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Abstract

Species–environment relationships for highly mobile species outside of the breed-
ing season are often highly dynamic in response to the collective effects of ever-
changing climatic conditions, food resources, and anthropogenic disturbance. Cap-
turing dynamic space-use patterns in a model-based framework is critical as model
inference often drives place-based conservation planning. We applied dynamic
occupancy models to broad-scale golden eagle Aquila chrysaetos survey data col-
lected annually from 2006 to 2012 during the late summer post-fledging period in
the western US. We defined survey sites as 10 km transect segments with a 1 km
buffer on either transect side (n = 3540). Derived estimates of occupancy were low
(4.4–7.9%) and turnover rates – the probability that occupied sites were newly
occupied – were high (88–94%), demonstrating that annual transiency in occu-
pancy dominates late summer behavior for golden eagles. Despite low philopatry
during late summer, variation in golden eagle occupancy could be explained by a
suite of land cover and annual-varying covariates including gross primary produc-
tivity, drought severity, and human disturbance. Our summary of 13 years of pre-
dicted occupancy by golden eagles across the western United States identified
areas that are consistently used and that may contribute significantly to golden
eagle conservation. Restricting development and targeting mitigation efforts in
these areas offers practitioners a framework for conservation prioritization.

Introduction

Understanding the key dimensions that define a species’ rela-
tionship to its environment has been a foundational compo-
nent of ecology since its inception, formalized decades ago
in the theory of the niche. From a conservation perspective,
it is imperative to identify and understand the relationships
between a species and its environment in light of increasing
rates of global change in both land use and climate (Steffen,
Crutzen & McNeill, 2007). Current and projected rates of
species declines driven by anthropogenic impacts are
unprecedented and influenced by multiple drivers including
energy development (Allred et al., 2015) and agricultural
expansion (Tilman et al., 2001). Both of these drivers of
change lead to a direct loss of habitat, and these losses are
often exacerbated by synergisms with human-caused climate
change and expanding distributions of exotic species (Man-
tyka-Pringle, Martin & Rhodes, 2012). Thus, a comprehen-
sive conservation strategy must address two key challenges:
identifying the critical dimensions of the fundamental niche

of the species and identifying those landscapes capable of
meeting the species’ current and future resource needs. In
response to these challenges, the conservation community
has adopted a biogeographic approach that focuses on the
spatial distribution of species at multiple scales (Whittaker
et al., 2005). Contributing significantly to this biogeographic
perspective on nature conservation has been the rapid devel-
opment of analytical methods to estimate species’ fundamen-
tal niches, generically termed species distribution models
(SDMs; Guisan et al., 2013). Today, studies of the niche, in
the form of SDMs, are a prominent topic of ecological
research, stimulated in large part by concern over how spe-
cies will respond to rapid environmental change.

Generally, SDMs are any model-based tool for under-
standing multidimensional ecological relationships by relating
a suite of environmental covariates to species locations using
either statistical models or machine-learning algorithms.
Common applications of SDMs within a conservation con-
text include their incorporation into multi-species reserve-de-
signs (e.g. Cabeza & Moilanen, 2001), projecting changes to
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species distributions under climate change (e.g. Ara�ujo et al.,
2005), projecting range expansions by invasive species (e.g.
Ficetola, Thuiller & Miaud, 2007), and evaluating candidate
areas for species reintroductions or translocations (e.g.
Osborne & Seddon, 2012). In practice, most SDMs are cor-
relative, and based on historic or contemporary survey data
(often presence-only) that may provide only a snapshot of
the species’ environmental relationships over some tempo-
rally constrained window. Such constrained SDMs only rep-
resent the predicted distribution at the time of sampling,
implicitly assume the relationships between a species and its
environment are at equilibrium (Ara�ujo et al., 2005), and
make assumptions about consistent species–environment rela-
tions through time (niche conservatism; e.g. Stephens &
Wiens, 2009). Yet in light of rapid ongoing global change,
the species–environment relationships that ultimately shape
species’ geographic distributions may be increasingly domi-
nated by transient dynamics (Yackulic et al., 2015).

Golden eagles Aquila chrysaetos are a widely distributed
species that occupy vast, rugged landscapes across the north-
ern hemisphere, with annual ranges that can be continental
in scale (Kochert et al., 2002). In the western United States
(US), golden eagle populations currently appear to be stable
(Millsap et al., 2013; Nielson et al., 2014), though there is a
growing concern that increased anthropogenic energy devel-
opment and land-use change may result in significant popu-
lation declines. The US, for example, is one of many nations
expected to experience increased growth in renewable energy
development, of which wind energy will play a prominent
role (US Energy Information Administration 2013). Wind
turbines are a known, potentially significant source of mor-
tality for golden eagles (Hunt, 2002; Pagel et al., 2013).
This additive source of mortality is of concern for species
with slow life histories, such as most birds of prey, because
even small reductions in adult survival can result in signifi-
cant declines in population growth (Riley, Degloria & Elliot,
1999; Whitfield et al., 2004; Chevallier et al., 2015; Tack
et al., 2017). Current projections suggest that energy produc-
tion from wind turbines may increase by an order of magni-
tude over the next 35 years in the US (US Energy
Information Administration 2013), emphasizing the need to
enact proactive conservation measures in areas where energy
development overlaps the geographic range of golden eagles
(Tack & Fedy, 2015).

In areas projected to experience extensive wind power
development in the future, SDMs can be useful tools for pri-
oritizing conservation efforts for golden eagles during the
early phases of planning for the location of wind turbines
(Tack & Fedy, 2015). Using predictions from SDMs during
the planning phase is also of benefit to the energy industry
because it provides a way to address the regulatory require-
ments of the Bald and Golden Eagle Protection Act and to
avoid litigation by placing wind energy projects in areas
with minimal potential harm to eagle populations (https://
www.fws.gov/migratorybirds/pdf/management/eagleconser
vationplanguidance.pdf).

However, traditional SDMs may fail to encompass the
dynamic nature of golden eagle space use, particularly

during non-breeding seasons when individuals are not con-
fined to nest sites and greatly expand their range (Watson,
Duff & Davies, 2014). Recently developed models that esti-
mate parameters to account for the dynamic nature of species
distribution patterns clearly demonstrated the role of tempo-
ral variation in interpreting species–environment relationships
(Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005).
Occupancy models represent an improvement to many pres-
ence-only SDMs by accounting for imperfect detectability at
survey locations. Dynamic occupancy models expand this
framework to estimate transitions in occupancy among sites
via local colonization and persistence processes over time,
while simultaneously accounting for heterogeneity in the
observation process (MacKenzie et al., 2018). As a result,
occupancy models represent an improvement to many pres-
ence-only SDMs by accounting for imperfect detectability at
survey locations.

We fit dynamic occupancy models to golden eagle detec-
tion/non-detection data collected annually from a western US
survey. The survey’s primary goal is to estimate total popu-
lation size and trend across most suitable habitats within the
western US (Good et al., 2007). Our objectives were four-
fold: (1) to parameterize a model that accounts for the
dynamic use of habitat over time, while accounting for
imperfect detection; (2) to elucidate how temporal and spatial
variation in climate, ecosystem processes, and human settle-
ment patterns collectively result in dynamic geographic dis-
tributions of golden eagles; (3) to develop predictive models
to inform conservation planning for golden eagles; and (4)
to identify landscape-level mitigation actions that, to the
extent possible, buffer the adverse effects of future land-use
change.

Materials and methods

Study area and golden eagle surveys

Golden eagles were surveyed from 2006 to 2012 using
fixed-wing aircraft across four US Bird Conservation
Regions (BCRs), spanning the majority of the western US
golden eagle distribution (Kochert et al., 2002; Fig. 1). The
BCRs included in our analyses encompassed shrublands and
desert of the Great Basin, prairies and badlands of the west-
ern Great Plains, and mixed vegetative communities includ-
ing forested landscapes in the intermountain West along the
Rocky Mountains. Sources of fragmentation within BCRs
included tillage agriculture, human-developed areas, and
infrastructure for energy development. Golden eagle surveys
were conducted each year over a 3-week period during late
summer (18 August to 9 September). During this time, juve-
nile eagles have fledged and dispersed from nesting territo-
ries, and are no longer dependent on parental care.

Two survey teams, each composed of three observers (a
few flights had only two observers in 2008) and one pilot,
flew 100 km transects at 150 m above ground level (AGL)
in relatively flat habitat, while flying lower at 100 m AGL
in more rugged landscapes. Front and rear observers on the
right side of the aircraft searched for perched or flying eagles

Animal Conservation 23 (2020) 72–82 ª 2019 The Zoological Society of London 73

J. D. Tack et al. Golden eagle occupancy dynamics



independently of one another, while the third, rear-seated
side observer searched for eagles to the left side of the
plane. Because right-side observers did not communicate
detections until they passed an eagle, their counts were
deemed independent replicate surveys of sites, with observer
independence further ensured by a partition between the
front and rear seats. Observers recorded the location, age
class (subadult or adult), count, and behavior (perched, fly-
ing) for all eagle detections. Not all transects could be sur-
veyed each year due to wildfire or other access issues. In
these cases, alternate transects were chosen and surveyed.
We only used data from transects surveyed at least twice
over the duration of the study to assess changes in occu-
pancy over time. For more detail on the survey methodology
and design, see Good et al. (2007).

Our goal was to model spatial variation in eagle distribu-
tions at a scale that reflected golden eagle behavior during
the late summer. Therefore, we partitioned each transect into
10 km length segments, and created sample ‘sites’ by buffer-
ing either side of the transect by 1 km. For example, a
100 km site contained 20 distinct, 10 km2 sites (10 on either
side of a transect), which was within the range of a golden
eagle territory size during the outside of the breeding season

(Marzluff et al., 1997). Not all transects were exactly
100 km, such as when transects abutted the edge of the sam-
pling frame, and we retained these ‘trailing’ sites that were
<10 km as long as they were ≥5 km in length. Eagle detec-
tions were subsequently assigned to sites based on GPS loca-
tions and observer position. In total, we classified 3540 sites
across 220 transects, from which observers made detections
of 811 golden eagles across sites. The majority of observa-
tions included detections of only one golden eagle (80.9%)
leading us to use occupancy rather than count-based models,
though as many as four eagles were observed on some sites
(0.5%). For a full description of the dataset, see Nielson
et al. (2012). While our sampling period encompassed
approximately three weeks in late summer, it is important to
note that estimated state variables are conflated with the
availability of golden eagles for detection because sites were
only sampled on 1 day. Therefore, estimates of initial occu-
pancy and persistence are likely biased low.

Predictor variables

Golden eagle distributions are affected by multiple environ-
mental factors and anthropogenic disturbances that vary in
space and time (Nielson et al., 2016). Fluctuating resource
levels and an increasing human footprint are particularly rel-
evant to wide-ranging predators which travel long distances
in an attempt to track seasonally variable prey resources. We
identified four classes of covariates hypothesized to influence
eagle occupancy during the post-breeding late summer sea-
son: (1) climatic factors and primary productivity hypothe-
sized to drive variation in prey distribution and abundance;
(2) topographic features conducive to flight, foraging and
movement by raptors (Katzner et al., 2012); (3) the anthro-
pogenic footprint reflecting human use and land cover con-
version from cropland agriculture, urbanization, and energy
development; and (4) dominant vegetation (i.e. land cover).

During late summer (Jul-Sep), golden eagles primarily
prey on lagomorphs (Lepus spp; Sylvagius spp) and other
small to medium-sized mammals (Kochert et al., 2002). Spa-
tial data on prey distribution or abundance were not avail-
able across the spatial and temporal extent of our study,
though we assumed variation in primary productivity and
drought severity would be useful proxies reflecting changes
in prey availability at large spatial scales (Huntly & Inouye,
1988). We used MODIS gross primary productivity (GPP)
data available at 1 km resolution over 8 day intervals, and
assigned the most recent GPP estimate to each site. Simi-
larly, we hypothesized that drought conditions at local scales
would depress herbivore populations (Myers & Parker,
1975), so we used data from the Standardized Precipitation-
Evapotranspiration Index (SPEI; http://sac.csic.es/spei/databa
se.html), a multi-scalar drought index summarized over 3
(summer drought; June 1 - September 1) and 12-month (an-
nual; September 1 – September 1) time intervals, where neg-
ative values are indicative drier time periods. We calculated
a terrain ruggedness index (TRI; Riley et al., 1999) as the
standard deviation of 30 m elevation data within a neighbor-
hood from the National Elevation Dataset (Gesch et al.,

Figure 1 The study area encompassed US portions of 4 North

American Bird Conservation Regions: 9 Great Basin, 10 Northern

Rockies, 16 Southern Rockies/Colorado Plateau, 17 Badlands and

Prairies. Lines represent primary (not alternate) transects from

which golden eagles were surveyed by aircraft from 2006–2012.
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2002), and calculated the mean of TRI values within each
site. We calculated the extent of the human footprint by
combining multiple sources of temporally dynamic data on
energy development, cultivated agriculture, human develop-
ment, and road networks into a single comprehensive data
layer (Kiesecker et al., 2011). To characterize croplands, we
extracted areas identified as cultivated agriculture using
National Land Cover Datasets (NLCD) from 2006 and 2011.
We also identified areas characterized as low to high-inten-
sity developed areas from NLCD data to capture human set-
tlement. Road surfaces, and other human development
features were characterized using NLCD impervious surface
layers. We obtained spatially referenced data on well loca-
tion, status, and drilling (spud) date from state oil and gas
commissions. If a producing well was drilled prior to a
given eagle survey, we converted these point data to a bin-
ary raster (well or no well) for each year. We applied a sim-
ilar procedure to wind turbine location data (Diffendorfer
et al., 2014). We used a USGS Topographic Change Poly-
gon which delineates mines and other areas of human impact
that result in non-natural changes in elevation (http://topocha
nge.cr.usgs.gov). Each disturbance spatial data set was
reclassified as either disturbed or undisturbed areas using the
resolution of the largest the minimum mapping unit (30 m).
NLCD data were the only spatial data not available for each
year of the study. In these cases, we used data from previous
years to calculate annual covariates (i.e. 2006 data were used
for 2006–2010 layers, and 2011 data were used onward).
We also considered latitude and longitude to account for
unmeasured sources of spatial variation inherent in this
large-scale dataset (Karanth et al., 2014), and included their
quadratic terms to account for non-monotonic relationships
that may arise from higher occurrence toward the center of
golden eagle range (Brown, Mehlman & Stevens, 1995).
Lastly, we used NLCD land cover data to calculate the pro-
portion of woodland, shrubland, and grassland and herba-
ceous cover types within each site.

Model fitting

We fit a Bayesian state-space parameterization of a dynamic
occupancy model (Royle & Kery, 2007) to the golden eagle
survey data. Using this approach, eagle detections (yi;j;t) in a
given year (t) at a site (i) by one of two independent obser-
vers (j), are expressed as the joint probability of the site truly
being occupied (zi,t), and the probability that an eagle is
detected by an observer (pi,j,t) over the course of Ji,j,t surveys.

yi;j;t
0; when zi;t ¼ 0
Bernoulliðpi;j;tÞ; when zi;t ¼ 1

�

Occupancy was estimated from a Bernoulli distribution
conditioned on the initial year of the survey in 2006.

zi;2006 �Bernoulli wi;2006

� �
[

In subsequent years (2007–2012), we modeled the dynamic
processes associated with occupancy including persistence
(/i,t) – the probability that a site occupied in year t is

also occupied in year t + 1, and colonization (ci;t) – the
probability that an unoccupied site in year t is occupied in
year t + 1, to characterize dynamic changes in distributional
patterns. Transition probabilities of persistence and coloniza-
tion were modeled as autoregressive, conditional on occu-
pancy in the previous year.

zi;t
Bernoullið/i;t�1Þ; when zi;t�1 ¼ 1
Bernoulliðci;t�1Þ; when zi;t�1 ¼ 0

�

Occupancy following the first year of observation was
then derived from a previous state, along with site-specific
transition probabilities.

wi;t ¼ wi;t�1/i;t�1 þ 1� wi;t�1

� �
ci;t�1

Similarly, we were also interested in turnover rates (si,t;
Nichols et al., 1998), or the probability that a used site was
newly occupied in a given year, to characterize heterogeneity
in annual occupancy among sites.

si;t ¼
ci;t�1 1� wi;t�1

� �
ci;t�1 1� wi;t�1 þ /i;t�1wi;t�1

� �

We were primarily interested how multiple factors influenced
heterogeneity in site occupancy by golden eagles, and built
logit-linear models with covariates to explain variation in the
processes of detection, initial occupancy, and site dynamics
(persistence and colonization). We considered coefficients for
initial occupancy, persistence, and colonization parameters
including covariates for drought, GPP, land cover, and a
human footprint. We also considered these variables to
explain variation in detection, and because some segments at
the terminal end of a transect were <10 km, we also consid-
ered a covariate for transect length. Lastly, we considered a
surveyor-specific covariate which identified technicians as
front or rear observers in case position within the plane influ-
enced detection.

All covariates were scaled (�x=sdðxÞ) to facilitate conver-
gence and comparison among coefficient estimates. Because
there was limited information on golden eagle space use at
the spatial and temporal scale of our study, we assumed
weakly informative normal prior distributions (l = 0,
s = 0.37) for each estimated parameter. We estimated poste-
rior distributions from three MCMC chains using 30 000
iterations each following 20 000 sampled as burn-in. We
visually inspected chains and calculated Gelman-Rubin con-
vergence diagnostics across parameters to confirm parameter
estimates had converged (Gelman & Rubin, 1992).

The original sample units (transects) were partitioned into
smaller subsets leading to a potential lack of independence
among sites within each transect. To address this possibility,
we fit covariate models for initial occupancy, colonization,
and persistence including flight transect as a random effect
to account for potential spatial dependency within transects
(Miller & Grant, 2015). For example, when estimating initial
occupancy, we estimated intercept terms as
a½transect� �Normalðlw;2006; r2w;2006Þ; where lw;2006 �Normal
ðl ¼ 0; s ¼ 0:37Þ and r2w;2006 �Gammað0:001; 0:001Þ.
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Model selection

Prior to fitting model for inference, we used AIC model selec-
tion to determine the best fit covariate model structure for
detection and occupancy parameters, by fitting dynamic occu-
pancy models using a likelihood framework with R package
unmarked (Fiske & Chandler, 2011). This likelihood-based
approach allowed us to use a powerful and computationally
efficient method for exploratory model selection (Burnham &
Anderson, 2002; Broms et al., 2016), but also prohibited us
from fitting random effects for transects, which required the
aforementioned Bayesian approach to account for spatial
dependence. We first excluded highly collinear covariates
(r > |0.6|) from appearing in the same model by retaining only
the variables with the lowest AIC scores from model fitting
univariate models. Second, we fit all possible combinations of
covariates (the reduced set) to model detection probability,
while using fully parameterized (e.g. all covariates) models
for occupancy and dynamics parameters. We chose the most
parameterized model with a DAIC value of <2 for use in sub-
sequent models (Burnham & Anderson, 2002). We repeated
this approach to determine the model structure for initial occu-
pancy, colonization and persistence, again using full-parame-
terized models among the two occupancy parameters not
being fit with all possible combinations of models. Lastly,
once the final covariate structure was identified for each
model, we fit additional models with time-varying intercepts
using AIC to determine if we should include fixed year effects
in our Bayesian model. Bayesian models were fit using pro-
gram R and JAGs with package rjags (Plummer, 2013).

Spatial predictions

We applied spatial model predictions for each year across
the extent of the study area using a 10 km2 grid for mapping
occupancy (estimated in 2006, derived 2007–2012), persis-
tence, and colonization. These projections were based on
median values from posterior distributions of coefficient esti-
mates from the final model. We also derived maps for the
coefficient of variation, calculated as the median estimate of
occupancy divided by one-half of the width of 95% credible
intervals, to provide spatial representations of uncertainty.
Additional data on time-variant covariates (GPP & SPEI)
were available for years 2002–2014, which allowed us to

develop spatial predictions across and we predicted coloniza-
tion and persistence probability spatially in these years,
deriving a forecast of occupancy probability following pre-
dictions in 2012 (2013–2014), and hindcasting occupancy
using initial occupancy estimates applied to years 2002–
2005. This provided 13 years of temporally variable spatial
predictions of golden eagle occupancy across the western
US. We summarized these data to provide an overall picture
of mean occupancy for each site (�wi), and the coefficient of
variation among occupancy probabilities (wcv;i ¼

�wi
sdðwiÞ) as an

index of site stability over time.

Results

Model selection results implicated site length, proportion
woodland, and terrain ruggedness as covariates in the top
model for detection probability (Table S1). Anthropogenic
disturbance and GPP (main and quadratic terms) explained
significant amounts of the temporal and spatial variation in
multiple parameters including initial occupancy, persistence,
and colonization (Table S1). Land cover variables for wood-
land, shrubland, and grassland were all included in the initial
occupancy model, while the colonization model included
shrubland and grassland and the persistence model included
only the woodland covariate (Table S1). Terrain ruggedness
index was included in initial occupancy models and the SPEI
drought index was included among dynamic parameters for
colonization and persistence. Lastly, fixed year effects
improved model fit for occupancy parameters after identify-
ing all top coefficient models.

The population-level estimate of initial occupancy, with
covariates held at their mean values, was w2006 = 0.04
(Table 1), while mean estimates for persistence and coloniza-
tion ranged from 0.06 to 0.17 and 0.04 to 0.07, respectively,
resulting in ranges of derived occupancy from 0.05 to 0.08
(Table 1). Sites with low estimates of occupancy were char-
acterized by high turnover rates from 0.88 to 0.94 (Table 1).
Mean detection probability, with covariates held at their
mean values were 0.80 (95% CRI 0.77, 0.83). Detection esti-
mates were negatively influenced by the proportion of wood-
land (�0.12; 95% CRI –0.41, 0.18), and terrain ruggedness
(�0.08; 95% CRI �0.35, 0.17) of sites, whereas results were
equivocal for the influence of site length (0.04; 95% CRI
�0.14, 0.20).

Table 1. Transformed estimates of initial golden eagle occupancy, persistence, and colonization over the course of the study with covariates

held at their mean values. Occupancy following the first year (2006) and turnover rate – the probability that an occupied site was newly

occupied – were derived from estimates (see methods)

Year Occupancy Persistence Colonization Turnover Rate

2006 0.04 (0.03, 0.07) 0.17 (0.06, 0.36) 0.07 (0.02, 0.20) 0.91 (0.67, 0.98)

2007 0.08 (0.03, 0.20) 0.17 (0.08, 0.30) 0.05 (0.04, 0.07) 0.92 (0.71, 0.98)

2008 0.07 (0.04, 0.15) 0.10 (0.05, 0.20) 0.04 (0.03, 0.06) 0.92 (0.81, 0.97)

2009 0.05 (0.04, 0.11) 0.10 (0.05, 0.21) 0.05 (0.03, 0.06) 0.88 (0.75, 0.95)

2010 0.06 (0.04, 0.11) 0.13 (0.06, 0.24) 0.05 (0.04, 0.07) 0.94 (0.86, 0.98)

2011 0.06 (0.04, 0.13) 0.06 (0.02, 0.14) 0.04 (0.03, 0.05) 0.88 (0.76, 0.95)

2012 0.05 (0.03, 0.08)
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Mean coefficient estimates were generally consistent
across occupancy parameters and significant, with credible
intervals strictly positive or negative, while many did overlap
0 such that their influence should be interpreted as equivocal.
Mean coefficient estimates for GPP, both main and quadratic
terms, were consistently negative across all occupancy
parameters (Fig. 2). Coefficients estimating the influence of
drought were positive for both dynamic parameters, indicat-
ing lowered persistence and colonization with increasing
drought conditions (Fig. 2). All land cover coefficient esti-
mates were positive across models, with the exception of the
influence of shrublands on colonization. Increasing human
disturbance had a negative influence on both initial occu-
pancy and persistence, while a positive influence was esti-
mated for colonization (Fig. 2). Visual inspection confirmed
that posterior distributions had converged, and Gelman-Rubin
statistics supported adequate mixing across chains (r < 1.01).

Applying posterior mean coefficient estimates to spatial
covariate data produced spatially explicit predictions for ini-
tial occupancy, colonization, and persistence, from which
occupancy in 2007–2012 could be derived (Fig. 3). Covari-
ate data gathered during 2002–2005 and 2013–2014 provided
an additional six years of spatial predictions. Summarizing

across the combined 12 years of predictions produced an
overall mean occupancy estimate and the coefficient of varia-
tion across years (Fig. 4).

Discussion

Habitat use is a behavioral trait that may evolve through
time, particularly for wide-ranging predators (Nielsen et al.,
2010; Northrup, Anderson & Wittemyer, 2015). Transient
occupancy was prominent in our system with at least 88%
of sites estimated as newly occupied across years. High turn-
over, however, does not equate to golden eagle spatial occu-
pancy patterns being unpredictable. Static habitat features
including terrain ruggedness and location within the range
(reflecting unmeasured sources of environmental variation)
were consistent predictors of occupancy. However, dynamic
covariates such as climate change and land cover associated
with an expanding human footprint had the greatest explana-
tory power across spatially referenced predictors of golden
eagle space use.

In contrast to low site fidelity during late summer, golden
eagles show highly philopatric behavior during the breeding
season (approximately March-July; Kochert et al., 2002).

Figure 2 Coefficient estimates for covariates gross primary productivity (GPP) and its quadratic term (GPP2), terrain ruggedness (TRI), com-

bined anthropogenic disturbance (Disturbance), drought severity over a 3-month window (SPEI); land cover metrics describing the proportion

of grassland, woodland and shrubland; and latitude (Lat) and ‘1longitude (Lon) with quadratic terms. Coefficients were estimated for initial

occupancy probability (w2006), and dynamic parameters for colonization (c) and persistence (/), of golden eagles.
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These findings confirm the importance of documenting
space-use patterns following the breeding season and docu-
ment the dynamic nature of late summer habitat-use patterns.
While it is generally appreciated that particular landscapes
vary seasonally in their use by wildlife populations, little
attention has focused on the degree of heterogeneity of inter-
annual patterns of space use. Failing to account for annual
variation in patterns of eagle space use in survey designs
could result in an incomplete understanding of their habitat
requirements and temporal variability in population distribu-
tion. Intensive local-scale surveys are the primary tool for
identifying golden eagle habitat use, and assessing potential
adverse impacts, prior to constructing energy infrastructure.
However, our results suggest that short-term studies of eagle
space use may fail to capture dynamic changes in space use
and underestimate the spatial extent of habitat needed for
long-term conservation. Thus, it is imperative that impact
analyses be based on survey results accumulated over multi-
ple years (e.g. USFWS 2013).

Prey distribution and abundance were likely the key deter-
minants of golden eagle habitat-use patterns during late sum-
mer – however, data on prey abundance were not available

at the spatial scale of our study. Instead, we had to rely on
spatial surrogates known to influence prey distributions
(Fern�andez, Rom�an & Delibes, 2016). Gross primary produc-
tivity had the largest effect on occupancy parameters among
all the predictors we evaluated. It is important to note that
GPP measurements are higher in forested systems compared
to sagebrush and grassland systems, such that lower GPP
values may reflect highly productive rangelands within the
study system. While our model estimated a positive influence
of forested landscapes on initial occupancy and persistence,
estimates were lower than those for shrubland and herba-
ceous metrics. Importantly, within and among vegetation
community types, extensive annual variation in plant produc-
tivity was evident. For example, GPP measurements across
the Wyoming Basin – an arid non-forested landscape charac-
terized by Wyoming big sagebrush (Artemisia tridentata
wyomingensis.) communities – varied by an average of 45%
over the seven years of the study (Tack unpublished data).
Annual variation in plant productivity, combined with a gen-
erally positive effect of SPEI (e.g. non-drought conditions)
on colonization, suggests that golden eagles may be selecting
productive areas while avoiding drought-stricken landscapes.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3 Using a 1 km2 grid across the study area, we generated spatial predictions of initial occupancy (a; w2006), and parameters describ-

ing site dynamics including persistence (b; /2006) and colonization (c; c2006). Using these outputs, future predictions of occupancy could then

be derived (d; w2007), displaying the dynamic nature of golden eagle occupancy during late summer. Examples of spatial variation associated

with parameters for occupancy are displayed for 2006 (e; wcv,2006) and 2007 (f; wcv,2007). [Colour figure can be viewed at zslpublications.

onlinelibrary.wiley.com]
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Golden eagles largely avoided areas with an extensive
human footprint, demonstrated by negative mean coefficients
for initial occupancy and colonization, while mean positive
coefficients were estimated for all natural land cover vari-
ables. However, the impact of human infrastructure on the
persistence of occupancy was slightly positive. It is possible
that landscapes highly altered by humans could support high
eagle use if prey densities were also high. For example,
Altamont Wind Power Resource Area is dominated by wind
energy infrastructure, yet supports some of the highest densi-
ties of golden eagles globally, likely due to the high density
of California ground squirrels in the area (Otospermophilus
beecheyi; Hunt & Hunt, 2006). Furthermore, not all human
disturbances result in avoidance. For example, certain infras-
tructure (e.g. power poles) may actually attract use by eagles
(Lehman, Kennedy & Savidge, 2007). A key unknown is
whether such areas could act as population sinks if eagle
mortality were high as a consequence of energy infrastruc-
ture. Adverse effects of human disturbance on initial occu-
pancy and colonization parameters suggest that emerging and
novel disturbances are likely to degrade golden eagle habitat
through avoidance behavior.

Human infrastructure in the western US is projected to
experience continued growth, in large part a consequence of
expanding wind energy development. As a result, it is
important to develop a conservation framework that identifies
species–environment relationships in light of anticipated
energy development. From a demographic perspective, man-
agement of golden eagle populations should focus on mini-
mizing losses in breeding adult survival because this is the
key demographic rate among slow life-history species (Ger-
ber & Kendall, 2016; Millsap et al., 2016; Tack et al.,
2017). However, minimizing the effects of any additive eagle
mortality arising from energy development will require a
landscape-scale conservation strategy that accounts for

regional variation in patterns of space use, a likely conse-
quence of shifting availability of golden eagle prey across
the landscape. Areas with consistently high occupancy,
defined as those with high occupancy mean and low coeffi-
cient of variation, may be landscapes where development
should be limited and prioritized for mitigation efforts.

The spatial locations we identified as critical to long-term
conservation broadly correspond with a recent spatial analy-
sis of the same dataset using a count-based model summa-
rized across eight years of surveys (Nielson et al., 2016).
Even though our response variables differed (intensity of use
vs initial occupancy and dynamic parameters), both of our
results documented the importance of sagebrush habitats in
Wyoming and the northern portion of the Great Basin, and
temperate grasslands within the Northwest Great Plains as
regionally important areas for golden eagles during late sum-
mer.

Our finding of golden eagle avoidance for initial occu-
pancy of human-dominated landscapes and low colonization
of new sites in highly disturbed areas, suggests an energy
development strategy which directs future development to
areas already highly transformed by human use (Kiesecker
et al., 2011). We predict that additional development in areas
already heavily transformed by human use will have signifi-
cantly lower impact on golden eagles than development in
undisturbed areas. In addition, because of the dynamic nature
of the distribution of landscapes with sufficient prey
resources, the spatial extent of areas needed for golden eagle
conservation may need to be both extensive and relatively
free of human transformation.
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