
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USGS Staff -- Published Research US Geological Survey 

2012 

On thinning of chains in MCMC On thinning of chains in MCMC 

William A. Link 

Mitchell J. Eaton 

Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub 

 Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, 

Other Earth Sciences Commons, and the Other Environmental Sciences Commons 

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University 
of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized 
administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/334983869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usgsstaffpub
https://digitalcommons.unl.edu/usgs
https://digitalcommons.unl.edu/usgsstaffpub?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1143&utm_medium=PDF&utm_campaign=PDFCoverPages


FORUM

On thinning of chains in MCMC

William A. Link and Mitchell J. Eaton

USGS Patuxent Wildlife Research Center, Laurel, MD 20708, USA

Summary

1. Markov chainMonte Carlo (MCMC) is a simulation technique that has revolutionised the anal-

ysis of ecological data, allowing the fitting of complex models in a Bayesian framework. Since 2001,

there have been nearly 200 papers using MCMC in publications of the Ecological Society of Amer-

ica and the British Ecological Society, including more than 75 in the journal Ecology and 35 in the

Journal of Applied Ecology.

2. We have noted that many authors routinely ‘thin’ their simulations, discarding all but every kth

sampled value; of the studies we surveyed with details on MCMC implementation, 40% reported

thinning.

3. Thinning is often unnecessary and always inefficient, reducing the precision with which features

of the Markov chain are summarised. The inefficiency of thinning MCMC output has been known

since the early 1990’s, long beforeMCMCappeared in ecological publications.

4. We discuss the background and prevalence of thinning, illustrate its consequences, discuss cir-

cumstances when it might be regarded as a reasonable option and recommend against routine thin-

ning of chains unless necessitated by computermemory limitations.
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Introduction

Markov chain Monte Carlo (MCMC) is a technique (or more

correctly, a family of techniques) for sampling probability dis-

tributions. Typical applications are in Bayesian modelling, the

target distributions being posterior distributions of unknown

parameters, or predictive distributions for unobserved phe-

nomena. MCMC is becoming commonplace as a tool for fit-

ting ecological models. The first applications of MCMC

methods in publications of American and British ecological

societies were in a paper published by the British Ecological

Society (BES) in 2001 (Groombridge et al. 2001) and in five

papers published by the Ecological Society of America (ESA)

in 2002 (Gross, Craig, & Hutchison 2002; Link & Sauer 2002;

Mac Nally & Fleishman 2002; O’Hara et al. 2002; Sauer &

Link 2002). Since then, the use of MCMC in journals of these

societies has increased rapidly. Summarising over three publi-

cations of the Ecological Society of America (ESA: Ecology,

Ecological Applications and Ecological Monographs) and five

publications of the British Ecological Society (BES: J. of Ecol-

ogy, J. of Applied Ecology, Functional Ecology, J. of Animal

Ecology and Methods in Ecology and Evolution), the numbers

of publications using MCMC were 1, 6, 12, 10, 14, 21, 13, 28,

49 and 45, for years 2001–2010.

The appeal of MCMC is that it is almost always relatively

easy to implement, even when the target distributions are com-

plicated and conventional simulation techniques are impossi-

ble. The difference betweenMCMCand traditional simulation

methods is that MCMC produces a dependent sequence – a

Markov chain – of values, rather than a sequence of indepen-

dent draws. The Markov chain sample is summarised just like

a conventional independent sample; sample features (e.g.

mean, variance and percentiles) are used to approximate corre-

sponding features of the target distribution. The disadvantage

of MCMC is that these approximations are typically less pre-

cise than would be obtained from an independent sample of

the same size.

Many practitioners routinely thin their chains – that is, they

discard all but every kth observation – with the goal of reduc-

ing autocorrelation. Among 76 Ecology papers published

between 2002 and 2010, 15 mentioned MCMC, but did not

apply it; eight used MCMC, but provided no details on the

actual implementation. Twenty-one of the remaining 53 (40%)

reported thinning; among these, the median rate of thinning

was to select every 40th value (‘·40’ thinning). Five studies

reported thinning rates of ·750 or higher, and the highest rate

was ·105. Among 73 papers published in five journals of the
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BES, 27 mentionedMCMC but either did not apply it or used

packaged software developed for genetic analyses that offered

limited user-control over the implementation of MCMC.

A further nine publications applied MCMCmethods but pro-

vided no details on its implementation. Fifteen of the remain-

ing 37 (41%) reported thinning of chains. Themedian thinning

rate among these studies was ·29, and the highest was ·1000.
Our purpose in writing this note is to discourage the practice

of thinning, which is usually unnecessary, and always ineffi-

cient. Our observation is not a new one: MacEachern & Ber-

liner (1994) provide ‘a justification of the ban [on]

subsampling’ MCMC output; see also Geyer (1992). We are

not suggesting or promoting a ban on the practice; there are

circumstances (discussed later) where thinning is reasonable.

In these cases, we encourage the practitioner to be explicit in

his or her reasoning for sacrificing one sort of efficiency for

another. However, for approximation of simple features of the

target distribution (e.g. means, variances and percentiles), thin-

ning is neither necessary nor desirable; results based on unthin-

ned chains aremore precise.

We write this note assuming readers have some acquain-

tance with MCMC methods; for more details on fundamen-

tals, we refer readers to Link et al. (2002) or to texts by

Gelman et al. (2004) and Link & Barker (2010). Because our

emphasis is on the practice of thinning chains, we assume that

MCMC output follows from appropriate starting values and

adequate burnin to allow evaluation as stationary chains.

Methods

We illustrate the counter-productive effects of thinning with two

examples. The first is a simulation study of the relative performance

of a specificMarkov chain sampler; the second makes use of theoreti-

cal results for a two-state Markov chain, such as encountered in

Bayesianmultimodel inference.

EXAMPLE 1

Panel 1 describes a Markov chain produced by the Metropolis–Has-

tings algorithm. This particular chain produces samples from a t-dis-

tribution with m degrees of freedom. One begins by choosing a value

A > 0; any value will do, though some will produce better chains

than others, henceA is described as a ‘tuning parameter’. Each step of

the algorithm requires the generation of a pair (U1, U2) of random

variables uniformly distributed on the interval [0,1] and a few simple

calculations.

Consider the performance of this algorithm in drawing samples

from the t-distribution with five degrees of freedom; our discussion

focuses on chains produced using A = 1 orA = 6. History plots (Xt

vs. t) are given for the first 1000 values of two chains in Fig. 1. Inspec-

tion of the graphs shows that the chain withA = 6has a lower accep-

tance rate Pr (Xt = X*) than the chain with A = 1; the actual rates

were 81Æ5% and 30Æ6% for A = 1 and A = 6, respectively.1 Thus,

the chain with A = 1 moves frequently, taking many small steps.

A chain with A = 50 (not shown) has an acceptance rate of only

3Æ8%; it moves rarely and takes larger steps. Both extremes (A too

small or too large) lead to poor MCMC performance, because con-

secutively sampled values are highly autocorrelated.

Plots of the autocorrelation function (ACF) f(h) = q(Xt + h, Xt)

for the two chains are given in Fig. 2. Given a choice between the

two, we would choose the chain with A = 6, because its sample val-

ues are more nearly independent. In practice, most users of MCMC

rely on software likeWinBUGS (Spiegelhalter et al. 2003) and are not

directly involved in tuning the algorithms. WinBUGS does an admi-

rable job of tuning its sampling, but with complex models, an ACF

like that for the chain based on A = 1 is often the best that can be

hoped for, or even better.

Note that the ACF for the chain with A = 6 is nearly zero at lag

10. We might thin the chain, taking every 10th observation and

regarding these as independent. To achieve a comparable level of

independence, we would need to take every 100th observation from a
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Fig. 1. History plots of chains of length 1000 from aMetropolis–Has-

tings sampler with tuning parameterA = 1 (left) andA = 6 (right).
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Fig. 2. Autocorrelation functions depicting the strength of the corre-

lation between Xt and Xt + h (i.e. autocorrelation at lag h) for chains

withA = 1 andA = 6.

Panel 1. Metropolis–Hasting Markov chain algorithm for t-

distribution withm degrees of freedom

Set X0 = 0. Then, for t = 1, 2, . . .

1. Generate U1, U2�U(0, 1)

2. Set X* = Xt-1 + A(2U1)1)
3. Calculate

r ¼ mþX2
t�1

mþX2
�

� �ðmþ1Þ=2

4. If U2 < r, set Xt = X*. Otherwise, set Xt = Xt-1

1This and subsequent descriptions of the chains’ performance are

based on the average of results for 25 chains of length 250 000, and

are accurate to the number of decimal places reported.
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chain withA = 1.We wind up with a much smaller sample, but with

less autocorrelation. The question is whether it is worth doing so.

We thus compare four MCMC sampling procedures: (1) with

A = 6, unthinned; (2) withA = 6, thinning ·10; (3) withA = 1, un-

thinned; and (4) with A = 1, thinning ·100. We implemented each

procedure for chains of length 104, 105 and 106 (before thinning).

Each chain was summarised by its mean, standard deviation, 1st,

2Æ5th, 5th, 10th and 50th percentiles and replicated 1000 times.

For all of these parameters, summaries based on the unthinned

chains tended to provide better estimates than those based on corre-

sponding thinned chains (Tables 1 and 2). For example, consider esti-

mates of the mean l based on chains of length 106, with A = 1. In

only 335 of 1000 replicate chains was the value based on the thinned

chain closer to the true value than that from the unthinned chain

(Table 1); the standard deviations among the approximations were

0Æ0134 and 0Æ0083, respectively, indicating a variance ratio (relative

efficiency) of 2Æ6 in favour of using the unthinned chain (Table 2).

EXAMPLE 2

The Bayesian paradigm provides an appealing framework for infer-

ence in the presence of model uncertainty (Link & Barker 2006).

The tasks of model selection (choosing a best supported model

from a model set) and model weighting (combining inference across

a collection of models with regard to their relative support by data)

are dealt with in terms of probabilities on models in a model set.

The mathematical formalism for model uncertainty involves cell

probabilities for a latent categorical random variable M taking val-

ues in a s-dimensional state space M = (M1, M2, …, Ms), (Link

& Barker 2006). Here, the values Mj are models, and M is the

model set. As in all Bayesian inference, prior probabilities for M

are informed by data, and conclusions are based on posterior prob-

abilities, gj = Pr (M = Mj|Data). MCMC for M produces a Mar-

kov chain on M; the frequency with which this chain visits state Mj

is used to estimate gj.

Suppose that we are considering a two-model state space, that {Xt}

is a Markov chain of indicator variables for M = M1, and that the

process {Xt} mixes slowly. Slow mixing means that transitions from

M = M1 toM = M2 and vice versa are relatively infrequent, leading

to high autocorrelation in the chain and reduced efficiency in estimat-

ing g = g1.
For this simple Markov chain, it is possible to analytically evaluate

the effect of autocorrelation onMCMC performance and to evaluate

the ‘benefit’ (or otherwise) of thinning. Letting ĝ denote the frequency
with whichM = M1 and assuming an adequate burnin, ĝ is unbiased
for g and (to a very close approximation)

VarðĝÞ ¼ gð1� gÞ
N

� 1þ h
1� h

;

where N is chain length and h is the lag one autocorrelation of

the chain (see Appendix S1 for details on this formula and subse-

quent calculations).

It can be shown that taking every kth observation produces a chain

withN¢ = N ⁄ k, g¢ = g and h¢ = hk. The ratio of variances for sam-

ple means (thinned chain relative to unthinned) is therefore

k
1þ hk

1� hk
� 1� h
1þ h

; eqn 1

which is always >1: there is always a loss of efficiency because of

thinning.

We recently used Bayesian multimodel inference to compare von

Bertalanffy and logistic growth models for dwarf crocodiles (Eaton &

Link 2011). We approximated posterior model probabilities using

MCMC, producing a Markov chain of model indicators of length

N = 5 000 000, with lag one autocorrelation h = 0Æ981. Had we

chosen to thin the chain by subsampling every 100th observation, the

lag one autocorrelation would have been reduced to 0Æ151, but the
chain length would have been reduced to 50,000; using eqn (1), we

find that the variance of ĝwould have increased by 28%.

Table 1. Probability that MCMC approximation based on thinned chain is closer to true value than approximation based on unthinned chain.

Probabilities were estimated for mean (l = 0), standard deviation ðr ¼
ffiffiffiffiffiffiffiffiffiffi
5=3Þ

p
and various percentiles t5(a), for chains with A = 6 and A = 1,

with unthinned chain lengths (UC Length) 104, 105 and 106. Probabilities were estimated based on 1000 replicate chains and are within±0Æ03 of
true values (95%CI)

A UC length l r t5(0Æ01) t5(0Æ025) t5(0Æ05) t5(0Æ10) t5(0Æ50)

1 104 0Æ32 0Æ32 0Æ26 0Æ25 0Æ28 0Æ23 0Æ23
105 0Æ31 0Æ37 0Æ30 0Æ29 0Æ25 0Æ24 0Æ22
106 0Æ33 0Æ39 0Æ30 0Æ27 0Æ27 0Æ23 0Æ23

6 104 0Æ35 0Æ36 0Æ31 0Æ32 0Æ34 0Æ33 0Æ38
105 0Æ32 0Æ40 0Æ30 0Æ32 0Æ33 0Æ34 0Æ35
106 0Æ35 0Æ39 0Æ34 0Æ31 0Æ33 0Æ35 0Æ34

Table 2. Ratio of thinned chain variance vs. unthinned chain variance, among 1000 replicates. Ratios were calculated for mean (l = 0),

standard deviation ðr ¼
ffiffiffiffiffiffiffiffiffiffi
5=3Þ

p
and various percentiles t5 (a), for chains withA = 1 andA = 6, with unthinned chain lengths (UC Length) 104,

105 and 106

A UC length l r t5(0Æ01) t5(0Æ025) t5(0Æ05) t5(0Æ10) t5(0Æ50)

1 104 2Æ7 1Æ8 4Æ2 3Æ7 4Æ2 5Æ1 6Æ7
105 2Æ4 1Æ2 3Æ1 3Æ8 4Æ3 5Æ3 6Æ9
106 2Æ6 1Æ3 3Æ1 3Æ7 4Æ5 5Æ4 6Æ8

6 104 1Æ9 1Æ1 2Æ2 2Æ3 2Æ4 2Æ2 1Æ7
105 2Æ2 1Æ3 2Æ5 2Æ5 2Æ4 2Æ2 1Æ9
106 2Æ1 1Æ1 2Æ5 2Æ6 2Æ6 2Æ2 1Æ8
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Discussion

The greater precision associated with approximation from

unthinned chains is not an artefact of the present examples,

but an inevitable feature of MCMC (MacEachern & Berliner

1994). Indeed, this is not a surprising result; if one is interested

in precision of estimates, why throw away data?

There are, in fact, several legitimate reasons for thinning

chains. First, with independent samples, one can often estimate

the precision of an MCMC approximation. So, in Example 1,

one might apply ·10 thinning to a chain withA = 6, reducing

a sample of size 106 to size 105, treating the resulting sample as

independent random samples, and calculating s=
ffiffiffiffiffiffiffi
105
p

as a

standard error. We did not see this offered as a motivation for

thinning in any of the papers we reviewed but would suggest

that even if it were, it would be better to report the mean of the

unthinned chain as the estimate, and to use the standard error

of the thinned chain as a conservative measure of precision.

A better course of action, however, is to generate multiple

independent chains [as, for example, when implementing the

Gelman-Rubin diagnostic (Brooks & Gelman 1998)] to com-

pute desired approximations for each chain, and to consider

the variation among these independent values.

The reality is that too little attention is paid to the precision

of MCMC approximations. We noted in our review of the 76

Ecology papers and 73 BES papers using MCMC that ana-

lysts often report 3 or 4 decimal place precision. This is rarely

justified (Flegal, Haran, & Jones 2008). In Example 1,

approximations based on unthinned A = 6 chains of length

106 have standard deviation of 0Æ0083; the third decimal place

of the approximation is practically irrelevant. Even with an

independent sample of size 106, the precision of the mean

sample from the t5 distribution is
ffiffiffiffiffiffiffiffi
5=3

p
=1000 = 0Æ0013.

Many of the Ecology and BES papers had final sample sizes

of 10 000 or less.

Another reason for thinning chains is (or used to be) limita-

tions in computer memory and storage. High autocorrelation

might be unavoidable, requiring very long chains. With many

nodes monitored, memory and storage limitations can be a

consideration. It is often possible to circumvent these limita-

tions without too much difficulty, but the time spent in pro-

gramming such a solution might not be worth the trouble,

making thinning an inviting option.

Finally, it might make sense to thin chains if a great deal of

post-processing is required. It may be that a derived parameter

must be calculated for each sampled value of the Markov

chain. The derived parameter might be the result of complex

matrix calculations, or even the result of a simulation – e.g.,

from a population viability analysis. Given that these calcula-

tions impose a substantial computational burden, overall

results might be improved by paying greater attention to

reduce autocorrelation in the chains being used.

Our point in writing this note is not to suggest that the prac-

tice of thinning MCMC chains is never appropriate, and thus

should be banned, but to highlight that there is nothing advan-

tageous or necessary in it per se. In most cases, greater preci-

sion is available byworking with unthinned chains.
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Additional Supporting Information may be found in the online ver-

sion of this article.

Appendix S1. Derivation of variance formula for sample state fre-

quency of a two-state Markov chain. This formula is used to demon-

strate the loss of precision resulting from thinning of chains; the

variance associated with a thinned chain is always larger than that

associatedwith the original unthinned chain.
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