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ABSTRACT

Improving seasonal forecasts in East Africa has great implications for food security and water resources

planning in the region. Dynamically based seasonal forecast systems have much to contribute to this effort, as

they have demonstrated ability to represent and, to some extent, predict large-scale atmospheric dynamics

that drive interannual rainfall variability in East Africa. However, these global models often exhibit spatial

biases in their placement of rainfall and rainfall anomalies within the region, which limits their direct ap-

plicability to forecast-based decision-making. This paper introduces a method that uses objective climate

regionalization to improve the utility of dynamically based forecast-system predictions for East Africa. By

breaking up the study area into regions that are homogenous in interannual precipitation variability, it is

shown that models sometimes capture drivers of variability but misplace precipitation anomalies. These er-

rors are evident in the pattern of homogenous regions in forecast systems relative to observation, indicating

that forecasts can more meaningfully be applied at the scale of the analogous homogeneous climate region

than as a direct forecast of the local grid cell. This regionalization approach was tested during the July–

September (JAS) rain months, and results show an improvement in the predictions from version 4.5 of the

Max Plank Institute for Meteorology’s atmosphere–ocean general circulation model (ECHAM4.5) for ap-

plicable areas of East Africa for the two test cases presented.

1. Introduction

East Africa (EA) is notoriously vulnerable to hydro-

climatic extremes. Severe drought in the early 1980s af-

fected large swaths of EA, resulting in crop failures that

led to large migrations and widespread starvation. An

estimated 16million peoplewere affected inEthiopia and

Sudan alone (Olsson 1993; FAO 2000). More recently,

from 2011 to 2012 drought exacerbated food insecurity

and left 8.8million people in need of urgent humanitarian

assistance. An estimated $1.3 billion was requested for

a humanitarian response [United Nations Office for

the Coordination of Humanitarian Affairs (UN OCHR)

2011]. This drought affected multiple sectors, from

agriculture and livestock to health and hygiene, and

led to multiple countries declaring this drought a na-

tional disaster (UN OCHR 2011). The occurrence of

multiple hydroclimatic extremes that have impacted

the lives of many within EA highlights the importance

of understanding and improving seasonal forecasting

in the region.

The generation of reliable forecasts at seasonal time

scales has, however, proven to be a complex and elusive

problem. In general, seasonal forecasts have presented a

significant challenge relative to shorter-term weather

forecasts. Over the past 30 yr, weather forecast skill has

improved dramatically, in large part because of im-

proved estimates of initial atmospheric conditions pro-

vided by satellite-derived observations and enhanced

in situ observations (Goddard et al. 2001). Predictions

on longer time scales (i.e., seasonal and interannual

climate) do not benefit from these improved observa-

tions of initial atmospheric conditions, as the memory of

the atmosphere is not adequate to inform forecasts be-

yond one or two weeks. Instead, dynamical forecasts on

these longer-time-horizon forecasts rely on the initial

state of climate system components that have longer

memory (e.g., sea surface temperature, and soil and

vegetation conditions on land) and on realistic simula-

tion of gradually evolving atmospheric circulations andCorresponding author: Saleh Satti, ssatti1@jhu.edu
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surface states. Seasonal forecasts have improved, at

least in some regions across the globe, as observations of

these memory components of the climate system have

improved and as forecast systems have gone to higher

resolution, more complete physics, and more advanced

data assimilation algorithms (Goddard et al. 2001). In

EA, however, the forecasting challenge is particularly

acute on account of complex synoptic and meso-

scale conditions, nonlinear interactions between large-

scale climate modes, and subseasonal variability in

teleconnections and precipitation processes (Nicholson

2000).

The evaluation of seasonal forecast skill is a challenge

in its own right. The seasonal forecasting community

utilizes several methods of skill scores in order to gauge

the accuracy of these different methods (Goddard et al.

2001). Model skill is determined by a retrospective

model evaluation, where model results are compared

with observational data. Because of inherent biases and

errors within the dynamical models there is a need for

statistical processing of model outputs. One method for

rectifying systematic model errors is to represent the

forecast outputs as a percentage of ensemble forecasts

that lie within an assigned category. Traditionally, these

categorical forecast outputs are evaluated using cate-

gorical evaluation metrics such as rank probability skill

score (RPSS), likelihood skill score, and generalized

relative operating characteristics (Barnston et al. 2010).

A second important decision in forecast evaluation,

but one that generally receives less attention, is the

spatial basis applied when evaluating a model. Because

dynamical forecasts produce gridded output, it is com-

mon practice to extract predictions at a specific location

from the closest model grid cell. A potentially more

forgiving approach is to evaluate models at a coarse

regional scale for a box or geographical unit of interest.

These grid-to-grid (GtG) and box area averaging

methods are currently being used by the climate fore-

casting community to form seasonal forecast pre-

dictions (Jury 2014; Batté and Déqué 2011; Barnston

et al. 2010).

Both the GtG and box area averaging, however, do

not adequately account for spatial biases. GtG unduly

penalizes the model for small spatial inaccuracies even

when the overall forecast anomalies are correct. Gen-

eral area averaging implicitly assumes spatial matching

between model and observations and also can introduce

error by combining regions that have different re-

sponses to large-scale drivers. Several researchers are

attempting to address this issue. Koster et al. (2008), for

example, apply observed spatial correlation structures

to translate model-generated forecasts’ skill from

locations of high skill to locations of low skill. This

transformation approach is shown to improve forecast

accuracy.

Other research in precipitation prediction has illus-

trated the importance of isolating regions of similar

variance through objective regionalization techniques in

order to adequately describe the nature of large-scale

influence on the area of interest (Dezfuli and Nicholson

2013). This method of regionalization divides areas into

smaller homogenous regions based on the variance of a

particular variable. Camberlin and Philippon (2002) use

principal component analysis (PCA) in order to analyze

the regional and seasonal structure of their interannual

precipitation variability across EA. Performing a PCA

allowed the region to be divided into two subregions

with contrasting variability: Ethiopia to the northwest

and Uganda–Kenya to the southeast. Other studies such

as Tsidu (2012) regionalize based on self-organizing

maps, separating Ethiopia into nine homogenous re-

gions. More recent studies have also attempt to separate

EA into different areas before performing seasonal

predictions. Nicholson (2014) shows two relatively dis-

tinct areas within EA by delineating based on the sea-

sonal cycle of precipitation. The first region has rainfall

peaking in the July–September (JAS) months and

covers Sudan and northwest Ethiopia whereas the

‘‘equatorial’’ region covers the horn of Africa and has its

peak rainfall in March–May (MAM) and in October–

December (OND).

Dynamics of the East African JAS rains

Local topography, regional winds, and large-scale

drivers greatly influence precipitation variability in

EA. Many studies have presented in-depth analyses of

the various mechanisms that drive variability, often with

the intention of improving predictability (Conway 2000;

Camberlin and Philippon 2002; Gissila et al. 2004;

Segele and Lamb 2005; Block and Rajagopalan 2007;

Diro et al. 2011). Berhane et al. (2014) performed a

broad study of the various teleconnections that influence

Ethiopian highland precipitation during the JAS

months. They found that teleconnection strength of

various large-scale drivers varies during the June–

September rainy season, with the latter months gener-

ally showing stronger associations with large-scale

modes of variability in the Pacific and Indian Oceans.

In the early rainy season, teleconnections are generally

weaker, but there is a tendency toward associations

with variability to the west, including the Atlantic

Ocean, rather than the Pacific and Indian Oceans to

the east.

This lack of large-scale driver consistency in pre-

cipitation throughout the rainy season presents chal-

lenges of physical process and timing of influence to
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dynamical model predictions. The influence of multiple

mechanisms within a similar area adds to the complexity

of accurately predicting seasonal precipitation using

dynamical models. Global-dynamics-related pressure

systems in the Atlantic, Mediterranean Sea, and Pacific;

propagating waves associated with the subseasonal

Madden–Julian oscillation; and mesoscale winds re-

sponding to both remote and local variability have all

been shown to influence precipitation (e.g., Nicholson

1996; Berhane and Zaitchik 2014). The inability to

properly capture one ormore of these processes can lead

to inaccurate prediction in the amount and location of

seasonal precipitation.

In this study, we examine the performance of global

dynamically based seasonal forecast systems in EA. In

contrast to other studies, we begin with an objective

regionalization of EA based on interannual pre-

cipitation variability (the primary target of seasonal

forecasts) for each month of the rainy season. The re-

gionalization is performed on observations and, in-

dependently, on each forecast system. The purposes of

this study are 1) to distinguish regions that have distinct

patterns of variability (presumably, differing sensitiv-

ities to large-scale climate modes), and 2) to identify

systematic differences between the regionalization of

observation and models, which would indicate the

presence of spatial biases in the modeling systems. Once

these biases are identified, it is possible to adjust for

them through evaluation based on analogous region

matching (ARM) in place of standard spatial match

assumption (SMA) methods like grid-to-grid or box

averaging. In adjusting for spatial biases, the ARM

method evaluates models on the basis of their own

spatial structures of variability, providing the possibility

of drawing useful predictions even from a model with

significant spatial biases.

2. Methods

a. Data and models

The extent of the analysis region spans from 258N
to 128S and from 208E to 548E. Observed precipitation

data used in this analysis were from version 2 of the

Climate Hazards Infrared Precipitation with Station

data (CHIRPS) at 0.058 3 0.058 resolution, for the pe-

riod from 1981 to 2010 (Funk et al. 2015). Observed

SST anomalies used to identify teleconnections were

extracted from the Kaplan Extended SST, version 2,

dataset, which is produced at 58 3 58 resolution

(Reynolds and Smith 1994; Parker et al. 1994; Kaplan

et al. 1998). These data were obtained from the NOAA/

OAR/ESRL Physical Science Division (https://www.

esrl.noaa.gov/psd/).

Two models were used in this analysis: the Climate

Forecast System, version 2 (CFSv2), and version 4.5 of

the Max Plank Institute for Meteorology’s atmosphere–

ocean general circulation model (ECHAM4.5). Both

precipitation and SST model data were extracted from

the North American Multimodel Ensemble (NMME)

hindcast monthly dataset (Kirtman et al. 2014) distrib-

uted via the International Research Institute (IRI) data

library. Data were available at 18 3 18 resolution for the

period from 1982 to 2010. CFSv2 was initialized 24 times

to produce 24 different realizations for each separate

month, while ECHAM4.5 was initialized 12 times, pro-

ducing 12 realizations. These two models were selected

from NMME simply as examples for the regionalization

method; there was no a priori reason for choosing these

models over others, though both are leading forecast

systems that have been applied in previous studies of the

region (Jury 2014).

b. Regionalization

Regionalization is the division of a large area into

smaller regions based on the characteristics of a specific

variable or set of variables. The basis of any objective

regionalization is a statistical clustering algorithm that

defines regions on the basis of internal homogeneity

and/or metrics of difference from other clusters. Nu-

merous algorithms are in use for climate studies (Badr

et al. 2015). In this application, we apply Ward’s mini-

mum variancemethod because of its widespread use and

its tendency to generate regions with high internal ho-

mogeneity. Ward’s method develops a hierarchical ap-

proach that aims to optimize the union of similar groups

while minimizing the sum of squared deviations from

the group mean (Ward 1963). The method clusters data

points with variance lower than an allotted threshold

value and aggregates the points in order to maximize the

correlation of the dataset points within a designated

region. Regions that are homogenous with respect to

interannual precipitation variability are expected to be

relatively uniform in their response to large-scale vari-

ability and therefore serve as a good target for seasonal

prediction (Camberlin and Philippon 2002; Nicholson

2014). We apply Ward’s method using the Hierarchical

Climate Regionalization (HiClimR) package for R

(Badr et al. 2014) described in Badr et al. (2015).

HiClimR includes a range of agglomerative hierarchical

clustering methods and provides pre- and postprocess-

ing tools relevant for climate applications. Equation (1)

is the Lance–Williams (Lance and Williams 1967) up-

dated formula of Ward’s method used to update the

dissimilarities in agglomerative clustering. The cluster-

ing methodology, as descried by Murtagh and Legendre

(2014), measures the dissimilarity of a cluster (i < j)
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relative to another cluster k, based upon coefficients

(ni, nj, and nk), determined via clustering rules. The

HiClimR package uses the Ward1 algorithm (Murtagh

1985) where the Lance–Williams formula is written in

terms of squared dissimilarities. The total error sum of

squares at each merging step is used to determine a node

height in the output dendrogram plot:

dði< j,kÞ5 (n
i
1n

k
)d(i, k)1 (n

j
1 n

k
)d( j, k)2 n

k
d(i, j).

(1)

For this application, preprocessing was performed to

mask noise and to focus the analysis on areas in which

JAS is the primary rainy season. Some areas within the

limits of the project area do not experience a rainy

season in JAS, but rather have a biannual rainy season in

MAM and OND. These grid cells were masked because

JAS precipitation is not of primary importance for sea-

sonal forecasts in these areas.

Preprocessing was performed in four steps: First, in

order to analyze precipitation trends in the JAS season,

only data points that experience a significant increase in

precipitation for those months were selected for re-

gionalization. Points that registered a more than 7%

increase in the monthly average precipitation for the

months of JAS relative to all other months were used.

This 7% threshold value is subjective; a 10% increase

masks large parts of the EA region, while a 5% increase

retains data points in locations where the MAM and

OND rains dominate.

Second, any data points in the desert within the

project area that receive less than 200mm of rainfall

annually were discarded. This is done to prevent an

anomalous rainfall event from affecting the regionaliza-

tion process. Third, the spatial resolution of the CHIRPS

dataset was reduced from 0.058 3 0.058 to 18 3 18 to be

consistent with the resolution of the seasonal forecasting

models used in this analysis. This reduction also reduces

the noise level within the observational dataset. Fourth,

principal component analysis was applied to remove

noise from the dataset. The first three principal compo-

nents were retained. These four steps improved the

homogeneity of the regionalization and made the re-

gions created more statistically robust. The basic steps

in preprocessing—identification of the primary rainy

season, masking low precipitation areas, averaging to

common spatial resolution, and analyzing lead princi-

pal components—are commonly applied in a range of

climate studies. Their application to regionalization is

facilitated by the fact that they are available as stan-

dard options in the HiClimR package (Badr et al.

2015). Selection of the percent threshold, the total an-

nual rainfall used to mask the data, and the number of

principal components is subjective. Here we selected

the appropriate values though visual judgment as well

as multiple sensitivity runs.

Regionalization for both observations andmodels was

performed on a relatively short 28-yr record (1982–

2010), which was limited by the availability of seasonal

forecast data. This short period of analysis may not be

adequate to capture the different phases of the decadal

forcings that affect EA precipitation. For example,

MAM precipitation has been shown to decrease over

this time period (Williams and Funk 2011; Lyon and

DeWitt 2012; Yang et al. 2014). To ensure that re-

gionalization results were not dominated by outliers

(which could be error in the observed data) we per-

formed regionalization 28 times, leaving one year out in

each iteration. This leave-one-out repetition had little

impact on forecast system regionalization, which was

relatively smooth and consistent, but we did see vari-

ability in the CHIRPS-based regionalization. For the

final regionalization we combine all 28 regionalizations

and assign each grid cell to its most frequently assigned

region. Additionally, the robustness of the regions was

tested by iteratively removing 2 or 3 consecutive years

from the analysis. The final regions attained from these

2- and 3-yr holdouts were consistent with the regions

derived when 1 year was excluded.

c. SMA evaluation

For the first evaluation, we adopt the standard prac-

tice of evaluating model performance without adjusting

for spatial model biases. This standard approach makes

an SMA—that each grid cell in the model should predict

the collocated grid cell in observation (GtG). Since we

are interested in evaluating regional averages, we apply

this SMA method at the scale of CHIRPS regions: both

observed and forecast precipitation are aggregated us-

ing the CHIRPS regions, and model skill is assessed on

this scale.

d. ARM evaluation

For our second method of evaluation, we relax the

spatial match assumption by evaluating forecast pre-

dictions on the basis of their own regionalization rather

than the CHIRPS regionalization. The motivation for

this approach is the recognition that GtG differences

between observed andmodel regions are partially due to

erroneous placement of climate phenomenon captured

by the model. Often, the model will capture the pre-

dictive phenomenon of interest but misplace the pre-

cipitation anomaly, in which case regionalization reveals

the spatial bias of the model and can serve as a basis for

making predictions based on the relevant similarities

between model and observation. Equations (2a) and
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(2b) show the calculated precipitation anomaly in year t

for observed region obsr, where P is the precipitation

anomaly at grid cell i, and i is an index for spatial loca-

tion contained in a specified region r (i 2 r). For the

ARM method, predictions are made for an analogous

region mods that is spatially removed from obsr. There-

fore, M is not equal to N, and the spatial index j covers

different grid cells from the spatial index i. For SMA it is

assumed that the model’s spatial regions s for which the

forecast is made exactly match the observed spatial re-

gions r. Therefore, M 5 N, and i and j are identical:

obstr 5
�
N

i51

Pt
i2r

N
and (2a)

modt
s 5

�
M

j51

Pt
j2s

M
. (2b)

e. Model skill assessment

The model’s predictions for each year in the 1982–

2010 hindcast archive are ranked and placed into ter-

ciles. For each year, the fraction of model realizations

that falls within the lowest one-third of all realizations in

the full study period is denoted as the probability of a

below-normal forecast. Similarly, the fractions of fore-

casts that fall within the second and third terciles are

placed in the normal and above-normal terciles, re-

spectively. For example, each month’s prediction in

ECHAM4.5 consists of 12 realizations. Each of these

realizations is ranked against the full population of 336

realizations for the study period (12 realizations for the

remaining 28 yr). The fraction of the 12 realizations that

fall within the first third of the ranked realizations (have

values in the range of the driest 112 realizations) be-

comes the probability of a below-average forecast.

Forecasts are demarcated into terciles of below-average,

average, and above-average probability forecasts to

represent the fraction of realizations that fall within the

dry, middle, and wet thirds of total ranked realizations,

respectively. Each year’s forecast tercile probabilities

are calculated using both the SMA and the ARM evalua-

tion methods. We assess both methods by comparing their

respective forecasts with observations. For this we utilize

the rank probability score (RPS) for category forecasts.

f. RPS

RPS assigns a squared error based on the accuracy of

the forecast. The value of the RPS depends on the value

of forecast and whether the observation occurs at the

category [Eq. (3); Wilks 2011]. The term Fi denotes the

forecast probability, Obi denotes the probability of

the observation, n is the category (1, 2, or 3), and I is the

total number of categories. The value of Obi can be ei-

ther 0 or 1, and thus an event either occurs or does not

occur in that category. A high RPS indicates a forecast

of low accuracy:

RPS5 �
I

n51

�
�
n

i51

F
i
2 �

n

i51

Ob
i

�
. (3)

The RPS depends on proximity of the forecast prob-

abilities to the actual observation. A forecast with a high

probability two categories away from the observation

will have a higher RPS than a forecast with a high

probability one category away. Therefore, a forecast can

performworse than a scenario with no prior information

[a climatological forecast with no prior information will

assign a probability of 0.333 across all terciles (Barnston

et al. 2010)].

Comparison of the forecasts with a scenario contain-

ing no prior information can be determined by the

RPSS. The RPSS depends on the average RPS over all

the forecasting years (RPSav) and the average RPS with

no prior information (RPSclim):

RPSS5 12
RPS

av

RPS
clim

. (4)

The RPSS varies from negative values to 1, with 1

being a perfect forecast and a negative value indicating

that the climatological forecast RPSclim outperforms

RPSav.

3. Results and discussion

a. Regionalization

Climate regionalization algorithms provide objective

metrics that serve as a basis for dividing a large region of

interest into coherent subregions. The final decision on

the optimal number of regions, however, is context de-

pendent: there is a trade-off between increasing intra-

regional homogeneity (which we want to maximize) but

increasing interregional correlation (which we want to

minimize) as one moves from defining a few small re-

gions to defining highly granular regions. This trade-off

is evident in the dendrograms shown in Figs. 1a–c. The

height of the dendrogram is a measure of the merging

cost (lower is better). As one moves from top to bottom

on the dendrogram, the homogeneity of regions in-

creases but the correlation between regions also in-

creases. For the purposes of this study we are interested

in relatively large regions that have low interregional

correlation and are therefore likely to represent differ-

ing sensitivities to large-scale climate variability on a

MAY 2017 SATT I ET AL . 1435



scale that GCM-based forecast systems are likely to re-

solve. Figure 1 shows the application of regionalization

to CFSv2. Applying a threshold value that provides an

acceptable balance between intra- and interregional

correlation yields the maps shown in Figs. 1d–f, with

three regions in July and two regions in August and

September.

Figure 2 shows the same regionalization process ap-

plied to ECHAM4.5. Differences between CFSv2 and

ECHAM4.5 are immediately visible: for ECHAM4.5

the regionalization statistics point to three distinct re-

gions in July, August, and September. The spatial pat-

tern of these regions is quite distinct from CFSv2

regions, as ECHAM4.5 tends toward an east versus west

division in the southern portion of the regionalized area

(ECHAM4.5 region 2 versus region 3), which is not

evident in CFSv2. The extent of the ECHAM4.5 regions

are also quite different from CFSv2, in large part

because ECHAM4.5 puts more rain in the eastern Horn

of Africa than CFSv2 does in this season, such that

ECHAM4.5 passes our precipitation threshold tests.

Regionalization based on CHIRPS precipitation ob-

servations shows more noise than the model-based re-

gionalizations (Fig. 3). This is to be expected, since

models typically smooth variability. But the magnitude

of spatial heterogeneity seen in the CHIRPS re-

gionalization is quite high (especially in August), in-

dicative of the highly localized variability and/or

challenge in measurement known to exist in the East

African highlands. We choose to retain spatial discon-

tinuities in the regionalization, in part because we use

regions as a first step in a model evaluation process,

rather than as an end in their own right, and in part

because the heterogeneous nature of East Africa poses a

challenge in distinguishing between discontinuous re-

gions that are noise versus regions that are not.

FIG. 1. CFSv2 regionalization dendrograms for (a) July, (b) August, and (c) September. Also

shown are homogenous regions created using CFSv2 precipitation forecasts for (d) July,

(e) August, and (f) September.
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Nevertheless, the regions do generally divide into a

northern region (region 1) and a southeastern region

(region 3), with a third region that moves between

months, but lies in the southwest in August and Sep-

tember (region 2).

Table 1 provides a statistical summary of all regions

shown in Figs. 1–3 in terms of intraregional correlation

and interregional correlation. These statistics demon-

strate the trade-offs inherent in picking regions. For

example, CFSv2 regions 1 and 2 show high interregional

correlation in all months and could potentially be com-

bined into a single region. Doing so, however, would

result in a heterogeneous region thatmight include areas

that have differing response to the large-scale dynamics

captured by the model. For all three datasets (CHIRPS,

ECHAM4.5, and CFSv2), in all months the intrare-

gional correlation for all regions exceeds the in-

terregional correlation between any regions.

Regionalization applied to CFSv2 and ECHAM4.5

(see Figs. 2 and 3) yields three regions for bothmodels in

the month of July. In August and September ECHAM

has three separable regions while CFSv2 has only two.

Correlations within regions and between regions show

large intraregional correlations and low interregional

correlation for ECHAM4.5, consistent with homoge-

nous regions (Table 1).

b. SMA and ARM

SMA model evaluation is consistent with commonly

used evaluation and application techniques. It is simpler

FIG. 3. Regions delineated using HiClimR and the CHIRPS dataset.

FIG. 2. Regions created using ECHAM4.5 forecasts.
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thanARM to implement, as it does not require that each

model be regionalized, and easier to explain. For these

reasons SMA is a preferable approach provided that

model and observation show reasonably similar spatial

patterns of variability.

To determine when this condition applies, we calcu-

late correlations between the CHIRPS mean time series

for each CHIRPS-defined region in each month and the

CFSv2 and ECHAM4.5 mean time series for each re-

gion defined for those models (Table 2). These values

can then be compared with the regionmaps presented in

Figs. 1–3. Whenever there is significant correlation be-

tween regions in Table 2 that are associated with

geographically similar areas in Figs. 1–3, we conclude

that SMA is a reasonable approach for evaluatingmodel

performance in that region. For example, the August

CHIRPS region 1 (Fig. 3) is spatially similar to August

CFSv2 region 1 (Fig. 1), and the two show statistically

significant correlation, so we conclude that SMA is ad-

equate for evaluating CFSv2 in CHIRPS region 1 for

that month—CFSv2 is properly localizing the drivers of

precipitation variability. Unfortunately, this approach is

not satisfied in all scenarios. For example, there is ex-

tremely high correlation between July CHIRPS region 1

and July ECHAM4.5 region 3 (0.65), but the two have

almost no spatial overlap (Fig. 4). Less than 5% of

CHIRPS region 1 overlaps with ECHAM4.5 region 3.

August is similar, with less than 26% of CHIRPS region

1 falling within ECHAM4.5 region 3.

These correlations between spatially mismatched re-

gions suggest that ECHAM4.5 does capture a large-

scale driver of precipitation variability for East Africa,

but the model does not localize this phenomenon in the

correct area within East Africa. For these situations,

SMA is not an appropriate approach for model evalu-

ation or application, as it fails to recognize potential

value in the forecast—the correlation between CHIRPS

region 1 and ECHAM4.5 region 3 would be entirely lost.

To capture this phenomenon, we apply ARM for any

case where there is less than a third (33.3%) overlap

between the most highly correlated CHIRPS and model

regions.

Table 3 shows the result of this analysis for both

models in all months. There are some regions for which

models fail to show significant correlation with obser-

vations regardless of whether SMA or ARM is applied.

For several other combinations, however, ARM iden-

tifies significant correlations where SMA does not, sug-

gesting that applying the ARM method could produce

skillful predictions for areas where traditional SMA

approaches fail to identify any significant predictive

skill. Indeed, for ECHAM4.5 we find that ARM is the

TABLE 1. Interregional and intraregional correlations for all of the

regions in Figs. 1–3.

CHIRPS CFSv2 ECHAM4.5

July interregional

1 and 2 0.44 0.63 0.13

1 and 3 20.33 20.23 0.27

2 and 3 0.12 20.6 0.2

July intraregional

1 0.65 0.84 0.67

2 0.5 0.9 0.87

3 0.57 0.79 0.84

August interregional

1 and 2 0.35 0.66 20.32

1 and 3 0.23 — 0.07

2 and 3 0.1 — 20.16

August intraregional

1 0.59 0.88 0.86

2 0.42 0.87 0.89

3 0.63 — 0.79

September interregional

1 and 2 0.12 0.67 0.23

1 and 3 0.19 — 0

2 and 3 0.05 — 20.13

September intraregional

1 0.52 0.86 0.65

2 0.47 0.88 0.84

3 0.45 — 0.93

TABLE 2. Correlations of the time series for each of the CHIRPS regions with the CFSv2 and ECHAM4.5 regions. Boldface values

indicate positive correlations of greater than 0.35.

CFSv2 ECHAM4.5

Month CHIRPS Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

July Region 1 0.38 0.38 20.39 0 0.38 0.65
Region 2 0.22 0.03 0.03 0.18 0.09 0.11

Region 3 0.07 0.13 0.05 0.01 0.13 0.2

August Region 1 0.39 0.18 — 20.27 20.25 0.35

Region 2 0.24 0.25 — 0.13 20.01 0.33

Region 3 0.27 0.16 — 20.1 20.25 0.13

September Region 1 0.41 0.13 — 20.07 20.31 0.09

Region 2 0.26 0.28 — 20.28 20.33 0.11

Region 3 0.19 0.15 — 0.1 0.05 0.15
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only way to identify significant correlations with obser-

vations at our scale of analysis.

In comparing theRPSav for ARMwith that of SMA, it

is seen that the ARM RPSav is lower for both July and

August (Table 4). A list of all the RPS for each month

using both ARM and SMA is presented in the appendix.

ARM outperforms SMA in 17 of the 29 yr and 23 of the

29 yr in predicting the month of July and August, re-

spectively, when using the ECHAM4.5 forecast. The

differences between yearly RPS values for ARM and

SMA are marginally statistically significant for July

(pairwise two-tailed t test; significance level p 5 0.08)

and highly significant for August (p 5 0.003). RPSS

values also show the value of ARM relative to SMA for

these months (Table 4). Indeed, the RPSS for SMA

shows negative values for both months, indicating a

lower forecasting performance than having no prior

information.

c. Large-scale drivers

Understanding the improved performance of the

ARM requires an understanding of the dynamics at play

within the region. Correlations of observed CHIRPS

precipitation for August region 1 with observed SSTs

(Fig. 5a) show a strong anticorrelation with the central

tropical Pacific Ocean, in addition to a positive corre-

lation in the western pacific over the Maritime Conti-

nent. In a broad sense these patterns are consistent in

the maps of ECHAM4.5 SSTs correlation with

ECHAM4.5 precipitation using both SMA (Fig. 5b) and

ARM (Figs. 5c). However, there is much greater simi-

larity between observation (Fig. 5a) and ARM (Fig. 5c)

correlation maps than there is between observation and

SMA (Fig. 5b). This is particularly clear in the Indian

Ocean, where ARM captures the positive correlation

between precipitation and SSTs in the Indian ocean off

the coast of southeast India, while SMA does not.

Figure 5b also shows a large anticorrelation with Med-

iterranean SSTs, which directly opposes the relationship

with observed SSTs. ARM shows no significant corre-

lations at the 90% significance threshold, but correla-

tions in the eastern Mediterranean are positive,

matching the general tendency of observation (not

shown). These correlation patterns are also consistent

with CFSv2 using SMA (Fig. 5d), further illustrating the

spatial bias within ECHAM4.5 and the need for spatial

correction within ECHAM4.5’s precipitation outputs.

FIG. 4. Location of ECHAM4.5’s region 3 (blue) that is used to predict observed CHIRPS region 1 (red) for July

and August.

TABLE 3. Prediction method for the CHIRPS regions using CFSv2

and ECHAM4.5.

CHIRPS regions

Region 1 Region 2 Region 3

CFSv2

July SMA None None

August SMA None None

September SMA None None

ECHAM4.5

July ARM None None

August ARM None None

September None None None
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These similarities in SST correlations show that the

ARM method in ECHAM4.5 more accurately captures

large-scale dynamics that influence precipitation within

the observed region 1.

The ARM result for ECHAM4.5 in August is rein-

forced if one looks at observed correlations between

CHIRPS and SST when CHIRPS is averaged for

ECHAM4.5 region 3 (i.e., the eastern Horn of Africa).

These correlations are shown in Fig. 6, and it is evident

that there is no significant association between rainfall in

this region and the tropical Pacific. The fact that

ECHAM4.5 region 3 precipitation does show correla-

tion with SST in the tropical Pacific is further evidence

that the model has shifted the true teleconnection

eastward within the Horn of Africa, resulting in corre-

lations between the easternHorn and the Pacific that are

in fact, more representative of northwest Ethiopia and

Sudan—that is, observed region 1.

4. Conclusions

Multiple studies have shown the challenging nature of

seasonal precipitation prediction over EA. The region

contains steep precipitation gradients, is topographically

complex, and is influenced by different large-scale cli-

mate dynamics in different seasons. Accurate seasonal

forecast systems must capture the interplay of local,

regional, and global dynamics that determine the tem-

poral variability and spatial placement of rain within the

region. The motivation for this paper is the recognition

that dynamical forecast systems that capture large-scale

dynamics can still fail to place precipitation variability

correctly within the region. This results in low skill

scores when models are evaluated or applied on the

basis of traditional methods, which effectively make a

spatial matching assumption of zero spatial bias. When

the evaluation or application of the forecast is mediated

by an objective regionalization that identifies analogous

regions inmodel and observation, it is possible to extract

meaningful information from a forecast system that

would otherwise be discarded as unskillful.

This approach can be quite important for JAS EA

precipitation. Objective regionalization for each of the

JAS months shows that two commonly used dynamical

forecast systems (ECHAM4.5 and CFSv2) regionalize

quite differently fromone another and also show distinct

differences from regionalization based on observed

FIG. 5. Correlation of August precipitation with global gridded SST. All correlations are calculated as Spearman

linear correlations and are masked at a 5 0.1. (a) Observed region 1 CHIRPS precipitation correlation with ob-

served SST; (b) ECHAM4.5 precipitation within observed region 1 correlation with ECHAM4.5 SST (i.e., SMA

method); (c) ECHAM4.5 precipitation in ECHAM4.5 region 3 with ECHAM4.5 SST (i.e., ARM approach for

observed region 1); (d) CFSv2 precipitation in CFSv2 region 1 with CFSv2 SST (i.e., SMA approach).

TABLE 4. The average RPS for ARM and SMA. Number of

successes (NS) is the number of times ARM outperforms SMA

over the 29-yr time span of the analysis. See the appendix for fur-

ther illustration of the yearly model performance.

Avg RPS RPSS

SMA ARM SMA ARM NS

July 0.49 0.36 20.09 0.2 18

August 0.59 0.33 20.28 0.28 23
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precipitation. Differences between observation and

model regions indicate spatial biases within the models.

We address this through analogous region mapping

(ARM), which corrects acknowledges and adjusts for

spatial bias. When compared with evaluation based on a

spatial match assumption (SMA), which is similar to the

traditional grid to grid approach, we find cases in which

ARM allows for significant improvement. This was most

clear for ECHAM4.5; at the peak of the JAS rainy

season, the ARMmethod shows an improvement of the

RPSS skill score from 20.09 to 0.20 and from 20.28 to

0.28 for the months of July andAugust, respectively, for a

region that includes portions of the easternNile basin and

parts of northern Ethiopia that are currently being af-

fected by a significant El Niño–associated drought.

The RPSS results as well as the correlation maps

presented in this paper show the ability of objective

regionalization to improve the predictive utility of dy-

namic models. Future studies into this approach could

vary the resolution of observational datasets in order to

ascertain the impact of spatial resolution in identifying

spatial biases. Similarly, use of an alternative high-

resolution observation dataset could provide further

insights to improve the method. Efforts are currently

underway to provide even stronger satellite–gauge hy-

brid products for Africa, making use of nonpublic me-

teorological networks, such as Enhancing National

Climate Services (ENACTS; Dinku et al. 2014). Un-

fortunately, ENACTS is not currently available for the

entire study region. Ultimately, one would expect that

analyses like these will contribute to continued model

improvement to the point that spatial bias in dynami-

cally based seasonal forecast systems becomes negligi-

ble. That level of model performance, however, is far

from the current reality. For the foreseeable future it

will be necessary to apply spatial correction methods

like the regionalization approach presented in this paper

in order to maximize the information contained in sea-

sonal forecast systems.
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APPENDIX

RPS and NS Scores

Table A1 lists all of the RPS for each month using

both ARM and SMA.

REFERENCES

Badr, H. S., B. F. Zaitchik, and A. K. Dezfuli, 2014: HiClimR:

Hierarchical climate regionalization. Comprehensive R Ar-

chive Network (CRAN). [Available online at http://cran.r-

project.org/package5HiClimR.]

——, ——, and ——, 2015: A tool for hierarchical climate re-

gionalization. Earth Sci. Inf., 8, 949–958, doi:10.1007/

s12145-015-0221-7.

FIG. 6. Correlation of observed precipitation over Somalia with

observed SSTs for August.

TABLE A1. RPS for each month using both ARM and SMA.

Boldface values show the averageRPS scores for bothmethods and

the total NS scores.

RPS

NS

Run

July

SMA

July

ARM

August

SMA

August

ARM July August

1 0.47 0.67 0.44 0.17 0 1

2 0.94 0.87 0.09 0.57 1 0

3 1.03 0.59 1.03 0.56 1 1

4 0.34 0.24 1.53 0.51 1 1

5 0.17 0.45 1.17 0.40 0 1

6 0.06 0.07 0.24 0.40 0 0

7 0.45 0.45 0.18 0.34 0 0

8 0.14 0.40 0.28 0.25 0 1

9 0.17 0.26 0.40 0.18 0 1

10 0.20 0.09 0.31 0.67 1 0

11 1.14 0.59 0.06 0.37 1 0

12 0.69 0.45 0.63 0.36 1 1

13 0.63 0.31 0.28 0.36 1 0

14 0.81 0.45 0.51 0.26 1 1

15 0.17 0.28 0.28 0.17 0 1

16 0.57 0.37 0.40 0.06 1 1

17 0.37 0.12 0.45 0.14 1 1

18 0.17 0.74 0.40 0.40 0 1

19 0.34 0.18 1.09 0.26 1 1

20 1.09 0.67 1.28 0.94 1 1

21 0.37 0.47 0.67 0.56 0 1

22 0.28 0.14 0.87 0.40 1 1

23 1.14 0.25 0.94 0.37 1 1

24 0.45 0.20 0.28 0.24 1 1

25 0.03 0.31 0.59 0.06 0 1

26 0.69 0.11 0.95 0.07 1 1

27 0.74 0.03 0.81 0.03 1 1

28 0.11 0.51 0.14 0.07 0 1

29 0.47 0.14 0.87 0.51 1 1

0.49 0.36 0.59 0.33 18 23

MAY 2017 SATT I ET AL . 1441

http://cran.r-project.org/package=HiClimR
http://cran.r-project.org/package=HiClimR
http://dx.doi.org/10.1007/s12145-015-0221-7
http://dx.doi.org/10.1007/s12145-015-0221-7


Barnston, A. G., S. Li, S. J. Mason, D. G. DeWitt, L. Goddard,

and X. Gong, 2010: Verification of the first 11 years of IRI’s

seasonal climate forecasts. J. Appl. Meteor. Climatol., 49,

493–520, doi:10.1175/2009JAMC2325.1.

Batté, L., and M. Déqué, 2011: Seasonal predictions of pre-

cipitation over Africa using coupled ocean-atmosphere gen-

eral circulation models: Skill of the ENSEMBLES project

multimodel ensemble forecasts. Tellus, 63A, 283–299,

doi:10.1111/j.1600-0870.2010.00493.x.

Berhane, F., and B. Zaitchik, 2014: Modulation of daily pre-

cipitation over East Africa by the Madden–Julian oscillation.

J. Climate, 27, 6016–6034, doi:10.1175/JCLI-D-13-00693.1.

——, ——, and A. Dezfuli, 2014: Subseasonal analysis of pre-

cipitation variability in the Blue Nile River basin. J. Climate,

27, 325–344, doi:10.1175/JCLI-D-13-00094.1.

Block, P., and B. Rajagopalan, 2007: Interannual variability and

ensemble forecast of upper Blue Nile basin Kiremt season

precipitation. J. Hydrometeor., 8, 327–343, doi:10.1175/

JHM580.1.

Camberlin, P., and N. Philippon, 2002: The East African March–

May rainy season: Associated atmospheric dynamics and pre-

dictability over the 1968–97 period. J. Climate, 15, 1002–1019,

doi:10.1175/1520-0442(2002)015,1002:TEAMMR.2.0.CO;2.

Conway, D., 2000: The climate and hydrology of the upper

Blue Nile River. Geogr. J., 166, 49–62, doi:10.1111/

j.1475-4959.2000.tb00006.x.

Dezfuli, A., and S. Nicholson, 2013: The relationship of rainfall

variability in western equatorial Africa to the tropical oceans

and atmospheric circulation. Part II: The boreal autumn.

J. Climate, 26, 66–84, doi:10.1175/JCLI-D-11-00686.1.

Dinku, T., P. Block, J. Sharoff, K. Hailemariam, D. Osgood, J. del

Corral, R. Cousin, and M. C. Thomson, 2014: Bridging critical

gaps in climate services and applications in Africa. Earth

Perspect., 1, 15, doi:10.1186/2194-6434-1-15.
Diro, G. T., D. I. F. Grimes, and E. Black, 2011: Teleconnections

between Ethiopian summer rainfall and sea surface temper-

ature: Part II. Seasonal forecasting.Climate Dyn., 37, 121–131,
doi:10.1007/s00382-010-0896-x.

FAO, 2000: The elimination of food insecurity in the Horn of Af-

rica: A concerted government and UN agency action. Final

Rep. [Available online at http://www.fao.org/docrep/003/

x8406e/x8406e00.htm.]

Funk, C., and Coauthors, 2015: The climate hazards infrared pre-

cipitation with stations—A new environmental record for

monitoring extremes. Sci. Data, 2, 150066, doi:10.1038/

sdata.2015.66.

Gissila, T., E. Black, D. I. F. Grimes, and J. M. Slingo, 2004: Sea-

sonal forecasting of the Ethiopian summer rains. Int.

J. Climatol., 24, 1345–1358, doi:10.1002/joc.1078.
Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski,

R. Basher, and M. A. Cane, 2001: Current approaches to

seasonal to interannual climate predictions. Int. J. Climatol.,

21, 1111–1152, doi:10.1002/joc.636.

Jury, M. R., 2014: Evaluation of coupled model forecasts of Ethi-

opian highlands summer climate. Adv. Meteor., 894318,

doi:10.1155/2014/894318.

Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B.

Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea

surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–

18 589, doi:10.1029/97JC01736.

Kirtman, B. P., and Coauthors, 2014: The North American

Multimodel Ensemble: Phase-1 seasonal-to-interannual

prediction; phase-2 toward developing intraseasonal pre-

diction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/

BAMS-D-12-00050.1.

Koster, R. D., T. L. Bell, R. H. Reichle, M. J. Suarez, and S. D.

Schubert, 2008: Using observed spatial correlation structures

to increase the skill of subseasonal forecasts.Mon. Wea. Rev.,

136, 1923–1930, doi:10.1175/2007MWR2255.1.

Lance, G. N., and W. T. Williams, 1967: A general theory of clas-

sificatory sorting strategies. 1. Hierarchical systems. Comput.

J., 9, 373–380, doi:10.1093/comjnl/9.4.373.

Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in

the East African long rains. Geophys. Res. Lett., 39, L02702,
doi:10.1029/2011GL050337.

Murtagh, F., 1985: Multidimensional Clustering Algorithms.

Compstat Lectures: Lectures in Computational Statistics,

J. M. Chambers, et al., Eds., Vol. 4, Physika Verlag, 134 pp.

——, and P. Legendre, 2014: Ward’s hierarchical agglomerative

clustering method: Which algorithms implement Ward’s cri-

terion? J. Classif., 31, 274–295, doi:10.1007/s00357-014-9161-z.
Nicholson, S. E., 1996: A review of climate dynamics and climate

variability in eastern Africa. The Limnology, Climatology and

Paleoclimatology of the East African Lakes, T. C. Johnson and

E. O. Odada, Eds., CRC Press, 25–56.

——, 2000: The nature of rainfall variability over Africa on time

scales of decades to millennia.Global Planet. Change, 26, 137–

158, doi:10.1016/S0921-8181(00)00040-0.

——, 2014: The predictability of rainfall over the Greater Horn of

Africa. Part I: Prediction of seasonal rainfall. J. Hydrometeor.,

15, 1011–1027, doi:10.1175/JHM-D-13-062.1.

Olsson, L., 1993: On the causes of famine: Drought, desertification

and market failure in the Sudan. Ambio, 22, 395–403.

Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994:

Interdecadal changes of surface temperature since the late

nineteenth century. J. Geophys. Res., 99, 14 373–14 399,

doi:10.1029/94JD00548.

Reynolds, R. W., and T. M. Smith, 1994: Improved global sea

surface temperature analyses using optimum interpolation.

J. Climate, 7, 929–948, doi:10.1175/1520-0442(1994)007,0929:

IGSSTA.2.0.CO;2.

Segele, Z. T., and P. J. Lamb, 2005: Characterization and variability

of Kiremt rainy season over Ethiopia. Meteor. Atmos. Phys.,

89, 153–180, doi:10.1007/s00703-005-0127-x.

Tsidu, G. M., 2012: High-resolution monthly rainfall database for

Ethiopia: Homogenization, reconstruction, and gridding.

J. Climate, 25, 8422–8443, doi:10.1175/JCLI-D-12-00027.1.

UN OCHR, 2011: Eastern Africa drought. Humanitarian Rep. 3,

11 pp. [Available online at http://reliefweb.int/sites/reliefweb.int/

files/resources/OCHA%20Eastern%20Africa%20Humanitarian

%20Report%20No.%203%20-%20Drought%20May%202011%

20FINAL.pdf.]

Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objective

function. J. Amer. Stat. Assoc., 58, 236–244, doi:10.1080/

01621459.1963.10500845.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.

3rd ed. Elsevier, 676 pp.

Williams, A. P., and C. Funk, 2011: A westward extension of the

warm pool leads to a westward extension of the Walker cir-

culation, drying eastern Africa. Climate Dyn., 37, 2417–2435,

doi:10.1007/s00382-010-0984-y.

Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2014: The East

African long rains in observations and models. J. Climate, 27,

7185–7202, doi:10.1175/JCLI-D-13-00447.1.

1442 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

http://dx.doi.org/10.1175/2009JAMC2325.1
http://dx.doi.org/10.1111/j.1600-0870.2010.00493.x
http://dx.doi.org/10.1175/JCLI-D-13-00693.1
http://dx.doi.org/10.1175/JCLI-D-13-00094.1
http://dx.doi.org/10.1175/JHM580.1
http://dx.doi.org/10.1175/JHM580.1
http://dx.doi.org/10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2
http://dx.doi.org/10.1111/j.1475-4959.2000.tb00006.x
http://dx.doi.org/10.1111/j.1475-4959.2000.tb00006.x
http://dx.doi.org/10.1175/JCLI-D-11-00686.1
http://dx.doi.org/10.1186/2194-6434-1-15
http://dx.doi.org/10.1007/s00382-010-0896-x
http://www.fao.org/docrep/003/x8406e/x8406e00.htm
http://www.fao.org/docrep/003/x8406e/x8406e00.htm
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1038/sdata.2015.66
http://dx.doi.org/10.1002/joc.1078
http://dx.doi.org/10.1002/joc.636
http://dx.doi.org/10.1155/2014/894318
http://dx.doi.org/10.1029/97JC01736
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/2007MWR2255.1
http://dx.doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1029/2011GL050337
http://dx.doi.org/10.1007/s00357-014-9161-z
http://dx.doi.org/10.1016/S0921-8181(00)00040-0
http://dx.doi.org/10.1175/JHM-D-13-062.1
http://dx.doi.org/10.1029/94JD00548
http://dx.doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
http://dx.doi.org/10.1007/s00703-005-0127-x
http://dx.doi.org/10.1175/JCLI-D-12-00027.1
http://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20Eastern%20Africa%20Humanitarian%20Report%20No.%203%20-%20Drought%20May%202011%20FINAL.pdf
http://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20Eastern%20Africa%20Humanitarian%20Report%20No.%203%20-%20Drought%20May%202011%20FINAL.pdf
http://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20Eastern%20Africa%20Humanitarian%20Report%20No.%203%20-%20Drought%20May%202011%20FINAL.pdf
http://reliefweb.int/sites/reliefweb.int/files/resources/OCHA%20Eastern%20Africa%20Humanitarian%20Report%20No.%203%20-%20Drought%20May%202011%20FINAL.pdf
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1080/01621459.1963.10500845
http://dx.doi.org/10.1007/s00382-010-0984-y
http://dx.doi.org/10.1175/JCLI-D-13-00447.1

	Enhancing Dynamical Seasonal Predictions through Objective Regionalization
	

	jamCD160192 1431..1442

