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Calibrating the Highway Capacity Manual Arterial
Travel Time Reliability Model

Ernest Tufuor, Ph.D.1; Laurence R. Rilett, Ph.D., P.E., M.ASCE2; and Li Zhao, Ph.D.3

Abstract: The latest edition of the Highway Capacity Manual (HCM-6) includes, for the first time, a methodology for estimating and
predicting the average travel time distribution (TTD) of urban streets. Travel time reliability (TTR) metrics can then be estimated from
the TTD. The HCM-6 explicitly considers five key sources of travel time variability. A literature search showed no evidence that the
HCM-6 TTR model has ever been calibrated with empirical travel time data. More importantly, previous research showed that the
HCM-6 underestimated the empirical TTD variability by 70% on a testbed in Lincoln, Nebraska. In other words, the HCM-6 TTR metrics
reflected a more reliable roadway than would be supported by field measurements. This paper proposes a methodology for calibrating the
HCM-6 TTR model so that it better estimates the empirical TTD. This calibration approach was used on an arterial roadway in Lincoln,
Nebraska, and no statistically significant differences were found between the calibrated HCM-6 TTD and the empirical TTD at the 5%
significance level. DOI: 10.1061/JTEPBS.0000451. This work is made available under the terms of the Creative Commons Attribution
4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Background

Traffic congestion can be defined as the “travel time or delay in
excess of that normally incurred under light or free-flow travel con-
ditions” (Levinson and Margiotta 2011). The variability or changes
in travel time on urban arterial roadways are caused by both recur-
rent and nonrecurrent congestion. Recurrent congestion occurs
each day during the same time period (e.g., weekday peak periods)
and at the same location on roadways. Nonrecurrent congestion
is the result of unplanned or random events, such as inclement
weather and traffic incidents.

Road users are usually familiar with recurrent congestion and
understand how travel time varies with time of day. However, non-
recurrent congestion, by definition, is unpredictable and causes the
most frustration to road users (Tan et al. 2015). Unfortunately, more
than half of the causes of traffic congestion are from nonrecurrent
sources (Cambridge Systematics 2005). Therefore, understanding
how to accurately estimate and predict the variability in congestion
is very important in roadway performance analysis.

Historically, measures of central tendency (e.g., mean) are often
used to analyze roadway performance. For example, the first five
editions of the Highway Capacity Manual express roadway perfor-
mance as a quantitative stratification of a given performance metric,

such as 15-min average travel time or density, that represents the
quality of roadway service. This is known as the level of service
(LOS) (HCM 2010). The LOS is intended to simplify the commu-
nication of quantitative performance metrics related to measures
of central tendency such as average density or average delay, for
example (Roess and Prassas 2014). Logistics companies and com-
muters are, however, interested not only in the measures of central
tendency but also in the measures of dispersion (e.g., variance) be-
cause both affect their arrival/travel times (Figliozzi et al. 2011).
Consequently, travel time reliability (TTR) metrics, which combine
components in measures of central tendency and measures of
dispersion, have attracted considerable research interest over the
past decade (Taylor 2013).

Reliability has many different definitions in the literature. For
example, the Strategic Highway Research Project 2 Report L04
(Mahmassani et al. 2014) described reliability as “the lack of vari-
ability of travel times.” Van Lint et al. (2008) used statistical der-
ivations that are based on the skewness of a travel time distribution
(TTD) to represent TTR. Dowling et al. (2009) used the standard
deviation of a TTD as a proxy for several reliability metrics. Not
surprisingly, most studies use the measures of central tendency and
measures of dispersion of the TTD for TTR metrics (Arezoumandi
and Bham 2011) but not the actual TTD. This paper will focus
on the actual TTD. A comprehensive review of the different TTR
metrics can be found in Pu (2011).

The US Federal Highway Administration (FHWA) has identi-
fied TTR as a key road mobility performance indicator (FHWA
and USDOT 2012, 2015). The latest edition of theHighway Capac-
ity Manual (HCM-6) included, for the first time, a methodology for
estimating and predicting the TTR on urban arterials (HCM 2016).
The HCM-6 states that “travel time reliability reflects the distribution
of trip travel time over an extended period. The distribution arises
from the occurrence of several factors that influence travel time
(e.g., weather events, incidents, work zone presence).” Specifically,
the HCM-6 TTR methodology estimates and forecasts the TTD of
average travel times by explicitly considering the effect of inclement
weather, traffic incidents, demand variations, work zones, and spe-
cial events (e.g., festivals and game days). TTR metrics such as the
travel time index and planning time index can then be determined
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from the estimated TTD. For example, the planning time index,
which is the ratio of the 95th-percentile travel time to the free-flow
travel time, compares near-worst-case travel time to free-flow travel
time conditions (FHWA Office of Operations and US DOT 2017).

The HCM-6 uses as input (1) supply data (e.g., roadway geo-
metric features), (2) single-day observed traffic demand volume,
and (3) historical data on random events, including weather, traffic
incidents, and demand variations. The output is an estimated TTD
over a user-defined time period.

The literature shows that the HCM-6 approach was validated us-
ing the CORSIM simulation model (Zegeer et al. 2014). Critically,
there is no documentation that the HCM-6 TTRmodel was validated
or calibrated using empirical travel time data. This was confirmed to
the authors during the January 2019 standing committee meeting of
the Transportation Research Board’s Highway Capacity and Quality
of Services Committee. In addition, it has been shown by Tufuor and
Rilett (2020) that the TTD estimated by HCM-6 was statistically
different from the empirical TTD on a 1.87-km (1.16-mi) testbed
in Lincoln, Nebraska. In particular, the HCM-6 TTR model under-
estimated the travel time standard deviation by approximately 67%.
In other words, the HCM-6 TTR metrics indicated that the testbed
was more reliable than field measurements would indicate. Similar
results were also shown on a 0.8-km (0.5-mi) testbed in Lincoln,
Nebraska (Tufuor and Rilett 2019).

It was found in the 1.87-km analysis that the demand component
in the HCM-6 TTR methodology contributed approximately
82% of the estimated error (Tufuor and Rilett 2020). The authors
recommended that the first step to improving the HCM-6 TTD
estimations is to calibrate the model to local conditions and that
the focus of the Lincoln network calibration should be on the
HCM demand estimator. Consequently, this paper will use the
same testbed and focus on the demand component. The proposed
calibration methodology, however, is general and can be used to
calibrate the HCM-6 TTR model for all sources of variability, in-
cluding weather, demand, incident, work zones, and special events.

The remainder of this paper is organized as follows. The next
section gives a brief description of the HCM-6 TTR methodology.
This is followed by a discussion on the deterministic and stochastic
components of the HCM-6 TTR model. A procedure to calibrate
the HCM-6 TTR model is then proposed and discussed. Sub-
sequently, the proposed methodology is verified using a case study
with real-world data. Lastly, the results are interpreted, and relevant
concluding remarks are provided.

HCM-6 TTR Methodology

The following terms are useful in understanding the HCM-6 TTR
methodology:
1. Reliability reporting period (I): This is the number of days

over which TTR is to be estimated (HCM 2016). The HCM-
6 recommends using a 6-month to 1-year reporting period.
Note that the user may specify the type of days to be analyzed
(e.g., weekdays).

2. Study period (Sp): This is the time period within a given day (i)
that will be analyzed for each day in the reliability reporting
period (I). Note that HCM-6 recommends that Sp be a minimum
of 60 min and a maximum of 360 min.

3. Analysis period (Ap): This is the time interval that is evaluated
for each study period. Note that HCM-6 allows for either a
15- or 60-min interval.

4. Number of time periods, of duration Ap, examined in each day
(J): This parameter is calculated using Eq. (1). Note that J must
be an integer so that Sp must be evenly divisible by Ap:

J ¼ Sp
Ap

ð1Þ

5. Number of scenarios (N): This parameter refers to the total num-
ber of scenarios (e.g., each period j on each day i) for which an
average travel time will be estimated (HCM 2016). The total
number of scenarios is calculated using Eq. (2):

N ¼ IJ ð2Þ

In this paper, the 1.87-km (1.16-mi) testbed in Lincoln,
Nebraska, that was used in previous studies (Tufuor and Rilett
2020) will be used to illustrate the HCM-6 TTR methodology
and the calibration process. The testbed reliability reporting period
(I) is equal to all 261 weekdays in 2016, the analysis period (Ap) is
15 min, and the study period (Sp) is between 4:30 and 5:30 p.m.
(PM peak). From Eq. (1), the number of time periods studied
in each day (J) is 4 (e.g., J ¼ 60=15). From Eq. (2), the number
of scenarios (IJ) is 1,044.

Fig. 1 shows an overview of the HCM-6 TTR methodology for
estimating and predicting TTD and the associated TTR metrics. A
full description of the HCM-6 TTR methodology is provided else-
where (Zegeer et al. 2014; HCM 2016).

As may be seen from Fig. 1, the HCM-6 TTR methodology has
five main steps. In Step 1, data from five key sources that can affect
travel time variability (e.g., weather, demand, incident, work zone,
and special events) are input. The base data set describes the con-
ditions of the urban arterial where no rain/snow, crashes, work
zones, and special events occur. The alternative data sets are used
to describe work zone or special-event testbed conditions.

In Step 2, the traffic and weather conditions for each of the N
scenarios (Sij) are created. Adjustments are made to traffic
demand volumes, saturation flow rates, and speeds of the base
or alternative data set according to the conditions (e.g., weather,
demand, and incidents) that occur during a given scenario. These
adjustments are based on a Monte Carlo simulation procedure
that is based on three random seed numbers, one each for weather,
demand, and incident, that are input in Step 1. The scenario-
generation process in Step 2 of Fig. 1 will be discussed in sub-
sequent sections.

In Step 3, the HCM Core Facility Evaluation, which is described
in Chap. 16 of the HCM-6, is used to estimate the average travel
time for each scenario Sij. The estimated average travel times are
compiled to form the TTD as shown in Step 4 in Fig. 1. The TTD is
then used to estimate the TTR metrics. Some commonly applied
TTR metrics are shown in Step 5 of Fig. 1.

The following section provides a brief description of how the
weather, volume, incident, work zone, and special events parameter
values for each scenario Sij are obtained in the scenario-generation
process in Step 2 of Fig. 1. A full description of this scenario-
generation procedure is provided elsewhere (Zegeer et al. 2014).

There is a deterministic component and a stochastic component
to the scenario-generation process. The active work zone or special
event parameters for each scenario Sij are deterministic. The work
zone or special event schedule provided in Step 1b of Fig. 1 is used
as input in the deterministic process.

The HCM-6 TTR methodology models traffic demand volume
variation using three demand factors: an hour-of-day factor (fh), a
day-of-week factor (fw), and a month-of-year factor (fm). The traf-
fic demand volume of each intersection/access point movement in
each scenario is estimated by a two-step process. First, the demand
modification factor (DMF) Fij for each scenario is estimated using
Eq. (3):
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; ∀ i ¼ 1; I; ∀ j ¼ 1; J ð3Þ

where Fij = demand modification factor for scenario ij; fhij = hour-
of-day demand factor for scenario ij; fwij = day-of-week demand
factor for scenario ij; fmij = month-of-year demand factor for
scenario ij; fhb = hour-of-day demand factor for base volume in
Step 1 of Fig. 1; fwb = day-of-week demand factor for base volume
in Step 1 of Fig. 1; and fmb = month-of-year demand factor for base
volume in Step 1 of Fig. 1.

The second step is to estimate the traffic demand volume of each
movement in each scenario ij using Eq. (4). This is the product of
the DMF (Fij) from Eq. (3) and the base traffic demand volume that
was input in Step 1 of Fig. 1:

Dij ¼ Fij · Db ð4Þ

where Dij = traffic demand vector containing all volumes on inter-
sections and segments in scenario ij; and Db = traffic demand
vector containing all volumes on intersections and segments in
Step 1 of Fig. 1.

The uncalibrated hour-of-day, day-of-week, and month-of-year
demand factors and the distribution of the DMFs Fij for the testbed
conditions are shown in Fig. 2. It may be seen from Fig. 2(a) that
there are five day-of-week (e.g., Monday–Friday) and 12 month-of-
year demand factors (e.g., January–December). Because the analy-
sis period was from 4:30 to 5:30 p.m., two hour-of-day demand
factors (e.g., 4:00–5:00 p.m. and 5:00–6:00 p.m.) were applied.
Specifically, the two 15-min periods from 4:30 to 5:00 p.m. used
the HCM 4:00–5:00 p.m. demand factor, and the two 15-min time
periods from 5:00 to 5:30 p.m. used the HCM 5:00–6:00 p.m. de-
mand factor. In total, there were 120 unique combinations of
demand factors for the testbed example for 2016.

It may be seen from Fig. 2(b) that the distribution of DMFs has a
low variance as evidenced by the fact that the range is small (0.75–
1.35) and highly peaked around the mean. In addition, approxi-
mately 95% of the data falls between 0.95 and 1.15. The DMFs
in Fig. 2(b) will be used to adjust the base traffic demand volumes
to obtain the demand volume, Dij, for all scenarios, as shown in

Eq. (3). Therefore, the distribution of the demand volumes for each
scenario, Dij, will have a similar distribution because it is the prod-
uct of the input volume vector for the given scenario and the scalar
DMF for that scenario, as shown in Eq. (4). In other words, the
adjusted traffic demand volumes, Dij, will correspond to 95%–
115% of the base traffic demand volume. Note that if the user choo-
ses a 1-h analysis period, Ap, then the volumes identified in Step 2
will be deterministic, as described previously. If the user chooses a
15-min analysis period, then the 15-min volumes for each scenario
will be derived from a Monte Carlo simulation, as discussed in
what follows.

The stochastic component of the scenario-generation procedure
in Step 2a of Fig. 1 is composed of three sequential procedures.
First, weather event values, Wij, are calculated for each scenario
Sij. Second, if a 15-min evaluation period is selected, the traffic
demand volumes, Dij, for all scenarios are estimated. Lastly, the
weather and demand information is used to predict traffic incident
value, Yij, for each scenario Sij. The detailed description of the
weather events, demand variations, and traffic incident procedures
are provided elsewhere (Zegeer et al. 2014).

In summary, up to seven stochastic variables can be used in the
HCM-6 TTR model. These 7 stochastic variables are a function of
up to 54 weather, demand, and incident variables that are input in
Step 1. The exact number of variables will be a function of the
application. For the testbed examined in this paper, there are 30
variables. A Monte Carlo sampling method is used to randomly
assign a weather event Wij (e.g., rain, snow, and neither rain
nor snow), traffic demand volume Dij (if 15-min analysis period
is selected), and incident event Yij (e.g., incident or no incident)
to each scenario Sij. The underlying sampling probability distribu-
tions and their corresponding properties for the seven stochastic
variables are shown in Table 1.

Specifically, every scenario Sij will have a binary variable in-
dicating the status of a weather event (e.g., 0 = no weather event
and 1 = weather event). The value of this variable is obtained from a
Monte Carlo simulation. If a weather event is modeled as occurring
in Sij, then the precipitation type, the amount of precipitation, and
the length of time the pavement remains wet after the event are also
determined using a Monte Carlo simulation.
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Fig. 1. HCM-6 methodology framework. (Adapted from HCM 2016.)
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Table 1. Stochastic component and the underlying probability distribution functions (PDFs)

Stochastic component PDF PDF parameters

Weather variables
Precipitation prediction for a given day Binomial n ¼ 1, probability ¼ Np=dm

where Np = number of days with precipitation of 0.0254 cm (0.01 in:) or more in month
m; and dm = number of days in month m

Precipitation type Normal Mean ¼ Tm, standard deviation ¼ 5°F
where Tm = normal daily mean temperature in month m.
If the randomly selected Tm ≥ 32°F, then the precipitation type is rain, else it is snow.

Rain intensity (rainfall rate and total
rainfall)

Gamma Rainfall rate (RRd;m) in day d of month m (cm=h):
Mean ¼ Np=dm ¼ standard deviation ¼ Np=dm
Total rainfall intensity (TRd;m) on day d of month m, cm=event:
Mean ¼ avg · TRm, standard deviation ¼ sd TRm
where TRm = total rainfall for rain event in month m, cm=event; and sd TRm = standard
deviation of total rainfall in a month,
cm=event. sd TRm = min (2.5 avg · TRm, 0.65)

Demand variables
Turn movement traffic demand volume
at each signalized intersection

Gamma Mean ¼ 0.25Dij, standard deviation = fij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25Dij

p

where fij ¼
1 − PHF
PHF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25Dij

q
expð−0.00679þ 0.004PHF−4Þ

PHF ¼ peak hour factor
Traffic demand volume on each
driveway access point

Poisson ðif Dij ≤ 64 vphÞ
Mean ¼ 0.25Dij

Normal ðif Dij > 64 vphÞ
Mean ¼ 0.25Dij,
standard deviation =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25Dij

p

Incident variables
Incident occurrence Poisson Mean = fstr;wea × pstr;wea;con;lan;sev

where fstr;wea = expected hourly incident frequency for street location under a predicted
weather condition (incidents=h); and pstr;wea;con;lan;sev = proportion of incidents for street
location under a predicted weather condition

Incident duration Gamma Mean = d̄str;wea;con;lan;sev, SD = 0.8 × d̄str;wea;con;lan;sev,
where d̄str;wea;con;lan;sev = average incident duration for street location type str, weather
condition wea, event type con, lane location lan, and severity sev (h)

(a) (b)

J 0.829 M 0.980 16:00 0.072*

F 1.019 T 0.980 17:00 0.077

M 1.029* W 1.000*

A 0.980 T 1.030

M 1.010 F 1.150

J 1.047

J 0.989

A 1.052

S 1.089

O 0.948

N 0.991

D 0.939

Note: (*) is the base demand factor
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Fig. 2. Distribution of uncalibrated demand modification factors. (Data from Tufuor and Rilett 2020.)
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Similarly, every predicted incident (Yij) in a scenario will have
information on the type of incident (crash or noncrash) and the
location (segment or intersection) on the subject facility. This is
also determined using a Monte Carlo simulation.

If a 15-min analysis period is chosen, the volume on all segments
and driveways is also estimated using a Monte Carlo simulation
where the mean volume is based on the corresponding 1-h traffic
demand volume. Note that separate Monte Carlo sampling is used
for roadway segments and driveways, as shown in Table 1.

Because the underlying stochastic processes are modeled using
a Monte Carlo simulation, if the random seed number changes, then
the corresponding stochastic parameter values will also change. In
particular, the values of Wij, Dij (if a 15-min analysis is chosen),
and Yij will change, and this will affect the resulting TTD in Step 4
of Fig. 1.

Because of the stochastic nature of the HCM-6 TTR procedure,
the HCM-6 developers recommend that the procedure shown in
Fig. 1 be repeatedM times, each with a different random seed num-
ber, so that the results are robust and not dependent on a single
run (HCM 2016). In this paper, M was set to four replications, and
the resulting average travel time for each scenario was randomly
selected from the corresponding scenario in these four replications
to form the final estimated TTD.

By definition, changing the input parameters that influence the
seven weather, demand, and incident variables of the stochastic
components in the HCM-6 TTR model will change the resulting
TTD. Note that for the example problem, there are potentially
30 input parameters (e.g., 4 weather parameters, 7 incident param-
eters, and 19 demand factor parameters) that will affect the values
of the 7 stochastic variables in the HCM-6 TTR model. Therefore,
changing these input variables will change the HCM-6 estimated
TTD. This is the basis of the calibration methodology proposed
in the next section.

Proposed HCM-6 Calibration Methodology

Fig. 3 shows the proposed calibration methodology. It can be seen
that the proposed calibration framework is an iterative process that
consists of five major steps.

Step 1. Input Data

In this step, two categories of input data are required. The first cat-
egory, Step 1a in Fig. 3, is the base data set, alternative data set, and
historical data set used in the HCM-6 TTR model. In this paper, the
testbed weather, volume, and incident input data were obtained
from local sources. A discussion of the input values is provided
elsewhere (Tufuor and Rilett 2020).

The second category is shown as Step 1b in Fig. 3; it is the ob-
served point-to-point travel time data. Recent advancements in in-
telligent transportation systems (ITSs), computer technology, and
the Internet of things bring with it the potential for collecting more
detailed and consistent real-time arterial point-to-point travel time
data. Examples of widely used ITSs for data collection include
crowdsourcing (e.g., INRIX 2020), connected and automated ve-
hicles (e.g., Datta et al. 2016), and Bluetooth (BT)/wireless fidelity
(Wi-Fi)/light fidelity (Li-Fi) detectors (e.g., Cotten et al. 2020).

In this paper, point-to-point ITS travel time data from BT de-
tectors installed on the testbed were utilized. The BT data collection
system, its validation, and analysis are discussed elsewhere (Tufuor
and Rilett 2018, 2019). The BT data were aggregated, according
to the HCM-6 protocol, to obtain average 15-min weekday travel
times Tij for the analysis period (e.g., 4:30–5:30 p.m.). The data
were filtered to eliminate periods that occurred during special

events (e.g., public holidays) in 2016. The resulting TTD will form
the so-called ground truth, and the goal will be to adjust the TTR
model parameters so that the TTD estimated by the HCM-6 TTR
model replicates this empirical distribution.

Step 2. HCM-6 TTR Model of Testbed

In this step, the current HCM-6 parameter set is used to model the
testbed and estimate the TTD.

In the first iteration, the current parameter set corresponds to the
uncalibrated parameter values. The BT TTD and the HCM-6 TTD
for the first iteration, as well as their corresponding cumulative
distribution functions (CDFs), are shown in Fig. 4. It may be seen
in Fig. 4 that the empirical BT TTD has considerably more spread
compared to the corresponding HCM-6 TTD. It was these differ-
ences, described earlier, that motivated this paper.

Step 3. Comparing TTDs

In this step, the TTD estimated by HCM-6 (Step 2) is compared to
the empirical BT TTD (from Step 1). Numerous statistical methods
exist to test whether two samples from different populations are stat-
istically similar (Spiegelman et al. 2010). Parametric tests, such as
Student’s t-test and the F-test, are popular methods for statistical
inference of mean and variance values, respectively. There are two
disadvantages to these tests for the purposes of this paper. First, these
parametric tests often require a prior assumption of the underlying
distribution. This is problematic because often the form of the under-
lying TTD is unknown. More importantly, these tests do not indicate
whether two distributions are statistically similar, and this can be
problematic for urban arterial roadway analyses (Kim et al. 2005).
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Because the goal is to calibrate the HCM-6 TTR model to rep-
licate the empirical TTD, it was critical to use nonparametric or
distribution-free tests to statistically determine whether any differ-
ences between the distributions were statistically significant. Typical
nonparametric tests for comparing two distributions are the Mann-
Whitney-Wilcoxon tests and the Kolmogorov-Smirnov (KS) test.

In this paper, the KS test was used to test the hypothesis that the
population of the HCM-6-estimated average travel times and the
population of the empirical BT average travel times in Fig. 4 have
the same distribution. The hypotheses of the KS test is as follows:

Null hypothesis, H0: FHCMðTijÞ ¼ FBTðTijÞ; ∀ Tij.
Alternative hypothesis, Ha: FHCMðTijÞ ≠ FBTðTijÞ; ∀ Tij.
Here, FHCM is the HCM-6 CDF, and FBT is the empirical

BT CDF.
For this test example, a 5% significance level was chosen. Not

surprisingly, for the HCM-6 TTD and the empirical BT TTD as
shown in Fig. 4, the KS test showed that there were statistically
significant differences between the two distributions at a 5% sig-
nificance level (Tufuor and Rilett 2020).

Step 4. Stopping Criteria

In this step, the stopping criterion (criteria) is (are) checked to de-
termine whether the calibration procedure should continue or not.
Because the proposed methodology is an iterative process and there
is no guarantee of convergence, at a minimum the analyst needs to
set a stopping criterion that will stop the procedure after a maxi-
mum number of runs. There is a trade-off between the quality of the
results of the iteration and the time spent (Agdas et al. 2018). Tradi-
tionally, a set number of iteration loops (R) is used or suggested for
calibration (Spiegelman et al. 2010; Kramer 2017). For this paper,
R was used and set to 60 because preliminary study showed that 60
iterations (or generations) provided good results for this network.
However, if there is no solution after 60 iterations, a new R will be
set. When the number of iterations equals R, the algorithm stops. If
not, the algorithm proceeds to Step 5.

Note that the stopping criteria could be a combination of a maxi-
mum number of iterations and a specific convergence criterion,
such as achieving a successful KS test. The algorithm would stop

whenever either criterion was met. In addition, the stopping criteria
will be application-specific and may require some experimentation
on the part of the user. For example, larger road corridors may need
more iterations.

Step 5. Optimize HCM-6 Input Parameter Sets

In this step, a new set of input parameter values is identified. Several
optimization algorithms, including the simplex method, genetic
algorithm (GA), and simulated annealing, for example, may be used
in this step (Kochenderfer and Wheeler 2019). The goal of the
algorithm is to select a set of HCM-6 input parameter values for
the rth run that will result, hopefully, in an estimated TTD that
is “better” than the previous (r − 1) estimated TTD. In this paper,
a GA is used to perform this task. A detailed description of the GA
process may be found elsewhere (Kramer 2017; Appiah et al. 2011).
The GA parameters for this application were selected based on a
literature search of previous engineering-related GA applications
(e.g., Yao et al. 2012; Yang et al. 2016; Hassanat et al. 2019;
Cimorelli et al. 2020). The literature review found that the GA op-
erators, e.g., the crossover rate and mutation rates, ranged from 50%
to 90% and 1.0% to 2.5%, respectively. For the testbed, the midrate
of the crossover (e.g., 70 %) and mutation (e.g., 1.75%) rates were
selected. Twenty parameter sets were analyzed in each generation,
and the generation gap was 75%, which was also selected based on
experience and previous studies (e.g., Angelova and Pencheva
2011; Roeva and Vassilev 2016). As previously, the best GA values
to use will be a function of the application and will, in all likelihood,
need to be identified through a combination of prior experience and
experimentation.

Since R was set to 60, it will be necessary to examine 1,200
parameter sets for the test example. Furthermore, because M ¼ 4,
the process shown in Fig. 3 was run 4,800 times during the cali-
bration process.

It should be noted that because a statistical test was used in the
example problem, once the calibration is complete, there may be
one solution, a set of acceptable solutions, or no solution (Kim et al.
2005). If a set of acceptable solutions is found, it will be necessary
to develop criteria to select the “best” solution. Intuitively, there are
many ways to select the “best” solution. Possible selection criteria
include using the lowest error, choosing the parameter set that has
the least amount of difference with the HCM-6 default parameter
values, and engineering judgment of the “best” representation of
local conditions.

Calibration Results

As part of the preliminary analysis, the proposed methodology was
used to separately calibrate the TTR model based on three condi-
tions: (1) modifying only weather parameters, (2) modifying only
incident parameters, and (3) modifying only demand parameters. It
was found that calibrating the weather and the incident parameters
did not significantly improve the final TTD. In other words, the KS
test failed to obtain any statistically valid solution when the weather
and the incident parameters were calibrated. Because there were
only 2 incidents and 24 weather events over the reliability reporting
period, it was hypothesized that the poor results were due to the
relatively small sample size of the weather and incident events
on the testbed.

Though the proposed calibration methodology can be used to
calibrate all three conditions at the same time, this paper will focus
on the results when only the demand parameters were allowed to
change during the calibration iterations. For the test example,
this meant the 2 hour-of-day demand factors, the 7 day-of-week
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demand factors, and 12 month-of-year demand factors were al-
lowed to change.

At the end of the calibration, a total of 15 parameter sets, out
of the 1,200 parameter sets that were tested, were found to provide
statistically significant results. In other words, there were no stat-
istically significant differences between the HCM-6 TTDs derived
from these 15 parameter sets and the empirical TTD at the 5% sig-
nificance level.

Fig. 5 shows the CDFs of the empirical TTD, the HCM-6 TTD
(uncalibrated), and the three statistically valid solutions. Note that
only 3 of the 15 statistically valid solutions are shown in Fig. 5 for
clarity, but all 15 acceptable solutions provided similar CDF curves.
It may be seen that the calibrated CDFs and the empirical CDF were
very close.

Fig. 6 shows standard boxplots of (1) the empirical BT TTD,
(2) the uncalibrated HCM-6 TTD, and (3) the 15 statistically valid
solutions. The top, middle, and bottom of each box represent the

75th-percentile, the median, and the 25th-percentile travel times,
respectively. The upper and lower boundaries are 1.5 times the in-
terquartile range from the percentile values.

The interquartile range of the uncalibrated HCM-6 TTD is
considerably smaller than the empirical TTD. In contrast, the 15
calibrated solutions have an average interquartile range (144–168 s)
that is similar to the interquartile range of the empirical TTD
(144–166 s). The only observable difference between the empirical
and calibrated TTDs is that the former has more outliers. Similarly, it
may be seen that the empirical TTD had a heavier tail when com-
pared to the 15 calibrated solutions. It is plausible that this difference
may be the effect of the weather and incident parameters that were
held constant in the calibration process. Also, the empirical TTD
may reflect other factors that affect the variability in travel time,
which the HCM-6 does not consider.

Table 2 shows the descriptive statistics, the statistical test results,
and key TTR metrics of the empirical TTD, the uncalibrated HCM-
6 TTD, and the three calibrated solutions from Fig. 5. Only three
calibrated TTDs are presented due to space limitations. However, it
should be noted that the other 12 valid solutions have similar
statistics, as presented in Fig. 6.

It may also be seen in Table 2 that there were no statistically sig-
nificant differences between the empirical and calibrated TTDs, their
means, and median at the 5% significance level. On average, the dif-
ference in mean travel times for the empirical and valid solutions is
less than 1 s. However, the standard deviations of the calibrated
TTDs were, on average, 12% smaller than the standard deviation
of the empirical TTD. This may be due to the contribution of the
other sources of travel time variability that were not calibrated.

For the testbed, 15 parameter sets provided statistically valid
TTDs. A natural question is how to choose among these 15 statisti-
cally valid TTDs. One approach is to measure the variations be-
tween the two distributions and pick the “best” one. The mean
absolute error (MAE) metric estimates the average of the absolute
differences between the TTDs and is a direct measurement of the
variations between TTDs. It is calculated using Eq. (5):

MAE ¼
P

n
i¼1 jHi − Eij

n
ð5Þ

where Hi = frequency of bin i of HCM-6 TTD; Ei = frequency of
bin i of empirical BT TTD; and n = number of bins.
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In this paper, for each MAE calculation, the bin width was 2 s
and the number of bins was 100, which captured travel times from
100 to 300 s.

Note that MAE is one of a number of metrics that measure the
variations between two distributions. Others include the root-
mean-square error (RMSE) and the sum of squared errors (SSE).
The MAE was selected in this paper because the error is not
weighted, unlike the RMSE, and does not change with the variabil-
ity of the error magnitudes (Willmott and Matsuura 2005). It should
be noted that users can choose any secondary metric or metrics they
feel is best for their application.

TheMAE values from the testbed are shown in Table 2. The three
statistically valid solutions in Table 2 represent the highest MAE
(e.g., Calibration 1), the median MAE (e.g., Calibration 2), and
the lowest MAE (e.g., Calibration 3). The MAE was 17.20 s for the
uncalibrated TTD when compared to the empirical TTD. When the
HCM-6 TTRmodel was calibrated, this value reduced to an average
MAE value of 4.00 s for the 15 statistically significant parameter
sets. The lowest MAE (Calibrated 3) value was 3.39 s and this was
the one recommended for use on this corridor. The MAE values im-
ply that there is a 77% difference in error between the uncalibrated
and calibrated TTD. Also, there is an average of 3% error when cali-
brated compared to a 17% error when the TTD is not calibrated.

Not surprisingly, the three commonly used TTR metrics for the
calibrated conditions are similar to the field TTR metrics. It may be

seen from Table 2 that the travel time index (TTI), the planning
time index (PTI), and the level of travel time reliability (LOTTR)
were 3%, 18%, and 8% different than the empirical TTI, PTI, and
LOTTR, respectively. In contrast, the TTI, PTI, and LOTTR for the
“best” calibrated condition were only 1% different.

The TTI, estimated as the ratio of the mean travel time to the
free-flow travel time of the TTD, shows that the testbed is not very
congested, as evidenced by the fact that the indexes for the empiri-
cal TTD, uncalibrated TTD, and calibrated TTD are all less than
2.5. This implies that the testbed is likely to provide a level of ser-
vice of “D” or better.

The PTI is the ratio of the 95th-percentile travel time to the free-
flow travel time. The PTIs indicate that the testbed is more reliable
when uncalibrated than the empirical and calibrated TTDs could
show. Similar results are observed for the LOTTR, which is the
ratio of the 80th-percentile travel time to the median value. For
example, for on-time arrival, a trip maker will have to plan a total
of 240 s to travel the testbed in the uncalibrated scenario compared
to 300 s for the empirical case and approximately 293 s when
calibrated.

Interpretation of Calibrated Demand Parameters

As discussed previously, the calibration process for the example
problem focused solely on 19 demand factors. Table 3 shows the

Table 2. Reliability statistics and test results

Statistic Empirical Uncalibrated Calibration 1 Calibration 2 Calibration 3

Mean 157.7 153.9 156.8 157.7 156.9
Median 155.0 153.7 155.1 156.8 155.6
Standard deviation 20.4 6.7 17.9 18.6 18.4
95th percentile 191.0 157.0 188.4 191.8 188.5
Count 838 1,044 1,044 1,044 1,044
Mean absolute error — 17.20 4.12 4.00 3.39
Statistic (p-value)

t-test — 5.26 (<0.01) 1.03 (0.30) 0.03 (0.97) 0.93 (0.35)
KS test — 0.41 (<0.01) 0.06 (0.12) 0.07 (0.05) 0.06 (0.08)
Mann-Whitney-Wilcoxon test — 469,930 (0.01) 432,960 (0.70) 417,490 (0.09) 431,780 (0.63)

TTR metrics
Travel time index 1.56 1.52 1.55 1.56 1.55
Planning time index 1.89 1.55 1.87 1.90 1.87
Level of TTR 1.10 1.01 1.10 1.10 1.11

Table 3. Uncalibrated versus calibrated demand factors

Period Uncalibrated “Best” calibrated Change (% change) Mean-and-variance calibrated

Monday 0.980 0.900 −0.080 (8) 1.147
Tuesday 0.980 0.411 −0.569 (58) 1.141
Wednesday 1.000 0.621 −0.379 (38) 1.110
Thursday 1.030 1.045 0.015 (1) 0.823
Friday 1.150 1.200 0.050 (4) 0.851
January 0.829 0.870 0.041 (5) 1.004
February 1.019 0.930 −0.089 (9) 0.928
March 1.029 1.011 −0.018 (2) 1.051
April 0.980 1.032 0.052 (5) 1.153
May 1.010 1.053 0.043 (4) 0.828
June 1.047 1.068 0.019 (2) 1.003
July 0.989 1.060 0.071 (7) 1.004
August 1.052 1.056 0.003 (0) 1.048
September 1.089 1.020 −0.069 (6) 0.899
October 0.948 1.010 0.062 (7) 0.951
November 0.991 0.980 −0.011 (1) 0.898
December 0.939 0.940 0.001 (0) 0.880
4:00 p.m. 0.072 0.060 −0.012 (17) 0.051
5:00 p.m. 0.077 0.080 0.003 (4) 0.099
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HCM-6 uncalibrated and calibrated demand factors and the per-
centage change between the factors. Also in Table 3 is the cali-
brated demand factors using only 2 parameters (e.g., mean and
variance of the 19 demand factors). The process will be explained
in the next section.

It may be seen in Table 3 that the differences between the
uncalibrated and calibrated month-of-year and time-of-day adjust-
ment factors are relatively small. For example, the average absolute
percentage difference is 4.8%, and the largest difference is 8.9%. In
contrast, the average absolute percentage difference between the
uncalibrated and calibrated factors for the day-of-week parameter
factors is 22.0%. In addition, the largest difference for the Tuesday
factor is 56.9%.

The demand factors for both the calibrated and uncalibrated
conditions in Table 3 were used to determine their corresponding
DMFs using Eq. (3). Fig. 7 shows the distribution of the DMFs for
both the calibrated condition and the uncalibrated condition [from
Fig. 2(a)].

From Fig. 7 it may be seen that the calibrated DMFs have
considerably more spread compared to the uncalibrated DMFs.
This is evidenced by the fact that the calibrated standard deviation
is approximately 78% greater. The calibrated DMF distribution is
bimodal. The appropriateness of the bimodality will be discussed
subsequently.

To illustrate how the traffic demand volumes and the demand
factors interact, consider the northbound through movement on
the first segment of the testbed for a scenario where the base traffic
demand volume is 1,100 vehicles per hour (vph). Figs. 8(a and b)
respectively show the uncalibrated and calibrated traffic demand
volume for only the northbound through movement for the first
segment of the testbed. These volumes were obtained using the
DMF and the baseline volume in Eq. (3).

It should be noted that similar histograms can be obtained for all
intersections and segment movements. The through movement was
selected because the HCM-6 TTD is focused on the performance of
the major-street through movement (Bonneson 2014).

It may be seen in Fig. 8 that the calibration had two effects on
the demand distribution. First, the average through volume in-
creased by 21%, from 1,133 to 1,371 vph. Second, the dispersion
of the volumes in the calibrated condition is much greater, as evi-
denced by the fact that the standard deviation increased by 79%.

The increase in both the mean volume and the variability in volume
allowed the resulting HCM-6 TTD to match the empirical TTD.

It could be argued that the calibrated demand factors as shown in
Table 2 no longer have a “physical” meaning. For example, why
would a Tuesday (e.g., 0.411) have 66% less traffic than a Friday
(e.g., 1.200), all else being equal? However, it is important to note
that the HCM-6 TTD estimation methodology is a mechanistic ap-
proach where many solutions (e.g., combination of different values
of the demand factors) will give the same answer.

Note that a user may wish for the calibrated DMF distribution to
have a “physical” meaning. In this situation, the calibrated bimodal
DMF distribution can be transformed into an alternative form that,
first, fits the user’s prior knowledge of the demand factor distribu-
tions and, second, will still result in a statistically similar TTD
when used in the HCM-6 TTR model. A Monte Carlo procedure
can be used to randomly simulate and substitute the DMF values
with the preferred DMF distribution. The values from the resultant
DMF distribution can be used to derive the corresponding hour-of-
day, day-of-week, and month-of-year demand factors using simple
optimization techniques.

As an example, the user may wish for the DMF distribution to
follow a Weibull distribution. The transformed DMF distribution
is shown in Fig. 9(a). It may be seen that the distribution is approx-
imately bell-shaped and has mean and variance values that are sim-
ilar to the calibrated, bimodal DMF distribution. Fig. 9(b) shows the
resulting traffic volume for the same throughmovements as shown in
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Fig. 8(b). Not surprisingly, this distribution is also bell-shaped. More
importantly, it was found that the calibrated DMF distribution in
Fig. 7 and the transformed DMF distribution in Fig. 9(a) resulted
in similar TTDs when input into the HCM-6 TTR model. These
TTDs were compared using the KS test, and there were no statisti-
cally significant differences at the 5% significance level. In other
words, for this test network it was relatively straightforward to trans-
form the calibrated DMF shown in Fig. 7 to those in Fig. 9(a). Both
sets of demand factors will result in statistically valid TTDs. Note
that the foregoing procedure was repeated for a lognormal and
gamma distribution, and similar results were found.

Two Parameters (Mean and Variance) Calibration

Following from the previous discussions on the transformation of
the DMFs, it is plausible to use an alternative procedure to calibrate
the HCM-6 TTR model. In the alternative calibration process, the
DMF distribution is defined by two parameters (e.g., mean and
variance). For a given iteration, the current mean and variance

values from the GA are used to back-calculate the 19 demand fac-
tors using an optimization code. In essence, the optimization iden-
tifies values for the 19 demand factors that result in the mean and
variance and are subject to certain constraints (e.g., nonnegativity,
no demand factor less than 0.8 or greater than 1.2). These 19 de-
mand factors are then used in the HCM-6 procedure to calculate the
TTD. This is in contrast to the original calibration where at each
iteration 19 new demand parameters are identified in the GA.

The calibrated DMF distribution using the mean and variance
are shown in Fig. 10. It may be seen that both calibrated DMF
distributions are bimodal with similar means and variances. How-
ever, the values of the DMF distributions are considerably different.
The associated demand factors for the DMF distribution shown in
Fig. 10 are shown in Table 3. It may be seen that these demand
factors are also considerably different than the demand factors
for the original calibration that used 19 parameters. More impor-
tantly, the estimated TTDs from the modified calibration procedure
were statistically the “same” as the empirical TTD using the KS test
at the 5% level of significance. There was an average of approx-
imately 5% error between the estimated TTDs from the modified
calibration procedure and the empirical TTD. In summary, equally
good results were achieved when 2 parameters, rather than all 19 of
the demand factors, were used in the calibration.

There was no major difference in the time it took to run the origi-
nal (e.g., 19 parameters) and the revised (e.g., 2 parameters) cal-
ibration procedure. This is not surprising because both used the
same number of maximum iterations as the stopping criteria, and
the extra step (e.g., identifying the 19 demand factors given a mean
and variance of the DMF distribution) did not involve a significant
amount of computing time. However, the revised calibration pro-
cedure was able to identify a statistically significant solution in the
first iteration as compared to the fifth iteration in the original. In
addition, the revised procedure identified 26, as opposed to 15, stat-
istically valid solutions. It is easy to hypothesize that calibrating 2
parameters would be more efficient than calibrating 19 parameters,
and this was found to be the case for this testbed.

As previously, the calibrated parameter set using the mean-
and-variance process can be converted to a standardized bell-
shaped histogram if the user desires. Alternatively, the calibration
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Fig. 9. Transformed demand distributions.
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procedure could assume that there is an underlying PDF associated
with the mean and variance identified from the GA. This could ob-
viate the need to transform the demand factors, although this was
not examined in this paper.

Concluding Remarks

This paper proposes a methodology for calibrating the HCM-6 TTR
model so that it replicates an empirical TTD. It is expected that the
proposed calibration approach will allow HCM-6 users to obtain ac-
curate estimates of both the TTD and the associated TTR metrics.

A 1.87-km (1.16-mi) principal arterial in Lincoln, Nebraska,
was used as a testbed. The HCM-6 TTRmodel was calibrated using
a genetic algorithm. The study made the following findings:
1. There were statistically significant differences between the un-

calibrated and the empirical TTDs at a 5% significance level.
The uncalibrated HCM-6 TTR model resulted in a TTD that
was highly peaked, and the standard deviation was 67% lower
than that of the empirical data.

2. There was an average of 3% error in the estimated TTD when
the HCM-6 TTR model was calibrated compared to a 17% error
when the TTD was not calibrated. More importantly, there were
no statistically significant differences between the estimated
TTD from the calibration process and the empirical TTD.
However, on average the standard deviations of the accepted
calibrated solution were 12% smaller than the empirical BT
data. If this were a concern, it would be relatively easy to make
this a part of the calibration process.

3. Not surprisingly, the resultant TTR metrics of the calibrated
conditions are all similar to field measurements. The uncali-
brated condition tends to overestimate reliability performance
measures. Consequently, the uncalibrated-condition TTR met-
rics show that the testbed is more reliable than what it should
be in field measurements. The estimation errors for the travel
time index, planning time index, and level of TTR were 3%,
18%, and 8%, respectively.

4. It was shown that the mean and variance of the calibrated de-
mand factors can be readily transformed into alternative distri-
bution forms (e.g., bell-shaped) if the user desires. For the test
example, this has no impact on the statistical significance of the
results. However, this result may be application-specific.
In summary, the calibration process introduced more variability

in the demand compared to the uncalibrated conditions. This in-
creased variability resulted in a “better” fit to the empirical TTD.
At first glance, the calibrated demand factors would appear to have
no “physical” meaning. However, it is easy to show that the cali-
brated demand can be transformed into alternative forms. Note that
the authors are not asserting that the calibrated demand factors
accurately represent demand variation in the field. It is entirely
plausible, and probably highly likely, that the changes in the de-
mand factors may capture not only differences in demand but also
the effects of other variables not considered in the HCM-6 TTR
procedure.

It must be noted that the calibration results presented are
only valid for the city of Lincoln, on one corridor, and for a 1-year
reliability reporting period. However, as more corridors’ travel in-
formation becomes available, the calibration methodology may be
repeated. This will allow users to determine whether there is any
commonality in the calibrated parameter sets, which could then be
published in future HCM editions.

The authors also recommend that the HCM developers examine
whether the large discrepancies found in this paper apply to other
locations in the United States. If so, the authors suggest a

reexamination of the TTR methodology to determine whether there
are missing variables that should be included.

Future studies will focus on the temporal and spatial transfer-
ability of calibrated model parameters. Intuitively, this will help
save the time cost of modeling and calibrating all arterials in a net-
work. In addition, it will guide the conditions necessary or appro-
priate when transferring the HCM-6 calibrated model parameters.
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