, its lack of predictive hydrodynamics, simplistic
assumptions regarding erosion, storm impacts, accretion
and sedimentation processes, and for ignoring feedback
mechanisms between SLR and system responses (Craft
et al. 2009, Donoghue et al. 2013). We acknowledge
numerous recent advances in SLR modeling, particu-
larly efforts to understand marsh migration dynamics
that account for finer scale details of local conditions,
including feedback between geomorphology and marsh
evolution, sediment transport, and colonization by wet-
land flora, to provide more accurate predictions of habi-
tat changes (Brand et al. 2012, Fagherazzi et al. 2012,
Thorne et al. 2015). However, we chose to use the
SLAMM model because it is freely available and easily
interpreted, making it a sensible choice to demonstrate
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principles and gain inferences using the MPT analysis.
Understanding the uncertainties around prediction of
changes in individual habitat types, one approach to
reduce such error was to group all wetland types
together, possibly at the expense of lower precision.
An additional limitation of constrained portfolio opti-

mization is computational complexity; the general prob-
lem has been long recognized by computer scientists as
NP hard (Sarkar et al. 2006). Even with an efficient
search algorithm (Pal and Charkhgard 2019), this com-
plexity resulted in the need to subset available parcels to
allow for tractability and reasonable computational time,
acknowledging that such groupings required some arbi-
trary assumptions. Although we stratified these groups by
similar ecological characteristics and into potential plan-
ning units, our evaluation did not account for trade-offs
among subgroups nor did we conduct sensitivity analyses
to quantify the effect of subsetting on optimal results.
Such limitations also precluded consideration of par-

cel connectivity as an optimization criterion for evaluat-
ing portfolio benefits. Connectivity is a well-recognized
design criteria in spatial planning (Sarkar et al. 2006,
Pressey et al. 2007), from the context of maintaining
species richness (e.g., island biogeography theory), main-
taining species dynamics (e.g., metapopulation theory)
or, in the context of SLR, supporting landward migra-
tion of coastal habitat. One practical solution to improve
connectivity is to use postprocessing algorithms to gen-
erate more compact reserve alternatives to compare with
Pareto alternatives (Udell et al. 2018). It is important,
however, to consider whether contiguous parcels are
positively correlated in expected future value and how
such dynamics would impact portfolio risk. An evalua-
tion of the trade-offs between connectivity and risk crite-
ria may be a useful topic for future research.
Important considerations specific to our model for-

mulation include the treatment of urbanization probabil-
ity estimates and the significance of divestment decisions
for currently protected lands. In spatial conservation
planning, urbanization is viewed as a threat leading to
permanent loss of a parcel for protection. One approach
to address this issue is by framing the problem as a
sequential reserve design whereby a site-ordering algo-
rithm is used to identify the sequence in which parcels
might be acquired to maximize portfolio return while
accounting for the dynamic risk of parcel loss (Sarkar
et al. 2006, Moilanen and Cabeza 2007). Because of the
large number of parcels, we simplified our problem to a
single-stage optimization in which higher risk of urban-
ization raises a parcel’s values above that of its habitat
benefits alone to modify the likelihood that the parcel
will be selected for conservation. In this sense, we implic-
itly accounted for temporal dynamics of parcel utility by
a measure that represents spatiotemporal patterns of
land conversion. Valuing parcels as a linear function of
urbanization risk may be reasonable in some circum-
stances, but other approaches exist for addressing devel-
opment risk (Costello and Polasky 2004).

Divestment from public or privately held conservation
lands may be seen as undesirable (but see Alagador et al.
2014). However, recognizing that dynamic habitats can
limit expected gains in efficiency under assumptions of
static reserve boundaries, researchers have explored
relaxing of restrictions on irreversible reserve design deci-
sions (Strange et al. 2006). Although relinquishing an
entire protected area may be unprecedented, agencies are
authorized to modify their holdings or exchange small
parcels for others of equal value (Thompson 2004).
Precedent also exists for transferring public lands to
resolve conflicts or address greater societal needs, such as
a Congressional Act that transferred nearly 800 acres (1
acre = 0.40 ha) from Olympic National Park to assist the
Quileute Tribe to relocate from rising seas, erosion, and
tsunami threat (U.S. Congress 2012). In our case study,
only strong risk aversion led to recommendations for
divesting from nearly all coastal refuge holdings. The
ability to reinvest funds generated from divestments may
also be desirable when budget constraints limit the ability
to appropriately diversify assets. A more feasible alterna-
tive may be for public land managers to engage in flexible
conservation contracts with private landowners. Term-
limited conservation easements, with contract negotia-
tions based on the expected longevity of benefits, would
allow limited financial resources to be used for conserv-
ing future high-value areas rather than being tied up in
managing parcels in perpetuity. There are risks to fixed-
term contracts, however, including added transaction
costs, increased instability in land-use planning, and pos-
sible disincentives for landowners wishing to provide a
long-term conservation legacy (Thompson 2004).

CONCLUSIONS

Expanding or altering existing protected area net-
works is a necessary adaptation strategy to sustain con-
servation objectives and mitigate the effects of climate
change and land conversion. Securing diversified assets
in a conservation portfolio is an accepted strategy for
increasing system resilience to offset unknown future
conditions. We have expanded the use of MPT for spa-
tial conservation planning to account explicitly for the
rationale underlying diversification, which is to maxi-
mize future complementarity of a collection of protected
lands by minimizing potentially correlated outcomes.
This reserve design framework offers several benefits rel-
evant for supporting conservation problems beyond our
application to coastal South Carolina. Our model
approach includes an optimization algorithm that
accommodates large, multi-objective decision problems,
an axiomatic selection method (the Nash bargaining
solution) to equitably balance trade-offs when negotiat-
ing among different risk attitudes is not practical, and
consideration of the potential benefits of both invest-
ment and divestment of assets. Identifying Pareto-opti-
mal solutions over climate and budget uncertainties, and
across a spectrum of stakeholder preferences, provides
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critical insights on the sensitivity of conservation strate-
gies to risk and risk attitudes. The influence of differing
levels of risk tolerance in driving management policy is
rarely considered in environmental decision-making
(Greiner et al. 2009). Our approach is not limited to
spatial conservation planning but could be applied to a
wide range of resource allocation or investment deci-
sions for which unresolvable uncertainty requires strate-
gic risk management. Examples include allocating
research or monitoring funding to maximize learning to
directly inform management decisions, evaluating the
risks of introducing disease or unwanted species in
translocation or restoration programs, spatial manage-
ment of invasive species or communities of conservation
concern, and assessing the success and risks of alterna-
tive urban planning policies in response to uncertain
threats.
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