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Comparingmethods for clinical investigator site inspection selection: a
comparison of site selection methods of investigators in clinical trials
Nicholas Heina, Elena Rantoub, and Paul Schuetteb

aDepartment of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA; bOffice of Biostatistics/Office of
Translational Sciences/Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA

ABSTRACT
Background During the past two decades, the number and complexity of
clinical trials have risen dramatically increasing the difficulty of choosing
sites for inspection. FDA’s resources are limited and so sites should be
chosen with care.
Purpose To determine if data mining techniques and/or unsupervised
statistical monitoring can assist with the process of identifying potential
clinical sites for inspection.
Methods Five summary-level clinical site datasets from four new drug
applications (NDA) and one biologics license application (BLA), where the
FDA had performed or had planned site inspections, were used. The num-
ber of sites inspected and the results of the inspections were blinded to the
researchers. Five supervised learning models from the previous two years
(2016–2017) of an on-going research project were used to predict site
inspections results, i.e., No Action Indicated (NAI), Voluntary Action
Indicated (VAI), or Official Action Indicated (OAI). Statistical Monitoring
Applied to Research Trials (SMARTTM) software for unsupervised statistical
monitoring software developed by CluePoints (Mont-Saint-Guibert,
Belgium) was utilized to identify atypical centers (via a p-value approach)
within a study.Finally, Clinical Investigator Site Selection Tool (CISST), devel-
oped by the Center for Drug Evaluation and Research (CDER), was used to
calculate the total risk of each site thereby providing a framework for site
selection. The agreement between the predictions of these methods was
compared. The overall accuracy and sensitivity of the methods were gra-
phically compared.
Results Spearman’s rank order correlation was used to examine the agree-
ment between the SMARTTM analysis (CluePoints’ software) and the CISST
analysis. The average aggregated correlation between the p-values
(SMARTTM) and total risk scores (CISST) for all five studies was 0.21, and
range from −0.41 to 0.50. The Random Forest models for 2016 and 2017
showed the highest aggregated mean agreement (65.1%) amongst out-
comes (NAI, VAI, OAI) for the three available studies. While there does not
appear to be a single most accurate approach, the performance of methods
under certain circumstances is discussed later in this paper.
Limitations Classifier models based on data mining techniques require
historical data (i.e., training data) to develop the model. There is
a possibility that sites in the five-summary level datasets were included in
the training datasets for the models from the previous year’s research which
could result in spurious confirmation of predictive ability. Additionally, the
CISST was utilized in three of the five site selection processes, possibly
biasing the data.
Conclusion The agreement between methods was lower than expected
and no single method emerged as the most accurate.
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1. Background

The U.S. Food and Drug Administration (FDA) is responsible for making decisions about new drug
applications (NDAs) and biologics license applications (BLAs). The reliability and integrity of
clinical trial data is crucial to such marketing approval decisions. The Office of Scientific
Investigations (OSI), in the Office of Compliance, Center for Drug Evaluation and Research
(CDER), collaborates with other FDA offices to verify data quality and data integrity submitted to
CDER in support of the NDAs and BLAs. As part of the review process, CDER reviewers may
request Office of Regulatory Affairs (ORA) investigators conduct on-site inspections at selected
clinical investigator sites. On-site inspections help ensure that the safety and efficacy of experimental
treatments are accurately assessed. However, FDA’s resources are limited. In addition to FDA
inspections, sponsors are expected to monitor clinical trial sites and are responsible for the integrity
and quality of submitted data (see U.S. FDA, Section 5.18) .

Due to limited FDA resources, targeted selection of sites which are potentially most problematic
is desirable. In 2010, CDER began a pilot of itss Clinical Investigator Site Selection Tool (CISST),
a risk-based model to identify clinical investigator sites for inspection. More recently, CDER (with
the support of Oak Ridge Institute for Science and Education (ORISE) interns) has explored whether
supervised data mining methods can be used to predict the outcomes of a site-inspection. Currently,
through a Cooperative Research and Development Agreement (CRADA), CDER is exploring the use
of unsupervised statistical monitoring software (Venet and Doffagne 2016; Trotta et al. 2019)
developed by CluePoints to identify atypical sites, which may be indicative of data quality and
integrity issues. The purpose of this study is to determine whether the various tools (i.e., CISST,
supervised data mining methods, and the CluePoints software) broadly agree in their respective
findings and to determine which tool, if any, is the most accurate.

2. Data

We used five summary-level clinical site datasets from four NDAs and one BLA where the FDA had
performed on-site inspections. The data are based on the clinsite.xpt data set described in (U.S. Food
and Drug Administation 2018a) Applications were labeled A, B, C, D, and E (in no particular order)
to ensure confidentiality of the data. The authors were blinded to the number of inspections
performed and the results of the inspections. The five applications were submitted between 2013
and 2018. Sites with zero enrollment were excluded from the analyses. The average number of sites
per application was 304 with a median enrollment of 13 subjects across all five applications. The
smallest application had 29 sites with a total patient enrollment of approximately 135 individuals,
while the largest application enrolled approximately 15,000 patients across nearly 700 sites.

2.1. Outcomes

The results of an on-site inspection are reported as No Action Indicated (NAI), Voluntary Action
Indicated (VAI), or Official Action Indicated (OAI).

2.1.1. No action indicated (NAI)
An NAI classification means no objectionable conditions or practices were found during the
inspection.

2.1.2. Voluntary action indicated (VAI)
A VAI classification indicates that objectionable conditions or practices were found but the agency is
not prepared to take or recommend any administrative or regulatory action.

2.1.3. Official Action Indicated (OAI)
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An OAI classification occurs when objectionable conditions or practices were found and regula-
tory and/or administrative actions will be recommended.(see U.S. FDA, 2018c)

Empirical evidence suggests that an occurrence of OAI is a rare event with PDUFA/BSUFA
inspections; approximately 1% of clinical sites being classified as OAI (Jha et al. 2017; Tang et al.
2016).

2.2. Missing data

Summary-level clinical site data (clinsite.xpt) comprised of demographic information and Key Risk
Indicators (KRI) of safety and efficacy were used for the analysis tools. For the studies and KRI’s of
interest, rates of missing data varied from 0% for some variables of interest, to as much as 100% for
financial disclosure in some studies.

According to Schafer and Graham (2002), statisticians may classify missing data as missing
completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR).
Data are classified as MCAR if the probability of a particular value missing is independent of both
the observed and unobserved data (Schafer and Graham 2002). If the probability of a particular value
missing depends only on the observed data, then the missing data are classified as MAR (Schafer and
Graham 2002). Similarly, Schafer and Graham state that if the probability of a value missing depends
on both the observed and unobserved data, the missing data are said to be MNAR.

Data with missing values can be analyzed using complete case analysis (rows with missing data
are excluded from analysis) or using imputed data (replacing missing data with a substituted value).
Only in the case of MCAR does complete case analysis provide unbiased estimates (Schafer and
Graham 2002). Analyses performed using imputed data can produce unbiased estimates in all three
cases; however, MNAR data assumes missingness depends on the unobserved data and requires
knowledge of the underlying mechanism of the missingness (Schafer and Graham 2002). Using
logistic regression, missing data were found to depend on observed data (results not shown).
Addtionally, since MNAR is an untestable hypothesis, therefore, we assumed data were MAR.

3. Methods

Five supervised learning models from the 2016 and 2017 phases of the research project to predict site
inspection outcomes were employed. The two models from 2016 classified sites as NAI, VAI, or OAI
(Tang et al. 2016); while the three models from 2017 classified sites as NAI or VAI/OAI (Jha et al.
2017). We used CluePoints’ Statistical Monitoring Applied to Research Trials (SMARTTM) software
(Venet and Doffagne 2016) to identify atypical sites via p-values (see Section 3.3). Lastly, the FDA’s
CISST was used to calculate the total risk of each site, thereby providing a framework for site
selection. See Table 1 for a summary of methods.

The five data mining models from 2016 and 2017 require complete cases to make a prediction.
However, SMARTTM and CISST do not require complete cases for their respective analyses.
Therefore, we only imputed missing data when performing analyses using the models from 2016
and 2017.

Table 1. Summary of methods used to predict site inspection outcomes.

Data mining

SMARTTM CISST 2016 2017

Description Detects outliers using
distributional assumptions
about the data.

Expert opinions used to
develop a risk-based
model.

Historical data used to train
classification models for
prediction.

Historical data used to train
classification models for
prediction.

Predictions Uses p-value to identify
atypical sites.

Assigns risk score to
each site.

NAI, VAI, or OAI. NAI or VAI/OAI
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Missing data were imputed using the Random Forest imputation method (Liaw and Wiener 2002)
when we performed analyses using the 2016 models. For the 2017 models, the Random Forest
imputation method (Liaw and Wiener 2002) was first used to impute missing instances of financial
disclosure. We then used the Expectation-Maximization (EM) algorithm (Honaker et al. 2011) to
impute the remaining instances of missing values in the variables site efficacy, treatment efficacy, and
time since last inspection. The EM algorithm (Honaker et al. 2011) was unable to handle the
substantial amount of missingness in the financial disclosure variable. Additionally, we tried to
align the imputation methods we used with the imputation methods used in Tang et al. (2016) and
Jha et al. (2017).

We examined the percent agreement between the two 2016 and the three 2017 data mining
models. To align with predictions from the 2017 models, we re-classified predictions from the 2016
models as NAI or VAI/OAI. We then calculated percent agreement as the number of concordant
predictions divided by the total number of predictions. We compared the results of the SMARTTM

(Venet and Doffagne 2016) analyses and CISST analyses using Spearman’s rank order correlation.
To examine agreement between all methods and the official outcomes, we performed a visual

examination using heat maps (Wickham 2009) of the predictions and the official outcomes. We
converted the predictions to a continuous [0,1] scale. CISST risk scores were converted as

score�Min scoreð Þð Þ= Max scoreð Þ �Min scoreð Þð Þ:
For the data mining methods, we assigned each category a value (Table 2). The SMARTTM p-values
did not require converting; however, we reversed the p-values to align with a larger p-value
indicating an increased likelihood of atypical sites.

We stratified all analyses by application unless otherwise stated. Additionally, we analyzed sites by
combining treatment arms within an application, as well as, by arms separately reporting the worst-
case prediction of the arms. SMARTTM analyses used proprietary methods for combining the results
of treatment arms within a site. We conducted the analyses utilizing the five supervised learning
models using R v3.5.0 (R Core Team 2018) on a Windows 10 PC. We performed the SMARTTM

(Venet and Doffagne 2016) analyses using R v3.3.2 (R Core Team 2016) in a Linux high-
performance computing environment. Results of the CISST analysis were included in the data as
additional columns.

3.1. Data mining methods – 2016

Tang et al. (2016) considered five types of classification models: Boosted Tree, Classification Tree,
Combined Binary Random Forest, Ordinal Regression, and Random Forest. Each class of model had
external parameters (see Section 3.1.1) that could be tuned resulting in multiple models for each
class, e.g., Random Forest, Random Forest + alpha = 0.02231, Random Forest + SMOTE +
alpha = 0.093, etc. (Tang et al. 2016). Tang et al. used site inspection data from 2013–2015
containing 3561 sites to train and validate the models using 5-fold cross-validation. We selected
the two best performing models for our current study (Table 3). Tang and others defined perfor-
mance using overall accuracy and sensitivity of predicting OAI. Based on Tang and colleagues’
results, Random Forest + alpha = 0.093 and Boosted Tree + SMOTE + alpha = 0.2231 performed the
best. The Random Forest + alpha = 0.093 model will be referenced as Random Forest 2016, and the

Table 2. Numerical assignment for predictions from data mining methods.

2016 Methods 2017 Methods

Prediction Assigned Value Prediction Assigned Value

NAI 0 NAI 0
VAI 0.5 VAI/OAI 0.8
OAI 1
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Boosted Tree + SMOTE + alpha = 0.2231 model will be referred to as Boosted Tree 2016 henceforth.
Both models had an overall accuracy of 89% and a sensitivity of 95% (Tang et al. 2016).

3.1.1. Imbalance in outcomes
For classification models, the classifier generally takes more information from the majority class.
Imbalanced data can cause a problem when using classification methods, e.g., Boosted Tree, Random
Forest, Ordinal Regression, etc. For example, suppose the majority class accounts for 99% of the
outcomes. Naively classifying all samples as the majority class will result in 99% total accuracy;
however, none of the minority class will be correctly predicted. Therefore, adjustments to the
minority class are needed to improve the sensitivity of detecting the minority class. This adjustment
may lead to slightly lower overall accuracy than naively classifying all samples as the majority class.
Two such approaches are Synthetic Minority Oversampling Technique (SMOTE) developed by
Chawla et al. (2002) and threshold adjustment.

The external tuning parameters of the models (SMOTE and alpha) were used to compensate for
the low percentage of OAI outcomes in the dataset. The 3561 sites had an OAI outcome rate of 1.2%
(Tang et al. 2016). SMOTE is a method that generates synthetic samples for a minority class (i.e.,
OAI) thereby increasing the percentage of OAI outcomes (Chawla et al. 2002). Whereas alpha is
a threshold adjustment of the predicted probabilities of the respective model. The final classification
of a site is determined by the class that gives the largest probability,

f Xið Þ ¼ argmax
j2 NAI;VAI;OAIf g

αjP Yi ¼ jð Þ;

where αOAI ¼ 1 and αNAI ¼ αVAI ¼ 0:093; 0:2231; 1f g.
Thus, alpha is used as a scalar for the probabilities of NAI and VAI thereby increasing the

likelihood the P Yi ¼ OAIð Þ is the maximum, and hence adjusting for the imbalance in the percen-
tage of outcomes.

3.1.2. Predictors
Scientists from OSI identified 13 KRIs believed to influence the site inspection results, as identified
in Bioresarch Monitoring Technical Confromance Guide (US FDA 2018a), and supplemented by
internal FDA data. These 13 KRIs were used to predict NAI, VAI, or OAI. Three KRIs had missing

Table 3. Accuracy and sensitivity of top performing data mining models from
2016.

Model Accuracy Sensitivity

RF + SMOTE 90.54% 81.94%
Boost + SMOTE 91.27% 86.05%
CRF + SMOTE 89.89% 88.37%
RF + alpha = 0.093 89.16% 95.35%
Boost + alpha = 0.093 90.81% 93.02%
CRF + alpha = 0.093 88.88% 97/67%
RF + SMOTE + alpha = 0.2231 89.07% 90.69%
Boost + SMOTE + alpha = 0.2231 89.03% 95.35%
CRF + SMOTE + alpha = 0.2231 88.24% 100%

Note. The following abbreviations are used: RF – Random Forest; Boost –
Boosted Tree; CRF – Combined Binary Random Forest; alpha – threshold
adjustment; SMOTE – Synthetic Minority Oversampling Technique. Adapted
from “Exploring data mining methods for clinical site investigator inspection,”
by M. Tang, E. Rantou, and P. Schuette, 2016, unpublished manuscript.
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data (Tang et al. 2016). Tang and colleagues (2016) used Random Forest imputation method to
impute the missing data.

3.2. Data mining methods – 2017

Three classification models were considered in 2017 and subsequently chosen for our study, Random
Forest, Boosted Tree, and Boosted Tree with Dropout (Jha et al. 2017). Jha et al. (2017) used site
inspection data from 2013–2016 with a total of 3035 entries to train and validate the models. OAI
outcome prevalence was <1% (Jha et al. 2017). Jha and colleagues accounted for this imbalance by
dichotomizing the outcomes, i.e., combining the VAI and OAI outcomes into one category. This
dichotomization resulted in 64.2% NAI outcomes and 35.8% VAI/OAI outcomes (Jha et al. 2017).
Fifteen KRIs were used to predict the binary outcomes NAI or VAI/OAI. The 15 KRIs included the
13 KRIs from 2016 in addition to treatment efficacy and site-specific efficacy missing indicator. Jha
and colleagues found four KRIs contained missing data; the missing data were imputed using the EM
algorithm (Honaker et al. 2011).

Jha et al. (2017) used a simple random sample without replacement to split the data into training
and validation data using a sampling probability of 0.8 for the training data. Jha and others defined
model performance using 5-fold cross-validation error using the training data and percent mis-
classification using validation data (Table 4).

3.3. Statistical monitoring applied to research trials (SMARTTM)

SMARTTM (Venet and Doffagne 2016) is a statistical software package designed to detect atypical
sites in a multicenter study. SMARTTM (Venet and Doffagne 2016) assumes that data coming from
the various centers of the study are similar except for some natural variations due to chance or
variations due to the design of the study, e.g., multinational study that recruits patients with different
ethnicities (Venet et al. 2012). SMARTTM software tests the distribution of data in one center to data
in all other centers (Venet et al. 2012). A number of p-values are returned from these tests (Venet
et al. 2012). A weighted geometric mean, P, of the p-values for the center is then computed; where
the weights reflect the correlation between the tests that were performed. The data inconsistency
score (DIS) for a center is then calculated as DIS = – log(P). We flagged a center as atypical if the site
weighted geometric mean P was less than 0.05.

SMARTTM (Venet and Doffagne 2016) was initially designed to analyze patient-level data.
Recently, CluePoints modified some of their statistical tests used in the SMARTTM (Venet and
Doffagne 2016) software for summary-level data. We examined the five applications of this study
using both patient and summary level data. For the summary level data, we tested 10 KRIs for
inconsistencies across centers. The results of the SMARTTM (Venet and Doffagne 2016) analyses are
from summary-level data.

Table 4. Validation error and percent misclassification of 2017 data mining models.

Method Cross Validation Error Misclassification

Random Forest 13.5% 14.0%
Boosted Tree 15.9% 14.9%
Boosted Tree with Dropout 16.9% 16.4%

Note. Adapted from “Data mining tool for clinical site investigator inspection,” by C. Jha,
E. Rantou, and P. Schuette, 2017, unpublished manuscript.
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3.4. Clinical investigator site selection tool (CISST)

CISST is a tool developed by eliciting expert opinion. Twenty-one attributes that are poten-
tially associated with the outcome of on-site inspections were identified through a series of
expert interviews across the offices of Biostatistics (OB), Office of Compliance (OC), Office of
New Drugs (OND), and Office of Business Informatics (OBI). In the second round of inter-
views, the identified attributes were ranked in their importance. A risk-based algorithm was
then developed. The algorithm transforms the KRIs, applies weights to each risk function, and
aggregates each risk factor into a total risk score. We used the total risk score as an indicator
of the likelihood of OAI outcome. The higher the risk score, the higher the probability that
a site inspection would result in an OAI classification.

4. Results

We examined the agreement between SMARTTM (Venet and Doffagne 2016) analyses using patient-
level SDTM data and summary-level (clinsite) data via Spearman’s rank order correlation (Figure 1).
The average aggregated correlation between the p-values of the two analyses for the five applications
was 0.29. There was no association between the magnitude of the correlation and the number of
patients enrolled in the study.

Spearman’s rank order correlation was also used to determine the agreement between the
SMARTTM (Venet and Doffagne 2016) analyses (summary-level data) and the risk scores from
CISST. We first analyzed the data using the CISST by combining the results of each treatment arm
and calculated the total risk score for the combined results. We will refer to this method of analysis
as ‘combined’ analysis. Similarly, we analyzed the data using the CISST by calculating a total risk
score for each arm and reporting the maximum total risk score of the arms for the respective site.
We refer to this method as ‘by arm’ analysis. The average aggregated correlation between SMARTTM

(Venet and Doffagne 2016) p-values and CISST total risk scores across the five applications was
−0.21 and −0.19 for combined and by arm analysis, respectively (Figure 2). We expected a negative

Figure 1. Spearman’s correlation between SMARTTM analyses p-values.
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correlation since a small p-value from SMARTTM (Venet and Doffagne 2016) indicates an atypical
site and a sizable total risk score from CISST suggests a potential problem site.

Next, we examined the percent agreement between the six combinations of models from 2016 and
2017 (Figure 3). The Random Forest models from 2016 and 2017 (combined analysis) showed the

Figure 2. Spearman’s correlation between SMARTTM p-values (summary-level data) and CISST risk scores.

Figure 3. Percent agreement between data mining methods of 2016 and 2017. The legend is designed as follows: [model].[model]
where the first [model] is a 2016 model and second [model] is a 2017 model. The following abbreviations are used: RF – random
forest; BT – boosted tree; Dropout – boosted tree with dropout.
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highest percent agreement amongst all combinations of models. The average percent agreement of
concordant results aggregated by study was 64.9%. While the lowest average percent agreement
(58.5%) aggregated by study occurred when comparing the random forest model from 2016 and the
Boosted Tree model from 2017 (combined analysis). Performing a combined analysis or by arm
analysis had a minimal effect on the percent agreement between the 2016 and 2017 models. The
mean difference of the aggregate averages of percent agreement between analysis methods was 2.1%.

Examining the heat maps to determine the agreement between all methods showed the occur-
rence of all methods indicating OAI (or low p-value/high total risk score) or all methods predicting
NAI (or high p-value/low total risk score) was rare (See Figure 4–8). Furthermore, the heat maps
revealed that the by arm and the combined analysis were not always in agreement amongst the
respective methods. For Study A, it appears that the Random Forest, Boosted Tree, and Boosted Tree
with Dropout models from 2017 were potentially overly sensitive to predicting VAI/OAI (Figure 4).
Based on the historical data of Tang et al. (2016) and Jha et al. (2017) VAI and OAI outcomes should
account for approximately 40% of the predictions. The heat maps for D and E are challenging to
interpret due to the large numbers of clinical sites (Figures 7 and 8).

To summarize, the agreement between the data mining models of 2016 and 2017 appears to be
higher than the agreement between the SMART (Venet and Doffagne 2016) analyses p-values and
the CISST risk scores. Upon examining the agreement of all tools using heat maps, we found that the

Figure 4. Heat map for study A. SMART_BIMO represents the SMART analysis using summary-level data and SMART_Ind represents
the SMART analysis using patient-level data. The following abbreviations where used for the data mining methods: RF – Random
Forest, BT – Boosted Tree, Dropout – boosted tree with dropout.
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tools were rarely in complete agreement. The data mining methods of 2017 were most likely to
identify an OAI or VAI outcome correctly; however, this seems to result in reduced specificity. The
SMART (Venet and Doffagne 2016) analysis appears to have the highest specificity which results in
a lower sensitivity. For the CISST and data mining models of 2016, sensitivity and specificity seem to
fall somewhere in between the two extremes, i.e., high sensitivity and low specificity or high
specificity and low sensitivity.

5. Discussion

This study aimed at determining the extent and degree of agreement of three different types of tools (i.e.,
unsupervised statistical monitoring, supervised data mining, and a risk model developed using expert
opinions) in properly classifying a clinical site as NAI, VAI, or OAI. Only the data mining models of 2016
predicted NAI, VAI, or OAI. The data mining models of 2017 combined the VAI and OAI categories.

Figure 5. Heat map for study B. SMART_BIMO represents the SMART analysis using summary-level data and SMART_Ind represents
the SMART analysis using patient-level data. The following abbreviations where used for the data mining methods: RF – Random
Forest, BT – Boosted Tree, Dropout – boosted tree with dropout.
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The SMART (Venet and Doffagne 2016) analysis outputs p-values in which an a priori alpha level can be
used to identify atypical sites. Lastly, the CISST uses risk scores which are relative to the data being
analyzed. Therefore, no global rules exist for selecting sites using the CISST. We addressed this limitation
by converting all predictions to a [0,1] continuous scale and using heat maps to compare the different
methods. The heat maps presented their challenges in that judgments had to be made in interpreting the
predictions from the SMART (Venet and Doffagne 2016) analysis and the CISST. Furthermore, the data
mining models of 2017 did not distinguish between VAI and OAI, muddying the interpretation.

Not only were the tools’ outputs unique to the method, but each tool used a different set of KRIs
to make predictions. Additionally, four KRIs had missing data. There were substantial amounts of
missingness (near 100%) for the KRI financial disclosure. The data mining models of 2016 and 2017
require complete case analysis. These models were previously developed, so removing the covariate
financial disclosure from the model was not an option. Therefore, imputation was used assuming the

Figure 6. Heat map for study C. SMART_BIMO represents the SMART analysis using summary-level data and SMART_Ind represents
the SMART analysis using patient-level data. The following abbreviations where used for the data mining methods: RF – Random
Forest, BT – Boosted Tree, Dropout – boosted tree with dropout.
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data were MAR. It is not possible to exclude MNAR as the mechanism of missingness. If the data
were MNAR, then assuming MAR could have biased the results.

The final limitation that cannot be overcome is the possibility of selection bias. There is a non-
zero probability that the data used to train the data mining models and the data used in this study
had clinical sites that were included in both datasets. This could result in a spurious confirmation of
the predictive ability of the data mining models.

6. Conclusions

The limited number of official outcomes precludes the uses of any hypotheses testing. However,
descriptive statistics and graphical plots helped provide insights into the site selection process.
Notwithstanding limitations, this study highlighted the complexities of the site selection
process.

Figure 7. Heat map for study D. SMART_BIMO represents the SMART analysis using summary-level data and SMART_Ind
represents the SMART analysis using patient-level data. The following abbreviations where used for the data mining methods:
RF – Random Forest, BT – Boosted Tree, Dropout – boosted tree with dropout.

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 871



The agreement between methods was lower than expected. It may be that some methods
perform better under certain conditions; however, these conditions are not entirely clear.
Furthermore, a combination of methods may be required for a complete picture of the site
selection process. Further research into the clinical investigator site selection is warranted.
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