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Abstract 

Myopia (short-sightedness) is associated with axial elongation of the eye. It is 

the most common refractive anomaly in children and young adults. Its cause and 

treatment have been debated for decades; the mechanism of elongation remains 

unclear. The elongation may be associated with retinal shape. 

Retinal shape can be quantified in terms of vertex radius of curvature and 

asphericity. It can be measured using magnetic resonance imaging (MRI), but this is 

time consuming and expensive. This study involved development and validation of a 

simple and inexpensive method for measuring retinal shape, and its use in exploring 

retinal shape variation with visual field meridian, magnitude of myopia, race, and in 

anisomyopia. 

The method involved partial coherence interferometry (PCI) to measure 

peripheral (off-axis) eye lengths, combined with other measures and optical 

modelling. An attachment was developed to take measurements along the horizontal 

and vertical meridians of the visual field out to ±35° and ±30°, respectively. On the 

basis of a first preliminary experiment considering two available commercial PCI 

instruments, the Haag-Streit Lenstar was preferred to Carl Zeiss IOLMaster because 

the former gave better intra- and inter-sessional repeatability. A second preliminary 

experiment found that rotating eyes, to look at the peripherally located targets 

provided by the attachment, did not influence peripheral eye length measurements. 

In Experiment 1, retinal shapes estimated using PCI with three different Stages 

of eye modelling were compared with those obtained from MRI in 58 young adults. 

Stage 1 used a Le Grand full theoretical model eye without ray deviation at surfaces, 

Stage 2 involved the same model eye but allowed ray deviation at surfaces, and Stage 

3 involved ray deviation at surfaces and individual corneal topography, lens shape 

and lens equivalent refractive index. Retinal shape was also estimated by Dunne’s 

method, which uses peripheral refraction data and eye modelling. For most 

participants, all three Stages of PCI and Dunne’s method gave slightly flatter retinal 

estimates than MRI along both meridians with the percentage difference (the average 

point-by-point height differences between two surfaces over a fixed distance) 
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between MRI and all Stages of PCI (<4% and <7% along horizontal and vertical 

field meridians, respectively) and Dunne’s method (6% and 9%) being less than the 

uncertainty of MRI estimates (12–14%). As results for intermediate Stage 2 analysis 

were similar to those for the more sophisticated Stage 3, Stage 2 was used for further 

investigations.  
In Experiment 2, the validated PCI method was used to compare retinal shapes 

in young adult Caucasians, East Asians and South Asians. Higher relative peripheral 

hyperopia, more negative relative peripheral eye lengths and steeper retinas were 

found a) along the horizontal than along the vertical meridian, b) in myopes than in 

emmetropes, and c) in East Asian myopes than in Caucasian myopes.  

In Experiment 3, the validated PCI method was used to compare retinal shapes 

of fellow eyes in 11 isomyopes and 9 anisomyopes. The higher myopic eyes of 

anisomyopic participants had greater relative peripheral hyperopia and steeper retinas 

than their fellow eyes along the horizontal meridian, but with no obvious differences 

along the vertical meridian. There was no evidence that the higher myopic eyes of 

anisomyopes had different retinal shapes than isomyopic eyes with the same 

refraction. 

In conclusion, this study validated a method for estimating retinal shape using 

partial coherence interferometry in combination with raytracing, and found variation 

in retinal shape between meridians, with refraction, and between races. The racial 

differences, combined with the high prevalence of myopia in East Asia, suggest that 

retinal shape may play a role in myopia development. 
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Chapter 1- Introduction 

1.1 BACKGROUND 

Myopia (short-sightedness) is the most prevalent ocular condition in young 

children worldwide (see review by Pan et al. (2012)), particularly in East Asian 

communities where it affects up to 90% of teenagers. It is a leading cause of 

blindness in later life through associated conditions of retinal detachment, glaucoma, 

retinal degenerations, posterior staphyloma, chorioretinal atrophy, choroidal 

neovascularisation, macular holes and macular haemorrhage, and presents healthcare 

services with a considerable public health burden and individuals with a significant 

economic burden. The cause and treatment of myopia have been debated for decades, 

and the mechanism of the development of myopia remains unclear. Both 

environmental and genetic factors have been associated with the onset and 

progression of myopia (Wilson and Woo, 1989, Feldkamper and Schaeffel, 2003). 

Previously, much attention was given to the central retina and the state of focus 

along the visual axis, but as the foveal area forms only a small part of the visual field 

it is reasonable that peripheral retinal areas might be of importance in driving 

refractive status. Hoogerheide et al. (1971) reported different patterns of peripheral 

refraction in emmetropes and myopes, with emmetropes usually showing peripheral 

relative myopia and myopes usually showing peripheral relative hyperopia. From this 

has developed intense interest in the role that retinal shape and/or peripheral 

refractive state may have in myopia development (Wallman and Winawer, 2004, 

Stone and Flitcroft, 2004). 

Since Hoogerheide et al.’s work, several other studies have shown different 

peripheral refraction patterns in emmetropic and myopic groups (Charman, 2011, 

Berntsen et al., 2010). These studies appear to confirm that relative peripheral 

hyperopia is likely to result in myopia. The retinal shape may play a causative role in 

this, with steep retinas likely to be the source (at least in part) of the relative 

peripheral hyperopia. The occurrence of relative peripheral hyperopia appears to 

coincide with a more prolate eyeball shape (Atchison et al., 2004). There are 

measured differences amongst refractive groups in peripheral refraction in vertical 
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and horizontal visual fields (Atchison et al., 2006, Chen et al., 2010) but it is not 

known if this is linked to differences in retinal shape in these meridians.  

Recent research indicates that the retinal shape may be an important 

consideration in myopia progression (Charman and Radhakrishnan, 2010, Smith, 

2011). Retinal shape has been shown to alter the way in which intraocular pressure 

and other forces affect the eyeball; particular eyeball shapes may be more vulnerable 

to subsequent distortion and axial stretch, leading to myopia (Stone and Flitcroft, 

2004). Alternately, it may be that peripheral refraction drives axial growth through 

purely optical factors.  

In recent literature, eye and/or retinal shape have been inferred from peripheral 

refraction, and to a lesser extent, vice versa. Given that both the eye’s optics and the 

retinal shape contribute to the peripheral refraction, and the large variation found in 

the latter, this inference should be made cautiously. Therefore, it is important to have 

an appropriate method to determine the relationship between retinal shape and 

myopia progression. There have been a few studies of retinal shape using the direct 

method of magnetic resonance imaging (Chen et al., 1992, Atchison et al., 2005a, 

Gilmartin et al., 2011, Gilmartin et al., 2013). Retinal shape can also be estimated by 

indirect optical methods that are based on peripheral refraction (Dunne et al., 1987, 

1995, Logan et al., 2004) and partial coherence interferometry (Schmid, 2003a, 

2003b, 2011, Mallen and Kashyap, 2007, Atchison and Charman, 2011, Ehsaei et al., 

2012, Faria-Ribeiro et al., 2013, Ding et al., 2013). 

Magnetic resonance imaging is available only in hospitals, is expensive and 

takes considerable time. Retinal shape can be estimated by measuring central and 

peripheral eye lengths, followed by some manipulation of peripheral optics of the eye 

(Verkicharla et al., 2012), but there is no device specifically designed for peripheral 

measurements. A simple device that is feasible, accurate, non-contact and 

inexpensive will be of considerable benefit in myopia research. 

Partial coherence interferometry (PCI) has been used to determine retinal 

shape, but there are some assumptions in its use and it has not been assessed for 

accuracy against magnetic resonance imaging. Two recent commercial instruments, 

the IOLMaster (Carl-Zeiss Meditec AG Jena, Germany) and the Lenstar (Haag Streit, 

Bern, Switzerland) contain a Michelson interferometer to create partial coherence 

and to compare the optical path lengths of two beams, one of which is reflected from 
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a reference mirror on a moveable stage and the other which travels into the eye and is 

reflected from one or more surfaces (anterior and posterior corneal surface, anterior 

and posterior lens surface, retina, and choroid). Only a few studies have used 

instruments based on partial coherence interferometry for measuring peripheral eye 

lengths (Schmid, 2003a, 2003b, 2011, Mallen and Kashyap, 2007, Atchison and 

Charman, 2011, Ehsaei et al., 2012, Faria-Ribeiro et al., 2013, Ding et al., 2013).  

This study will compare results obtained by the two commercially-available 

partial coherence interferometry instruments and determine their repeatability. One 

of the instruments (Lenstar LS 900) and the magnetic resonance imaging technique 

will be used to determine retinal shape in eyes with different refractive conditions, 

the results were compared and recommendations made regarding appropriate 

corrections to the former method. The retinal shape results will also be compared 

with those estimated using a method based on peripheral refraction (Dunne, 1995).  

The validated PCI method will be later used in studies of retinal shape, with the 

ultimate purpose of assisting in developing preventive strategies for myopia.  

Considering that there are differences in biomechanical, structural and optical 

characteristics of the fellow eyes of anisomyopes (Vincent et al., 2014), retinal shape 

will be measured in individuals with anisomyopia (where different amounts of 

myopia occur in the two eyes of a person). In this case the less myopic eye will serve 

as an experimental control. As both eyes are exposed to the same visual 

(environmental) influences and the confounding influence of differences in genetic 

background are avoided, this condition is useful for understanding the relationship 

between retinal shape and myopia. 

Race appears to be associated with myopiogenesis, with East Asians showing 

high myopia prevalence. Considering structural variations in the eye, it is possible 

that retinal shapes are different between races. Retinal shape will be measured in 

participants with different racial backgrounds to determine how the retinal shape and 

peripheral refraction alter with race. If spectacle lenses for the correction of myopia 

are going to be designed based on retinal shape, then it is important to know whether 

retinal contours vary with ethnicities and/or meridians so that anti-myopia specific 

lenses can be designed accordingly.  
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1.2 AIMS 

This research programme will help the understanding of the role of retinal 

shape in the development of myopia. The following aims will be addressed: 

 To determine the reliability of a simple method of determining retinal 

shape using off-axis partial coherence interferometry, and to validate this 

method by comparing the results to that of magnetic resonance imaging. 

 To use the validated method to measure retinal shape in East Asian, South 

Asian and Caucasian emmetropes and myopes to determine how retinal 

shape and peripheral refraction are related in eyes of people with different 

racial backgrounds. 

 To determine how retinal shape and peripheral refraction vary between the 

two eyes of individuals with isomyopia and anisomyopia. 

By achieving these aims I will contribute an important assessment device with 

applications for understanding myopia development risk and likely optical treatment 

effectiveness. 

 

1.3 HYPOTHESES 

Research hypotheses are: 

1. Retinal shape can be accurately predicted by measuring “off-axis eye 

lengths” with a commercial partial coherence interferometry instrument.  

2. There are differences in retinal shapes among different racial groups. 

3. There are meridional (vertical and horizontal) variations in retinal shape.  

4. Retinal shapes are different in isomyopic eyes and anisomyopic eyes of the 

same refraction. 
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1.4 SCOPE OF THE THESIS 

The following chapters will include: 

 Chapter 2 provides a comprehensive literature review of the topics related 

to the project. 

 Chapter 3 describes methods. It includes two preliminary studies that 

investigated the repeatability of peripheral eye lengths with partial 

coherence interferometry instruments and the influence of eye rotation on 

these measurements.  

 Chapters 4, 5 and 6 are the main experimental chapters.  

 Chapter 4 is a validation experiment, in which comparison was made 

between the retinal shape results from partial coherence interferometry and 

magnetic resonance imaging. Details of retinal shape analysis from the 

various measurements obtained from PCI and MRI are explained here. 

Aim 1 and hypothesis 1 are addressed by this experiment. 

 Chapter 5 investigates how retinal shape and peripheral refraction alter 

with race using peripheral eye length and peripheral refraction methods. 

This experiment will address aim 2 and its associated hypotheses 2 and 3.  

 Chapter 6 investigates the retinal shape in isomyopes and anisomyopes 

using peripheral refraction and peripheral eye length methods. This 

experiment will address aim 3 and its accompanying hypothesis 4. 

 Chapter 7 is a concluding chapter summarising the research. It also 

includes the clinical implications and discusses future directions. 
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Chapter 2- Literature Review 

2.1 DEFINITION OF MYOPIA 

Myopia is the refractive condition of the eye in which parallel rays from a 

distant object come to a focus in front of the retina during relaxed accommodation. 

This causes blurred distance vision. Common names for myopia are near-sightedness 

and short-sightedness. Practically myopia is defined according to the distance 

ophthalmic correction, for example ≤ 0.25 D.  

 

2.2 PREVALENCE 

Myopia is the most common refractive anomaly in children and young adults. 

Its prevalence is affected by country, race, age and environment. It affects a 

considerable proportion (about 44% in children and 26% in adults) of Western 

populations (Kempen et al., 2004, Villarreal et al., 2003), but a larger proportion 

(>60% in children and >30% in adults) of East Asian communities (Lam et al., 2012, 

You et al., 2013, Kim et al., 2013a). The prevalence of myopia in children is higher 

in urban Asian regions such as Singapore (Seet et al., 2001) and Taiwan (Lin et al., 

2004, Guo et al., 2012) than in developing Asian countries like India (Murthy et al., 

2002, Krishnaiah et al., 2009). It has been estimated that 2.5 billion people (30% of 

the world’s population) will be affected by myopia by the year 2020 (reported by 

VISION 2020). Region and age-wise prevalence of myopia are given in Table 2.1, 

note that variations in definition and measurement affect these. 
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Table 2.1: Summary of studies of myopia prevalence 

Author Myopia 

Definition 

Region Sample 

size 

Age 

(years) 

Prevalence 

% 

You et al. (2013) ≤ −0.50 D 
China 

(Beijing) 

 

15,066 

792 

1,278 

 

7-18 

7 

18 

 

64.9 

9.7 

72.8 

Sun et al. (2012) < −0.50 D 
China 

(Shanghai) 
5083 14-42 95.5 

Lan et al. (2013) ≤ −0.50 D 
China 

(Guangzhou) 
2,478 3-6 1.0 

Guo et al. (2012) not given Taiwan 
20,609 
2,978 

12-65 
12-19 

46.7 
70.3 

Lin et al. (2004) < −0.25 D Taiwan 

920 

937 
2,474 

12 

15 
16-18 

61 

81 
84 

Kim et al. (2013a) ≤ −0.50 D Korea 
22,562 

2,690 

20-70 

20-29 

48.1 

78.9 

Fan et al. (2004) ≤ −0.50 D Hong Kong 

7,560 

1,720 

1,035 

5-16 

11 

7 

36.7 

53.1 

28.9 

Lam et al. (2012) ≤ −0.50 D Hong Kong 2,651 
6 

12 

18.3 

61.5 

Pan et al. (2013a) < −0.50 D Singapore 8,772 40-70 31.4 

Saw et al. (2002) ≤ −0.50 D Singapore 1,453 7–9 36.7 

Goh et al. (2005) < −0.50 D Malaysia 4,634 7–15 20.7 

Morgan et al. (2006) < −0.50 D Mongolia 1,057 7-17 5.8 

Adhikari et al. (2013) ≤ −0.50 D Nepal 484 3-5 24.2 

Ahmed et al. (2008) ≤−0.25 India (North) 4,360 
7-18 

 
4.7 

Raju et al. (2004) <−0.50 D India (South) 2,508 >39 26.9 

Krishnaiah et al. (2009) < −0.50 D India (South) 3642 40-92 36.5 

Murthy et al. (2002) ≤ −0.50 D India (Urban) 6,447 5-15 7.4 

Shah et al. (2008) < −0.50 D Pakistan 14 490 30-50 36.5 

Hashemi et al. (2012) ≤ −0.50 D Iran 6,311 40-64 30.2 

Montes-Mico et al. 

(2000) 
<−0.25 Spain 7,621 3-93 21.2 
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Kumah et al. (2013) ≤ −0.50 D Ghana 2,435 12-15 3.4 

Naidoo et al .(2003) ≤ −0.50 D South Africa 4,890 5–15 4.0 

Rudnicka et al .(2010) ≤ −0.50 D 

UK 

South Asian 

African 

Caribbean 

White 

1,179 

262 

142 

96 

233 

10-11 

11.9 

25.2 

12.7 

7.9 

3.4 

O'Donoghue et al. 

(2010) 
≤ −0.50 D 

Northern 

Ireland 
1,053 

6–7 

12-13 

2.8 

17.7 

Villarreal et al. (2003) ≤ −0.50 D Mexico 1,035 12-13 44.0 

Pan et al. (2013b) 

 
≤ −1.00 D 

United States 

Hispanic 

Black 

Whites 

Chinese 

4,430 

1,046 

1,230 

1,667 

487 

45-84 

 

25.1 

14.2 

21.5 

31.0 

37.2 

Vitale et al. (2008) < −0.50 D United States 12,010 20 33.1 

Kempen et al. (2004) ≤ −1.00 D 
United States 
Europe  

Australia 

30,058 
496,000 

471,000 

40-80 
25.5 
26.6 

5.8 

Wensor et al. (1999) < −0.50 D Australia 4,744 40-98 17.0 

French et al. (2013) ≤ −0.50 D Australia 2,760 
12 

17 

14.4 

29.6 

Ip et al. (2007b) ≤ −0.50 D Australia 2,353 12 11.9 

 

 

2.3 CONSEQUENCES OF MYOPIA 

The development of myopia is generally irreversible with the majority of cases 

due to excessive axial elongation of the eye - the elongation leads to stretching of the 

outer coats of the eye (McBrien and Gentle, 2003, Rada et al., 2006). Its effect on 

individuals and society is considerable, including direct costs such as spectacles, 

contact lenses, and refractive surgery, and indirect costs such as vision loss due to the 

associated ocular complications like glaucoma, macular holes, retinal degenerations, 

retinal detachment and cataract (Lim et al., 2009, Wong et al., 2003, Saw et al., 

2005).  
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2.3.1 MYOPIA AND GLAUCOMA 

Glaucoma is a progressive optic neuropathy and one of the leading causes of 

irreversible blindness in the adult population (Coleman and Brigatti, 2001). Primary 

open angle glaucoma is the most common type and is associated with high myopia 

(Loyo-Berrios and Blustein, 2007, Marcus et al., 2011, Chen et al., 2012). 

Population-based studies indicate that the risk of glaucoma increases with increasing 

amounts of myopia. 

Because of the changes in the structure and arrangement of the connective 

tissue, the optic nerve head in myopic eyes may be structurally susceptible to 

glaucomatous damage. The reduced retinal nerve fiber layer thickness in myopic 

eyes may be considered a risk factor for the development of glaucomatous changes 

(Chang, 2011). 

 

2.3.2 MYOPIA AND CATARACT 

Cataract is opacification of the lens and is the major cause of avoidable 

blindness in the world. The association between cataract (both nuclear and posterior 

sub-capsular) and myopia is well known (Lim et al., 1999, Younan et al., 2002). 

Reduced antioxidant properties and increased levels of lipid peroxidation by-

products have been found in cataractous lenses of myopes compared with control and 

non-myopic cataractous lenses. Cataractous lenses had lower levels of glutathione 

compared to controls, with the lowest levels found in myopic lenses (Micelli-Ferrari 

et al., 1996). The alteration of the antioxidant defence in myopic lens makes myopia, 

a risk factor for cataract. 

 

2.3.3 MYOPIA AND RETINAL DEGENERATION  

Excessive axial elongation of the eye in myopia can cause mechanical 

stretching and thinning of the choroid and retinal pigment epithelium layers, 

resulting in various retinal degenerative changes. In high myopes, there is an 

increased risk of peripheral retinal degenerations, retinal tears, retinal detachment, 

posterior staphyloma, chorioretinal atrophy, retinal pigment epithelial atrophy, 
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lacquer cracks, choroidal neovascularisation and macular haemorrhage (Gozum et 

al., 1997). Most retinal lesions are associated with severe irreversible vision loss. 

Lattice degeneration is the most important of the peripheral retinal degenerations and 

is a risk factor for retinal breaks which can predispose to retinal detachment (Pierro 

et al., 1992). 

 

2.3.4 MYOPIA AND THE OPTIC DISC 

High myopia is a risk factor for optic disc abnormalities. Myopes have 

significantly tilted, rotated, larger disc areas and longer disc-foveola distances than 

non-myopes (Hyung et al., 1992, Ramrattan et al., 1999, Vongphanit et al., 2002). 

 

2.3.5 MYOPIA AND POSTERIOR STAPHYLOMA 

Excessive axial elongation in high myopic eyes can lead to abnormal 

protrusions of the posterior segment known as posterior staphyloma. High myopes 

with posterior staphylomas tend to develop severe macular pathologies such as 

myopic foveoschisis and macular holes (Takano and Kishi, 1999, Hsiang et al., 

2008). 

 

2.3.6 ECONOMIC BURDEN AND PUBLIC HEALTH 

The significance of myopia as a public health issue has been underestimated, 

due to the apparent ease with which myopia can be corrected. Myopia is a leading 

cause of blindness in later life and presents healthcare services with a considerable 

public health burden and individuals with considerable economic burden. It has been 

estimated that Singapore (population ~5 million) spends US$90 million/year on 

spectacles and US$2.5 million/year on refractive surgery (Seet et al., 2001). While 

refractive surgery can correct myopia, thus freeing patients from spectacle and 

contact lenses, the structural changes within the eye due to the elongation are 

unaffected. It is this stretching of the eye that increases the risk of the ocular 

pathologies mentioned above (Saw et al., 2005, Timothy, 2007). Prevention of, or the 

reduction in rate of increase, of myopia is thus an important public health issue. 
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2.4 AETIOLOGY AND RISK FACTORS 

Myopia is a complex ocular refractive condition which may have a multi-

factorial etiology. Whether myopia is inherited or environmentally determined has 

been under debate in recent decades. Several risk factors for myopia have been 

identified in children, that can be broadly classified as genetic susceptibility 

(Hammond et al., 2001) and environmental factors including nutrition, 

socioeconomic background, near work and outdoor activity (Saw et al., 2006, Saw et 

al., 1996, Saw et al., 2001, Lim et al., 2010, Edwards, 1996, Rose et al., 2008). 

 

2.4.1 GENETICS AND ENVIRONMENT 

A range of biochemical pathways are involved in eye growth. Alterations 

within the retina, choroid and sclera might change the sequence of normal 

biochemical events. Genes involved in these pathways may contain susceptibility 

variants for myopia (McBrien and Gentle, 2003, Morgan, 2003, Feldkamper and 

Schaeffel, 2003). Several genetic loci for myopia (MYP) have been mapped, with 

most of them (20 loci) linked to high myopia. 

It has been observed that children with two myopic parents are at high risk 

(40%) of developing myopia, which decreases in those with one myopic parent (20-

30%), and is lowest (10%) in children with no myopic parents (Mutti et al., 2002, 

Wu and Edwards, 1999, Ip et al., 2007b). It is possible that shared intense near-work 

environment as well as shared genes may be associated with myopia running in 

families. Increased accommodation due to intensive near work is associated with 

myopia (Ip et al., 2008, Mutti et al., 2002, Mutti and Zadnik, 2009). 

Few studies have considered anisomyopia as a means of controlling  the 

confounding effect of genetics and environment on myopia in order to investigate the 

influence of other factors on myopia development (see review by Vincent et al. 

(2014)). The fellow eyes of anisomyopes do not seem to be different with respect to 

anterior ocular biometry (Kim et al., 2013b) and corneal and total higher-order 

aberrations (Vincent et al., 2011, Hartwig et al., 2013). However, there are 

differences between the posterior segments of the higher myopic eyes and their 

fellow eyes: longer vitreous chambers (Kim et al., 2013b), thinner choroids (Vincent 
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et al., 2013), and more curved retinal surfaces (Logan et al., 2004) determined using 

peripheral refraction (see section 2.4.2.8). The reason for one eye to be more myopic 

is not clear, but it is possible that the higher myopic eye of anisomyopic individual 

might have different properties in the eye compared to the fellow eye which might 

lead to anisomyopia. To my knowledge, no studies have investigated whether the 

biometry or the structural properties of higher myopic eyes of anisomyopes is 

different from that of eyes of isomyopes with similar refraction. 

 

2.4.2 RETINALSHAPE 

The human retina is a complex light-sensitive tissue forming the inner surface 

of the eye. The image of the visual world is focused on the retina by the optics of the 

eye and initiates a cascade mechanism to trigger various visual centres of 

the brain through the optic nerve fibres. The fovea forms the central 1.5 mm of 

retina, in the centre of which there is depression called foveola, the most important 

part of retina as it provides best visual acuity. The peripheral retina stretches to the 

ora-serrata (about 21 mm from the foveola). The retina occupies approximately 72% 

of a sphere (Kolb, 1995). 

The ability to process visual information is distributed unevenly over the retina. 

For example, decrease in resolution acuity (Wertheim, 1980 (translated by 

DUNSKY, IL. Original work published in 1891), Latham and Whitaker, 1996, Land 

and Tatler, 2009), vernier acuity (Fahle and Schmid, 1988), contrast sensitivity  

(Anderson et al., 1991, Ehsaei et al., 2013) and orientation discrimination (Paradiso 

and Carney, 1988) occurs from the fovea into the retinal periphery. This is related to 

structural variations in the density of photoreceptors and neurons.  (Inui et al., 1981, 

Curcio and Allen, 1990, Wenner et al., 2014, Chui et al., 2005).  

Previously, much attention was given to the central retina and the state of focus 

along the visual axis, but as the foveal area corresponds to only a small part of the 

visual field it is reasonable that peripheral retinal areas might also be important in 

driving refractive status. Recent evidence includes work involving animal models 

showing the presence of ocular growth pathways mediated by peripheral retinal 

image quality (Smith, 2011). Considering that myopia is mostly due to the axial 

elongation of the eye (>95%), it is the accelerated stretching of the eye after birth and 
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not the changes in corneal or lens power that leads to the development of myopia 

(Zadnik, 1997). The increased axial length must shift the retinal position, altering the 

structure/anatomy (size and shape) of the posterior part of the eye (McBrien and 

Adams, 1997, McBrien and Gentle, 2003). 

Recent research indicates that the retinal shape may be an important 

consideration in myopia development/progression (Charman and Radhakrishnan, 

2010, Smith, 2011), because it influences the way in which intraocular pressure and 

other forces affect the eyeball. There is considerable interest in the role that retinal 

shape (i.e. retinal curvature and asphericity) and/or peripheral refractive state may 

play in myopia development (Stone and Flitcroft, 2004). Literature related to retinal 

shape is detailed in subsections below. 

 

2.4.2.1 Conicoids, shapes, axes and sections used to describe eye and retinal 

shape 

The eye is a complex structure containing aspheric surfaces. An aspheric 

surface varies from the centre towards the periphery, usually becoming either 

progressively flatter or steeper. 

 

 

Figure 2:1: Conicoids with the same vertex curvature Rv, based on Atchison and 

Smith (2000). Semi-axis lengths Rxy and Rz are shown for the prolate ellipsoid. 
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Ocular surfaces are typically described by conic sections. A conic section 

rotated about one of its principal meridians becomes a rotationally symmetric 

conicoid. This can be described by the equation  

X
2
+ Y

2
 + (1 + Q) Z

2
– 2ZRv = 0                 (1)  

where Z is measured along the optical axis, X and Y are measured along axes 

perpendicular to the Z-axis and to each other, Rv is the vertex radius of curvature, and 

Q describes the asphericity (Figure 2:1). Q> 0 represents an oblate ellipse 

(steepening away from the vertex), Q = 0 represents a sphere, −1 <Q< 0 represents a 

prolate ellipse (flattening away from the vertex), Q = −1 represents a paraboloid and 

Q< −1 represents a hyperboloid. Alternative terms for oblate ellipsoid and prolate 

ellipsoid are oblate spheroid and prolate spheroid, respectively. Sometimes 

asphericity is represented by the quantity p where 

p = 1 + Q                  (2) 

and sometimes it is represented by the eccentricity e, where  

e
2
= –Q                    (3) 

An alternate equation to equation (1) that can be applied to ellipsoids is 

(X
2
 + Y

2
)/R

2
xy + (Z – Rz)

2
/R

2
z = 1             (4) 

where Rxy, Rxy and Rz are the semi-axis lengths along the X, Y and Z 

directions, respectively (Figure 2:1). For an oblate ellipsoid Rxy>Rz and for a prolate 

ellipsoid Rz>Rxy. The vertex radius of curvature Rv and the asphericity Q are related 

to Rz and Rxy by 

Rv = R
2

xy/Rz                  (5) 

Q = R
2

xy/R
2

z – 1                 (6) 

Non-rotationally symmetrical ellipsoids can be described by  

X
2
/R

2
x+ Y

2
/R

2
y+ (Z − Rz)

2
/R

2
z = 1              (7) 

where Rx, Ry, and Rz are the semi-axis lengths along the X, Y and Z axes, 

respectively. For the X-Z section, the vertex radius of curvature Rxv and asphericity 

Qx are given by  

Rxv = R
2

x/Rz                  (8) 

Qx = R
2

x/R
2

z – 1                 (9) 

Similarly for the Y-Z section, 
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Ryv = R
2

y/Rz                         (10) 

Qy = R
2

y/R
2

z – 1                        (11) 

Further levels of sophistication would be to rotate and decentre the surfaces, 

and to have more complex surfaces, which are beyond the scope of this review. 

Figure 2:2 shows sections and axes of the eye. Transverse axial sections are 

parallel to the XZ plane, and taking the visual axis as the Z axis, one is usually 

selected to match the XZ plane as well as possible. Sagittal sections are parallel to 

the YZ plane, and similar to the transverse axial sections, one is usually selected to 

match the YZ plane as well as possible. Coronal sections are parallel to the XY 

plane, and one is usually selected where the X and Y dimensions are judged to be 

maximums.  

 

Figure 2:2: Scanning planes and axes of the eye. The sagittal plane (solid line) is a 

vertical section containing the visual axis, the transverse axial plane (dashed line) is a 

horizontal section containing the visual axis, and the coronal plane (dotted line) is a 

vertical section perpendicular to the visual axis. 

The antero-posterior length is usually measured from the anterior corneal 

surface to the posterior pole at the inner retina, generally understood as the axial 

length, although in some studies it has been measured from the posterior cornea to 

the posterior pole and in others it has been measured from the anterior cornea to the 

outer sclera (Table 2.2). This distance can be measured through either transverse 

axial or sagittal sections. 

The vertical length, or height, is the widest distance between the top and 

bottom of the eye and can be obtained from either sagittal or coronal sections. The 

horizontal length, or width, is the widest distance between temporal and nasal sides 

of the eye and can be obtained from either transverse axial or coronal sections. The 

height and width can be measured from inner retina to inner retina or from outer 
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sclera to outer sclera. Unless otherwise indicated in this chapter, the distances apply 

to the inner retina. 

Eye shape can be quantified using the axial length, height and width of the eye, 

with a number of studies using the ratios of axial length to height and/or axial length 

to width as additional descriptors. Clearly this is an oversimplification as it ignores 

the rapid change in shape that occurs at the corneo-scleral intersection. Retinal shape 

can be similarly described by fitting ellipsoids to its posterior part, the functional part 

of the eye as far as imaging is concerned. Retinal shape may be confused with the 

more nebulous concept of eye shape. The eye shape and retinal shape components 

will have similar heights and widths, but the lengths of the ellipsoids used to fit the 

retina are shorter than the axial length by about 3.1 mm (Atchison et al., 2005a). 

 

2.4.2.2 Models of retinal shape in myopia and their relation to peripheral 

refraction 

Variations in retinal shape in myopic eyes can be related to models of the 

retinal stretching that accompany the increase in axial length as shown in Figure 2:3. 

These include a global expansion model (a), a model where the stretching occurs 

parallel to the optical axis at the equatorial region (b), and a model where the 

stretching takes place only at the posterior pole (c). A hybrid model, called the axial 

expansion model is the combination of equatorial and posterior pole expansion 

models (d). The first three models are shown with spherical surfaces and the hybrid 

model is shown with a prolate ellipsoid surface. 

 

 

Figure 2:3: Models of retinal stretching in myopia. The solid circles represent the 

shape of the retina of an emmetropic eye, the dashed shapes represent the myopic 

retinas, and the arrows indicate the regions of stretching.The first three models were 

presented by Strang et al. (1998), and Atchison et al. (2004) described the axial 

elongation model. 



 

Chapter 2: Literature Review 17 

A thin beam (pencil) of light from an off-axis object point on a plane surface, 

passing through a symmetrical optical system, will be focused as lines at two 

positions, one corresponding to light refracted in the (tangential) plane containing the 

object point and the optical axis and the other in the (sagittal) plane perpendicular to 

this plane. For a range of object points across the surface there will be two image 

shells as shown in the Figure 2:4a. Taking the optical system of an emmetropic eye, 

and assuming that its normal retinal shape is a sphere with radius of curvature of 

about 12 mm and that the shell corresponding to the average of the tangential and 

sagittal shells coincides approximately with this sphere, a retinal shape 

approximation can be made. Figure 2:4b shows this retinal shape (solid line) along 

with changes in retinal curvature that make the retina flatter or steeper. Light from a 

distant off-axis point converges to a point that coincides with the normal retina, is in 

front of the flatter retina causing peripheral myopia, and is behind the steeper retina 

causing peripheral hyperopia. The eye with the steeper retina might respond to the 

peripheral hyperopic defocus by elongating and thus causing myopia. 

 

 

Figure 2:4: Formation of tangential (T-dotted line) and sagittal images (S-dashed 

line) on either side of retina (R-bold line)(a). Formation of the mean of the image 

shells, and its location relative to the retina for three different retinal shapes (b). 

 

This description can be extended to a myopic eye. Assuming the optics of the 

eye are the same as that of the emmetropic eye described above apart from an 

increase in length, for the flatter retina an off-axis light beam’s “mean” focus will be 

further in front of the retina than for the “normal” retina. The peripheral refraction 

corresponding to this is referred to as relative peripheral myopic refraction because a 
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more negative correction is needed that for the normal retina. For the steeper retina, 

the off-axis light beam’s “mean” focus will be closer to the retina than for the normal 

retina, resulting in a relative peripheral hyperopia. Similar to the emmetropic eye 

with a steep retina, the eye might respond to the relative hyperopic defocus by 

becoming yet more myopic. 

The situation described above leading to myopia development might be turned 

around - “excessive” relative peripheral myopia in the young emmetropic or 

hyperopic eye might result in a “stop” signal to normal emmetropization and lead to 

an adult hyperopic eye. 

The above situation is over-simplified: real eyes do not generally exhibit 

rotational symmetry and so peripheral refraction varies according to visual field 

meridian. Most emmetropic eyes have low levels of peripheral myopia, as will be 

discussed later. Most emmetropic retinas are oblate in shape rather than spherical 

(Atchison et al., 2005a). 

Figure 2:5 shows how models of retinal stretching relate to image position and 

relative peripheral refraction. For all models, the image surface (the position at which 

images occur) is closer to the retina in the periphery than in the centre, resulting in 

relative peripheral hyperopia. This effect is greatest for posterior polar expansion, 

followed by axial, equatorial and global expansion. 
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Figure 2:5: Positions of images relative to the myopic retina for the global, 

equatorial, posterior pole, and axial expansion models. It is assumed that the retinal 

surfaces remain spherical in the elongated regions for the first three models, while 

the surface for the axial expansion model is a prolate ellipsoid. 

2.4.2.3 Peripheral refraction 

Peripheral refraction studies date back to Thomas Young (1801) who 

determined the tangential and sagittal image shells, for a 25 cm diameter circular 

object surface, for a schematic eye based on measurements of his own left eye. This 

was followed by several studies in the late nineteenth and early twentieth centuries as 

reported by Ames and Proctor (1921). Ferree et al. (1931, 1932, 1933a, 1933b) 

conducted a well-known study of peripheral refraction along the horizontal meridian 

up to 60° from fixation in 21 participants using an objective refractometer. They 

identified three different patterns of peripheral refraction as shown in Figure 2:6. The 

type A pattern had ‘mixed’ astigmatism in which the tangential refraction (refraction 

along the horizontal direction) became more myopic and sagittal refraction 

(refraction along the vertical direction) became more hyperopic, the type B pattern 

had relative hyperopic astigmatism in which both tangential and sagittal refraction 

became more hyperopic into the periphery, and the type C pattern had asymmetrical 

astigmatism with the peripheral refraction differing between nasal and temporal sides 

of the horizontal peripheral field. 
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Figure 2:6:  Average peripheral refractions along horizontal visual field of 6 eyes for 

type A and 5 eyes for type B, having only small central refractions, identified by 

Ferree et al. (1931). Error bars indicate standard deviations. 

 

Ferree and Rand (1933a) related the peripheral refraction patterns to the likely 

shapes of eyes. They did not use the terms “relative peripheral myopia” or “relative 

peripheral hyperopia” as are now used, but their assertions were equivalent to 

suggesting that a prolate ellipsoid shape would increase the relative peripheral 

hyperopia or decrease the relative peripheral myopia. As should be apparent from 

Figure 2:1, changing from a spherical shape to oblate elliptical and prolate elliptical 

shapes, but without changing the vertex curvature, will result in shifts towards 

relative peripheral hyperopia and relative peripheral myopia, respectively. These are 
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in the opposite direction to Ferree and Rand’s suggestions as they assumed that 

accompanying the change in asphericities would be a change in vertex curvature. 

This is made clear at only one point in the paper, when referring to an eye with a 

pattern of relative peripheral myopia, or “myopic astigmatism” because the nearly 

emmetropic eye has peripheral myopia in both principal meridians, they refer to “an 

eyeball flattened at the back, with a shape tending towards that of an oblate spheroid” 

(Ferree and Rand, 1933a). It is likely that Ferree and Rand did not consider that, 

accompanying differences in axial length and eye shape, eyes might have different 

equatorial dimensions as shown in the development of myopia according to the 

global model of myopia expansion. Figure 2:7 shows the effect of different shaped 

ellipsoids on peripheral refraction in which the equatorial diameter does not vary, but 

with variations in both vertex curvature and asphericity between the ellipsoids. 

 

 

Figure 2:7: Effect of different shaped ellipsoids with constant equatorial diameter on 

peripheral refraction. 

 

By considering the amount of peripheral astigmatism (the difference in 

refraction between the two principal meridians), Ferree and Rand inferred the power 

and length of the eye, considering that eyes with small degrees of peripheral 

astigmatism were likely to be longer and less powerful, and vice versa for eyes with 

higher degrees of peripheral astigmatism. 
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While others involved in peripheral refraction studies since then have been 

vague about what is eye shape, e.g. is it the retinal shape or an overall shape of the 

eye, Ferree and Rand (1933a) seemed to have in mind the shape of the retina: 

“Attention may be called to the following points: the possibility of determining 

roughly the conformation of the retina and the shape of the posterior half of the 

eyeball” (pages 937-938). 

Rempt et al. (1971) investigated peripheral refraction in 442 young adults out 

to 60º along the horizontal visual field using retinoscopy. They described five 

patterns of peripheral refraction (types I to V), shown in stylistic pattern in Figure 

2:8. There is a progression in pattern from type I, which is the same as type B 

identified by Ferree et al., to type II, type IV and type V, in which both horizontal 

meridian and vertical meridian refractions move in the myopic direction. Type III is 

an asymmetric pattern similar to Ferree et al.’s type C. The frequency of the patterns 

was related to the central refraction with 91/141 myopes having the type I pattern, 

135/217 emmetropes and 61/84 hyperopes having the type IV pattern, and 17/34 

cases of type V occurring for hyperopes.  

 

 

Figure 2:8: Five types (I- V) of skiagrams (peripheral refraction plots), described by 

Rempt et al. (1971). Type I, III and IV are similar to types B, C, and A, respectively, 

identified by Ferree et al. The curves are shown as parabolas, but real plots are 

seldom as regular. 

 

The findings of Rempt et al. (1971) regarding the way in which peripheral 

refraction patterns change with central refraction have been supported and elaborated 

by numerous studies. Since this time, results have been shown as the mean refraction 

combined with a measure, or measures, of astigmatism. A summary of findings along 

the horizontal visual field is as follows: 
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1. There is considerable inter participant variation within members of the 

same group (eg within emmetropes), as occurs for the higher order 

aberrations. 

2. Several studies have found emmetropic groups to have a weak relative 

peripheral myopia (Mutti et al., 2000, Atchison et al., 2006, Kang et al., 

2010, Chen et al., 2010), although some have found a weak tendency in 

the hypermetropic direction on one or both sides of the visual field 

(Millodot, 1981). Myopic groups show relative peripheral hyperopia, 

(Millodot, 1981, Mutti et al., 2000, Atchison et al., 2006, Kang et al., 

2010, Chen et al., 2010, Berntsen et al., 2010), which to some extent 

increases with increase in myopia (Atchison et al., 2006) and 

hypermetropic groups show relative peripheral myopia (Millodot, 1981, 

Atchison et al., 2005b). As noted by Charman and Radhakrishnan (2010), 

there is a tendency for the peripheral refractions of the different refraction 

groups to converge as field angles get larger and this will occur for the 

axial elongation model eye of Figure 2:3 (Charman and Jennings, 1982, 

Dunne et al., 1987). 

3. Some participants shift from a relative peripheral myopic pattern to a 

relative peripheral hyperopic pattern at large angles eg > 45° (Mathur and 

Atchison, 2013) 

4. Peripheral astigmatism decreases with increase in myopia (Atchison et al., 

2006); possibly because of small numbers this has not been noted in many 

studies. 

5. The turning point (minimum or maximum) of mean refraction or of regular 

(J180 or 90/°180°) astigmatism is usually a few degrees into the temporal 

visual field (Druault, 1900, Lotmar and Lotmar, 1974, Dunne et al., 1993) 

and decreases slowly with increase in myopia (Atchison et al., 2006). This 

is usually attributed to the angle alpha, the angle between the visual axis 

and the best fit optical axis at the nodal point; Atchison et al. (2006), but 

not Dunne et al. (1993), found a significant relationship between the 

turning point of astigmatism and angle alpha. 
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6. The oblique component of astigmatism (J45 or 45/°135° astigmatism), 

which was not investigated in most studies before 1981, is much smaller in 

the periphery than the J180 component and is linearly related to peripheral 

angle (Atchison et al., 2006). 

7. Effects of age (Atchison et al., 2005b, Chen et al., 2010) and ethnicity are 

small (Kang et al., 2010) 

8. The effects of accommodation are unclear: Walker and Mutti (2002) found 

a hyperopic shift in relative peripheral hyperopia upon accommodation. 

Calver et al. (2007) and Davies and Mallen (2009) found no effect of 

accommodation on relative peripheral refraction for both emmetropic or 

myopic groups, and Whatham et al. (2009) found a myopic shift in relative 

peripheral refraction in a group of myopic children (eg 0.74 D and 0.59 D 

at 40° temporal and nasal fields, respectively, with nearly 3 D increase in 

accommodation demand). 

9. Manipulating refractive correction in the form of refractive surgery (Ma et 

al., 2005), orthokeratology (Cho et al., 2005, Charman et al., 2006, 

Queirós et al., 2010, Kang and Swarbrick, 2011, Santodomingo-Rubido et 

al., 2011, Kang and Swarbrick, 2013), special contact lenses (Sankaridurg 

et al., 2011, Ticak and Walline, 2013) and special spectacle lenses 

(Sankaridurg et al., 2010) has considerable and largely predictable effects 

on peripheral refraction. 

Studies of peripheral refraction have been restricted mainly to the horizontal 

visual field, with some two dimensional studies measuring across small angles only 

e.g. 20-25° degrees from fixation (Seidemann et al., 2002, Mathur et al., 2009a). 

Atchison et al. (2006) measured along the vertical visual field to ±35° from fixation 

in a subset of 43 of their 116 participants and found different patterns than along the 

horizontal visual field. For emmetropes the relative peripheral myopia was greater 

along the vertical than in the horizontal visual field. With increase in myopia, there 

was little change in relative peripheral refraction. These findings have since been 

replicated (Berntsen et al., 2010, Chen et al., 2010). Atchison et al. found that the 

regular astigmatism was similar in vertical and horizontal fields, apart from a change 

in sign. In the vertical visual field the turning point of regular astigmatism was 
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≈()3° in the inferior field, without any dependence on central refraction. The 

oblique astigmatism changed at three times the rate with increasing angle along the 

vertical field than along the horizontal field, and this was attributed to angle alpha 

along the horizontal visual field.  

Without any changes in the optics of the eye apart from the shape and position 

of the retinal surface, all models of retinal stretching predict, to various degrees, the 

trend of increasing relative peripheral hyperopia along the horizontal visual field 

with increase in myopia (Figure 2:5), but only the global stretching model comes 

close to predicting the relative lack of change of relative peripheral refraction along 

the vertical visual field. 

Atchison (2006) modelled peripheral optics according to biometric 

measurements in 121 emmetropic and myopic young adults. The models showed 

increase in corneal curvature, increase in vitreous length, and change in retinal shape 

with increase in myopia. The retinal vertex radii of curvature and the retinal 

asphericities in XZ and YZ sections were given by 

Rxv (mm) = –12.91 – 0.094SR 

Qx = +0.27 + 0.0026SR 

Ryv (mm) = –12.72 + 0.004SR 

Qy = +0.25 + 0.0017SR 

where SR is the spectacle refraction. The modelling predicted relative 

peripheral myopia in emmetropic eyes in both horizontal and vertical visual fields. 

Along the horizontal visual field, the modelling predicted slight increases in relative 

peripheral hyperopia with increase in myopia that were less than those of the 

experimental results of Atchison et al (2005b). Along the vertical visual field, the 

modelling predicted little change in refraction, compared with the relative peripheral 

myopia of the experimental results for a range of refractions (Figure 2:9).  
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Figure 2:9: Mean refraction in a) horizontal and b) vertical visual fields, as a function 

of angle for measured data fits (Atchison et al., 2006) and theoretical data (Atchison, 

2006) for emmetropia, 4 D myopia and 8 D myopia. For the experimental results, 

quadratic fitting coefficients are used. The quadratic fitting co-efficients along 

horizontal and vertical meridians are given by H = –0.000206x – 0.000270 and V = –

0.000048x – 0.000694, respectively, where x is central refraction in dioptres, with 

units of D/degrees
2
. 

 

2.4.2.4 Relative peripheral refraction and progression of myopia 

To determine whether emmetropes should be accepted for pilot training 

because of the risk that they would develop myopia, Hoogerheide et al. (1971) 

reported changes in peripheral refraction in 214 pilots and compared these with 

patterns of peripheral refraction. 

The emmetropes and hyperopes who developed myopia was disproportionately 

represented by those with the type I refractive profile. 17/26 (65%) who developed 

myopia were of type I, while 118/121 (97%) who did not develop myopia were of 

type IV or type V. The proportions of each type that went on to develop myopia were 

17/36 of type I (47%), 3/43 type II (7%), 3/14 type III (21%), 3/112 (3%) type IV, 

and 0/9 (0%) type V. Stone and Flitcroft (2004), and Wallman and Winawer (2004) 

drew attention to this work, beginning a period of interest that peripheral optics 

might influence development of myopia either through the peripheral refraction 

pattern or through the retinal shape. 

It is generally understood that Hoogerheide et al. measured peripheral 

refraction before monitoring changes in central refraction, but recently and well after 

the commencement of this PhD study, it was explained that the peripheral refraction 
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was most likely measured after, rather than before, the pilots did or did not, develop 

myopia (Rosén et al., 2012). Thus, it is unlikely that the study provides evidence that 

peripheral refraction patterns are predictive of myopia development and progression.  

Mutti et al. (2000) measured peripheral refraction at 30° in the nasal visual 

field in 820 children aged between 5 to 15 years. Following Ferree et al., they 

described ocular shape on the basis of relative peripheral refraction at this position. 

Relative peripheral hyperopia of +0.80 ± 1.29 D was measured in myopic children 

and interpreted as indicating prolate shape. Relative peripheral myopia of –0.41 ± 

0.75 D was measured in emmetropic children and interpreted as indicating near 

spherical or oblate shape, and relative peripheral myopia of –1.09 ± 1.02 D was 

measured for hyperopic children and interpreted as indicating oblate shape. Since 

then, many studies have made inferences of shape based on peripheral refraction. 

Mutti et al. followed their research cohort for a decade investigating peripheral 

refraction. Mutti et al. (2007) reported rapid changes in relative peripheral refraction 

in the myopic direction before the onset of myopia, although as noted by Charman 

and Radhakrishnan (2010) progression towards myopia began before relative 

peripheral refraction became markedly hypermetropic. However, their recent results 

(Mutti et al., 2011) suggest that relative peripheral hyperopia had little consistent 

influence on the risk of myopia onset, with a mean annual progression of myopia of 

−0.024 D per 1 D of relative peripheral hyperopia. 

Sng et al. (2011) performed a one year longitudinal study on central and 

peripheral refraction along the horizontal visual field at ±15º and ±30º in Chinese 

Singaporean children aged 7 ± 3 years. At baseline, the peripheral refraction patterns 

in children who became or did not become myopic were similar. The children who 

were myopic at baseline or who became myopic had relative peripheral hyperopia at 

the follow up, while children who did not become myopic retained a relative 

peripheral myopia. Shifts in spherical equivalent refraction after 1 year in the 

‘became myopic group’ were −1.51 ± 0.63 D at centre and −1.08 ± 0.70 D and −1.06 

± 0.64 D at temporal and nasal 30º visual field, respectively. Similar findings were 

reported recently by Lee and Cho (2013). These results indicate that relative 

peripheral hyperopia might not be an essential risk factor in development of myopia. 
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2.4.2.5 Advancements in instrumentation for peripheral refraction 

Commercially available instruments measuring central refraction have been 

modified for peripheral refraction measurements. These modifications include the 

rotation of eye or head or the instrument itself for different angles. The latter is an 

advantage because it reduces the time required for data acquisition. 

Tabernero and Schaeffel (2009a, b, 2011) introduced two versions of a device 

to measure the peripheral refraction using a scanning hot mirror with a custom-

designed infrared photoretinoscope. A rectangular hot scanning mirror placed in 

front of eyes was rotated using two stepping motors (one translating, other rotating) 

to project the infrared light from the photoretinoscope into the eye at different 

horizontal angles. The second version gave 0.4° per step resolution, and enabled 225 

points to be measured over a ± 45° field in about 4 seconds. 

Jaeken et al. (2011) built a fast scanning peripheral Hartmann-Shack wave-

front sensor that measured the off-axis wave-front aberrations out to ± 40º horizontal 

visual field in 1.8 seconds with an angular resolution of 1°. The subject has an open 

field of view without any moving elements in the line-of-sight and the head is kept in 

place by a head-chin rest. A motorised stage with a maximum speed of 90°/second 

rotated the scanning sensor at the centre of rotation in the pupil plane so that distance 

between the pupil plane of the eye and the sensor was maintained at all angles. 

The “Eye Mapper” of Fedtke et al. (2011, 2012) uses the Shack Hartmann 

principle for measuring central and peripheral refractions of the eye. It consists of 33 

stationary mirrors and one scanning mirror with 11 individual beam paths, allowing 

rapid peripheral refraction measurements in 10° steps across the visual field (−50° to 

+50°) within 0.45 seconds. It can be rotated to test different visual field meridians. 

Fedtke et al. compared the measurements between two contact lenses having 

different peripheral powers and showed the ability of the EyeMapper to detect the 

differences. They found good agreement with a conventional aberrometer and an 

auto-refractor for a model eye. 
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2.4.2.6 Animal studies related to peripheral retina 

Results from animal experiments provide compelling evidence for the role of 

peripheral retina in the development of myopia (Smith et al., 2005, 2007, 2010, 

Smith, 2011, Huang et al., 2011). Smith et al. (2005) performed studies on infant (1 

to 3 weeks) rhesus monkeys using ring diffusers that had either 4 or 8 mm central 

apertures to allow 24° or 37° of unrestricted central vision, respectively. Over about 

14 weeks, these monkeys developed significantly less hyperopia/more myopia (+0.03 

± 2.39 D) than those of control monkeys (+2.39 ± 0.92 D). Ablating the central 10° 

diameter of the retina around the fovea in one eye of 7 treated infant monkeys did not 

alter the recovery from induced refractive errors when the diffusers were removed. 

This is supported by another study from the same group (Smith et al., 2007) that 

investigated whether an intact fovea is essential for normal emmetropization and for 

the development of form-deprivation myopia. They found that foveal ablation did not 

influence emmetropization in monkeys that were allowed unrestricted vision and did 

not prevent axial myopia in monkeys that wore a diffuser. Huang et al. (2011) found 

that form-deprivation altered central and peripheral refractions out to ± 45º along the 

horizontal meridian, but this was not influenced by foveal ablation. 

Smith et al. (2010) assessed ocular shape using magnetic resonance imaging on 

8 infant rhesus monkeys (3 weeks old) to determine the effect of optical defocus on 

refractive development. Wide-field, executive type bifocal lenses were edged and 

fitted in the goggles so that the transition between near and far segments of the lens 

was oriented vertically. The nasal and temporal segments of the lens had refractive 

powers of −3.00 D and 0.00 D, respectively, imposing −3.00 D hyperopic defocus in 

the nasal visual field alone. Myopia occurred in the nasal hemi-field with 

corresponding increased vitreous length in the temporal half of the globe. For 6 

infants reared with full field monocular −3.00 D lenses, central myopia developed 

with symmetrical relative peripheral hyperopia and less oblate eye shapes. Similar 

results (opposite trend) were seen with +3.00 D myopic defocus (Smith et al., 2013). 

These results suggest the importance of peripheral retina in the development of 

myopia. However, the recent findings mentioned in section 2.4.2.4 suggest, that in 

humans, the peripheral refraction pattern is largely a consequence of, rather than a 

determinant of myopia. Given that both the eye’s optics and the retinal shape 

contribute to the peripheral refraction, it is possible that the retinal shape, possibly 
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through biomechanical factors, might be a determinant for the development of 

myopia rather than peripheral refraction. 

 

2.4.2.7 Interventions to correct myopia 

Most theories and investigations of myopia development have been concerned 

with the growth response to defocus signals corresponding to foveal vision, but 

Wallman and Winawer (2004) indicated that the defocus signal at periphery should 

be stronger than the centre simply because there are more neurons in the retinal 

periphery, and that relative peripheral hyperopia at the periphery may stimulate the 

eye to grow even if the eye is myopic at the centre. As reviewed by Norton and 

Siegwart (1995), data from several species suggest that axial length is regulated 

within the eye itself and involves direct communication from the retina to the sclera. 

 

Peripheral refraction with conventional single vision spectacles 

Conventional single vision lenses were identified to cause significant increase 

in relative peripheral hyperopia in moderate or high myopes along the horizontal 

visual field (Lin et al., 2010, Backhouse et al., 2012, Kang et al., 2012). Figure 2:10 

shows a possible schema of central and peripheral refraction leading to an increase in 

myopia. Figure 2:10a shows peripheral hyperopic defocus in an emmetropic eye 

which might stimulate the ocular growth and cause myopia as shown in Figure 2:10b 

(dashed line). Correction with single vision lens places the peripheral image behind 

the retina again (Figure 2:10c) which might stimulate yet further growth of the eye.  

 

 

Figure 2:10: Possible scenario for the development of myopia: (a) peripheral focus P 

behind steep retina in an emmetropic eye with central focus at C, (b) growth of eye to 

become myopic (c) spectacle correction L causes the peripheral focus P to again be 

behind the retina and repeat the cycle. Based on Atchison et al. (2005a). 
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Development of new therapeutic anti-myopia lenses 

‘Anti-myopia’ lenses are available to counteract relative peripheral hyperopia 

with the intention of slowing ocular elongation. They contain a central zone for the 

correction of central myopia surrounded by a peripheral therapeutic zone to slow the 

eye growth (Martinez et al., 2011). The commercial anti-myopia lens types in Asia 

are the ‘‘Myovision’’ lenses (Zeiss) and the “Myopilux Pro” (Essilor) varifocal 

design lenses (Elliott, 2011). 

Numerous studies have investigated the effect of both bifocal and multifocal 

spectacle lenses on myopic progression in children (Cheng et al., 2011). Bifocal and 

progressive addition lenses slow the axial elongation of eye compared to single 

vision lenses, thereby reducing the progression of myopia (Leung and Brown, 1999, 

Gwiazda et al., 2003, Hasebe et al., 2008, Cheng et al., 2010). 

Sankaridurg et al. (2010) performed a clinical trial in 201 myopic children 

using 3 types (I, II and III) of anti-myopia lenses manufactured by Carl Zeiss Vision 

designed to reduce relative peripheral hyperopia. Lens type I was a rotationally 

symmetrical design with a 20 mm clear central diameter surrounded by a 

progressively increasing positive power with a maximum spherical equivalent of 

+1.00 D relative peripheral power. Lens type II was a rotationally symmetrical 

design, with 14 mm clear central diameter with a more steeply ramped zone of 

increasing positive power than type I. A maximum spherical equivalent of +2.00 D 

relative peripheral power was achieved 25 mm from its centre. Lens type III was an 

asymmetric design with a clear aperture of 10 mm either side of centre horizontally 

and 10 mm inferiorly providing clear vision during convergence and down gaze. The 

design was optimised to reduce the astigmatism in the horizontal meridian while 

attaining a positive additional peripheral power of 1.90 D 25 mm from centre. A lens 

type IV was a conventional single vision design included as a control. After one year 

of wearing period no significance differences were found in rate of progression 

between anti-myopia lens wearing children and the control children. However, a 

small but significant reduction in myopia progression was noticed with type III 

lenses in a subgroup containing younger participants with a parental history of 

myopia. 
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A related study was performed by the same group in 45 Chinese children aged 

7 to 14 years using contact lenses (CIBA VISION) that reduced relative peripheral 

hyperopia (Sankaridurg et al., 2011). The 9 mm treatment zone had a clear central 

zone of 1.5 mm semi-chord, followed by a zone of progressively increasing power of 

lens to reach a relative positive power of +1.00 D at 2 mm semi-chord and +2.00 D 

at the edge.  

The relative peripheral refraction measurements at 20º, 30º and 40º in nasal and 

temporal visual fields and central axial length were compared to those of a standard 

spectacles wearing group after 1 year of treatment. The contact lenses produced 

greater reduction in the peripheral refraction in nasal field than the temporal field. 

Greater relative peripheral hyperopia was associated with greater progression of 

central myopia. They found 34% less progression of myopia in the contact lens 

group than the spectacle group after 1 year (−0.84 ± 0.47 D Vs. −0.54 ± 0.37 D) with 

axial length changes of 0.24 ± 0.17 mm for the contact lens group and 0.39 ± 

0.19 mm for the spectacle group indicating considerable, predictable effects on 

peripheral refraction. 

 

2.4.2.8  Measurements of eye shape 

The eye is situated inside an orbit composed of seven bones.  Although the eye 

occupies only about one-fifth of the adult human orbit (Schultz, 1940, Bron et al., 

1997), it is possible that the size and morphology of the orbit may have a role in 

ocular growth during emmetropization. However, Chau et al. (2004) failed to show a 

significant relationship between eye size and orbital volume, and Cummings et al. 

(2012) indicated that there was an association between eye growth during the pre-

natal stage but not post-natally. 

The majority of the myopia imaging studies assessed the eye shape rather than 

retinal shape. Eye shape can be investigated by imaging techniques such as X-rays 

and computerized tomography (Deller et al., 1947, Zhou et al., 1998, Song et al., 

2007), ultrasonography (Vohra and Good, 2000, Fledelius and Goldschmidt, 2010) 

and magnetic resonance imaging (Chen et al., 1992, Cheng et al., 1992, Miller et al., 

2004, Atchison et al., 2004, 2005a, Singh et al., 2006, Moriyama et al., 2011, Lim et 

al., 2011, Ishii et al., 2011, Lim et al., 2013). The results from several studies of eye 

http://en.wikipedia.org/wiki/Human_eye
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shape are given in Table 2.2. The mean increases in axial length with increase in 

myopia for adult eyes are 0.33 mm/D and 0.35 mm/D according to Deller et al. 

(1947) and Atchison et al. (2004), which are in good agreement with studies of axial 

length in adults using other methods. Eye shape in these studies was mainly a 

comparison of one or both of height H and width W of the eye with the length L. The 

dimensions were not measured consistently across studies, for example some studies 

use the outer eye while others use the inner retina, but this does not affect the rate at 

which dimensions change with alteration in refraction. The results are expressed in 

different ways, but apart from Cheng et al. (1992) the studies found greater increase 

in length than in height and/or width with increase in myopia. Deller et al. (1947) 

found changes in L, H and W with changes in refraction in the approximate ratio 

2:1:1, while Atchison et al. (2004) obtained the ratio 3:2:1 (in the midst of 

considerable intersubject variation). Two studies found no significant differences 

between eye shapes in emmetropia and hyperopia, but hyperopia was small in one 

study (Deller et al., 1947) and its range was not specified in the other (Zhou et al., 

1998). 

Some studies referred to the eye shape in terms of ellipsoids, using prolate and 

oblate to describe the situation where the ratio L/H (or/and L/W) is greater than and 

less than one, respectively (Singh et al., 2006, Moriyama et al., 2011, Lim et al., 

2011), whereas Zhou et al. (1998) used the terms “long oval-shaped” and “cross 

oval-shaped” and Moriyama et al. (2011) used the terms “cylindrical” and “barrel”. 

Using Rx, Ry and Rz instead of W, H and L and using equations (2), (3) and (6) shows 

that these ratios are just the eccentricities e for prolate ellipses. Ishii et al. (2011) 

considered that the use of a single metric was insufficient to describe eye shape and 

proposed the use of “elliptic Fourier” descriptors. Two of these, “width expansion” 

and “posterior length” terms, were strongly correlated with the L/H ratio and seemed 

to give useful information, although it is doubtful that these are any more suitable 

than providing the lengths. 

Atchison et al. (2004) considered that approximately a quarter of their myopic  

participants fitted each of the global expansion and axial elongation models, 

described in Figure 2:3, exclusively. When considering height, the proportions 

shifted slightly in favour of the global expansion model (30% v. 26%) and while 
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considering width, the proportions shifted in favour of the axial elongation model 

(18% vs. 47%). 

 

Measurements of retinal shape   

Retinal shape can be determined by the methods mentioned in the previous 

section, e.g. magnetic resonance imaging (Chen et al., 1992, Atchison et al., 2005a, 

Gilmartin et al., 2011, Gilmartin et al., 2013). It can also be determined by indirect 

optical methods that are based on peripheral refraction (Dunne et al., 1987, 1995, 

Logan et al., 2004) and partial coherence interferometry (Schmid, 2003a, 2003b, 

2011, Mallen and Kashyap, 2007, Atchison and Charman, 2011, Ehsaei et al., 2012, 

Faria-Ribeiro et al., 2013, Ding et al., 2013). Results using these techniques are 

summarised in Table 2.2. 

Magnetic resonance imaging (MRI) is probably the best way of assessing 

retinal shape (Atchison et al., 2005a). MRI is superior to computerized x-ray 

tomography in terms of image quality but has disadvantages of high cost 

($500/scan), long testing time (2-3 mins/image) and low resolution (approximately 

0.15 mm) (Duong, 2011) and hence magnetic resonance imaging is not used 

extensively in research. 

Following their 2004 paper, Atchison et al. (2005a) described retinal shape as 

asymmetric, decentred and tilted ellipsoids using equation (1). An example of this 

analysis is given in Figure 2:11. The mean ellipsoid of emmetropes had an oblate 

retinal shape (steepening towards equator) with greater width and height than length 

(Rz =10.04 ± 0.49 mm, Rx =11.40 ± 0.47 mm, Ry =11.18 ± 0.50 mm). With increase in 

myopia, the retinas became less oblate with more elongation in length (0.16 mm/D) 

than in height (0.09 mm/D) and width (0.04 mm/D), but few myopes had retinal 

shapes that were prolate. There was significant increase in vertex curvature with 

myopia (0.64 m
−1

/D) along the horizontal plane, but not along the vertical plane. 

Fitting equations were: 

cxv (mm
-1

) = –77.639 + 0.636SR 

Qx = +0.279 + 0.028SR 

cyv (mm
-1

) = –78.691 – 0.019SR 
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Qy = +0.258 + 0.018SR 

where SR is the spectacle refraction. Also of note is that the mean retinal 

ellipsoid was tilted by 11.5° degrees about the vertical axis towards the nose, the 

retina vertex was decentred relative to the visual axis by x = –2.28 + 0.055 SR (to the 

nasal side) and there was an “anterior segment” from the anterior cornea to the front 

of the ellipsoids of approximately 3.0 mm that was not affected by refraction. 

Similar to Atchison et al. (2005a), Gilmartin et al.’s MRI study (2013) found 

oblate retinal shapes in both myopes and emmetropes and with myopes having less 

oblateness. They proposed that a spherical retinal shape may act as a biomechanical 

limitation to further myopic axial elongation. 

 

 

Figure 2:11: Processing of sagittal (left) and transverse axial (right) magnetic 

resonance images for one subject with –2.5 D refraction. Note that this subject has 

negative retinal asphericities, unlike most participants in the Atchison et al. (2005a) 

study. 

 

Dunne’s method 

Dunne (1987, 1995) developed an algorithm to determine the retinal shape. 

Model eyes were generated, using a method devised by Bennett (1988) and modified 

by Royston et al. (1989), comprising a corneal surface, two lens surfaces and the 

retina, using measurements of corneal curvature, lens thickness, anterior chamber 
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depth, vitreous depth, and peripheral refraction. In this method, the curvatures of the 

lens surfaces are selected so that the ratio of the surface curvatures matches those of 

the lens in the Gullstrand-Emsley model eye. Dunne determined theoretical 

peripheral refractions at each field angle using sagittal and tangential ray-tracing (see 

section 2.4.2.2). The corneal surface was treated as an ellipse and its asphericity was 

adjusted so that the calculated peripheral astigmatism matched the measured 

peripheral astigmatism at any field angle. The retinal curvature was altered until the 

theoretical sagittal refraction matched the measured sagittal refraction. When this 

procedure was completed for a number of positions, the retinal shape was estimated 

by fitting an ellipse. 

Logan et al. (2004) used Dunne’s method to estimate the retinal shape in the 

transverse axial section of eyes for white and Chinese isomyopes and anisomyopes. 

They measured the ratio of the transverse chord diameter of the retina, at the 

maximum angles tested, to the axial length. This was found to be smaller in the more 

myopic eye of anisomyopes, and for right eyes, to become smaller as myopia 

increased in the Chinese eyes only. Reduction in the ratio was interpreted as a more 

prolate shape of the retina, but this parameter requires further investigation. 

 

Partial coherence interferometry 

Partial coherence interferometry compares the optical path lengths of two 

beams, one of which is reflected from the cornea and the other which travels into the 

eye and gets reflected at one of the surfaces. Because the source (diode laser or super 

luminescent diode) has a wide bandwidth of wavelengths compared with a laser, and 

consequentially a short coherence length, a strong interference signal occurs only 

when the optical path lengths are similar rather than when optical path lengths differ 

by multiples of wavelengths. One commercial instrument, the Carl Zeiss IOLMaster, 

provides only the total axial length (anterior chamber depth is provided by an optical 

method) while the newer Haag-Streit Lenstar provides internal lengths. The 

IOLMaster uses a single index within the eye (1.3549), but Haag-Streit does not 

indicate what is done for the Lenstar. Partial coherence interferometry is now used to 

obtain both on and off axis optical lengths. Unlike ultrasound it is non invasive, and 

measurements are quicker and more repeatable. PCI provides better resolution, 0.01 
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to 0.02 mm than ultrasound (0.10 mm) and MRI (0.15 mm) (Kimura et al., 2007, 

Lam et al., 2001). 

Schmid (2003a, 2003b, 2011) developed his own partial coherence 

interferometer. He measured corneal to retinal lengths both axially and in the 

periphery at a maximum of 20° from fixation and gave a measure of retinal steepness 

by subtracting the central length from the peripheral length (relative peripheral eye 

length, RPEL = peripheral EL – central EL), with the interpretation that the more 

negative the RPEL, the steeper the retina. Because of the small angles used, this is 

probably a measure of foveal radius of curvature and surface tilt. RPEL was more 

negative (“steeper”) for myopic than for emmetropic and hypermetropic children 

(Schmid, 2003a, 2003b), and myopic shifts over two years correlated significantly 

with RPEL at 20° nasal field with steeper retinas accompanied by more myopic shifts 

than flatter retinas (Schmid, 2011). 

Mallen and Kashyap (2007) used the IOLMaster with an external attachment 

containing a beam-splitter, goniometer and a Maltese cross target that allowed the 

measurements of peripheral eye lengths. With similar attachments, Ehsaei et al. 

(2012) and Faria-Ribeiro et al. (2013) found more negative RPEL and naso-temporal 

asymmetry of RPEL in myopes (progressing myopes > non progressing myopes) 

than in emmetropes. Two studies found a correlation between RPEL and relative 

peripheral refraction (more negative RPEL with more relative peripheral hyperopia) 

in the horizontal visual field (Faria-Ribeiro et al., 2013, Orr et al., 2013). This 

method could be extended to giving estimates of vertex radius of curvature and 

asphericity. 

The optical methods might have inaccuracies unless compensation is made for 

the deviation of off axis beams within the eye (the bending of light within the eye). 

As it has been applied to determining retinal shape, partial coherence interferometry 

suffers from optical distortions. Firstly, little account has been taken of the different 

refractive indices in the eye’s media; as mentioned earlier the IOLMaster uses a 

constant refractive index to convert from optical path lengths to distances, and it is 

not clear what procedure is used by the Haag-Streit Lenstar. Secondly, no allowance 

has been made for deviation of beams inside the eye.  

Theoretical investigations of the partial coherence interferometry technique 

indicated that it can give reasonably accurate results for retinal shape (Atchison and 
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Charman, 2011, Cameron et al., 2013). An improved method would make allowance 

for deviation of beams inside the eye using other biometric parameters (e.g. corneal 

topography, internal distances, lens surfaces from Scheimpflug photography or 

phakometry and lens gradient index from magnetic resonance imaging) and should 

be verified by a direct technique such as magnetic resonance imaging. 
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Table 2.2 Summary of studies of eye shape and retinal shape 

Authors Technique Procedure Participants Results 
Distances 

measured* 

Deller et al. 

(1947) # 

Radiography from 

X-rays – subjective 

responses 

 

Slit beam transversed the eye 

perpendicular to the 

dimension measured. 

Exposure marked on film 

11 Hyp, 19 E, 15 My 

Adults 

E : similar L, H, W; Hyp similar L, H, W 

As My↑, increase in L, H, W in approx ratio 2:1:1 

 

 

Vohra & Good 

(2000) # 

 

B-scan 

ultrasonography 
Transverse axial 

100 eyes classified by 

axial length. Most high 

My 

ΔL:ΔW > 3  

Fledelius & 
Goldschmidt 

(2010) # 

B-scan 

ultrasonography 
Transverse axial 

61 eyes/31 unilateral 

and bilateral high My 

> 50 years 

“Regular” and “irregular” shapes 

Mean L/W 1.07 – range 0.92 to 1.36 

Irregular shaped eyes had highest My and high L/W 

 

Zhou et al. 
(1998) # 

Computerized 

X-ray tomography 
Transverse axial section 

33 Hyp, 76 E, 141 My 

(255 eyes/131 adults) 

L/W for My > L/W for E > L/W for Hyp 

L/W ↑ as My↑ 

Not clear. L 

measured 

through optic 

nerve 

Song et al. 

(2007) # 

Computerized 

x-Ray tomography 

Transverse axial and coronal 

sections 

406 eyes/354 children 

< 20 years 

Emmetropes similar L, H, W 

Myopia AL > H, W 

L from 

posterior 
cornea 

Cheng et al. 

(1992) # 

Magnetic resonance 

imaging 

Eye coil, transverse axial and 

coronal sections 
8 Hyp, 6 E, 7 My 

W > L, H 

Little change in shape with refraction 

Outer 

dimensions 

Chen et al. 

(1992) $ 

magnetic resonance 

imaging 

Eye coil, transverse axial and 

coronal sections 
3 Hyp, 4E, 4 My 

Posterior retina more prolate in shape for My than E 

and Hyp in transverse axial section 
 

Miller et al. 

(2004) # 

magnetic resonance 

imaging 
Transverse axial section 9 Hyp, 32 E, 37 My As My↑, ΔL > ΔW  
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Atchison et al. 
(2004)  # 

magnetic resonance 

imaging 

Eye coil, transverse axial and 

sagittal sections 

22 E, 66 My young 

adults 
As My↑, increase in L, H, W in approx ratio 3: 2: 1  

Atchison et al. 

(2005a) $ 

magnetic resonance 

imaging 

 

Per Atchison et al. 2004 

Retina shape determined from 

posterior 240°. 3D shapes 

obtained from sections, with 

rotations, decentration and 

asymmetry 

Per Atchison et al. 

2004 

As My↑, increase in L, H, W of posterior retina in 

approx ratio 3: 2: 1 

Oblate shape retinas in most eyes, but less so as My↑ 

Steepening of vertex curvature in transverse axial 

section, but not sagittal section 

 

Singh et al. 

(2006) $ 

magnetic resonance 

imaging 

Head coil 

3D images determined from 

2D transverse axial images 

Ocular shape described 
qualitatively by colour coding 

7 young adults with a 

range of refractions 

 

Considerable variations in eye shape between 

participants of similar refractive errors. 

 

 

Moriyama et 

al. (2011) # 

magnetic resonance 

imaging 

Head coil 

Section not stated 

3D images determined from 

series of 2D slices 

20 E, 8 unilateral high 

myopes, 36 bilateral 

high myopes 

 

Posterior staphyloma in several high myopic 

participants. Some had exaggerated posterior retinal 

oblate shapes (termed “barrel”) and others had 

pronounced prolate shapes (termed “cylindrical”) 

Outer 

dimensions 

Lim et al. 

(2011) # 

magnetic resonance 

imaging 

Head coil 

3D images determined from 

series of 2D transverse axial 

slices 

134 eyes/67 6 year old 

Singaporean Chinese 

boys 

 

 

For non-My, as refraction less hyperopic: L↑, H↑, W↑ 

(unadjusted for height) 

For My, as My↑: L↑ but no change H, W (unadjusted 

for height). Conclusion: My eyes axially elongated 

Outer 

dimensions 

Ishii et al. 

(2011) # 

magnetic resonance 

imaging 

Head coil 

3D images determined from 
2D transverse axial images. 

Analysis of horizontal section 

Shape given by “Elliptic 

Fourier” descriptors 

105 children, 1 month 

to 19 years old 

 

“Width expansion” term PC1 strongly positively 
correlated with “oblateness” given by 1 –L / (2*W) and 

with spherical equivalent refraction. “posterior length 

term” PC2 negatively correlated with oblateness 

Summary: Hard to made firm conclusion with regards 

eye shape and refraction as confounding effect of age 

L measured 

from post 

corneal 

Gilmartin et al. 

(2011) #$ 

 

magnetic resonance 
imaging 

Head coil 

3D images 
Determined semi-distances 

31 E, 35 My 
young adults 

Most retinas have oblate shapes, but less so for My 

than for E 
At half axial length, (H for My)/(H for E) = 1.02 and 
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from visual axis at 17%, 
52.5% and 72.50% of axial 

length 

(W for My)/(W for E) = 1.01 
Above results suggest predominately axial expansion 

in both horizontal and vertical meridians 

Lim et al. 

(2013) # 

magnetic resonance 

imaging 

 

Head coil 

3D images determined from 

2D transverse axial slices 

Eye shape was assessed 

qualitatively from 3D models, 

and 

quantitatively from L, W, H 

346 eyes of 173 

newborn children (5 to 

17 days) 

Oblateness was calculated as 1 _ (AL/width) or 1 _ 

(AL/height) 

294 eyes, 85% and 163 eyes, 47% had prolate eye 

shape using width and height, respectively. 

L measured 

from post 

corneal 

Gilmartin et al. 

(2013) $ 

magnetic resonance 

imaging 

 

Head  coil 

Transverse axial, sagittal and 

coronal sections 

27 E, 28 My 

Oblate shape of vitreous in most eyes, but less so as 

My↑ 

 

 

Logan et al 

(2004) $ 

Dunne’s method 

(1995) 

 

 
Transverse axial section 

Peripheral refraction to ±35° 

Transverse chord diameter 

TCD (width at maximum 

angles) compared with L 

56 isometropes and 

anisomyopes (> 2 D), 

white and  Taiwanese-

Chinese 

TCD/L smaller in the more My eye 

TCD/L↓ as My↑ in Chinese eyes only 

Smaller TCD/L interpreted as more prolate shape 

 

Schmid (2003 

a, b)  $ 

 

partial coherence 

interferometry 

 

Retinal steepness based on 

comparing lengths along 

different meridians to ±20°.  

RPEL = peripheral L –  central 

L, steeper as more negative 

23 Hyp, 23 E, 17 My 

7-15 years 

RPEL steeper in My than E, Hyp 

RPEL significantly related to refractive error group at 

15° nasal and superior visual fields 

 

Schmid (2011) 

$ 

partial coherence 
interferometry 

Retinal steepness per Schmid 
2003a,b 

 

140 7-11 year children, 
92 available at two 

year follow-up 

Myopic shifts over two years correlated significantly 

with RPEL at 20° nasal field (steeper retinas give more 
myopic shift) 

 

Mallen & 

Kashyap 

(2007) $ 

partial coherence 

interferometry 

 

Modification of commercial 

instrument, 

PELs measured by using 

1 E and 2 My 
Retinal asymmetry 

Evidence of temporal-nasal retinal asymmetry 
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external setup for showing 
targets 

Horizontal and vertical fields 

to ±40° 

Atchison & 

Charman 

(2011) $ 

partial coherence 

interferometry 
Theoretical  

In model eyes, reasonably accurate measure of retinal 

shape when incident beam normal to cornea without 

taking into account light bending within eye. 

 

Ehsaei et al. 

(2012) $ 

partial coherence 

interferometry 

 

Modification of commercial 

instrument, 

PELs measured by using 

external setup for showing 

targets 

Horizontal and vertical fields 

to ±30° 

27 E and 52 My 

RPEL steeper (more negative) in My than E 

temporal-nasal retinal asymmetry greater in My than E 

 

 

Faria-Ribero et 

al. (2013) $ 

partial coherence 

interferometry 

PELs measured by using 

external setup for showing 

targets 

Horizontal fields out to  ±30° 

30 non progressing My 

32 Progressing My 

 
RPEL steeper (more negative) in progressing My than 

in non progressing My 

Steeper RPEL associated with more relative peripheral 

hyperopia 

 

 

(Ding et al., 

2013) $ 

 

partial coherence 

interferometry 

 

PELs measured by using 

paper strips that were placed 

on lateral apertures if 

instrument 

Only at ±40° horizontal field 

104 Monozygotic (27 

E, 61 My) and 54 

Dizygotic adolescent 

twin pairs (10 E, 27 

My ) 

Suggests influence of genetics on PEL and RPEL 

Temporal-nasal retinal asymmetry in both Mono and 

Dizygotic twins 

 

 

Most technical details omitted. It is understood that L for My> L for E > L for H, as is found for all relevant studies and this is not covered 

*Information included if length is not anterior cornea to inner retina or height and width are not measured between inner retinas 

# eye shape; $ retinal shape, E - emmetropes, My - myopes, Hyp – hyperopes; L - length, H - height, W – width; ↑ increases; ↓ decreases  



Chapter 2: Literature Review 43 

2.5 RATIONALE OF THE STUDY 

Studies of peripheral refraction and the retinal shape suggest that the peripheral 

retina may be important for myopia onset and progression. This literature review has 

described how patterns of retinal expansion during the development of myopia 

contribute to changing patterns of peripheral refraction, and how the pre-existing 

retinal shape might be a contributor to the development of myopia. 

Retinal shape can be confused with the more nebulous concept of eye shape. 

As an example, an eye shape may be described as prolate because the length is 

longer than the width and/or height, but the corresponding retinal shape might be 

oblate. It is important to emphasise that eye shape and retinal shape are not the same 

and merely describing an eye shape as being prolate or oblate is insufficient without 

some understanding of the parameters contributing to this. Retinal shape has been 

measured independent of optical methods using magnetic resonance imaging. This is 

expensive, available mainly in hospitals and takes considerable time. Although 

indirect or optical methods are fast and cheap, their accuracy is not understood. 

Partial coherence interferometry has been used to determine retinal shape but there 

are some assumptions in its use, such as refractive index used to convert from optical 

path lengths to distances, and deviation of beams inside the eye, and it has not been 

assessed for accuracy against magnetic resonance imaging. For further work on 

retinal shape, determining the validity of these alternatives to magnetic resonance 

techniques is required. 

This study refines and evaluates a simple method of determining retinal shape 

in terms of ellipsoids using off-axis partial coherence interferometry (PCI) and 

validates this method by comparing the data with magnetic resonance imaging. In 

this research project the simple PCI method will be used to measure retinal shape in 

different population groups, with varying refractive errors, and in isomyopes and 

anisomyopes for whom presumably the confounding influence of differences in 

genetic background and environmental influences are avoided. I will contribute an 

important assessment device with applications for understanding myopia 

development risk and likely optical treatment effectiveness that will benefit to people 

at risk of myopia development. 
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Chapter 3- Research Design and Pilot 

Studies 

This chapter includes the information about ethics approval, 

inclusion/exclusion criteria, statistics analysis, preliminary pilot experiments and 

various instruments/techniques/protocols used for estimation of retinal shape. 

 

3.1 ETHICS 

This research involved ‘low risk’ experiments. According to the Queensland 

University of Technology Ethical Conduct in Human Research guidelines, research 

is ‘low risk’ where the only foreseeable risk is one of discomfort, which can involve 

body and/or mind. All instruments used in the experiments were non-contact. 

Appropriate training, assessment, and inductions were undertaken at the Institute of 

Health and Biomedical Innovation. A health and safety research risk assessment was 

carried out as part of the ethics application. The study followed the tenets of the 

declaration of Helsinki and was approved by the Human Research Ethics Committee 

of the Queensland University of Technology (1100001176) and the University of 

Queensland (2012000175). The nature of experimental procedures was explained to 

participants and written informed consent was obtained before taking measurements 

(Appendix 1). 

 

3.2 INCLUSION AND EXCLUSION CRITERIA 

Criteria for the assessment of participant eligibility were same for all main 

experiments and were assessed using routine clinical tests. Tests included eye and 

general history, visual acuity measurement under normal room illumination with 

Bailey-Lovie LogMAR visual acuity chart, refraction, slit lamp biomicroscopy, 

tonometry and undilated fundus examination. To minimise a potential confounding 

effect of age, the age of participants was limited to 18 to 30 years. Participants had 

best corrected visual acuity better than or equal to 6/6 (LogMAR 0.0) with 

astigmatism ≤ ±1.50 D. Myopes had stable refractions based on their reports of 
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having unchanged spectacle prescriptions in the previous two years. To assess the 

risk of angle closure glaucoma following pupil dilation, intraocular pressure and the 

depth of anterior chamber periphery were measured. Only participants with no to 

negligible risk were included, i.e. intraocular pressure was limited to ≤ 21 mm Hg 

and anterior chamber depth to ≥ Grade 3 (Van Herrick’s grading system). Individuals 

having any evidence or previous history of any ocular disease were excluded from 

participation. 

 

3.3 PARTICIPANTS 

Based on the research aims, the project had three main experiments. A total of 

108 healthy young adults aged 18-30 years (mean ± SD: 23.8 ± 3.6 years, range 18  

to 30 years) were recruited. The distributions of participants for the three 

experiments were: 

 Experiment 1 (chapter 4): Validation of partial coherence interferometry 

for estimating retinal shape (n=58) 

 Experiment 2 (chapter 5): Retinal shape in different racial groups (n=94) 

 Experiment 3 (chapter 6): Retinal shape in iso- and aniso-myopes (n=21) 

All participants who were in Experiment 1 were included in Experiment 2 and 

a subset from Experiments 1 and 2 participated in Experiment 3. 

Only right eyes were tested in Experiments 1 and 2, whereas data from both 

eyes of participants were used in Experiment 3. 

Forty percent (n = 42) of the participants were males and sixty percent (n = 64) 

were females. All participants (50 emmetropes and 56 myopes) were university 

students based in Queensland and their spherical equivalent refraction ranged from 

+0.75 to 8.15 D (mean ± SD: 1.77 ± 2.17 D). Myopia was defined as a spherical 

equivalent refraction (M) of ≤ −0.75 D and emmetropia as > −0.75 D to +0.75 D. 

Further specific information regarding participant characteristics for each experiment 

is described in the relevant chapters. 

Two pilot experiments (sections 3.5.5.2 and 3.5.5.3) involved a small number 

of participants, some of whom were not involved in the main experiments. 
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3.4 STATISTICAL ANALYSIS 

Data analysis was performed with SigmaPlot Version 12 (Systat Software, San 

Jose, CA) and IBM SPSS Statistics Version 21 (IBM SPSS Statistics, Armonk, NY). 

Statistical significance was set at p < 0.05.  

Parametric tests were performed to determine the statistical significance of 

results between the groups (Student independent t test for two independent groups 

and paired t test for two different groups). SigmaPlot software checked automatically 

for the normality of the data by applying the Shapiro-Wilk test, and whenever data 

were not normally distributed the Wilcoxon Signed Rank Test was used.  

Analysis of Variance (ANOVA) was performed to determine the differences in 

results when multiple parameters had to be considered such as race, refraction and 

visual field meridian. As applicable, post-hoc t-tests with Bonferroni correction were 

used to determine the significance of differences between races (East Asians, 

Caucasians and South Asians). 

Bland-Altman plots were used to determine the agreement between two 

methods or conditions. Bland-Altman analysis provides an XY scatter plot in which 

the difference of the methods/conditions is on the Y-axis and the average of the two 

methods is on the X-axis. The mean of the differences and its 95% Limits of 

Agreement (LoA) were used to interpret the agreement.  

Simple linear regressions were applied to find the association between 

spherical equivalent refraction and various parameters such as equivalent refractive 

index, lens surface radius of curvature, the highest order-coefficients of peripheral 

refraction component fits, relative peripheral eye lengths and retinal shape estimates. 

Analysis of covariance (ANCOVA) was performed to test the significance of slopes 

between races and between isomyopes and anisomyopes.  
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3.5 INSTRUMENTS AND TECHNIQUES 

Standard clinical techniques included corneal topography with Medmont E300 

and Oculus Pentacam, complete axial length and other axial intraocular length 

measurements of corneal thickness, anterior chamber depth and lens thickness 

(Pentacam, Lenstar). Specialised techniques included phakometry (custom-built 

instrument), peripheral refraction (Shin-Nippon SRW 5000 auto-refractor) and 

peripheral eye lengths (Lenstar). A subset of participants underwent magnetic 

resonance imaging (MRI). 

 

3.5.1 VIDEOKERATOSCOPE 

The Medmont E300 (Figure 3:1) is a computer-assisted videokeratoscope that 

works on the Placido-disk principle, providing topographical information from the 

anterior corneal surface. It quantifies corneal topography through analysing the 

corneal reflection of 32-Placido rings illuminated by red light-emitting diodes fitted 

into a conic structure. Position, size and spacing of these rings in the images 

determine the corneal shape. Closer rings indicate steeper corneas, and hence larger 

refractive power. The instrument software uses an ‘arc step method’ to analyse 

reconstruct topographical maps from upto 15120 measurement points. There are four 

different maps of corneal topography: axial power, tangential power, elevation height 

and refractive power. Together they provide a comprehensive description of the 

anterior corneal surface. 

The instrument has an auto-focus mechanism that incorporates a range-finder 

to determine the distance from the corneal apex to the instrument’s camera and 

captures images only when good focus and alignment are attained. The participants 

sat comfortably in front of the instrument and fixated the centre of the ring target 

inside the cone-shaped head of the instrument. A series of images were captured, and 

each image taken was given a score by the software according to stability, 

completeness, focusing, and alignment of the ring pattern. The captured image was 

accepted only when the score was above 95 out of 100, as suggested in the 

instrument manual. 
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Figure 3:1: Medmont corneal topographer. 

 

Small-cone Placido disc topographers have a shorter working distance 

(eliminate the shadows caused by nose or brow) and project a greater number of 

rings onto the cornea than large-cone topographers. Tang et al. (2000) reported that 

the Medmont E300 video-keratoscope can measure aspheric surfaces accurately. 

According to Cho et al. (2002), it provides highly accurate and  repeatable results in 

less time with the larger measurement diameter (9 to 11 mm) than other video-

keratometers (8 to 9 mm) because of its small Placido system. 

 

3.5.2 PENTACAM 

The Oculus Pentacam (Figure 3:2) uses a rotating Scheimpflug camera to 

provide a three–dimensional scan of the anterior segment of the eye. The 

Scheimpflug camera is a modification of a slit-lamp camera, with a modified 

geometry to improve depth of focus. In a Scheimpflug camera, the slit beam, camera 

lens, and CCD sensor intersect in a line where a cross-section of the eye appears in 

focus. By using a rotating Scheimpflug camera system, the Pentacam performs 12 to 

50 two-dimensional single captures of the anterior segment of the eye, which can be 

converted to a three-dimensional model for analysis. From combined scans of 

different sections, information regarding the anterior and posterior corneal 

topography, corneal pachymetry, anterior chamber depth angle, and lens density can 
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be evaluated. The high depth-of-focus and the high resolution of the Scheimpflug 

image make it possible to detect small changes in the shape of the cornea and the 

lens.  

 

 

Figure 3:2: Pentacam corneal topographer. 

 

Studies have shown that this method has good repeatability in measuring 

central corneal thickness, corneal curvature, anterior chamber depth and lens density 

(Shankar et al., 2008, Barkana et al., 2005).  In this study, the Pentacam was used to 

measure the cornea anterior and posterior radii of curvature, which were used in 

calculation of lens radii of curvature, lens equivalent refractive index and in 

estimating retinal shape estimates (section 3.5.7). 

 

3.5.3 PHAKOMETER 

Phakometry uses Purkinje images to assess the biometry of the lens. 

Illumination of an eye by a source results in four main Purkinje images formed by 

reflections from the anterior surface of the cornea (P1), posterior surface of the 

cornea (P2), anterior surface of the lens (P3) and the posterior surface of the lens 

(P4). In an unaccommodated eye, P3 is approximately twice the size of P1, while P4 

is inverted and slightly smaller than P1. P1, P2 and P4 are formed near the pupil 

plane while P3 lies in the vitreous humour. The sizes of P3 and P4 relative to that of 

P1 are used to determine lens surface radii of curvature and lens equivalent index. 
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A custom-built phakometer was mounted on a 450 mm x 300 mm movable 

optical table over a base with a forehead and chin rest for easy alignment and steady 

positioning of the head during measurements (Figure 3:3). Rather than having a 

single spot source, in order to make images distinguishable and locatable when they 

are partially obscured by the pupil, the source was a semicircular ring of thirteen 

infrared LEDs (890 nm, Osram, SFH 487) angled 20° inwards and 70 -76 mm from 

the cornea. Images were captured by an IR-enhanced CCD camera (PixeLINK) 

provided with a 55 mm focal length telecentric lens (Edmund optics) focused at a 

distance of 260 mm.  

 

 

Figure 3:3: Schematic diagram of phakometer optical system having a CCD camera 

with telecentric lens for capturing images. Purkinje images are formed of the 

illumination ring source. The OLED displays the fixation targets through the beam 

splitter (Figure adapted from Adnan’s unpublished PhD thesis). 

 

An OLED, with viewing area 12.78 mm x 9.00 mm, dimensions 19.8 mm x 

15.2 mm x 5.1 mm, and pixel pitch 15 µm controlled by computer, presented fixation 

targets across ±2.68˚ horizontal and ±1.99˚ vertical ranges at nine positions. The 
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targets were viewed through a 100 mm focal length Badal lens, which allowed a 

refraction range of −8 to +3 D. When the Purkinje image P1 was in focus at the 

camera, the pupil was at the second focal point of the lens. 

The optical axis of the camera-lens was aligned to the central spot target (5
th
) 

on the OLED screen. Participants were aligned when they fixated at the central 

fixation target of the OLED and the pupil of the eye was imaged in the centre of the 

camera, as viewed on the computer screen. Measurements were taken in the dark. P1 

and P4 were clearly visible, but P3 was more difficult to view. The instrument was 

first moved so that P3 was in best focus, and then moved again to get the best 

possible combination of P1, P3 and P4, at which time the eye image was captured. 

On rotating the eye to fixate all of the OLED targets in turn, other images were 

captured, and the combined information about positions of the Purkinje images could 

be used to determine kappa, lens tilt, and lens decentration; although such 

measurements were obtained from a few participants, they are not reported here.  

The setup also had a photo-refractor that consisted of fourteen 890 nm LEDs 

mounted in a custom-built knife-edge pattern in front of the lower half of the camera. 

This set up enabled recording of vertical luminance gradient pupillary images while 

the participant looked at the central fixation target (5th) of the OLED. The photo-

refractor was not used for this project. 

Custom-built software in MATLAB (Mathworks, Natick, MA) was written 

with three modes: fitting ellipses, a merit function to calculate lens biometry, and 

photorefraction to measure refraction/accommodation. The fitting ellipse mode fitted 

ellipses to the Purkinje images, to the pupil and to the limbus. It included an option 

to take the log of the image to enhance P3 detection. The sizes and centres of the 

Purkinje images, the pupil diameter, and the limbus diameter were determined 

(Figure 3:4). The Purkinje image positions could be referred to the pupil centre or to 

the cornea limbus centre. One millimetre on an image captured by the camera 

corresponded to 66.2 pixels on the CCD camera. Heights of P1, P3 and P4 were 

taken as the average of horizontal and vertical components of ellipses, averaged over 

3 images.  
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Figure 3:4: Ellipse fitting mode of the software. 

 

The software’s merit function mode estimates lens equivalent refractive index 

and radii of curvature from the following: Purkinje image heights, refraction (from 

Badal optometer setting), corneal radii of curvatures (average of anterior and 

posterior principal meridian from Pentacam), corneal thickness, anterior chamber 

depth, lens thickness, and vitreous length (200 µm added to correct from the inner 

limiting membrane to the retinal pigment epithelium - see section 3.5.7) (from 

Lenstar). A four refracting surface model eye is used. Refractive indices of the 

cornea, aqueous and vitreous at 555 nm are taken as those of the Gullstrand No 1 

eye: 1.376, 1.336 and 1.336, respectively. Using the dispersion equations provided 

by Atchison & Smith (2005), refractive indices for the source of wavelength 890 nm 

are taken as 1.36822, 1.32829 and 1.32855, respectively. 

The merit function MF has three components. The first component MF1 is the 

square of the difference between the experimental vitreous length Vexp and the 

theoretical vitreous length Vthe obtained through raytracing into the eye to the retina. 

The second and third components MF2 and MF3 are squares of the differences 

between the experimental image sizes h3exp and h4exp and their corresponding 

theoretical image sizes h3the and h4the. In brief, 

MF = MF1 + MF2 + MF3= (Vthe – Vexp)
2
+ (h3the – h3exp)

2
+ (h4the – h4exp)

2
  (12) 
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Recursive ray-tracing is continued until the merit function is reduced to a 

particular value or after a maximum number of cycles (2000) cycles. 

Because the Lenstar uses a 820 nm wavelength, estimates of lens refractive 

index were converted from 890 nm to 820 nm. From the equations for the different 

ocular media given by Atchison & Smith (2005), a linear relationship between the 

lens indices at the two wavelengths is 

nL820 = 1.0027nL890 – 0.0026               (13) 

Lens equivalent power Fe was calculated from 

Fe = FL1 + FL2 – (tL/nL) FL1FL2            (14) 

where nL is lens refractive index, tL is lens thickness, and FL1 and FL2 are the 

front and back surface powers determined from  

FL1 = (nL – na)/rL1, FL2 = (nv – nL)/rL2           (15) 

where rL1 and rL2 are the lens radii of curvature and na and nv are refractive 

indices of the aqueous and vitreous, respectively.  

 

3.5.4 PERIPHERAL REFRACTION - AUTO-REFRACTOR 

A Shin-Nippon auto-refractor SRW 5000 was used to measure refraction. The 

instrument uses the image size principle in which the sizes of the retinal image and 

its external image of an annular target are linearly related to the refraction (Atchison, 

2009). Analysis of shape and dimensions of the final image determines the 

refraction. An open-field of view through a large beam-splitter provides the 

flexibility for the participants to view targets at a large range of positions relative to 

the axis of the instrument, and thus allow off-axis (peripheral) refraction 

measurement. Its use for peripheral refraction has been found to give results in good 

agreement with those for a Canon R-1 auto-refractor and a Hartmann-Shack 

instrument (Atchison, 2003).  

The Shin Nippon SRW-5000 has a range of ±22.00 D sphere and ±10 D 

cylinder in steps of 0.125 D for power and 1˚ for cylindrical axis. Vertex distance can 

be altered to 0, 10, 12, 13.5, 15 or 16.5 mm. Measurements were obtained using 

12 mm for all participants. 
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Before each recording session, the instrument was carefully aligned with the 

on-axis fixation target by ensuring that the centre of the red-square, seen by the 

participant when the instrument was turned on, coincided with the external target. 

This matched the optical axis of the instrument to the line-of-sight. The instrument 

monitor provides an image of a ring graticule that gives the instrument axis, the 

corneal reflection from a ring of LEDs and the participant’s pupil. The instrument 

was moved by a joystick, transversely so that the centre of the pupil coincided with 

the graticule and anterio-posteriorly so the corneal reflection was sharply focused. 

For large fixation angles, the complete corneal reflection was not in focus at one time 

and the best overall focus was selected. 

Refraction data (sphere Sph, cylinder Cyl and axis ) are displayed on the 

monitor. An interface was used to export the refraction data to a personal computer 

via an RS-232 port. Custom built software converted these into power vector 

components (Thibos et al., 1997) 

      
   

 
                 (16) 

       
   

 
                       (17) 

      
   

 
                       (18) 

and displayed these components in an Excel spread sheet. 

Peripheral refraction measurements were taken at 14 positions along the 

horizontal visual field out to ±35º and at 12 positions along the vertical visual field 

out to ±30º in 5º intervals (Figure 3:5). For measurements along the horizontal visual 

field, participants rotated their eyes to fixate black 4 cm x 4 cm crosses, stroke width 

3 mm, on a wall 3 m from the eye. For the higher myopes, fixation was aided by 

bright LEDs. The instrument’s mirror was not big enough to encompass the 

necessary range of angles along the vertical meridian; and accordingly targets were 

placed on a vertical wall 1.67 m to the side of the participant and viewed through a 

45º inclined beam-splitter between the eye and instrument. This short fixation 

distance was not considered to be a problem as measurements along both horizontal 

and vertical fields were obtained after the participants were cyclopleged with 1% 

tropicamide. 
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The beam-splitter did not affect on-axis refraction for a model eye (mean ± SD 

of 5 measurements for M with and without mirror 5.75 ± 0.12 D and 5.75 ± 0.25 

D, respectively) or for human volunteers (mean difference ± SD for three 

participants: ΔM:0.06 ± 0.22 D, ΔJ180 = +0.04 ± 0.14 D and ΔJ45 +0.02 ± 0.17 D).  

 

 

Figure 3:5: Shin-Nippon SRW 5000 auto-refractor setup for measuring central and 

peripheral refraction. Target placement for a) horizontal and b) vertical visual fields. 

An external attachment with laser light was fixed to the top of the instrument to show 

targets to myopic participants. 

To investigate the influence of the mirror on peripheral refraction, 

measurement was taken along the horizontal visual field from 3 participants without 

and with the mirror (the horizontal field was used because it was not possible to 

obtain measurements along the vertical field without the mirror). Figure 3:6 shows 

two sets of measurements for M, J180 and J45. The measurements obtained with and 

without mirror were not significantly different for three participants (p > 0.05). 
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Figure 3:6: Comparison of peripheral horizontal field refraction without and with 

partial mirror for participants A, B and C. Graphs A1, B1 and C1 show spherical 

equivalent refraction and A2, B2 and C2 show astigmatic components (T = temporal 

and N = nasal). 
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3.5.5 PARTIAL COHERENCE INTERFEROMETRY 

A light field is called coherent when there is a fixed phase relationship between 

the electric field values either at different locations or at different times.  

Interference is an optical effect that occurs when two or more waves 

superimpose to form a resultant wave whose amplitude is the vector summation of 

the individual waves at each field point.  

Two well-known commercial partial coherence interferometry instruments for 

measuring eye lengths are the IOLMaster (IOLMaster V5, Carl-Zeiss Meditec AG 

Jena, Germany) and Lenstar (Lenstar LS900, Haag Streit, Bern, Switzerland). There 

are also two recent instruments, the Nidek Optical Biometer AL-Scan and the 

Topcon ALADDIN biometer, about which little information is available. Unlike 

ocular ultrasound they are non-invasive and measurements are quicker and more 

repeatable. The IOLMaster and Lenstar instruments provide better resolution (0.01-

0.02 mm) than ultrasound (0.10 mm) and magnetic resonance imaging (0.15 mm) 

(Kimura et al., 2007, Lam et al., 2001). They contain Michelson interferometers to 

create partial coherence and to compare the optical path lengths of two beams, one of 

which is reflected from a reference mirror on a moveable stage and the other which 

travels into the eye and is reflected from one or more surfaces (anterior and posterior 

corneal surface, anterior and posterior lens surface, retina, and choroid). 

 

Figure 3:7 is a representation of the IOLMaster. Infrared radiation with a short 

coherence length is emitted by a laser diode. This incident beam radiation splits into 

two equal coaxial beams at a partially reflecting mirror B1, with one beam reflected 

by movable mirror M1 and the other beam by stationary mirror M2. These beams 

enter the eye where reflections take place at the anterior cornea (C) and the retinal 

pigment epithelium (RPE) interfaces. After leaving the eye, they are reflected from 

beam-splitter B2 onto photo detector PTD. The displacement d of mirror M1 is 

related to signals detected at the photo-detector, thus resulting in determination of the 

optical path length L in the eye. Interference between different components takes 

place when the optical path length difference is smaller than the coherence length of 

160 µm. From modelling, the theoretical relationship to estimate the geometrical 

length L from the optical path length OPL for an emmetropic eye is:  
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   L = OPL/1.3459              (19) 

where 1.3549 is the mean group refractive index at 780 nm (Haigis et al., 

2000). Group refractive index is the ratio of the vacuum velocity to the group 

velocity in a medium. It is related to the group velocity rather than to the phase 

velocity in the medium. The phase velocity is the rate at which the phase of a wave 

propagates in a medium, while the group velocity is the rate at which the envelope 

wave (overall wave shape amplitude) moves through that medium. 

In the instrument, a calibration is used to match the axial length measured by 

ultrasonography, where the distance between anterior cornea and inner limiting 

membrane is measured:  

   L= (OPL/1.3549 – 1.3033)/0.957         (20) 

   or   

   L = 0.7711*OPL – 1.3617            (21) 

 

 

Figure 3:7: Schematic representation of IOLMaster. Based on Haigis et al. (2000). 

 

The IOLMaster contains a diode laser producing infrared radiation centred at 

approximately 780 nm, and the Lenstar contains a super luminescent diode 

producing infrared radiation centred at approximately 820 nm. These sources have 
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wide bandwidths with corresponding short coherence length so that strong 

interference signals occurs only when the optical path lengths are similar rather than 

differing by multiples of wavelengths. The IOLMaster uses the partial coherence 

interferometry principle only for axial length measurements.  

The Lenstar is more complex than the IOLMaster and uses 4 interferometers to 

recognise the signal from posterior cornea, anterior lens, posterior lens and retinal 

pigment epithelium. The instrument is formed mainly of a time domain optical 

coherence tomographer (TD-OCT) and a spectral domain optical coherence 

tomographer (SD-OCT) which shares a broadband light source of short coherence 

length. The instrument uses a moveable rotating mirror to travel certain physical 

distances corresponding to optical distances inside the eye. To pass over the vitreous 

humour, the instrument uses a comb of a transparent material of known refractive 

index n to increase the path length in the reference arm. In addition, the SD-OCT  

uses a grating to acquire multiple scans simultaneously. Corneal, anterior chamber 

and lens thicknesses are measured, together with lens and corneal topographies 

(although the latter is under sampled) using the OCT in addition to the use of two  

light emitting diodes in different meridians (up to 4 meridians) (Waelti and Schmid, 

1999). The manufacturer does not indicate what refractive index or indices are used, 

but it is intended to give similar axial lengths to the IOLMaster (Read et al., 2011). It 

is not known whether this average index is used for the other media or whether they 

have their own indices. An experiment was conducted to investigate this. 

 

3.5.5.1 Refractive index investigation  

Methods 

Axial lengths of several model eyes were determined using both an IOLMaster 

and a Lenstar. An overall group refractive index      for the Lenstar was estimated 

by comparing these lengths and taking into account difference in wavelengths for the 

instruments. 

Using the A-scan screen in the Lenstar Graphical User Interface (GUI), each 

ocular boundary of a real eye was shifted in small steps (Figure 3:8). This caused 

different changes in the geometrical lengths on either side of the boundary. The 

change in one medium’s thickness was plotted against the change in the other 
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medium’s thickness to give a linear curve with a negative slope (Figure 3:9). As the 

changes made by shifting boundaries were only to calculated biometric information 

and were not influenced by the eye which has been used, only one eye was 

necessary. Assuming that the optical path lengths changed equally as the boundary 

was moved, this slope m was the ratio of the two media refractive indices: 

                              (22) 

where     is change in physical thickness of medium   with group refractive 

index   . 

 

 

Figure 3:8: A sample A-scan screen from the Lenstar graphical user interface  with 

hands pointing towards all the peaks that can be redefined by the user. The six peaks 

indicated by “” represent (left-to-right) the reflections from anterior cornea, 

posterior cornea, anterior lens, posterior lens, internal limiting membrane and retinal 

pigment epithelium. 
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Figure 3:9: Anterior chamber depth (geometrical) as a function of corneal thickness 

(geometrical) while sliding the posterior corneal boundary, thus equally varying their 

optical path lengths. The slope represents the ratio of the assumed group refractive 

indices of the two media. The slope is influenced only by refractive indices assumed 

in the calculations, and is independent of what eye is being used. 

 

The ratio between the average group refractive index of the eye and that of the 

lens was taken by moving peaks to expand the lens to cover the whole length of the 

eye, and comparing the thickness of the lens to the axial length reading given by the 

GUI. The ratio between the indices for lens and aqueous was acquired by sliding the 

anterior surface of the lens. Similarly, the ratio between the indices for the aqueous 

and the cornea was achieved by sliding the posterior surface of the cornea. 

The indices were compared with indices found in schematic eyes. The 

refractive indices in these eyes were corrected from 555 nm to 820 nm using two 

approaches. In the ‘water scaling’ approach, chromatic dispersion similar to water at 

20°C (Daimon and Masumura, 2007) was assumed. The refractive index at 820 nm is  

                                          (23) 

where            and            are the phase refractive indices of water at 820 

and 555 nm, respectively.  

As the indices in this equation are phase indices applicable to single rays,     was 

converted to a group index applicable to wave bundles using 

             
   

  
              (24) 

where       and       are group and phase indices at wavelength  .  



  

Chapter 3: Research Design and Pilot Studies 63 

In the ‘Atchison & Smith’ approach (2005), Cauchy dispersion formulae of 

ocular media were used. These formulae apply for the phase indices of the Gullstrand 

No. 1 eye, and, as necessary, scaling was used: 

                                         (25) 

where           and            are the phase refractive indices of Gullstrand 

model eye at 820 and 555 nm, respectively. 

Conversions from phase indices to group indices were made using 

Equation (24).  

Table 3.1 shows the group refractive indices of the Gullstrand No. 1 eye and 

the Le Grand full theoretical eye according to the two approaches. These schematic 

eyes were chosen because their lens refractive indices are at the lower and higher 

ends of a range of schematic eyes. The indices for the Gullstrand eye lens, which has 

a shell structure of a high index nucleus surrounded by a lower index cortex, are 

based on its average phase index of 1.3994 at       . For the Le Grand eye, as for 

most paraxial schematic eyes, the gradient index of the lens has been replaced by an 

“equivalent index” which is higher than the index at any point in the lens in order to 

give the correct power. The ‘water scaling’ approach gives indices that are 0.0001 to 

0.0015 higher than the ‘Atchison & Smith’ approach.  

 

Table 3.1: Group refractive indices of Gullstrand No. 1 and Le Grand schematic eyes 

at 820 nm. 

Eye model/approach Cornea Aqueous Lens Vitreous 

Gullstrand/water scaling 1.3834 1.3435 1.4066 1.3434 

Le Grand/water scaling 1.3844 1.3449 1.4271 1.3434 

Gullstrand/Atchison & Smith 1.3823 1.3423 1.4063 1.3419 

Le Grand/Atchison & Smith 1.3834 1.3437 1.4270 1.3419 
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Results 

The IOLMaster and Lenstar instruments produced the same estimates of axial 

length of physical model eyes to within       mm. It follows that the average 

refractive index assumed by the Lenstar can be estimated from the IOLMaster 

refractive index, accounting for the difference in source wavelength. Multiplying the 

average group theoretical refractive index nIOL used in the IOLMaster equation (19) 

by the ratio of group indices of water at 820 nm and 780 nm,      for the Lenstar 

was estimated as: 

          
           

           
        

      

      
                                (26) 

where             and             are the group refractive indices of water at 

820 and 555   , respectively. 

Table 3.2 shows both the ratios between the group refractive indices of ocular 

media, obtained by sliding boundaries in the Lenstar GUI, and the estimated group 

refractive indices using 1.3540 for     . The Lenstar does not measure the vitreous 

length, but it could be calculated by subtracting all geometrical thicknesses from 

axial length. As an effect, the refractive index of the vitreous is equivalent to     . 

 

Table 3.2: Estimated effective refractive indices of ocular media used by the Lenstar 

GUI. 

Ocular medium Ratio Estimated effective refractive index 

Lens                                        

Aqueous                                    

Cornea                                    

 

Using Table 3.1 and Table 3.2, the ratios of estimated group refractive indices 

of the Lenstar and those of the schematic eyes were determined (Table 3.3). For the 

cornea, the estimated indices differ considerably by approximately 3.2% from 

schematic eye indices. For the aqueous the estimated indices differ by only 0.1-0.3% 

from the schematic eye indices: no distance correction is needed. For the lens, 

estimated refractive indices vary by 0.9% to +0.6% from schematic eye indices. An 

accurate value for group refractive index in visible light is about 1.410 for lenses of 
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young adult eyes, corresponding to 1.417 group index at 820 nm. This suggests the 

Lenstar underestimates lens group refractive index by 0.15%, corresponding to 

distance overestimation of less than 0.01 mm in 4 mm lenses. As 0.01 mm is the 

resolution limit for the lens, no distance correction is needed. 

 

Table 3.3: Ratio of estimated group refractive indices of Lenstar and those of 

schematic eyes at 820 nm. 

Eye model/approach Cornea Aqueous Lens 

Gullstrand/water scaling 0.9685 0.9978 1.0059 

Le Grand/water scaling 0.9678 0.9968 0.9915 

Gullstrand/Atchison & Smith 0.9693 0.9987 1.0061 

Le Grand/ Atchison & Smith 0.9685 0.9977 0.9915 

 

Recent communication with Haag Streit via Designs for Vision, its supplier in 

Australia, provided a template that shows “air thicknesses” that are converted to 

geometric lengths. The following export codes are used for deriving air thicknesses: 

{AIRAL}, {AIRCCT}, {AIRACD} and {AIRLT} for axial length, corneal 

thickness, anterior chamber depth and lens thickness, respectively. The “air 

thickness” was considered as a mean group optical path length. Refractive indices 

were determined using this template from a database of about 5000 measurements. 

For each medium, there is a linear equation relating thickness L and optical path 

length OPL: 

Axial length (mm)   : OPL = 1.2866L + 1.9587  R
2 
= 1.000 (27) 

Corneal thickness (m)   : OPL = 1.3447L + 0.0654 R
2 
= 0.9999 (28) 

Ant. chamber depth (mm): OPL = 1.3444L + 0.1331  R
2 
= 0.9999 (29) 

Lens thickness (mm)   : OPL = 1.4187L + 0.0002  R
2 
= 0.9999 (30) 

The equations obtained with GUI are comparable to those obtained here with 

“air thickness” except that the latter showed an offset in each case, indicating that the 
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“refractive index” will depend on the thickness. The ratio of OPL to geometric 

thickness decreases as thickness increases (Figure 3:10). For the lens and cornea, the 

off-set is negligible and is probably noise due to the measurement precision. In the 

case of the anterior chamber depth there is a considerable off-set of 0.13 mm.  

 

 

Figure 3:10: Ratios of OPL to geometrical length derived from equations (27) to (30) 

for a) axial length, b) corneal thickness, c) anterior chamber depth (bottom) and lens 

(top). 
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Discussion 

Based on this work, it is clear in the operation of the Lenstar that different 

group refractive indices are assigned to different media in the eye. The equations 

used by Haag-Streit appear to give appropriate group indices for the aqueous and 

lens, but the value for the cornea (1.3447) is much too low and the values for the 

axial length appear to be too high (the value of 1.354 is not attained till a length of 29 

mm). Because of these anomalies, it is difficult to be confident that the equations are 

converting from real optical path lengths to geometrical thicknesses. The 

understanding of the measurements of optical path length within the instrument is 

limited, such as what calibrations might be needed to convert measurements to real 

optical path lengths. It must be borne in mind that the axial length calibration of the 

IOLMaster, given by equation (20) was to ensure that it gave similar results to 

ultrasonography, and the Lenstar calibration was to ensure that it gave similar results 

to the IOLMaster rather than emphasis on accuracy in its own right. 

Accordingly, in the modelling to determine retinal shape (section 3.5.7), I 

believe that the best approach is to adopt the geometrical thicknesses as given by the 

instrument and to use refractive indices based on suitable schematic eyes as modified 

for different wavelengths according to the equations provided by Atchison & Smith 

(2005).  

In this regard, it should be noted that Faria-Ribeiro et al. (2014) estimated 

errors of axial length of the IOLMaster caused by variations in lens thicknesses. 

They used the group refractive indices used by Hitzenberger (1991) and Haigis et al. 

(2000) except that for axial length they used the theoretical equation (19) rather than 

equation (20) based on calibration against ultrasonography. Errors were within ±0.10 

mm across a wide range of axial lengths and lens thicknesses (Figure 3:11a), but 

would have been much higher if the calibration equation had been used (Figure 

3:11b). 
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Figure 3:11: Theoretical error of the IOLMaster as a function of instrument axial 

length for different lens thicknesses using a) equation (19), and b) equation (20). 

Based on Faria-Ribeiro et al. (2014). 

In conclusion, the Lenstar biometer uses different refractive indices for 

different ocular media. Some of the refractive indices, such as that for the cornea, are 

not physiological, and it is likely that the calibrations in the instrument correspond to 

instrument-specific corrections and not the real optical path lengths. 

 

3.5.5.2 Preliminary Experiment 1: Repeatability and comparison of partial 

coherence interferometry instruments for measuring peripheral eye 

lengths 

A few studies have used partial coherence interferometry for measuring 

peripheral eye lengths, but no study has investigated repeatabilities and agreement of 

the instruments. As both instruments were available, repeatabilities and agreement of 

the instruments were evaluated in a preliminary experiment. 

 

Measurement of peripheral eye lengths 

A total of 7 healthy adults, consisting of 2 emmetropes (< ±0.75 D) and 5 

myopes (−0.75 D to −6.25 D), with the age range 23 to 57 years (mean age 35 ± 11 

years) having best corrected visual acuity of 6/6 or better were recruited. After 

dilating the pupil with 1 drop each of 1.0% tropicamide and 2.5% phenylephrine, 
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central and peripheral eye lengths were recorded using the IOLMaster V5 and 

Lenstar LS 900.  

Peripheral eye length measurements were obtained by using an external 

attachment, similar to that of Mallen and Kashyap (2007), containing a goniometer, a 

50/50 beam-splitter (50% transmission/50% reflection), a Maltese cross fixation 

target placed at focal length of a Badal lens (+33.3 D) simulating optical infinity, and 

an LED source (Figure 3:12). The Maltese cross was aligned with the instrument 

fixation axis for on-axis measurements. The goniometer was moved over the base 

rail (movement along X, Y and Z axes), until the Maltese cross target could be seen 

at all positions of goniometer rotation, thus ensuring that the effective position about 

which the target rotated corresponded with the centre-of-rotation of the eye. For the 

horizontal visual field, the attachment was fixed to the top of chinrest frame of the 

IOLMaster or Lenstar instrument using a pair of right-angle retort clamps, while for 

the vertical visual field, the attachment was to the side frame of the chin rest.  

 

 

Figure 3:12: The PCI instrument’s external attachment that show targets in the 

peripheral visual field in order to measure peripheral eye lengths. 

 

Translation of the front of the eye upon rotation required realignment of the 

pupil along the instrument axis. Participants were asked to blink completely before 

each measurement to stabilize tear film. The alignment mire was maintained in clear 
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focus, and it moved towards the pupil margin as the field angle increased. A 

minimum of four consecutive measurements were recorded at each position and their 

mean was calculated. Eye length measurements with IOLMaster were interpreted 

(accepted or rejected) by the investigator based on the signal-to-noise ratios (SNR) 

and the appearance of graphs. The values which had SNR below 2.0 were rejected as 

per the manufacturer guidelines. The Lenstar does not show any SNR but uses a 

proprietary intelligent detection system that enables the instrument to take 

measurements only when the eye is stable. If the patient blinks or loses fixation, the 

measurements are automatically rejected and measures resume when the participant’s 

fixation improves. When the eye was not aligned properly, an error symbol was 

displayed adjacent to the value and these measurements were deleted. 

The effect of the beam-splitter was assessed by sets of five measurements for a 

model eye and a human eye. Using the Lenstar calibration eye model, axial length 

was 23.80 ± 0.00 mm with or without the beam-splitter for both instruments. For the 

human eye and for the Lenstar, axial length was 23.35 ± 0.00 mm with or without the 

beam-splitter and intraocular distances were not affected significantly by the beam 

splitter (screenshot of measurements is shown in Figure 3:13). 

 

 

Figure 3:13: Screenshot of measurements with and without beam-splitter. 
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Data collection 

The eye lengths were determined in 5º steps out to 30º along the nasal visual 

field, out to 35º along the temporal visual field, and out to ±30º along the vertical 

visual field. Measurements were not possible any further because the edge of the iris 

obstructed the passage of the beam. All the measurements were performed by the 

same investigator and collected from right eyes except for one participant for whom 

the left eye was used. For right eyes, rotation to the right side corresponded to the 

nasal visual field denoted with (+) sign (temporal retina) and rotation to the left side 

corresponded to the temporal visual field denoted with (–) sign (nasal retina). 

Similarly, upward rotation corresponded to the inferior visual field denoted with (–) 

sign (superior retina) and downward rotation corresponded to the superior visual 

field denoted with (+) sign (inferior retina). 

For inter-sessional reliability determination, measurements were obtained at 

two different sessions (different days for 4 participants and the same day for 3 

participants). The order of instruments in a session was assigned randomly. 

Measurements were recorded along the horizontal visual field (temporal to nasal) 

followed by the measurements along the vertical visual field (superior to inferior). 

The average time to obtain a measurement set was 45 minutes for the IOLMaster and 

60 minutes for the Lenstar. 

 

Analysis 

For determining intra-sessional repeatability for each instrument, each 

participant/session/visual field position was represented by the standard deviation of 

the first 4 measurements. The intra-sessional repeatability was given by the mean of 

these standard deviations across 7 participants, 2 sessions and visual field positions 

(14 for the horizontal visual field and 13 for the vertical visual field).  

For determining inter-sessional repeatability for each instrument, each 

participant/visual field position was represented by the difference between the mean 

values of the two sessions. The inter-sessional repeatability was given by the 

standard deviation of these differences across participants and visual field positions.  

For determining the agreement between the two instruments, each 

participant/visual field position was represented by the mean difference between 
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instruments across the two sessions. The agreement was given by the mean and the 

standard deviation of the differences across participants and visual field positions. 

One weakness about the above approach is that multiple positions from each 

participant are treated as independent observations. Bland and Altman (2007) have a 

method for investigating agreement between methods with multiple observations for 

individual participants. This can be applied here, treating different peripheral 

positions as if they are different observations for which the underlying quantity is 

varying. As compared to considering each position for a participant as independent, 

the standard deviations (or 95% prediction limits) increase by ≤2% for intra-

sessional, inter-sessional and inter-instrument analyses, which is small and can be 

ignored. 

In addition to the above analyses, repeated-measures analyses of variance 

(ANOVA) were conducted on eye lengths with participants as the repeated measures. 

A first ANOVA was conducted for intra-sessional standard deviations, with session 

(session 1, session 2), instrument (IOLMaster, Lenstar) and visual field position as 

within-participant factors. A second ANOVA was conducted for absolute inter-

sessional differences, with instrument and visual field position as within-participant 

factors. A third ANOVA was conducted for differences between instruments, with 

session and visual field position as within-participant factors. These three ANOVAs 

were conducted for the horizontal and vertical visual fields separately and for 

combined data; as results were similar for the three approaches, only results for the 

combined data are mentioned. 

  



  

Chapter 3: Research Design and Pilot Studies 73 

Results 

 

Figure 3:14: Repeatability of eye length measurements:for one subject for: 

IOLMaster along a) horizontal and b) vertical visual fields; Lenstar along c) 

horizontal and d) vertical visual fields. Error bars are intra-sessional standard 

deviations. 

 

For the IOLMaster, the intra-sessional repeatabilities were 0.04 ± 0.04 mm 

along the horizontal and vertical visual fields. Corresponding results for the Lenstar 

were 0.02 ± 0.02 mm along both the horizontal and vertical visual fields. The 

difference between the two instruments was significant in the corresponding 

ANOVA (F1, 6 = 19.1, p = 0.005). 

The IOLMaster and the Lenstar had intra-sessional standard deviations of 0.02 

and 0.01 mm, respectively, at the centre of the visual field. The standard deviations 

were greater away from the centre, with maximum values for the IOLMaster of 0.07 

mm (at 20º, 25º temporal and 10º, 30º superior field positions) and for the Lenstar of 

0.06 mm (at 15º temporal field position corresponding to the optic disc). The 
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increased intra-sessional variation away from the centre was supported by the 

significant effect of visual field position (F26, 156 = 4.2, p <0.001). 

Figure 3:15 shows Bland-Altman plots of inter-sessional repeatability. 

Different symbols are given for different participants. The inter-sessional 

repeatabilities for the IOLMaster for the horizontal and vertical visual fields were 

±0.11 and ±0.08 mm, respectively; corresponding repeatabilities for the Lenstar were 

±0.05 and ±0.04 mm. The difference between the two instruments was marginally 

significant in the corresponding ANOVA (F1,6 = 5.8, p = 0.05). 

 

 

Figure 3:15: Bland-Altman plots of inter-sessional repeatability of eye length: 

IOLMaster along a) horizontal and b) vertical visual fields; Lenstar along c) 

horizontal and d) vertical visual fields. Different symbols represent data of different 

participants, with 14 points and 13 points for each participant along horizontal and 

vertical fields, respectively. The mean differences and the 95% prediction limits are 

shown by straight lines. 
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The inter-sessional repeatability increased from the centre towards the 

peripheral visual field for both the IOLMaster and the Lenstar. Both instruments had 

repeatabilities of 0.03 mm at the centre of the field, increasing for the IOLMaster to 

approximately 0.20 mm (15º temporal, 30º temporal and 30º superior field positions) 

and increasing for the Lenstar to approximately 0.08 mm (15º temporal and 20º-30º 

nasal field positions). The increased inter-sessional variation away from the centre 

was supported by the significant effect of visual field position (F26,156 = 2.4, p 

<0.001). 

 

 

Figure 3:16: Bland-Altman plots of agreement of eye lengths between IOLMaster 

and Lenstar along a) horizontal and b) vertical visual fields. Different symbols are 

given for different participants, with 14 points and 13 points for each participant 

along horizontal and vertical fields, respectively. The mean differences and the 95% 

prediction limits are shown by straight lines. The dotted lines show regressions: 

horizontal visual field slope 0.0177 (R
2 

= 0.17, n = 98, p <0.001); vertical visual 

field 0.0153, (R
2 

= 0.14, n =91, p <0.001). When regressions were repeated based 

on mean values for each participant (n = 7), similar slopes were obtained, but that for 

the vertical visual field was marginally significant (p = 0.07). 

 

 

Figure 3:16 shows Bland-Altman plots of agreement between the two 

instruments. As for Figure 3:15, different symbols are given for different 

participants. The agreements between the instruments were 0.01 mm and 0.02 mm 

for the horizontal and visual fields, respectively, with standard deviations of ±0.07 
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mm for both visual fields. These results indicate that the instruments are in good 

agreement. The differences between the two instruments varied from 0.02 mm at the 

centre of the visual field to 0.04 mm along the horizontal field (5º, 10º, 25º nasal and 

30º temporal), and 0.06 mm along the vertical field (30º inferior), but there was no 

statistically significant difference between the instruments at any field position and 

analysis of variance did not show an effect of field position (F26, 156 = 1.0, p = 0.47). 

For one participant (square boxes on left of plots) the IOLMaster had greater 

measures than the Lenstar for most positions while for another participant (filled 

triangles on right side of plots) the reverse was the case. In both these participants, 

the variation (one instrument greater or lesser) is noticed only at the temporal visual 

field and was irregular (greater difference at 15º and 20º than at extreme 30º visual 

field), but did not show any systematic constant steep increase or decrease in pattern.  

The differences between the instruments change significantly with axial length, 

with the Lenstar giving larger measurements of axial length than the IOLMaster for 

longer eyes; the slopes in Figure 3:16 are approximately –0.016 (p <0.001). 

 

Discussion 

For measuring peripheral eye lengths along the horizontal and vertical visual 

fields, an assessment was made for intra-sessional and inter-sessional repeatability of 

IOLMaster and Lenstar (partial coherence interferometry instruments) and the 

agreement between the instruments. Intra-sessional repeatability was 0.04 mm for the 

IOLMaster and 0.02 mm for the Lenstar. Inter-sessional repeatabilities were ±0.11 

and ±0.08 mm for the IOLMaster for the horizontal and vertical visual fields, 

respectively; corresponding repeatabilities for the Lenstar were 0.05 and 0.04 mm. 

Repeatabilities worsened away from fixation. Agreements between the instruments 

were good at 0.01 ± 0.07 mm and 0.02 ± 0.07 mm for the horizontal and vertical 

visual fields, respectively, with no significant influence of visual field position; but 

the lengths with the Lenstar became greater than those with the IOLMaster as axial 

length increased (rate about 0.016 mm/mm).  

The intra-sessional and inter-sessional repeatabilities of both instruments were 

excellent. The latter is particularly of note as the external device had to be re-

attached before each session with each instrument, and the relative peripheral eye 
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length at extreme visual field positions ranged between 0.3 mm and 2.1 mm for 

participants. The smaller (better) intra-session repeatability with Lenstar compared to 

IOLMaster may be partly due to a difference in the recording method as each Lenstar 

measurement is the average of 16 scans. Also, the Lenstar had the better inter-

sessional repeatability. Quantification was made based on the direct relation between 

the axial length and refraction (0.3 mm = 1.0 D), with the consideration that it is 

clinically important to detect change of 0.07 mm (corresponding to 0.25 D). The 

SD’s for IOLMaster and Lenstar (intra-session repeatability) 0.05 mm and 0.02 mm 

corresponds to about 0.15 D and 0.06 D change in refraction, and Lenstar’s 

repeatability SD values corresponding to about 0.15 D. Since these instruments 

identify less than the clinically important difference (0.07 mm = 0.25 D), this is 

considered an excellent agreement. Likewise, the differences between the two 

instruments varied from 0.02 mm at the centre to maxima of 0.04 mm and 0.06 mm 

along the horizontal and the vertical field, corresponding to about 0.15 and 0.20 D 

change in refraction and accordingly were considered in good agreement.  

The on-axis intra-sessional repeatability of 0.02 mm is better than 0.04 mm as 

reported by Santodomingo et al. (2002), while the 0.01 mm for the Lenstar is at the 

lower end of 0.01 to 0.04 mm repeatabilities in other studies (Buckhurst et al., 2009, 

Cruysberg et al., 2010, Shammas and Hoffer, 2012, Rohrer et al., 2009, Bjelos 

Roncevic et al., 2011). In the only previous investigation of off-axis repeatability 

with the Lenstar, for 5 positions along the horizontal field, Schulle and Berntsen 

(2013) reported repeatabilities of 0.03 to 0.05 mm, similar to those obtained here.  

The on-axis inter-sessional repeatabilities of 0.03 mm for both instruments are 

within the 0.02 to 0.04 mm range reported for the IOLMaster (McDaniel and Mutti, 

2002, Sheng et al., 2004, Kimura et al., 2007) and poorer than 0.01mm reported for 

the Lenstar (Buckhurst et al., 2009, Shammas and Hoffer, 2012), but similar to that 

reported by Schulle and Berntsen.The latter reported repeatabilities of 0.025 and 0.06 

mm at two off-axis positions, similar to those obtained here. 

The measurements became greater for the Lenstar than for the IOLMaster with 

increase in eye length (0.016 mm/mm). I analysed the results of three studies of on-

axis length (Rohrer et al., 2009, Buckhurst et al., 2009, Salouti et al., 2011, Zhao et 

al., 2013) (personal communications) and confirmed this trend only for the study of 

Buckhurst et al. for which the slope was 0.010 mm/mm. 



  

Chapter 3: Research Design and Pilot Studies 78 

Several studies have already reported the excellent agreement between the 

instruments for on-axis length measurements. Mean differences were reported as 

0.00 to 0.04 mm, with some studies, but not others, finding significant differences 

(Buckhurst et al., 2009, Holzer et al., 2009, Rohrer et al., 2009, Salouti et al., 2011). 

As axial length change directly changes the refractive error (0.30 mm = 1D), the 

agreements of ±0.07 mm are equivalent to approximately ±0.25 D. This implies that 

both these instruments are capable of identifying the clinically significant changes 

which is the important to detect in myopia research. 

The ease of peripheral measurements was similar for the two instruments. The 

average time to obtain a measurement set, including the adjustments of the external 

attachment, was 40 minutes for the IOLMaster and 50 minutes for the Lenstar. This 

difference is partly because of the different technology used by the instruments. The 

Lenstar uses a proprietary “intelligent detection system” that enables the instrument 

to takes measurements only when the eye is stable - if the patient blinks or loses 

fixation, the instrument waits until the patient's fixation returns. The IOLMaster does 

not consider eye movement and displays the reading immediately with the 

investigator accepting or rejecting readings based on the signal-to-noise ratio. 

 

Conclusion 

Good agreement between IOLMaster and Lenstar for central and peripheral eye 

length measurements along both horizontal and vertical visual fields indicates that 

the instruments can be used interchangeably for measuring central and peripheral eye 

lengths. While the present preliminary experiment has not established the validity of 

using peripheral eye length measurements for determining retinal shape, it does show 

that such measurements with two commercial partial coherence interferometers are 

similar and repeatable. Because the Lenstar showed better intra-sessional and inter-

sessional repeatability compared to IOLMaster, it was used for the rest of the 

experiments. Validation of Lenstar for estimating retinal shape is described under 

Chapter 4. 
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3.5.5.3 Preliminary Experiment 2: Influence of eye rotation on peripheral 

eye length measurement 

Using eye rotation when measuring peripheral refraction leads to concern about 

whether the rotation could influence results through pressure exerted by eyelids or 

extra-ocular muscles. Ferree et al. (1931, 1932) and Seidemann et al. (2002) reported 

that eye rotation could shift refraction myopically by up to 2.50 D and 0.75 D, 

respectively, but Radhakrishnan & Charman (2008) and Mathur et al. (2009b) did 

not find significant differences between eye and no-eye rotation conditions.  

Similarly to the case of peripheral refraction, the issue of rotating the eye to 

measure peripheral eye length arises. Since the partial coherence interferometry 

methods offer high resolution (0.01 mm), and can therefore detect small changes in 

eye length, any change in eye shape due to extra-ocular muscle effect should be 

larger than the noise level. Bayramlar et al.’s (1999) finding of increased axial 

elongation during convergence under cycloplegia supports Greene’s (1980) theory 

that oblique muscle contraction can influence axial elongation. A recent study by 

Ghosh et al. (2012) found that the eye elongates in downward gaze due to gravity. As 

convergence, accommodation and downward gaze shift of the eye may increase axial 

length, it is important to determine effects of eye rotation on peripheral eye lengths.  

Macfadden et al. (2007) claimed significant effects of eye rotation on 

peripheral eye length measurements along the horizontal visual field using the 

IOLMaster, but they did not mention the duration of rotation to cause these results. 

The targets were attached to the instrument and were moved to achieve the 

alignment, and this may have affected comparisons between eye rotating and non-

eye rotating conditions. 

This preliminary experiment aims to determine whether the eye rotation 

approach for measuring peripheral eye lengths is valid. Measurements of peripheral 

eye length were compared when the eye or the head was rotated in emmetropes and 

myopes along both horizontal and vertical visual fields. 
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Data collection 

Twenty-three healthy young adults were recruited, consisting of 11 

emmetropes (spherical equivalent within ±0.75 D) and 12 myopes (−0.75 D to −6.00 

D). Mean age was 25 + 3 years and mean refraction was −1.25 ± 1.75 D. Participants 

had best corrected visual acuity of 6/6 or better and astigmatism <0.75 D. Horizontal 

field measurement was done for all participants and vertical field measurement was 

done for a subset of 8 participants (4 emmetropes, 4 myopes). 

Central and peripheral eye lengths were measured with the Haag Streit Lenstar 

LS 900 biometer as it shows good repeatability for peripheral eye lengths as reported 

in section: 3.4.5.1) (Schulle and Berntsen, 2013, Verkicharla et al., 2013). 

Measurements were made from right eye of all participants with the left eye 

occluded. Eye lengths were determined at the following visual field positions: 0
o
, 

()30° temporal, (+)30º nasal, (+)25º superior and (–)25º inferior. Smaller angles 

were used vertically than horizontally because of physical limitations in the no-eye 

rotation condition for the vertical visual field. Measurements at (–)30º inferior 

required lifting the instrument more than 10 cm from the provided table, and then 

tilting the instrument backwards. Since the distance between the instrument and the 

eye must be kept at 68 mm, the participants had to lean forward. Measurements at 

(+)30º superior were obstructed by the frontal orbital bone. 

Visual field position 0º was always tested first, followed by the positive angles 

and then by the negative angles. 

There were two different experimental conditions: eye rotation and no-eye 

rotation. For the eye rotation condition, participants rotated their eyes with the head 

aligned along the instrument axis and fixated a Maltese cross target at optical infinity 

provided through an attachment described above. Measurements were obtained by 

following the same procedure that was described in section 3.4.5.1. 

For the no-eye rotation condition along the horizontal visual field meridian, 

participants rotated their head with the eye remaining fixed relative to the head 

(Figure 3:17). A separate chin rest frame was made for this purpose and a bite bar 

was mounted on to a rotation stage. The attachment described above was slid 

horizontally so that the participant saw the complete target at the angle of interest. 
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For the no-eye rotation condition along the vertical visual field, the instrument 

rather than the head was rotated. The rotation of the instrument involved an angle 

inclination assessment device and the participant’s bite bar was moved up and down 

to match the centre of rotation of the eye to the instrument axis. All the participants 

maintained fixation on the target, which was directly ahead (Figure 3:18). 

 

 

Figure 3:17: Setup for the no-eye rotation condition along the horizontal visual field : 

(left) participant looking straight ahead, (middle) head rotation to the right (+30° 

nasal field), and (right) head rotation to the left (–30° temporal field). White arrows 

point to the Maltese cross target in front of the eye. 

 

 

Figure 3:18: Setup and instrument position for the no-eye rotation condition along 

the vertical visual field: (left) instrument setup for participant looking straight ahead, 

(middle) forward tilt of the instrument (+25° superior field), and (right) backward tilt 

of the instrument (–25° inferior field). White arrows point to the Maltese cross target 

in front of the eye. 
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Measurements commenced 20 minutes after pupil dilation with 1% 

tropicamide. At least three consecutive measurements were recorded with both the 

conditions at each position, with each measurement taking less than 10 seconds. 

After measurements with the eye rotation condition, a “rest” of 30 minutes was given 

before proceeding to the no-eye rotation condition.  

The influence of the duration of maintaining eye position on peripheral eye 

lengths was assessed by recording measurements at 0, 60, 120, 180 and 210 seconds 

after eye rotation in six participants (4 myopes and 2 emmetropes). Measurements 

were obtained at ±30 along both horizontal and vertical visual fields, unlike in the 

no-eye-rotation condition above where measurements were obtained at ±25 in the 

vertical field due to physical limitations. The fixation was maintained steadily by all 

participants for the entire duration of 210 seconds and was monitored by the 

examiner. After 210 seconds of eye rotation towards positive angle, a “rest” of at-

least 15 minutes was given to all participants to avoid any systematic bias before 

proceeding to the measurements of negative angle. During the “rest” period, 

participants looked at a distant wall. 

 

Analysis 

For determining influence of eye rotation on peripheral eye lengths, a repeated 

measures analysis of variance (ANOVA) was performed for each visual field 

meridian using measurements from the two conditions and two positions. The 

Wilcoxon Signed Rank Test was used to determine the significance of the duration 

following eye rotation (±30
o
 along both horizontal and vertical visual fields) on 

peripheral eye lengths. A significance criterion of p < 0.05 was used for all tests. 

 

Results 

Figure 3:19 and Figure 3:20 show the differences in eye length measurement 

between the eye rotation and no-eye rotation conditions for each participant along the 

horizontal and vertical meridians. There are no obvious different patterns between 

the two groups. 
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Figure 3:19: Differences in eye length measurements (mm) between the eye rotation 

and no-eye rotation conditions for each participant at three horizontal visual field 

positions (-30º, 0º, 30º in this order). 

 

 

Figure 3:20: Differences in eye length measurements (mm) between the eye rotation 

and no-eye rotation conditions for each participant at three vertical visual field 

positions (-25º, 0º, 25º in this order). 

 

Analysis of variance showed no difference in peripheral eye lengths between 

the conditions along the vertical meridian (F1, 7 = 0.155, p = 0.705). There was a 

statistically significant difference between the conditions along the horizontal 



  

Chapter 3: Research Design and Pilot Studies 84 

meridian (F1, 22= 4.85, p = 0.038), but the differences were not significant at 

individual positions (p ≥ 0.10, paired t-tests).This is supported by Figure 3:21, which 

shows the group (myopes, emmetropes and total) differences in peripheral eye 

lengths between conditions. Mean differences ±95% confidence interval limits along 

the horizontal field were 0.016 ± 0.018 mm (30º) and 0.011 ± 0.013 mm (+30º); 

corresponding values along the vertical field were 0.016 ± 0.026 mm (25º) and 

0.011 ± 0.031 mm (+25º), respectively. The differences were not significant at any 

visual field position in emmetropes, myopes or the total group. 

 

 

Figure 3:21: Mean differences of eye length measurements between eye rotation and 

no-eye rotation conditions along the a) horizontal (±30º) and b) vertical visual fields 

(±25º). These are shown for myopes, emmetropes and all participants. Error bars 

represent 95% confidence intervals of means. 

 

Figure 3:22 shows the influence of time after eye rotation on peripheral eye 

length for six participants (4 myopes and 2 emmetropes). There was no significant 

change in peripheral eye lengths after 210 seconds at any visual field position (p > 

0.05). 
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Figure 3:22: Mean changes in peripheral eye length measurements from 6 

participants in four visual field positions with the eye held rotated relative to the head 

for 210 seconds. Error bars are standard deviations. 

 

Discussion 

This experiment investigated differences in peripheral eye length 

measurements between eye rotation and head rotation conditions using the Lenstar 

along horizontal and vertical visual fields out to 30° and 25°, respectively, from the 

straight ahead position. The conditions were not significantly different along the 

vertical visual field. The conditions were significantly different along the horizontal 

visual field, although not at individual 30° temporal and 30° nasal positions. 

Furthermore the 95% limits of agreement between the two conditions across the 

(±30º) horizontal (0.013 ± 0.077 mm) and (±25º) vertical field (0.003 ± 0.091 

mm) were within the 95% repeatability limits previously found for the instrument 

(±0.10 mm) across a range of visual field positions (see section 3.4.5.1) (Verkicharla 

et al., 2013). 

To give some context to the measurement differences, the effect of an error of 

−0.016 ± 0.018 mm was determined, corresponding to 95% confidence limits of the 

differences between the two conditions at –30° horizontal, might have on retinal 

shape estimates. A simple model was used consisting of a corneal surface with radius 

of curvature of 7.8 mm, backed by a medium of refractive index of 1.333 and a retina 

with a radius of curvature of −12 mm and placed 24 mm behind the cornea. A 

peripheral ray was directed towards the centre of curvature of the cornea, with 

deviations likely to occur at a lens being ignored. Based on this single angle, the 

estimated retinal radius of curvature of a spherical retina would be −11.94 ± 0.08 
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mm, and the estimated asphericity (Q) without modifying the radius of curvature 

would be +0.04 ± 0.05 (Atchison, 2006). These errors are of small magnitude. 

 Statistical power was low. A power analysis comparing the two conditions 

using G*power software (p = 0.05, power = 0.80) indicates that 46 to 135 

participants are necessary to obtain significance for the mean differences obtained at 

the different visual field positions. Considering that the difference between the two 

conditions is small and does not influence retinal shape results, the study was not 

conducted on the mentioned sample as the time required for this was not warranted. 

Radhakrishnan & Charman (2008) and Mathur et al. (2009b) did not find any 

influence of eye rotation on peripheral refraction along the horizontal meridian for 

either emmetropic or myopic groups. This does not eliminate the possibility of 

change at oblique directions, with Ehrlich (1987) finding 0.29 D transient myopic 

shift in central refraction after a prolonged (2 hours) binocular task at 20 cm distance 

and Ghosh et al. (2012) finding increase in central axial length (0.018 mm) in 

combined downward and inward gaze. Radhakrishnan & Charman (2008) also 

investigated the effect of prolonged oblique viewing (150 seconds) on peripheral 

refraction and did not find any effect, which fits the finding that peripheral eye length 

did not change even after holding the eye in rotated positions for 210 seconds. 

 

Conclusion  

The differences in measurement between the eye rotation and no-eye rotation 

conditions were sufficiently small that either condition could be used to estimate 

retinal shape from peripheral eye lengths, at least out to the angles that were used 

here. Accordingly, I used the eye rotation approach for the experiments to be 

described in the next chapters. 
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3.5.6 MAGNETIC RESONANCE IMAGING 

Magnetic resonance imaging (MRI) is most commonly used as a medical 

imaging technique in radiology to visualise the internal structure and functions of 

human body parts (Edelman et al., 2006). MRI can also image any plane (or a 3D 

volume) and can provide both anatomical and functional information. Although the 

image resolution obtained through MRI is relatively poor compared with other 

radiographic techniques such as X-ray,  and computerised tomography , it gives 

better contrast between the different soft tissues of the body (Scherzinger and 

Hendee, 1985).   

 An MRI machine uses a powerful static magnetic field to align 

the magnetisation of hydrogen nuclei in the body (because they are charged and 

possess spin angular momentum, they behave like little magnets) and radio-

frequency fields to systematically alter the alignment of this magnetisation. 

Hydrogen nuclei present in the body are predominantly in the form of water (H2O) 

and fat molecules. Because the nuclei are subjected to a magnetic field and absorb 

radiation at resonance, the method is also called Nuclear Magnetic Resonance 

Imaging. When a radiofrequency pulse is applied, atoms absorb some of the pulse's 

energy, which tips the nuclear magnetisation away from the static magnetic field 

direction. When the radio frequency pulse is turned off, the hydrogen atoms release 

absorbed energy, giving rise to a detectable signal which decays with time as the 

nuclear magnetisation relaxes back to equilibrium. This signal is detected by a radio 

frequency coil or antenna that transforms the signal into electrical current, which is 

then used to construct the image of a slice (or set of slices) of the scanned area. The 

nuclear magnetisation can be divided into two components: a ‘longitudinal’ 

component which increases exponentially with a characteristic time known as T1 as 

the component of magnetisation parallel to the static magnetic field returns to 

equilibrium and a ‘transverse’ component which decreases exponentially with a 

characteristic time known as T2 as the components of magnetisation perpendicular to 

the static magnetic field decay to zero. Based on its origin, the longitudinal time T1 

is called spin-lattice relaxation time and the transverse time T2 as spin-spin 

relaxation time. Different tissues, because of their different chemical constitutions 

and different physical states, will have different relaxation times. Images can be 

weighted in favour of T1 or T2. For example, to create a T2-weighted image one has 
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to wait for different amounts of magnetisation to decay before measuring the MR 

signal by changing the echo time (TE). T1 weighted images cause fat to appear 

bright and water to appear dark and vice versa with the T2 weighted images. In 

contrast to T1-weighted MRI, T2-weighted MRI illustrates internal eye shape by 

high-contrast delineation of the vitreous-retina interface. Therefore, in this project 

T2-weighted MRI was used.  

In order to generate an image, the NMR signals must be spatially encoded. 

This is achieved by application of pulsed magnetic field gradients that are applied 

either before signal detection (‘phase encoding’) or during signal detection 

(‘frequency encoding’). 

 

3.5.6.1 Image acquisition parameters 

MRI has a relatively slow acquisition rate which makes the images prone to 

motion artefacts/noise and it has limited resolution in comparison with optical 

techniques. The relationship between the MR signal and the image noise present is 

expressed as the signal-to-noise ratio (SNR). Mathematically, the SNR is the ratio of 

the signal intensity measured in a region of interest and the standard deviation of the 

signal intensity in a region outside the area of interest. There are several factors 

affecting SNR (Redpath, 1998): transmit and receive radio frequency coil (RF coil), 

voxel size, slice thickness and receiver bandwidth, field of view (FOV), size of the 

matrix, number of acquisitions, scan time, repetition time (TR) and echo time (TE). 

One way to improve SNR in MRI is to place the receiver coil as close as possible to 

the part of the anatomy to be imaged. For this reason, a small ‘surface coil’ as the 

detector coil was used in this study and placed as close as possible to the subject’s 

eye.  

An MR image consists of a two dimensional matrix of pixels. Each pixel 

provides information on a corresponding three-dimensional volume element, termed 

a ‘voxel’. The larger the voxel size, larger the number of spins inside it, so the signal 

is directly proportional to the voxel size within a tissue of uniform spin density. The 

two main factors determining resolution are the field of view (FOV) and the matrix 

size. Large matrices can incorporate more picture elements that improve the image 

resolution but the small pixel size decreases SNR. When matrix size is held constant, 
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the field of view (FOV) determines the size of the pixels/voxels (Weishaupt et al., 

2003).  

Pixel size = FOV (mm)/matrix size 

To achieve optimal image resolution, very thin slices with a high SNR are 

required. However, thinner slices imply smaller voxels and are therefore associated 

with more noise, and so the SNR decreases. The poorer SNR of thin slices can be 

compensated to some extent by increasing the number of acquisitions or by a longer 

repletion time TR, the time period between the beginning of a pulse sequence and the 

beginning of the succeeding pulse sequence. The echo time (TE) is the echo time 

between successive excitation pulses to the echo maximum. 

Receiver bandwidth is the range of frequencies collected by an MR system. A 

wide receiver bandwidth enables faster data acquisition and minimises artefacts, but 

reduces SNR as more noise is included.  

Another limiting factor is the image acquisition/scan time, which increases 

with the matrix size. Number of excitations (NEX) or number of signal averages 

(NSA) denotes how many times a signal from a given slice is measured. SNR 

improves as the NEX increases (in proportion to the square root of the NEX), but 

scan time increases linearly with the NEX. 

Considering the effect of various parameters on SNR, resolution and scan time, 

particular improvement in imaging is not possible without compromise in any other 

parameter (Table 3.4).  

 

Table 3.4: Effects of different parameters on SNR, resolution and scan time. 

Parameter  SNR Resolution Scan time 

Increasing slice thickness Increases Decreases Decreases 

Increasing FOV Increases Decreases Increases 

Increasing matrix size Decreases Increases Increases 

Increasing TR Increases  Increases 

Increasing TE Decreases  Increases 

Increasing NEX Increases  Increases 

Increasing magnetic field strength Increases   

Increasing receiver bandwidth Decreases   

Employing local coils Increases   
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3.5.6.2 Imaging protocol 

Magnetic resonance imaging was undertaken at the University of Queensland 

Centre for Advanced Imaging with a Siemens Trio 3.0 Tesla (Siemens Magnetom 

Trio), whole-body clinical magnetic resonance scanning system using a standard 

Siemens 4.0 cm receive only radiofrequency surface coil positioned over the eye 

following a procedure based on that used by Atchison et al. (2005). In preliminary 

experiments, results obtained with the 4.0 cm surface coil were compared against eye 

images acquired with a Siemens 32-channel phased-array head coil. Although the 

head coil allowed both eyes to be imaged, the surface coil yielded superior signal to 

noise and image resolution.  

Procedures adhered strictly to the NHMRC guidelines and a checklist (standard 

survey form) was used to select suitable participants and to screen for items that 

cannot be taken into the magnetic field. Persons with heart pacemakers, bionic 

implants or other metallic implants that might cause localised heating or degrade 

image quality were excluded. Female subjects were requested not to wear eye make-

up on the day of the examination, in order to reduce susceptibility artefacts. All 

imaging was carried out under the supervision of a qualified MR Radiologist. 

Scanning was performed with participants lying supine. The target was a white 

cross 1.3 cm × 1.3 cm, stroke width 0.5 mm on a black background, projected onto a 

translucent screen mounted in the end of the magnet bore at a viewing distance of 

0.93 metres (a+b in Figure 3:23). Participants looked upwards to view the target 

through an adjustable mirror (M) mounted at 45º to the vertical (fixed tilt). The 

position of the mirror was adjusted manually backwards and forwards to get the eye 

in the right position, i.e. corneal surface of the eye directly below the centre of the 

mirror as shown in Figure 3:23. 

 

Figure 3:23: Setup for showing target inside MRI instrument. 
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The surface coil was taped over the participant’s right eye so that the view of 

the target was not obstructed. A thin self-adhesive felt spacer cut to fit the coil 

provided separation from the skin of the patient. To optimise imaging, care was taken 

to ensure that the surface coil stayed close to the eye (Figure 3:24). To ensure 

minimum eye movement, the participant’s non-tested eye was occluded with an eye 

patch. Heads of the subjects were immobilised with appropriate padding and they 

were asked to focus and fixate on the target image and to minimise blinking during 

data acquisition. Between acquisitions they were advised to close their eyes and blink 

freely in order to renew the tear film. 

For myopes requiring correction < 1.00D, trial lenses on top of the 20 mm 

thick coil were used to provide a clear target. The distance between the eye and 

correcting lenses was estimated to be approximately 25 mm, and this was used as a 

basis for determining lens power. Participants were advised to restrict blinking while 

keeping the eye as still as possible and focused on the cross. 

 

 

Figure 3:24: Effect of coil position on SNR. a) Poor SNR due to bad positioning of 

the coil, b) improved SNR when placed close to the eye. 

 

Sagittal and transverse-axial 2-dimensional images were acquired using a multi 

slice turbo spin-echo (TSE) imaging sequence and 3-dimensional images using a 

Half-Fourier-Acquisition Single-Shot Turbo Spin-Echo (HASTE) sequence. A 

transverse axial single slice multi-spin echo sequence was also used to acquire T2 

map data for determining the refractive index distribution through the crystalline lens 

(Jones et al., 2005). The cross section through the eye was displayed on a computer 

monitor. 
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Two radiofrequency pulses, one excitation (90) and one refocussing (180) 

pulse, generates a spin echo. The basic difference between conventional spin-echo, 

turbo spin-echo, and HASTE sequences is the use of multiple-echo sequences. K-

space is the Fourier transform of the MR image measured. Conventional spin-echo 

sequences acquire one echo that contains information relating to only one line of K-

space data, for each TR interval. Fast spin-echo sequences use a number of additional 

180° pulses (known as the echo-train length) to produce additional spin echoes that 

represents more lines of K-space data for each TR interval. The HASTE sequence is 

a single-shot version of fast spin-echo in which a half-Fourier acquisition is used to 

allow acquisition of slightly greater than one half the K-space data during one TR 

interval. This reduces the number of ‘phase-encoding’ steps by nearly a factor of 

two, further reducing overall image acquisition times and making HASTE relatively 

resistant to magnetic susceptibility and motion artefacts. 

Pilot testing was performed to determine the extent to which image artefacts 

arise from the various parameters and an optimised protocol was followed through 

the experiments/data collection Table 3.5. The standard imaging protocol started 

with fast localiser scans (also known as scout or survey images) obtained in three 

orthogonal planes in few seconds. A localiser scan determines where the imaging 

slices should be placed to image the anatomical structures of interest. Multi-slice fast 

spin echo (FSE) images (64 mm FOV; 256 × 256 matrix; 2mm slice thickness (no 

gaps); TR = 4000; TE=16; echo train length 12, imaging time 128 s) in both axial 

and sagittal planes were acquired. Following this, a T2-weighted HASTE sequence 

to generate 3D isotropic images of the eye with 0.5 mm cubic voxels (128 × 128 × 64 

matrix; TR = 2500; TE=56; imaging time 4 min) was employed. Finally, a single 

slice axial multi-echo spin echo sequence (64 mm FOV; 256 × 256 matrix; 2 mm 

slice thickness; TR = 2000; 4 echos: TE=12.5/25/37.5/50; imaging time 4.5 min) was 

used to acquire data for calculating the refractive index distribution through the lens. 

The slice was placed through the symmetry axis of the lens, using the centre slice 

from the sagittal FSE images for positioning. 

A diverging lens was then placed over the eye in order to stimulate 

accommodation (5D) and the subject was asked once again to focus on the target 

image. The sagittal FSE and multi-echo spin echo images were repeated with 

accommodation. 
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Images obtained from series 6 Spin Echo to determine refractive index 

distribution and from series 8-9 with accommodation were not used as part of this 

thesis.
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Table 3.5: Imaging protocol 

 

 Type Orient. 

Slice 

Thick 

No. 

Slices 

Slice 

Space FOV Matrix TR TE 

FAT 

SAT 

No. 

Avg Image Time 

1 & 2 Localisers                       

3 

TSE 

(ETL=12) Axial 2 mm 15 Nil 

64 

mm 256×256 4000 16 Y 1 2min 8s 

4 
TSE 
(ETL=12) Sagittal 2 mm 15 Nil 

64 
mm 256×256 4000 16 Y 1 2min 8s 

5 3D HASTE Axial 0.5 mm 64 Nil 

64 

mm 128×128 2500 56 Y 2 4min 2s 

6 Spin Echo Axial 2 mm 1 N/A 
64 

mm 256×256 2000 12.5/25/37.5/50 ms Y 1 4min 32s 

7 Localiser                       

8 

TSE 

(ETL=12) Sagittal 2 mm 15 Nil 

64 

mm 256×256 4000 16 y 1 2min 8s 

9 Spin Echo Axial 2 mm 1 N/A 
64 

mm 256×256 2000 12.5/25/37.5/50 ms Y 1 4min 32s 
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3.5.6.3 MRI image analysis 

MRI data were analysed using custom written MATLAB® (Mathworks, 

Natick, MA) software. An analysis hierarchy pipeline is shown as a flowchart in 

Figure 3:25. The major steps were: 

1. Image alignment to get the eye parallel to the z-axis, 

2. Retina segmentation to extract retina boundaries, and 

3. Data fitting to estimate the vertex radius of curvature and asphericity. 

 

 

Figure 3:25: Data processing pipeline for MRI. 
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Image alignment 

It was not possible to identify the fovea, because of insufficient resolution of 

the MRI images. Images were aligned to the estimated foveal position by rotating 

them in two phases.  

 

 

Figure 3:26: Image rotation in a) step 1 towards optical axis, b) step 2 rotation from 

optical axis to approximate visual axis, and c) comparing before (left) and after 

rotation (right). 

 

In the first phase, the sagittal and axial views of the 3D HASTE were rotated. 

In the sagittal view, a line passing through the estimated centres of curvatures of the 

cornea and lens, and to the retina, was drawn. Based on the posterior pole of the lens 

(near posterior nodal point of eye) an image was rotated so that this “optical axis” 

was aligned vertically. Each slice of the image was rotated using a bi-cubic 

interpolation technique. The rotated data were transferred to the “transverse axial” 

view and the same procedure was repeated for horizontal alignment (Figure 3:26a). 
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In the second phase, using the axial view, the HASTE image was rotated from 

the optical axis to the approximate visual axis. The optic nerve should be 

approximately 15º nasal to the fovea, with the optical axis lying between them. The 

optic nerve was visible in all images and the angle subtended between the optic nerve 

centre and the optical axis at the posterior nodal point (back of the lens) was 

determined for 20 participants using a ‘screen protractor’ (Figure 3:26b). The values 

ranged from 11.25º to 11.75º (average 11.5º). Thus, the fovea was taken to be 3.5º 

from the optical axis. Accordingly, all images were rotated an additional 3.5º for 

analyses relative to the visual axis (Figure 3:26c). 

 

Retina segmentation 

The retinal boundary was segmented in each slice and the results were 

incorporated in a 3D matrix. To segment the retina, a Canny edge detection 

algorithm with large threshold value was applied using the MATLAB Image 

Processing Toolbox. The edge detection routine picks up the transition between 

voxels that are purely vitreous to those that are solely in the sclera. The dimensions 

of the (cubic) voxels in 3D HASTE images are 0.5 mm. Since the retina and choroid 

are ~0.2 mm thick, edge voxel extend from the vitreous, through the retina and 

choroid and into the sclera. The edges found are therefore most likely to be 

approximately mid-way between the vitreous/retinal boundary and the choroid/sclera 

boundary. 

The retinal boundary was separated from the rest of the detected edges by 

applying morphological filters about the approximate size and shape of retina (any 

small object having boundary voxels less than 100 was removed). Additionally, 

advanced segmentation technique, “active contour” was applied when low contrast to 

noise ratio or other artefacts limited the conventional edge detection accuracy. The 

active contour method uses an initial curve and tries to minimise the total gradient of 

the curve. 

 In order to decrease the influence of partial volume effects, the retina was 

segmented in all three planes (axial, sagittal and coronal). All the acquired boundary 

points concatenated to build a big N×3 matrix in the coordinate system, where N 
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denotes the number of segmented voxels. Figure 3:27 shows the steps followed in 

segmentation. 

 

Figure 3:27: Image segmentation pipeline for MRI. 
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Data Fitting 

The coordinates of the back of the eye were found by exploring the extreme 

point in the slice that contains the central plane of the eye. The transformation vector 

was calculated by subtracting the coordinate vector, representing the back of the eye, 

from that representing the origin of the coordinate system (0, 0, 0). The biggest area 

inside the retina was picked as the centre slice. This was used to find the reference 

point (the lowest point in the segmented image). Before data fitting, the centre slice, 

centre point, and back reference point were “sanity-checked” by visual inspection to 

ensure they were chosen sensibly without outlier voxels (Figure 3:28a) and a 3D 

reconstruction of the eye was shown for the same purpose (Figure 3:28b). Such 

outliers occur when the edge detection algorithm identifies other signal sources (e.g. 

muscles) mistakenly as the retinal boundary. 

 

 

Figure 3:28: Sanity checking in MRI processing. a) Centre point and the point 

representing the back of the eye. b) Shape of the eye. 

 

The vertex radius of curvature and asphericity were determined for 11 different 

fractions of the eye (F) ranging from F=25% to F=75% in 5% steps. To determine 

the vertex radius of curvature and asphericity of the desired fraction, the centre point 

of the eye (i.e centre point of the ellipse) was calculated by fitting the segmented 

boundary points of the retina to an ellipsoid and the desired fraction was extracted by 

masking the unwanted area. All the selected voxels were arranged into an N×3 

matrix, representing the retinal points and the data were fitted to the equation: 
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     –                    (31) 

 

which is equivalent to equation (7), with Cx = 1/Rx; Cy = 1/Ry and Cz = 1/Rz. 

Using these, vertex radius of curvatures Rxv = Rx
2
/Rz and Ryv = Ry

2
/Rz and 

asphericities Qx = R
2

x/R
2

z – 1 and Qy = R
2

y/R
2
z – 1 in the XZ and YZ planes, 

respectively, were determined (equations (8-11) in section 2.4.2.1). 

The percentage was defined from the reference point. For example it was 100% 

when the results were obtained from the reference point to the top most point 

(complete eye). Figure 3:29 shows the smallest and biggest fractions of the eye that 

have been used for determining the retinal shape estimates with MRI. The 100% in 

angular notation equals 180º about the centre point of the eye on each side of the axis 

and 50% means 90º out of 180º. The coefficient of determination (R
2
), the square of 

the correlation between the co-ordinates and their fitted values were used to evaluate 

the goodness of fit. 

 

Figure 3:29: Fractions of eye (F) used to determine retinal shape estimates with MRI, 

the maximum being 75% and the minimum being 25%. Angle subtended at centre of 

eye for various fractions are show in Table 3.6. 

 

Area (% fraction) can be converted to angles from 

Area of sphere = 4πR
2

 (where R is radius of circle)      (32) 

Area covered by angle 1 = 4πR
2
[1 – cos(1/2)]                                         (33) 

For example, to find the angle associated with 25% of the area of the eye, the area of 

the retina, equations (32) and (33) gives 1 = 2.094 radians or 120º. Table 3.6 shows 
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the angle 1 (as defined in Figure 3:30) which corresponds to any given fraction of 

the eye. 

 

Table 3.6: Angle subtended at the centre of the eye in degrees (1 in Figure 3:30) 

corresponding to % fraction of the eye. 

Fraction % 1 (degrees) 

25% 120 

30% 132.8 

35% 145.1 

40% 156.9 

45% 168.5 

50% 180 

55% 191.5 

60% 203.1 

65% 214.9 

70% 227.2 

75% 240 

 

To get the best comparison between MRI and PCI -derived retinal shapes, it is 

desirable to compare similar regions. PCI eye length measurements were obtained 

out to ±35º (central 70º), where this angle is referenced to the centre of curvature of 

the cornea which is conveniently close to the posterior nodal point and posterior lens 

vertex. With reference to Figure 3:30, the tangents of the angles 1 and 2 subtended 

at the centre of the eye and posterior nodal point, respectively, to give the same 

retinal region are related to the corresponding distances by  

                   
 
            (34)  

where the distance l2 for the PCI data is approximately related to the axial 

length L by  

l2 = L – 7.8                (35) 

 

For 60 participants, 1 was estimated to range from 116º to 136º (mean ± SD 

= 124º ± 5º) for 2 = 70º. From equation (33), this corresponds to a retinal area of 

27%. This is about the minimum fraction of the eye that was analysed with MRI 

(25%). 
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 MRI data corresponding to less than 35% resulted in noise in a few data sets 

because the fitting ran up against the lower bound of 0.01 mm
-1

 that was placed on 

Cz. The decision was made to use 35% of the MRI data for the comparison with PCI. 

 

 

Figure 3:30: Angles and distances to calculate similar regions with PCI and MRI . 1 

and 2 are the angles subtended approximately at the centre of eye (MRI) and at the 

posterior lens vertex (PCI), l1 and l2 are the corresponding distances, and L is the 

axial length of the eye obtained from the Lenstar. 

 

3.5.7 OPTICAL MODELLING FOR RETINAL SHAPE 

ESTIMATION 

Development of retinal shape estimation involved modelling which was done 

in three Stages of increasing sophistication (Stages 1, 2, and 3 to be described 

below), with the expectation that the retinal shape estimation would improve at each 

successive Stage. Each Stage used the central and peripheral eye lengths measured 

with the Lenstar. The Lenstar determines the position of the retinal epithelium, and to 

match with the IOLMaster its default axial length is determined by subtracting 200 

m assumed to be the distance from the retinal pigment epithelium (RPE) to the 

internal limiting membrane (ILM). Although the user interface allows the ILM to be 

accurately located in most cases, I have added the 200 m to the axial length 

determination. This is because the position of the photoreceptors, rather than the 

internal limiting membrane, is important when considering visual function and 
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because the positions obtained with MRI are likely to be closer to the RPE than to 

the ILM (section 3.5.6.3). 

The Le Grand full theoretical eye consisting of anterior and posterior surfaces 

for the cornea and lens was used as the basic eye model (Table 3.7). Using the 

assumption that the Lenstar beams strike the anterior cornea normally, rays were 

direct towards the point on the axis corresponding to the sagittal centre of curvature 

of this surface. Ray-tracing was done into the eye to estimate retinal co-ordinates. 

Using a solver template in Excel, these were fitted to a conic equation  

2

0

2

2

0

2

0

2

2

0

xQ)c+(1-1+1

cx

)x-(xQ)c+(1-1+1

)x-c(x
f    (36) 

where c is the vertex curvature of the retina, Q is asphericity, x is measured 

values along the X-axis (or Y-axis where appropriate) and x0 is an offset so that the 

fovea has co-ordinates (0, 0). 

A column of theoretically predicted values was created by setting the initial 

values of the variables in the fitting equation. The difference between the predicted 

and real value was squared and summed over all data points (SS). The Solver was set 

to manipulate the values of the formula variables to achieve the minimum of SS, thus 

plotting the best fit to those points. To measure the strength of a linear association 

between the real and the predicted variables, the Pearson correlation coefficient (R) 

was calculated between the predicted and real coordinates provided in two columns 

and then squared (R
2
).  

In Stage 2 modelling, for the fit to resemble the way MRI fits were done, 

analysis was repeated with x0 = 0. The retinal shape estimates of Rv and Q were not 

significantly different between the cases where x0 = 0 and x0 ≠ 0 (p > 0.05), so Stage 

2 and 3 analyses were done only with x0 = 0. 

Apart from the three Stages of PCI, retinal shape was also estimated using 

Dunne’s method which is based on peripheral refraction (see section 2.4.2.8 and 

below). Equation (36) was used for fitting with x0 ≠ 0. x0 values across horizontal and 

vertical meridians and for all participants ranged from –0.97 to 0.82 (mean ± SD: –

0.13  ± 0.33 degrees). Considering that the x0 values were small and of little 

consequence, re-analysis with x0 = 0 was not done.  
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The fits obtained with PCI and Dunne’s method were compared with the fit obtained 

from magnetic resonance imagery (sections 4.4 and 4.5). See section 3.5.8 for a 

refinement of the comparison. The retinal region for Dunne’s method would 

approximately match that for PCI, that is, 27%. 

 

Table 3.7: Parameters of Le Grand full theoretical eye 

 

 

 

 

 

 

 

 

 

 

 

 

Stage 1 uncustomised without deviation 

The beam incident on the eye model was assumed to be undeviated. The only 

part of the Le Grand eye that was used was the anterior corneal surface (spherical 

with radius of curvature of 7.8 mm).  Equations to determine the retinal co-ordinates 

relative to the fovea for a ray subtending an angle to the axis were based on the 

treatment of Atchison and Charman (2011). Relevant parameters are given in Figure 

3:31. 

 

Medium n R (mm) D (mm) Surface power 

(D) 

Air 1       

    7.8   48.346 

Cornea 1.3771   0.55   

    6.5   –6.108 

Aqueous 1.3374   3.05   

    10.2   8.098 

Lens 1.42   4.00   

    –6   14.000 

Vitreous 1.336   16.59655   

 

Axial length 

   

24.19655 
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Figure 3:31: Parameters used for determination of retinal co-ordinates in Stage 1 

modelling. 

 

Considering the y-z section, the equation for cornea surface points (zc, yc) is given by 

yc
2
 + (1 + Qc)zc

2
 - 2zcrcv = 0              (37) 

where rcv is the vertex radius of curvature and Qc is asphericity. A solution for 

zc in terms of  is 

)]1(tan1)[1(

)1(tan1)1(tan1
2

22

cc

cc
cvc

QQ

QQ
rz










       (38) 

while yc is given by  

                         
                  (39) 

 

The distance of the normal from the surface point to the reference point on the 

axis is the sagittal radius of curvature rs given by 

          
  –     

 )               (40) 

The distance from the corneal vertex to the reference centre zref is given by  
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zref = rscos + zc        (41) 

The distance from the axial point, corresponding to the sag of the anterior cornea, to 

the reference centre, is  

z1 = zref – zc                  (42) 

 

The distance of the assumed raypath before the reference point is 

        
      

                (43) 

 

The distance of the assumed raypath l’ after the reference point is related to l, the 

total optical path length OPL, and the average refractive index nave by 

l’ = OPL/nave – l                (44) 

 

The axial and height components of the retinal position corresponding to l’ are 

z2 = l’cos     yr = l’sin            


Where yr is the determined retinal co-ordinate for height. The determined horizontal 

position of the retinal co-ordinate, relative to the on-axis retinal position (zrv, 0) is

z3 = – (zrv – zref – z2)              (46) 

 

Here zrv is given by pathlength OPL0/nave, where OPL0 is the on-axis optical 

pathlength. 

Simplification is possible for a spherical cornea (Qc = 0) in the present case. As 

the Lenstar gives eye length measurements, ignoring the refractive indices of the 

ocular media and conversion to optical path lengths, the equations (37) to (46) can be 

replaced by the following equations 

yr = (PEL – rcv)sin               (47) 

z3 = rcv(1 – cos + PELcos – AL             (48) 

where AL and PEL and are the on-axis and off-axis eye lengths. 
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Stage 2 uncustomised with deviation  

No customisation of the Le Grand full theoretical eye was used (as for Stage 

1), but deviation was allowed to occur at surfaces except at the anterior cornea. 

Relevant parameters are given in Figure 3:32. 

 

 

Figure 3:32: Parameters used for determination of retinal co-ordinates in Stage 2 

modelling. 

 

Raytracing was done using the optical design program Zemax (version 10.0, 

July, 2011). As the Lenstar operates at 820 nm, the refractive indices in Table 3.7 for 

the visible are inappropriate. Assuming that these apply at 555 nm and using Table 5 

of Atchison and Smith (2005) with appropriate scaling, the refractive indices at 820 

nm are ncorn 1.3707, naq 1.3312, nlens 1.4134, and nvitr 1.3298. Note that these are 

phase indices and are lower than the corresponding group indices given in Table 3.1. 

The first surface was a small stop, corresponding to the centre of curvature of 

the cornea, followed by the anterior surface of the cornea at –7.8 mm from the stop, 
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and then the other refracting surfaces. For each object angle, raytracing was done 

through the stop centre, with variation in position of a flat retina, until retinal co-

ordinates corresponded to measured peripheral eye lengths. 

For an object angle  and for a Le Grand model eye with axial length ALa and a 

flat retina, in Zemax, peripheral length ALp, image angle  and retinal co-ordinates 

(y, 0) were determined by ray-tracing. 

For an eye with measured peripheral length AL’p, the retinal co-ordinates (yr, zr) 

are  

(yr, zr) = (y + (AL’p – ALp)sin, 0 + (AL’p – ALp)cos)        (49) 

If the central axial length is measured as AL’a rather than the ALa, of the basic 

eye model, the retinal co-ordinate changed to new retinal co-ordinates (yr’, zr’), 

(yr’, zr’) = (yr, zr – (AL’a – ALa)) 

= (y + (AL’p – ALp) sin, (AL’p – ALp) cos– (AL’a – ALa))   (50) 

 

Stage 3 customised  

Many Le Grand full schematic eye components were replaced with individual 

eye data: the anterior corneal topography (average of four images imported from 

Medmont corneal topography), the posterior cornea radius of curvature (from 

Pentacam topography, spherical surface used by averaging across the meridians), 

anterior and posterior lens radii of curvatures (phakometry), equivalent lens 

refractive index (phakometry), and intra-ocular axial distances within the eye 

(Lenstar). 

It was assumed that the on-axis measurement with the Lenstar corresponded 

with the corneal topographic axis and thus images were not tilted or decentred. A 

custom built MATLAB (Mathworks) program in combination with Zemax was used 

to produce a variable corneal “sagittal centre of curvature” as the stop and first 

surface to ensure no deviation at the first surface. This used calculation of the surface 

slope at various positions on the surface.  

The MATLAB program read the measurements of anterior corneal topography 

taken using Medmont and created a mean Grid sag surface. After loading the anterior 
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corneal surface as a Grid sag surface, the rest of the model was created in Zemax 

from participant data. A chief ray was traced from a distant object in the field to an 

aperture (1st surface, diameter 2 mm) and then to the anterior corneal surface (Grid 

sag surface). The (negative) distance of the anterior cornea from the stop was altered 

in a loop until the difference between the cosine of the field angle and the Z cosine of 

the ray at the surface was ≤ 0.0001. Relevant parameters are given in Figure 3:33. 

 

 

Figure 3:33: Parameters used for determination of retinal co-ordinates in Stage 3 

modelling. 

 

The on-axis vitreous length is estimated as  

va= AL’a – (CCTa + ACDa + LTa) 

where AL’a is the on-axis length as in Stage 2 and CCTa, ACDa and LTa are on-

axis distances within the cornea, anterior chamber and lens. 

The peripheral vitreous length is estimated as  

vp = AL’p – (CCT p + ACD p + LT p) 
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where AL’p is the peripheral length as in Stage 2 and CCTp, ACDp and LTp are 

peripheral distances within the cornea, anterior chamber and lens.  

 Using the image space angle , the off-axis retinal co-ordinates (yr’, zr’) are 

given by 

zr’ = vpcos + z4   – va               (51) 

 

yr’ = y4 + vpsin                (52) 

where (z4, y4) are the co-ordinates of the chief ray at the posterior lens surface 

(relative to its vertex). 

As a check, using a 7.8 mm spherical corneal surface (Le Grand model eye) as 

a Grid sag surface gave the same results as for Stage 2. 

 

Dunne’s method  

Dunne’s method has been described in section 2.4.2.8. A version of a program 

kindly provided by Dr. Dunne was revised to apply the method.  

Essentially, this method modifies a three surface model eye according to 

measured internal ocular distances and the anterior corneal radius of curvature. Out-

of-the-eye ray-tracing was done at each visual field angle for the meridian of interest. 

The corneal asphericity for each visual field angle is manipulated until the peripheral 

astigmatism matched its measurement for a retina with a (–)12 mm radius of 

curvature. Retinal radius of curvature for each angle, and consequently retinal co-

ordinate intersection with the chief ray, were altered until the sagittal refraction 

matched its measurement (refraction at right angles to the visual field meridian). 

Equation (36) was applied to the set of retinal co-ordinates to obtain a conic fit. 

Some other points in the procedure will be mentioned. From the radii of 

curvature along the principal meridians of the anterior cornea, the sagittal refraction 

components (along the vertical/horizontal meridian for the horizontal/vertical field) 

were modified to compensate for any on-axis astigmatism. The Gullstrand-Emsley 

eye indices, rather than those of the Le Grand eye used for PCI, were retained: 4/3 

for the aqueous and vitreous and 1.416 for the lens. As mentioned in section 2.4.2.8, 
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the curvatures of the lens surfaces were selected to give the correct refraction while 

their ratio matched those of the lens in the Gullstrand-Emsley model eye.  

 

3.5.8 COMPARISON OF RETINAL SHAPE ESTIMATES 

The retinal shape was estimated in terms of vertex radius of curvature and 

asphericity along horizontal and vertical meridians using MRI and PCI methods as 

described in section 3.5.6.3 and 3.5.7.  

The vertex radius of curvature (Rv) and asphericity (Q) result from fitting an 

aspheric surface to a number of points on the retina. These parameters are not 

independent of each other; for example a positive change in Q can compensate for a 

positive change in Rv. In addition, both MRI and PCI methods of retinal shape 

estimation differ in many aspects like the resolution, data acquisition and analysis, 

and as the data are obtained from same participants, it is important to have a common 

tool to compare Rv and Q together. For this reason, the estimated parameters along 

each meridian were combined to form a “surface shape”. Substituting values for c 

(1/Rv) and Q in equation (36), retinal surface shapes for each participant along both 

meridians obtained from PCI and MRI methods were re-constructed in MATLAB. A 

similar method is used in optics to determine the surface accuracy i.e. the 

measurement of the deviation between the actual shape and the intended shape of an 

optical surface (Christophe, 1971). The comparison was made by taking the average 

of point-by-point height differences between the two surfaces over a fixed distance 

of 15.6 mm (15.6 mm = 7.8 mm either side from peak/centre or absolute maximum 

height of the curve) and giving this as a percentage of the sagittal heights across the 

distance:  

                      

                 
   

 

                   
                                 (53)

 where         and        are the z-coordinates for the  th point using the PCI 

and MRI fits, respectively.        and        are the sagittal heights of the PCI and 

MRI fits, respectively, and   is the number of sampled points (1561). Figure 3:34 

shows the surface shape comparisons for one participant. 
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Considering that it is more appropriate to compare surface shapes rather than 

comparing vertex radius of curvature and asphericity separately, conclusions on 

agreement of retinal shape estimates between MRI and PCI in Chapter 4 were based 

on this approach.  

 

 

Figure 3:34: Retinal surface shapes for MRI and PCI for one participant. The blue 

solid line and the red dotted lines represent MRI and PCI methods, respectively. 

 

The percentage difference approach does not indicate if one surface shape is 

consistently flatter than another. Therefore, the areas under the surface shapes were 

compared. To determine areas, the region under surface shape was divided into 

multiple narrow rectangles, of width 0.01 mm, whose areas were added. The two 

surface shapes started from the same vertex and the areas under the two surface 

shapes were calculated with reference to the surface shape that had the greatest sag. 

For example, in Figure 3:34 the reference is the MRI surface shape (blue solid line) 

and the area under the flatter PCI surface shape (red dotted line) is greater than the 

area under the MRI surface shape.  
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Chapter 4- Validation of Partial Coherence 

Interferometry Instrument for Estimating 

Retinal Shape 

Magnetic resonance imaging (MRI) is considered as a standard for estimating 

retinal shape because it images the physical dimensions of retina/eye. Partial 

coherence interferometry has been used to determine retinal shape but there are some 

assumptions in its use, such as the refractive index used to convert from optical path 

lengths to distances and deviation of beams inside the eye, and it has not been 

assessed for accuracy against MRI.  

This chapter describes a validation experiment, where comparisons were made 

for retinal shape estimates determined from partial coherence interferometry and 

magnetic resonance imaging to address the first thesis aim: “to determine the 

reliability of a simple method of determining retinal shape using off-axis partial 

coherence interferometry, and to validate this method by comparing the results to 

that of magnetic resonance imaging” and its associated hypothesis 1: “retinal shape 

can be accurately predicted by measuring off-axis eye lengths with a commercial 

partial coherence interferometry instrument”. The aim was partly addressed in 

section 3.5.5 where the repeatability of PCI instruments was assessed. There it was 

decided to use the Lenstar with eye rotation to change fixation, because the 

instrument demonstrated excellent intra and inter-sessional reliability (section 

3.5.5.2) and eye rotations did not influence measurements (section 3.5.5.3). 

The chapter is divided into 6 sections. Section 4.1 is an overview of methods. 

Section 4.2 describes the influence of image rotation of MRI images on retinal shape 

estimates. The images obtained from MRI had poor resolution and it was not 

possible to identify the fovea. To align the images to the estimated foveal position, 

all the images were rotated during the analysis in two phases as described in section 

3.5.6.3. Section 4.3 gives estimates of lens equivalent refractive index and radii of 

curvature to be used in Stage 3 modelling of retinal shape estimation. Although 

strictly these are not needed in this chapter, the section provides useful information 

on how these parameters are related to refraction. Section 4.4 and 4.5 shows the 
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comparison of retinal shape estimates between MRI and PCI, and between MRI and 

Dunne’s method. For PCI, the three Stages described in section 3.5.7 will be used. 

Section 4.6 presents the conclusion as to the best method to be used for estimating 

retinal shape. 

 

4.1 METHOD 

Ninety-four participants were recruited, but MRI was performed only on a 

subset of sixty participants (30 emmetropes, M = +0.75 D to −0.62 D and 30 myopes, 

M = –1.25 D to −8.25 D). The mean age of these sixty participants was 22.5 ± 3.1 

years with a range of 18 to 28 years; there was no significant difference between ages 

of emmetropic and myopic participants (p = 0.76). Peripheral eye lengths, peripheral 

refraction and magnetic resonance imaging (MRI) were obtained according to the 

protocols given in sections 3.5.5.2, 3.5.4 and 3.5.6.2, respectively.  

From peripheral eye length measurements, estimates of vertex radius of 

curvature (Rxv and Ryv) and asphericity (Qx and Qy) were determined in the three 

Stages of increasing sophistication described in section 3.5.7. From peripheral 

refraction, retinal shape estimates were made using Dunne’s method described in 

sections 2.4.2.8 and 3.5.7. 

Agreement of retinal shape estimates between the methods was shown by 

Bland and Altman plots with the mean difference in results and the 95% limits of 

agreement (LoA). Paired t-tests were conducted to determine the significance of 

mean differences. The parameters Rv and Q along each meridian were combined to 

form a “surface shape” and agreements between MRI and PCI and between MRI and 

Dunne’s methods were given as percentage differences between surface shapes and 

as the ratios of areas under the surface shapes (section 3.5.8).  
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4.2 INFLUENCE OF IMAGE ROTATION ON RETINAL 

SHAPE ESTIMATES 

The images obtained from MRI had poor resolution (0.5 mm) and it was not 

possible to identify the fovea. To align the images to the estimated foveal position, 

all the images were rotated during the analysis in two phases as described in section 

3.5.6.3. In phase 1, the retinal shape was estimated with reference to the optical axis 

and in second phase it was re-referenced to the visual axis. Here the effect of re-

referencing to visual axis on retinal shape is investigated. 

Figure 4.1 shows Bland-Altman plots of vertex radius of curvature for the two 

phases. For the horizontal meridian, the 95% limits of agreement were –0.36 to +0.48 

mm and the mean difference between the phases was +0.06 ± 0.05 mm 95% CIs (p = 

0.02). For the vertical meridian, the 95% limits of agreement were –0.52 to +0.28 

mm and the mean difference between the phases was –0.12 ± 0.05 mm 95% CIs (p < 

0.001). 

 

Figure 4:1: Bland-Altman plots of agreement of vertex radii of curvatures between 

optical axis and visual axis along a) horizontal and b) vertical meridians. The mean 

difference is shown by the bold line and the 95% limits of agreement are shown by 

dashed lines.  
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Figure 4:2 shows Bland-Altman plots of asphericity for the two phases. For 

the horizontal meridian, the 95% limits of agreement were –0.06 to +0.05 and the 

mean difference between the phases was –0.01 ± 0.01 95% CIs (p = 0.07). For the 

vertical meridian, the 95% limits of agreement were –0.12 to +0.07 and the mean 

difference between the phases was –0.02 ± 0.01 95% CIs (p < 0.001). 

 

 

 

Figure 4:2: Bland-Altman plots of agreement of asphericities between optical axis 

and visual axis along a) horizontal and b) vertical meridians. The mean difference is 

shown by the bold line and the 95% limits of agreement are shown by dashed lines. 

 

The goodness of fits (R
2
) to the retinal shapes did not change significantly with 

re-referencing. Mean ± SD of R
2 

that were obtained with optical axis as a reference 

were 0.94 ± 0.04 with a range 0.73 to 0.98. Corresponding values with the visual axis 

as a reference were 0.93 ± 0.06, with a range 0.68 to 0.98. The mean difference ± SD 

of R
2 

between the two phases was 0.02 ± 0.05. Two participants had R
2
 values

 
less 

than 0.8 and were not included in this analysis. 

Although the re-referencing gave significant changes in three of the shape 

components (Rxv, Ryv and Qy), changes were generally small. Furthermore, for the 

vertical meridian the changes in Ryv and Qy tended to balance. 
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4.3 PHAKOMETRY  

Equivalent refractive index and anterior and posterior lens radii of curvature of 

lens were obtained from 94 participants, including the 60 participants used for the 

PCI-MRI and PCI-Dunne’s method comparisons in the next section, with the custom 

built phakometer using the procedure described in section 3.5.3. These parameters 

were used in Stage 3 modelling (section 3.5.7). 

Results for equivalent refractive index, anterior radius of curvature, posterior 

radius of curvature and lens equivalent power are shown as a function of spherical 

equivalent refraction in Figure 4:3, 4:4a, 4:4b, and 4:5, respectively. There was no 

significant trend for any parameter. The refractive index ranged from 1.401 to 1.455 

with a mean ± SD of 1.431 ± 0.01, the anterior radius of curvature ranged from 9.1 to 

12.6 mm with a mean ± SD of 10.9 ± 0.7 mm, and the posterior radius of curvature 

ranged from –5.1 to –8.8 mm with a mean ± SD of –6.7 ± 0.7 mm. The equivalent 

lens power was calculated from the other parameters using equations (14) and (15); 

the equivalent lens power ranged from 14.5 to 26.6 D with a mean ± SD of 21.6 ± 

2.3 D.  

Table 4.1 shows mean ± SD for each of the parameters in different races. There 

were no significant differences between races (p > 0.05). 

 

 

Figure 4:3: Relationship between lens equivalent refractive index at 820 nm and 

spherical equivalent refraction for 94 participants. Linear regression fit: y = –0.0001x 

+ 1.431, R² = 0.001, p = 0.88. 
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Figure 4:4: Relationship between a) anterior lens radius of curvature, and b) posterior 

lens radius of curvature, with spherical equivalent refraction. Linear regression fits: 

anterior lens radius of curvature y = –0.011x + 10.91, R² = 0.001, p = 0.34; posterior 

lens radius of curvature y = –0.034x – 6.75, R² = 0.009, p = 0.19. 
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Figure 4:5: Relationship between lens equivalent refractive index at 820 nm and 

spherical equivalent refraction. Linear regression fit: y = –0.083x + 21.42, R² = 

0.006, p = 0.63. 

 

 

Table 4.1: Lens parameters in different racial groups. Data are mean ± SD. 

Race 

Anterior radius of 

curvature (mm) 

Posterior radius of 

curvature (mm) 

Equivalent 

refractive index  

Equivalent  

power (D) 

East Asians +10.82 ± 0.75 –6.66 ± 0.66 1.431 ± 0.012 +21.83 ± 2.53 

Caucasians +11.01 ± 0.71 –6.74 ± 0.79 1.431 ± 0.011 +21.34 ± 1.91 

South Asians +11.05 ± 0.76 –6.54 ± 0.67 1.429 ± 0.011 +21.37 ± 1.90 
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4.4 RETINAL SHAPE COMPARISION - MRI VS. PCI 

Figure 4:6 shows mean ± SD of the retinal coordinates derived from the three 

Stages of modelling from 58 participants along the horizontal and vertical meridians. 

The Z retinal coordinates became more negative and the X/Y coordinates shifted 

laterally with increasing level of sophistication from Stage 1 to 2, such that there was 

little change in mean retinal steepness. Stages 2 and 3 have similar values.  

Figure 4:7a-d shows frequencies of the ratios of areas under the surface shapes 

for Stage 1 and Stage 2 (Stage 1/Stage 2) and for Stage 2 and Stage 3 (Stage 2/Stage 

3). Stage 1 gave larger areas (flatter shapes) than Stage 2 along horizontal and 

vertical meridians, in 59% and 48% of the participants, respectively, with only 3% 

and 17% showing smaller areas (steeper shapes) in Stage 1 (Figures 4:7a, b). Stage 2 

gave larger areas (flatter shapes) than Stage 3 in 67% of participants along both 

meridians with only 16% and 22% showing smaller areas in Stage 2 (Figures 4:7c, 

d). Mean ± SD of ratios of areas under surface shape for Stage 1 and Stage 2 along 

horizontal and vertical meridians are 1.00 ± 0.02 and 1.00 ± 0.04, respectively; and 

the corresponding ratios for Stage 2 and Stage 3 are 1.02 ± 0.05 and 1.00 ± 0.06.   
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Figure 4:6: Retinal coordinates in the three Stages of increasing sophistication1 along 

a) the horizontal meridian, and b) the vertical meridian. Horizontal and vertical error 

bars represent SD for Z and X/Y coordinates, respectively. 
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Figure 4:7: Frequency of participants against ratio of areas under the “surface 

shapes” for PCI Stages 1 and 2 (PCIStage 1/PCIStage 2) along a) horizontal and b) 

vertical meridians, and for PCI Stages 2 and 3 (PCIStage 2/PCIStage 3) along c) 

horizontal and vertical meridians. 

 

Figure 4:8a-d, Figure 4:9a-d and Figure 4:10a-d show Bland-Altman plots of 

agreement of vertex radius of curvature (a, b) and asphericity (c, d) between the MRI 

and the 3 Stages of the PCI method. The plots indicate better agreement of retinal 

shape estimates along the horizontal meridian than along the vertical meridian. 

Although both the vertex radius of curvature and the asphericity plots show negative 

correlation, this does not yield any conclusions as the parameters are not 

independent. The mean ± 95% LoA of the corresponding plots are shown in  

Table 4.2. The comparison of retinal shape estimates of all three Stages of PCI 

method with MRI showed similar means ± 95% LoA and also similar trend in Bland-

Altman plots. Paired t test comparing the retinal shape estimates (Rxv, Ryv, Qx and Qy) 

between MRI and three Stages of PCI showed statistical significant differences 

between MRI and Stage 3 for Rxv, Qx and Qy, but not between MRI and either Stage 

1 or Stage 2. Ryv was significantly different between MRI and all three Stages of PCI. 

Figure 4:8e, 4:9e and 4:10e show the percentage difference in agreement 

between MRI and the three Stages of PCI. Mean ± 95% CI of the difference of 
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agreement along the horizontal meridian were 3.8 ± 0.7%, 3.7 ± 0.6% and 3.5 ± 0.6% 

for Stages 1, 2, and 3, respectively; corresponding values for the vertical meridian 

were 5.6 ± 0.9%, 6.2 ± 1.1% and 6.2 ± 1.0%. 

 

 

Figure 4:8: Agreement of retinal shape estimates between MRI and PCIStage 1: vertex 

radii of curvature along a) horizontal and b) vertical visual fields; asphericities along 

c) horizontal and d) vertical visual fields. Mean differences are shown by the bold 

line and the 95% limits of agreement are shown by dashed lines; e) mean difference 

in agreement of retinal surface estimates between the two methods. Error bars 

indicate 95% confidence intervals of the mean. 
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Figure 4:9: Agreement of retinal shape estimates between MRI and PCIStage 2. Other 

details are as for Figure 4:8. 
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Figure 4:10: Agreement of retinal shape estimates between MRI and PCIStage 3 . Other 

details are as for Figure 4:8. 

 

Table 4.2: Agreement for retinal shape estimates between MRI and three Stages of 

PCI . Data are mean ± 95% limits of agreement. * p < 0.05.  

Estimate MRI - PCIStage 1 MRI - PCIStage 2 MRI - PCIStage 3 

Rxv –0.2 ± 4.1 –0.4 ± 4.1 +0.8 ± 3.4* 

Qx –0.04 ± 1.57 –0.00 ± 1.62 +0.74 ± 1.17* 

    
Ryv –1.7 ± 4.1* –1.7 ± 4.0* –1.6 ± 5.1* 

Qy –0.11 ± 2.41 –0.07 ± 2.22 +0.43 ± 2.04* 
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Figure 4:11(a-f) shows frequencies of the ratios of areas under the surface 

shapes for MRI with the different PCI Stages. Along both horizontal and vertical 

meridians, all three Stages of PCI generally had larger areas (flatter shapes) than 

MRI. For the horizontal meridian, Stages 1, 2 and 3 of PCI had larger areas than MRI 

in 60%, 60% and 45% of cases, respectively (Figures 4:11a, c and e). For the vertical 

meridian this was even more pronounced with all of the PCI Stages having larger 

areas than MRI in at least 60% of cases (Figure 4:11b, d and f). Mean ± SD of ratio 

of areas under surface shapes between Stage 1, 2, 3, in order, and MRI along the 

horizontal meridian were 1.01 ± 0.06, 1.01 ± 0.06, 0.99 ± 0.06; corresponding ratios 

for vertical meridian were 1.05 ± 0.06, 1.06 ± 0.08, 1.06 ± 0.08. 

 

Figure 4:11: Frequency of participants against ratio of area under the “surface 

shapes” for PCI Stage 1 and MRI (PCIStage 1/MRI) along a) horizontal and b) vertical 

meridians, for PCI Stage 2 and MRI(PCIStage 2/MRI) along c) horizontal and d) 

vertical meridians, and for PCI Stage 3 and MRI (PCIStage 3/MRI) along e) horizontal 

and f) vertical meridians. 
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The uncertainty of retinal shape estimates with MRI was determined by taking 

into consideration that the dimensions of the voxels in 3D HASTE images were 0.5 

mm. A simple model with a spherical retinal surface having a radius of curvature of 

12 mm over a distance of 15.6 mm (15.6 mm = 7.8 mm either side from peak/centre) 

was used to determine surface coordinates using equation (34). The distance of 7.8 

mm, smaller than the smallest radius of curvature in the data set of 58 participants 

(8.5 mm) was chosen to maintain a 1:1 relationship between Y and Z coordinates. 

Otherwise, for a larger distance, each Y-coordinate will have more than one Z-

coordinate corresponding to it. 

Figure 4:12 shows three fits where the blue curve assumes the points at the 

centre of MRI voxels for both the centre and edge of the curve, the green curve 

assumes the upper edge of the voxel at the centre of the curve and the lower edge of 

the voxel at the edges of the curve, and the red curve assumes the opposite to the 

green curve. The green and red curves were repositioned to have the same vertex as 

the one passing through the centre of the voxel (blue curve). Pushing the central 

point up by 0.25 mm and the edges down by same amount (green curve) and 

smoothing the curve between them after repositioning produced Rv = 8.36 mm, Q = –

1.51 with the Solver template (section 3.5.7). Pushing the central point down and the 

edges up (red curve) produced Rv = 17.18 mm with Q = 2.96. Comparing these 

values using equation (53) gives the difference in agreement (uncertainty) between 

two curves of 14.1%. Fitting the coordinates to a best circle (Q = 0) gave REq = 10.27 

(green curve) and 14.67 (red curve) with uncertainty of 12%. 

The estimates above assume the voxel counts as edge voxels that form the 

retinal boundary (for the edge/boundary detection algorithm, edge voxels are 

between vitreous and sclera) irrespective of the amount of the voxel enclosed inside 

it. As the edge detection algorithm has a thresholding condition, this assumption only 

gives the maximum possible differences that could occur in retinal shape due to the 

partial volume effect on MRI. Therefore, the percentages above are exaggerations of 

the uncertainty in the most extreme cases (from 0% - 100% of the voxels filled). 
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Figure 4:12: Retinal surface coordinates determined points corresponding to centre 

of voxel for both the centre and edge of the curve (blue) and at the opposite extremes 

of the 0.5 mm voxels (green: Z +0.25 indicates upper edge of voxel at centre and 

lower edge of the voxel at the edge of curve, and red: Z –0.25 indicates lower edge of 

voxel at centre and upper edge of the voxel at the edge of the curve).   

 

Summary 

In several cases there were significantly different estimates for both Rv and Q 

between PCI and MRI, but it was clear often that there was compensation such as a 

positive change in Q, in one method, relative to the other, compensating for a 

positive change in Rv. Therefore, as a better approach for comparing MRI and PCI, 

these parameters were combined to form a “surface shape”.  

All three PCI Stages showed similar ranges of percentage difference with MRI. 

Estimates along the horizontal (< 4%) and vertical meridian (<7%) were smaller than 

the theoretical uncertainty of MRI (12-14%). For the majority of participants, area 

under surface shape with all three Stages of PCI was larger (flatter shapes) than the 

MRI along both meridians, but with the differences being relatively less along the 

horizontal than along the vertical meridian. 
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4.5 RETINAL SHAPE COMPARISION - MRI VS. 

DUNNE’S METHOD 

 

Retinal coordinates were determined using Dunne’s method (section 3.5.7). 

The retinal coordinates were fitted to equation (36) to estimate retinal shape. 

Figure 4:13 shows Bland-Altman plots of agreement between MRI and 

Dunne’s method for vertex radius of curvature (a, b) and asphericity (c, d) along 

horizontal and vertical field meridians. Mean difference ± 95% LoA for vertex radius 

of curvature and asphericity along the horizontal meridian were –1.7 ± 4.3 mm and –

0.15 ± 2.18, respectively; corresponding values along the vertical meridian were –3.1 

± 5.6 mm and –0.60 ± 3.46. The two methods gave significantly different results for 

all parameters except for asphericity Qx along the vertical meridian (p = 0.15).  

Figure 4:13e shows differences in agreement between the two methods, with 

mean ± 95% CI of 6.0 ± 1.2% (horizontal) and 8.9 ± 1.1% (vertical). These are about 

1.5 times the differences in agreement between MRI and any of the PCI Stages.  
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Figure 4:13: Agreement of retinal shape estimates between MRI and Dunne’s 

method:Other details are as for Figure 4:8. 

 

Figure 4.14 shows frequencies of the ratios of areas under the surface shapes 

for MRI and Dunne’s method. Along both horizontal and vertical meridians, areas 

under surface shapes with Dunne’s method were larger (flatter shapes) than MRI PCI 

in 80% of participants.  
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Figure 4.14 Frequency of participants against ratio of area under the “surface shapes” 

between Dunne’s method and MRI:  (Dunne//MRI) along a) horizontal and b) 

vertical meridians. 

 

4.6 CONCLUSION 

This study compared retinal shape estimates between MRI and PCI and 

between MRI and Dunne’s method. In several cases there were significantly different 

estimates for both Rv and Q between the methods, but it was clear often that there 

was compensation such as a positive change in Q, in one method, relative to the 

other, compensating for a positive change in Rv. Therefore, a better approach to 

comparing MRI and PCI would be to combine these parameters to form a “surface 

shape”. The results show good agreement (within the theoretical uncertainty of MRI 

of 12-14%) between MRI and all three Stages of PCI (4% along horizontal meridian 

and 6% error along the vertical meridian), but not as good between MRI and Dunne’s 

method (6% along the horizontal meridian and 9% along the vertical meridian). 

Thus, all the PCI Stages would appear to give better estimates of retinal shape than 

Dunne’s method. It is possible that the Dunne’s method would provide improved 

agreement with MRI results with a different model or different iterative method.  

For the majority of participants, all three Stages of the PCI method and the 

Dunne’s method gave flatter estimates of retinal shape than did MRI, with the 

differences being smaller along the horizontal than along the vertical meridian. This 

variation between the MRI and other methods could be due in part to the large voxel 

size of the MRI images (0.5 mm) which influences the edge detection routine used in 

determining retinal shape estimates as it picks up the transition between voxels that 

are purely vitreous to those that are solely in the sclera. The differences could be 

attributed to thresholding used for picking the retinal boundary and the partial 

volume effect which indicates that if the voxel imaged was less than twice the ‘full 
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width at half maximum resolution’ in X-, Y- and Z-dimensions, the resultant activity 

in the region was underestimated. Another possible reason for differences between 

the MRI and other methods could be due to the comparison of retinal shapes 

involving different percentages of retinal area such as 35% for MRI, and 27% for 

PCI (section 3.5.6) and Dunne’s method (section 3.5.7). As mentioned in section 

3.5.6.3, because of the low sampling of MRI, fitting to any retinal area smaller than 

35% resulted in too much noise, and therefore 35% fits were chosen despite the area 

mismatch between methods. 

The reason for better agreement between MRI and the other two methods for 

the horizontal meridian than for the vertical meridian is not known, but might be 

related to a different sampling with PCI and Dunne’s method (±35º in 5º steps: 15 

points along horizontal meridian; ±30º in 5º steps: 13 points along vertical meridian). 

It is likely that the three Stages of the PCI method give similar results because 

the assumption that the infrared beam is directed normal to the anterior cornea is 

reasonable and that the normals pass close to the nodal points of the eye so that the 

deviation within the eye is small. In Atchison and Charman’s (2011) theoretical work 

using variations on the Gullstrand number 1 eye, they found that Stage 1 was highly 

accurate out to at least ±40°. 

For the PCI method, the Stage 1 analysis was a very simple method assuming 

the parameters of the Le Grand model eye and ignoring light deviation within the 

eye. Beam incident on the eye model was assumed to be undeviated which might 

lead to inaccurate results in presence of irregular corneas, refractive myopia or index 

myopia. Although Stage 3 involves more sophisticated analysis (including aspheric 

cornea, lens radius of curvatures and equivalent refractive index) than other Stages, it 

takes considerable time. The results for intermediate Stage 2 analysis that used model 

eye parameters along with peripheral eye lengths from real eyes were similar to those 

of the most sophisticated Stage 3, and therefore this simpler, yet accurate and 

efficient level of analysis (Stage 2) is recommended for retinal shape estimation.  

This study validated PCI against MRI for estimating retinal shape, thus 

addressing the first aim of the thesis, and supports its associated hypothesis that 

retinal shape can be accurately predicted by measuring off-axis eye lengths with a 

commercial PCI. The Experiments 2 and 3 that involved retinal shape estimation in 

chapters 5 and 6 used the Stage 2 analysis.  
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Chapter 5- Retinal Shape in Different 

Racial Groups 

Race appears to be associated with myopiogenesis, with East Asians showing 

high myopia prevalence both inside and outside Asia (section 2.2). Considering 

structural variations in the eye, it is possible that retinal shapes are different between 

races. This chapter investigates how retinal shape alters with race using the PCIStage 2 

method. It addresses the second aim: “to use the validated method to measure retinal 

shape in East Asian, South Asian and Caucasian emmetropes and myopes to 

determine how retinal shape and peripheral refraction are related in eyes of people 

with different racial backgrounds” and tests the associated hypothesis 2: “there are 

differences in retinal shapes among different racial groups” and the associated 

hypothesis 3: “there are meridional (vertical and horizontal) variations in retinal 

shape”. 

This chapter is divided into 5 sections. Section 5.1 is an overview of methods. 

Section 5.2, 5.3 and 5.4 investigate the influence of meridian and race on peripheral 

refraction, peripheral eye lengths and retinal shape, respectively. Section 5.5 gives 

the conclusions of the chapter.  

5.1 PARTICIPANTS 

Participants indicated racial group based on their ancestry in the ‘participant 

demographic/information sheet’. Based on the Australian Standard Classification of 

Cultural and Ethnic Groups (ABS, 2011), participants were classified as 

 East Asians (EA): people from China, Malaysia, Korea and Singapore with 

Chinese ancestry,  

 South Asians (SA): people from India, Pakistan and Sri Lanka with Indian 

ancestry, and 

 Caucasians (CA): people from Australia, Germany and Netherlands with 

Caucasian ancestry. 
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Ninety-four participants, aged between 18 to 30 years and with spherical 

equivalent refraction between +0.75D to −5.50 D, were divided into two refraction 

groups of emmetropes (49) and myopes (45) based on central spherical equivalent 

refraction. Considering the time involvement in data collection and the sophisticated 

analysis for determining retinal shape estimates, sample size in this study was 

compromised. The participants were mostly undergraduate students living in the 

Australian state of Queensland. Because of sampling bias due to selection of 

participants from a single region, they may not be completely representative of East 

Asians, Caucasians and South Asians. Therefore, the interpretation or comparison of 

these results with other studies is made with caution. Table 5.1 has racial group 

characteristics.  

 

Table 5.1: Racial group characteristics. Emm = emmetropes, Myo = myopes 

Race Emm 
M (mean ± SD) 

Dioptres 
Myo M (mean ± SD) Dioptres Total 

Age 

 (mean ± SD) 

years 

EA 14 0.01 ± 0.1 22 
–2.75 ± 1.39    

(–0.82 to –5.25 D) 
36 22.7 ± 3.6 

CA 25 0.01 ± 0.08 15 
–3.06 ± 1.01           

  (–0.82 to –4.17 D) 
40 23.5 ± 3.4 

SA 10 –0.07 ± 0.13 8 
–2.19 ± 1.16        

 (–0.82 to –4.00 D) 
18 24.7 ± 2.5 

Total 49 –0.01 ± 0.38 45 –2.75 ± 1.25 94 23.7 ± 3.5  

 

There is a possibility that results might be influenced by gender and axial 

length. Average central axial lengths are greater in males than in females of similar 

refraction (Shufelt et al., 2005, Atchison et al., 2008, Iyamu et al., 2011, Yin et al., 

2012). Variations in axial length between races was identified with the tendency for 

East Asians to have longer axial lengths than other races (Ip et al., 2007a, Tariq et al., 

2010, Lee et al., 2013). Therefore, appropriate distribution of participants based on 

gender in each racial group is important for meaningful comparisons. Table 5.2 

shows the distribution of males and females and their mean axial lengths for the 

refraction/racial group combinations. As expected, males had greater axial lengths 
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than females in all three races. There were considerably more females than males in 

the East Asian and Caucasian groups (65% and 72%, respectively), while the reverse 

was the case for the smaller South Asian group (33%). The mean axial length 

differences between the three races were not statistically significant (independent 

sample t-tests: EA vs. CA, p = 0.98; EA vs. SA, p = 0.20; CA vs. SA, p = 0.20). It 

was not considered that gender and axial length needed to be taken into account for 

the study. Certainly, a much larger scale study could be conducted to consider the 

effect of gender on retinal shape.  

 

Table 5.2: Axial length (mm) according to gender in different races 

  Emmetropes Myopes 

Race Males  Females Males Females 

East Asians 24.46 ± 0.49 5 23.35± 0.57 9 25.04 ± 1.13 5 24.69 ± 0.64 17 

Caucasians 24.09 ± 0.60 9 23.69 ± 0.61 16 25.66 ± 0.21 5 24.94 ± 0.58 10 

South Asians 23.60 ± 0.69 7 23.12 ± 0.59 3 24.61 ± 1.01 5 24.57 ± 1.08 3 

Total 

 

21 

 

28 

 

15 

 

30 

 

 

5.2 PERIPHERAL REFRACTION 

Method 

Peripheral refraction was obtained with the Shin-Nippon auto refractor using 

the procedure described in section 3.5.4. Relative peripheral refraction (RPR) was 

determined by subtracting central refraction from refractions obtained at different 

visual field angles (RPR = peripheral M – central M).  

M, RPR, J180, and J45 were plotted as a function of visual field position. For M, 

RPR and J180 data, second order polynomial fits were applied for each participant: 

y = ax
2
 + bx + c                 (54) 

and for J45 data, first order linear fits were applied for each participant: 

y = bx + c                 (55) 
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where x was the visual field angle in degrees and was taken as being positive 

for both nasal and superior visual fields. Data corresponding to the optic disc (15º 

temporal field) were not included in analysis. 

Two-way ANOVAs were conducted on the highest order coefficients for RPR, 

J180, and J45 separately, with race (EA/CA/SA) and refraction group 

(myopes/emmetropes) as between-subject factors and visual field meridian 

(horizontal/vertical) as a within-subject factor. For analysis with J180, signs for 

horizontal data were changed to match them with vertical data. Post-hoc t-tests with 

Bonferroni correction were used to compare results between races. To investigate if 

peripheral refraction components and RPR were affected by myopia magnitude, 

linear regressions were determined for the highest order coefficients as functions of 

central M. Analysis of covariance (ANCOVA) was performed to test the significance 

of slopes between races. 

 

Results 

Figure 5:1 shows mean M along horizontal and vertical field meridians as a 

function of visual field angle in different racial groups for both emmetropes and 

myopes. It includes second order polynomial fits for which the coefficients are given 

in Table 5.3. 

The patterns were different along the horizontal and vertical meridians 

(ANOVA of RPR for coefficient “a” in equation (54): F1, 176 = 17.9, p < 0.001). 

Refraction group and race did not significantly affect the “a” coefficient of RPR (F1, 

176 = 1.11, p = 0.29 and F2, 176 = 2.97, p = 0.06, respectively), although race was close 

to being significant. Along the horizontal meridian emmetropes exhibited slight 

relative peripheral myopia, which in myopes changed to relative peripheral 

hyperopia (Figure 5:1a), and along the vertical meridian both emmetropes and 

myopes showed relative peripheral myopia which was greater in the emmetropes 

than in myopes (Figure 5:1b). The linear regressions showed that, along both the 

horizontal and vertical meridians, the slope of coefficient “a” per dioptre of central M 

was most negative for Caucasians followed by East Asians and South Asians (Figure 

5:2a and b). The slopes were significantly different between the races in the 

ANCOVA along the horizontal (F2, 88 = 12.1, p < 0.001) but not along the vertical 
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meridian (F2, 88 = 0.44, p = 0.65), and post hoc testing did not show significant pair-

wise comparisons. 

Figure 5:3 shows mean J180 along the horizontal and vertical field meridians as 

a function of visual field angle in different racial groups for both emmetropes and 

myopes. It includes second order polynomial fits for which the coefficients are given 

in Table 5.3. 

The patterns were similar along the horizontal and vertical meridians, but the 

field affected coefficient significantly (F1, 176 = 42.2, p < 0.001) with steeper fits 

along the vertical meridian (0.0012 ± 0.004 D/degrees
2
) than along the horizontal 

meridian (0.0009 ± 0.002 D/degrees
2
). Refraction group and race did not affect the 

“a” coefficient significantly (F1, 176 = 1.52, p = 0.22 and F2, 176 = 1.38, p = 0.25, 

respectively). The linear regressions show that the absolute slope of coefficient “a” 

per dioptre of central M was greater for South Asians than for the other races (Figure 

5:4a and b). The slopes were not significantly different between the races in the 

ANCOVAs (F2, 88 = 2.43, p = 0.09, horizontal meridian; F2, 88 = 2.33, p = 0.10, 

vertical meridian).   

Figure 5:5 shows J45 along the meridians as a function of visual field angle in 

different racial groups for both emmetropes and myopes. It includes linear 

polynomial fits for which the coefficients are given in Table 5.3. 

The patterns were similar along the horizontal and vertical meridians, but the 

field affected coefficient “b” in equation (55) significantly (F1, 176 = 15.9, p < 0.001) 

with steeper fits along the vertical than along the horizontal meridian. Race, but not 

refraction group, affected the “b” coefficient significantly (F2, 176 = 6.39, p = 0.002 

and F1, 176 = 1.76, p = 0.19, respectively). Post hoc testing showed that Caucasians 

had significantly higher coefficients than East Asians (mean ± SD: +0.008 ± 0.008 

D/degree vs.  0.005 ± 0.006, p = 0.02). The linear regressions show that the slopes of 

coefficient “b” per dioptre of central M were not significant for any of the races 

(Figure 5.6 a and b) nor between the races in the corresponding ANCOVA (F2, 88 = 

1.09, p = 0.34, horizontal meridian; F2, 88 = 3.51, p = 0.06, vertical meridian).  
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Figure 5:1: Mean spherical equivalent refraction M along a) horizontal and b) 

vertical visual field meridians in different racial groups for emmetropes and myopes . 

Error bars indicate 95% confidence intervals of mean. Plots are staggered 

horizontally to make them more legible. 
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Figure 5:2: Coefficients ‘a’ of the polynomial fits of RPR along a) horizontal and b) 

vertical visual field meridians for each participant from different races as a function 

of central spherical equivalent refraction. Linear regressions for the horizontal 

meridian are EA: y = –0.0002x + 0.0001, R² = 0.21, p = 0.004; CA: y = –0.0003x – 

0.0005, R² = 0.34, p < 0.001; SA: y = –0.00008x – 0.0002, R² = 0.02, p = 0.61. 

Linear regression for the vertical meridian are EA: y = –0.0003x – 0.0013, R² = 0.18, 

p = 0.009; CA: y = –0.0004x – 0.0014, R² = 0.29, p < 0.001; SA: y = –0.0002x – 

0.0013, R² = 0.02, p = 0.54. 
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Figure 5:3: Mean J180 astigmatism along a) horizontal and b) vertical visual field 

meridians in different racial groups for emmetropes and myopes . Error bars indicate 

95% confidence intervals of mean. Plots are staggered horizontally to make them 

more legible. 
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Figure 5:4: Coefficients ‘a’ of the polynomial fits of J180 astigmatism along a) 

horizontal and b) vertical visual field meridians for each participant from different 

races as a function of central spherical equivalent refraction. Linear regressions for 

the horizontal meridian are EA: y = –0.00001x – 0.0009, R² = 0.01, p = 0.55; CA: y = 

+0.00002x – 0.0008, R² = 0.02, p = 0.11; SA: y = +0.0001x – 0.001, R² = 0.29, p = 

0.02. Linear regressions for the vertical meridian are EA: y = +0.00003x + 0.001, R² 

= 0.01, p = 0.53; CA: y = –0.0001x + 0.0011, R² = 0.01, p = 0.87; SA: y = –0.0002x + 

0.001, R² = 0.22, p = 0.049. 
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Figure 5:5: Mean J45 astigmatism along a) horizontal and b) vertical visual field 

meridians in different racial groups for emmetropes and myopes. Error bars indicate 

95% confidence intervals of mean. Plots are staggered horizontally to make them 

more legible. 

 



  

Chapter 5: Retinal Shape in Different Racial Groups 144 

 

Figure 5:6: Coefficients ‘b’ of the linear fits of J45 astigmatism along a) horizontal 

and b) vertical visual field meridians for each participant from different races as a 

function of central spherical equivalent refraction. Linear regressions for the 

horizontal meridian are EA: y = –0.0013x + 0.0019, R² = 0.12, p = 0.07; CA: y = –

0.0007x + 0.0027, R² = 0.03, p = 0.24; SA: y = –0.0025x + 0.0004, R² = 0.28, p = 

0.07. Linear regressions for the vertical meridian are EA: y = +0.0006x + 0.0063, R² 

= 0.03, p = 0.34; CA: y = –0.0008x + 0.011, R² = 0.03, p = 0.25; SA: y = +0.0029x + 

0.0092, R² = 0.20, p = 0.06. 
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Table 5.3: Polynomial fit coefficients for M, RPR, J180 and J45 along horizontal and 

vertical field meridians for each racial group (EA = East Asian, CA = Caucasian, SA 

= South Asian) and refractive group (E = Emmetrope, M = Myope). 

 
Race E/M 

Horizontal 
 

Vertical 

a b c 
 

a b c 

M 

EA 
E –0.00002 +0.00049 –0.03 

 
–0.00156 –0.00658 –0.15 

M +0.00078 –0.00397 –2.82 
 

–0.00042 +0.00094 –2.98 

CA 
E –0.00048 –0.00938 –0.02 

 
–0.00148 –0.00427 –0.17 

M +0.00036 –0.00726 –3.08 
 

–0.00024 –0.00801 –2.96 

SA 
E –0.00028 –0.00208 –0.13 

 
–0.00165 –0.00466 –0.20 

M +0.00001 –0.00058 –2.14 
 

–0.00051 –0.01103 –2.16 

          

RPR 

EA 
E –0.00002 +0.00066 –0.04 

 
–0.00156 –0.00658 –0.07 

M +0.00073 –0.00430 –0.06 
 

–0.00042 +0.00094 –0.13 

CA 
E –0.00048 –0.00938 –0.03 

 
–0.00148 –0.00427 –0.08 

M +0.00036 –0.00726 –0.01 
 

–0.00024 –0.00801 –0.06 

SA 
E –0.00028 –0.00208 –0.06 

 
–0.00165 –0.00466 –0.03 

M +0.00001 –0.00058 +0.05 
 

–0.00051 –0.01103 –0.05 

          

J180 

EA 
E –0.00083 –0.00132 +0.01 

 
+0.00131 +0.00442 +0.03 

M –0.00084 –0.00677 +0.15 
 

+0.00113 +0.00286 +0.20 

CA 
E –0.00075 –0.01111 –0.01 

 
+0.00115 +0.00298 +0.01 

M –0.00086 –0.01512 +0.07 
 

+0.00124 +0.00500 +0.03 

SA 
E –0.00083 –0.00772 +0.01 

 
+0.00123 +0.00261 –0.03 

M –0.00103 –0.00842 +0.14 
 

+0.00134 +0.00416 +0.16 

          

J45 

EA 
E 

 
+0.00192 –0.04 

  
+0.00443 –0.02 

M 
 

+0.00403 –0.01 
  

+0.00581 +0.01 

CA 
E 

 
+0.00200 –0.09 

  
+0.01109 –0.05 

M 
 

+0.00591 –0.07 
  

+0.01463 –0.06 

SA 
E 

 
+0.00124 –0.06 

  
+0.00884 –0.10 

M 
 

+0.00449 –0.05 
  

+0.00324 –0.05 
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Discussion 

 Generally, the results support previous investigations concerning patterns in 

the horizontal and vertical field meridians and how these are associated with central 

refraction: 

There was negative RPR (relative peripheral myopia) in both meridians for 

emmetropes, but this became positive (relative peripheral hyperopia) in 

myopes along the horizontal meridian only (Atchison et al., 2006, Berntsen et 

al., 2010). 

Peripheral J45 was 2-3 times larger along the vertical than along the horizontal 

meridian, but was not affected by refraction (Atchison et al., 2006).  

Peripheral J180 was greater and had less variability than RPR, and was greater 

along the vertical than along the horizontal meridian, but I note that Atchison et 

al. (2006) found similar results in the two meridians. 

 

The results show effects of race on peripheral refraction:  

Caucasians developed positive RPR (relative peripheral hyperopia) with 

increased myopia at greater rates than for the other races along the horizontal 

meridian. 

Peripheral J180 along both horizontal and vertical fields increased with myopia 

for South Asians only.  

There was a trend for East Asians to have greater relative peripheral hyperopia 

than other races along the horizontal meridian (Figure 5:1a), but this was not quite 

significant. Logan et al. (2004) did not find such a trend, but Kang et al. (2010) 

found that moderate myopic East Asians had greater relative peripheral hyperopia 

than did moderate myopic Caucasians in the temporal visual field. Because the 

differences in significance of race between this study and that for Kang et al. may be 

at least in part due to differences in analysis, I performed a similar ANOVA analysis 

as Kang et al. (2010). I did a repeated-measures ANOVA on the horizontal RPR data 

at ±30 degrees with race (EA, CA only) and refractive group (emmetropes, low and 

moderate myopia categories as selected by Kang et al.) as between-subject factors. 

Race was indeed a significant influence on relative refraction pattern (F2, 69 = 5.3, p = 
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0.03), but there was no interaction between race and refraction group (F2, 69 = 0.7, p = 

0.53). 

Caucasians had significantly higher “b” coefficients for J45 than did East 

Asians. Peripheral refraction profiles in South Asians and the differences in 

peripheral refraction profiles of races along the vertical meridian have not been 

reported before. 

 

5.3 PERIPHERAL EYE LENGTHS 

Method 

Peripheral eye length measurements were obtained with the Lenstar using the 

procedure described in section 3.5.5. Relative peripheral eye length (RPEL) was 

determined by subtracting central axial length from the eye length obtained at 

different visual field angles: 

RPEL = peripheral EL – central EL 

RPEL was plotted as a function of visual field position. Data corresponding to 

the approximate optic disc position (15º temporal field) were not included in 

analysis. Second order polynomial fits were applied for each participant as for 

peripheral refraction (section 5.1, equation (54)). 

Two-way ANOVAs were conducted on the highest order coefficient “a” with 

race (EA/CA/SA) and refraction group (myopes/emmetropes) as between-subject 

factors and visual field meridian (horizontal/vertical) as a within-subject factor. Post 

hoc t-tests with Bonferroni correction were used to compare between races. 

To investigate if RPEL was affected by myopia magnitude, linear regressions 

were determined for the coefficients as function of central M. Analysis of covariance 

(ANCOVA) was performed to test the significance of slopes between races. 

 

Results 

Figure 5:7 shows mean relative peripheral eye lengths along horizontal and 

vertical fields as a function of visual field angle in different racial groups for both 

emmetropes and myopes. It includes polynomial fits, for which the coefficients are 
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given in Table 5.4. The patterns were affected significantly by all factors (ANOVAs 

for coefficient “a” were: F1,176 (meridian) = 17.9, p < 0.001; F1,176 (refraction) = 85.5, 

p < 0.001; F2, 176 = 3.4 (race), p = 0.04). All plots showed negative RPEL, but with 

higher values along the horizontal than along the vertical field and with higher values 

for myopes than for emmetropes. More negative coefficients were found in East 

Asians (mean ± SD: 0.0009 ± 0.0004 mm/degree
2
) than in Caucasians (0.0005 ± 

0.0004) and South Asians (0.0006 ± 0.0004), with all post-hoc comparisons except 

for Caucasians with Asians being significant; this racial variation was attributable 

solely to differences along the horizontal meridian. 

The linear regressions showed that the slope of coefficient “a” per dioptre of 

central M was greater for the vertical than for the horizontal meridian (Figure 5:8) 

and were not significantly different between the races in the corresponding 

ANCOVAs (F2, 88 = 0.24, p = 0.78, horizontal meridian; F2, 88 = 0.38, p = 0.69 vertical 

meridian). 

 

Table 5.4: Polynomial fit coefficients for RPEL along horizontal and vertical field 

meridians for each racial group (EA = East Asian, CA = Caucasian, SA = South 

Asian) and refractive group (E = Emmetrope, M = Myope). 

 
Race E/M 

Horizontal 
 

Vertical 

a b c 
 

a b c 

RPEL 

EA 
E –0.00075 –0.00462 –0.01 

 
–0.00025 +0.00157 –0.04 

M –0.00113 –0.00348 –0.04 
 

–0.00080 –0.00299 –0.01 

CA 
E –0.00046 –0.00315 –0.02 

 
–0.00023 –0.00132 –0.04 

M –0.00087 –0.00507 –0.04 
 

–0.00090 +0.00116 +0.00 

SA 
E –0.00315 –0.00365 –0.04 

 
–0.00030 –0.00207 –0.04 

M –0.00086 –0.00212 –0.06 
 

–0.00079 –0.00582 –0.03 
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Figure 5:7: Mean RPEL along a) horizontal and b) vertical visual field meridians in 

different racial groups for both emmetropes and myopes. Error bars indicate 95% 

confidence intervals of mean. Plots are staggered horizontally to make them more 

legible. 
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Figure 5:8: Coefficients ‘a’ of the polynomial fits of RPEL along a) horizontal and b) 

vertical visual field meridians in different racial groups as a function of central 

spherical equivalent refraction. Linear regressions for the horizontal meridian are 

EA: y = +0.00011x – 0.00081, R² = 0.38, p < 0.001; CA: y = +0.00013x – 0.00047, 

R² = 0.55, p < 0.001; SA: y = +0.00014x – 0.00051, R² = 0.46, p < 0.001. Linear 

regressions for the vertical meridian are EA: y = +0.00015x – 0.0003, R² = 0.38, p < 

0.001; CA: y = +0.00019x – 0.00030, R² = 0.33, p = 0.002; SA: y = +0.00016x – 

0.00035, R² = 0.25, p = 0.03. 
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Discussion 

All participants had negative RPELs, which became more negative as myopia 

increased in agreement with studies using a similar external attachment (Ehsaei et al., 

2012, Faria-Ribeiro et al., 2013) and a custom built interferometer (Schmid, 2003a, 

2003b). The RPELs were more negative along the horizontal meridian than along the 

vertical meridian, but changed more rapidly along the vertical meridian as myopia 

increased.  

The changes in RPEL with central refraction were consistent with the changes 

in relative peripheral refraction found in section 5.2 (more negative RPEL with more 

relative peripheral hyperopia). Two other studies found significant correlations 

between RPEL and relative peripheral refraction in the horizontal visual field (Faria-

Ribeiro et al., 2013, Orr et al., 2013). Considering all our participants showed 

negative RPELs, it is worth mentioning that the sign of RPEL alone does not indicate 

the shape of the retina nor the sign of relative peripheral refraction.  

Concerning race, East Asians had more negative RPELs than the other races 

along the horizontal meridian across a range of refractions. This is consistent with 

the non-significant tendency for East Asians to have more relative hyperopia than 

other races as found in section 5.2. 

 

5.4 RETINAL SHAPE  

Method 

Retinal shape was estimated in terms of vertex radius of curvature and 

asphericity using the validated PCIStage 2 method described in section 3.5.7. 

Mean ± 95% confidence interval limits of vertex radius of curvature and 

asphericity were determined in emmetropes and myopes of different races along 

horizontal and vertical field meridians.  

Two-way ANOVAs were conducted on the vertex radius of curvature and 

asphericity separately with race (EA/CA/SA) and refraction group 

(myopes/emmetropes) as between-subject factors and visual field meridian 

(horizontal/vertical) as a within-subject factor. Post hoc t-tests with Bonferroni 

correction were used to compare between races.  
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To investigate if retinal shape estimates were affected by myopia magnitude, 

linear regressions were determined for vertex radius of curvature and asphericity 

plotted against central M. Analysis of covariance (ANCOVA) was performed to test 

the significance of slopes between races. 

 

Results 

Figure 5:9 shows the means ± SD of the retinal coordinates in the different 

racial groups. For the horizontal meridian, the retinas were steeper for the East 

Asians than for the other races (Figure 5:9a), but there were no racial trends for the 

vertical meridian (Figure 5:9b). The retinal coordinates along horizontal and vertical 

meridians in emmetropes and myopes are shown for each race separately in Figure 

5:10a-f. The nasal-temporal and superior-inferior asymmetries occurred for all 

combinations of race and refraction groups.  
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Figure 5:9: Retinal coordinates in the three races along a) horizontal and b) vertical 

field. Horizontal and vertical error bars represent standard deviations for Z and X/Y 

coordinates, respectively.  
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Figure 5:10: Retinal coordinates in emmetropes  and myopes for EA, CA and SA 

along the horizontal meridian (a), b), c)) and along the vertical meridian (d), e), f)). 

Horizontal and vertical error bars represent standard deviations for Z and X/Y 

coordinates, respectively. 

 

Figure 5:11a and b shows the means and their 95% confidence interval limits 

for vertex radius of curvature and asphericity, respectively, in different racial groups 

for both emmetropes and myopes along horizontal and vertical field meridians. 

Vertex radius of curvature was affected significantly by visual field meridian and 

refraction (ANOVA: F1, 516 (meridian) = 14.6, p < 0.001; F1,516 (refraction) = 9.5, p = 

0.002) but not quite by race (F2, 516 = 2.8, p = 0.06). The vertex radii of curvature 

were smaller along the horizontal (mean ± SD: 11.8 ± 1.6 mm) than along the 

vertical meridian (13.0 ± 1.9 mm), with smaller radii of curvatures for myopes (11.8 

± 2.0 mm) than for emmetropes (12.9 ± 1.6 mm). 

Although race did not show significant influence on vertex radius of curvature, 

there were significant interactions between field and race (F2, 176 = 0.19, p = 0.02). 

East Asians showed smaller vertex radii of curvature along horizontal (11.2 ± 0.51 

mm) and vertical meridians (12.6 ± 0.6 mm) than Caucasians (12.3 ± 0.5 mm and 

13.3 ± 0.7 mm), with the South Asians being intermediate (12.0 ± 0.70 mm and 12.8 

± 0.8 mm). There was statistical significance for the differences between East Asians 

and Caucasians for the horizontal meridian (p < 0.001). 
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The ANOVA did not show statistically significances with either visual field 

meridian, refraction group or race (F1, 158 (meridian) = 2.13, p =0.15; F1,158 

(refraction) = 0.17, p = 0.68; F2,158 (race) = 1.32, p = 0.27). The mean asphericities 

along horizontal and vertical meridians were –0.38 ± 0.17 and –0.19 ± 0.41 (East 

Asians), –0.51 ± 0.23 and –0.06 ± 0.41 (Caucasians) and –0.68 ± 0.29 and –0.51 ± 

0.46 (South Asians). An interesting effect is the considerable, and of itself 

significant, difference between East Asian emmetropes and myopes along the 

vertical field. 

 

 

Figure 5:11: Mean retinal vertex radius of curvature a) and asphericity b), in 

emmetropes and myopes of different races along horizontal and vertical field 

meridians. Error bars indicate 95% confidence intervals of mean. 

 

Figure 5:12 shows the linear regression of vertex radius of curvature and 

asphericity against central M along horizontal and vertical meridians. There is a 
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tendency for the vertex radius of curvature to decrease with increasing myopia along 

the horizontal meridian, and while the East Asians showed a significant slope (Table 

5.5), the slopes were not significantly different between the races in the 

corresponding ANCOVA (F2, 88 = 0.28, p = 0.76). East Asians showed a significant 

slope for asphericity and the horizontal meridian (Table 5.4), but again the slopes 

were not significantly different between the races in the corresponding ANCOVA 

(F2, 88 = 0.53, p = 0.59). 

 

 

Figure 5:12: Retinal vertex radius of curvatures and asphericities of participants as a 

function of central spherical equivalent refraction: retinal radius of curvature along a) 

horizontal and b) vertical field meridians; asphericities along c) horizontal and d) 

vertical field meridians.  
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Table 5.5: Linear regression fit coefficients for retinal shape estimates along 

horizontal and vertical field meridians for each racial group (EA = East Asian, CA = 

Caucasian, SA = South Asian) as a function of central spherical equivalent refraction. 

The p values refer to the “a” co-efficient. 

Race  
 

Horizontal field meridian  
 

Vertical field meridian  
a  b  p  a  b  p 

EA  
R

xv 
 +0.377  +11.83  0.01 R

yv
 +0.155  +12.86 0.36 

Q
x 
 +0.121  –0.18  0.02 Q

y
 –0.196  –0.52  0.10 

CA  
R

xv 
 +0.268  +12.62  0.09 R

yv
 +0.178  +13.54  0.40 

Q
x 
 +0.032  –0.48  0.66 Q

y
 +0.065  +0.01  0.60 

SA  
R

xv 
 +0.177  +12.21  0.51 R

yv
 –0.171  +12.63  0.56 

Q
x 
 +0.048  –0.64  0.66 Q

y
 –0.142  –0.65 0.42 

 

 

Figure 5:13 a-d compares the mean retinal surface shapes between the racial 

groups in emmetropes and myopes along horizontal and vertical meridians. East 

Asian emmetropes and myopes had steeper retinas than their Caucasian and South 

Asians counterparts except for emmetropia along the vertical meridian (Figure 

5:13b). The mean percentage differences of retinal surface shape between East Asian 

emmetropes and Caucasian/South Asian emmetropes were 2.5% and < 1% along 

horizontal and vertical meridians, respectively. The differences were greater for 

myopia, with the corresponding differences being 4.6% and 1.8%. 
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Figure 5:13: Retinal surface shape comparison between East Asians (EA), 

Caucasians (CA) and South Asians (SA) in emmetropes along a) horizontal and b) 

vertical meridians, and in myopes along c) horizontal and d) vertical meridian. 
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Discussion 

Field meridian, refraction and race had significant effects on vertex radius of 

curvature but not on asphericity. The horizontal meridian had smaller radii of 

curvature than the vertical meridian (mean difference ± SD 1.1 ± 2.1 mm). The 

effects were not as strong for refraction: while emmetropes and myopes showed 

significant differences with the myopes having the smaller radii of curvature (mean 

difference 1.1 mm), most slopes of vertex radius of curvature as a function of 

refraction were not significant. East Asians had smaller radii of curvature than 

Caucasians (mean difference 1.0 mm). The steeper retinal shapes (smaller vertex 

radii of curvature) in East Asians than in other races was consistent with higher 

relative peripheral hyperopia (section 5.2) and more negative relative peripheral eye 

length (section 5.3). 

The results of this study can be compared with three previous studies. Atchison 

et al. (2005a) determined retinal shapes with MRI for a young adult, largely 

Caucasian population. The radius of curvature became smaller along the horizontal, 

but not along the vertical meridian, as myopia increased, and the asphericity became 

less positive along both meridians as myopia increased. The current study showed a 

tendency for the vertex radius of curvature to decrease with increasing myopia along 

the horizontal meridian, but there was no trend for asphericity. There were 

considerable differences between the two studies, as Atchison et al. fitted conicoids 

to 240º degrees of the retina using MRI rather than the 132.5º degrees used here. 

Similar to Atchison et al. (2005a), Gilmartin et al.’s MRI study (2013) found oblate 

retinal shapes in both myopes and emmetropes and with myopes having less 

oblateness. Using Dunne’s method, Logan et al. (2004) found differences in retinal 

coordinates between Caucasians and Chinese and found asymmetry of retinal shape 

changes from emmetropes to myopes that was higher for East Asians than 

Caucasians along the horizontal field. However, differences in asymmetry between 

refraction groups and races were not apparent in this study. 

Models of region of retinal expansion (global, equatorial, posterior pole, and 

axial expansion) in myopia were introduced in section 2.4.2.2. It would be interesting 

to determine whether the retinal shapes of the three races follow the same model or 

follow different models. Unfortunately, as the measurements with PCI were 
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restricted to about 27% of the posterior eye as mentioned in section 3.5.6.3, this 

study cannot provide useful information about this. 

Combining the results from this study with the high prevalence rates of myopia 

in East Asians suggests that steeper retinas are a risk factor for the myopia 

development. This requires confirmation by longitudinal studies.  

 

5.5 CONCLUSION 

Retinal shape was compared between three different races (East Asians, 

Caucasians and South Asians) in emmetropes and myopes along both horizontal and 

vertical meridians, thus addressing the second aim of the thesis: “to use the validated 

method to measure retinal shape in East Asian, South Asian and Caucasian myopes 

and emmetropes to determine how retinal shape and peripheral refraction are related 

in eyes of people with different racial backgrounds”. 

Peripheral refraction, peripheral eye lengths and retinal shapes were affected 

by meridian, refraction and racial group. East Asian myopes had greater relative 

peripheral hyperopia, more negative RPELs and smaller vertex radius of curvature 

along both horizontal and vertical meridians than Caucasian myopes, while the South 

Asians were intermediate. Retinal shapes were steeper along the horizontal meridian 

than along the vertical meridian, in myopia than in emmetropia, and in East Asians 

than in Caucasians. These results support hypotheses 2 and 3 of the thesis that “there 

are differences in retinal shapes among different racial groups” and that “there are 

meridional variations in retinal shape”. 
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Chapter 6- Retinal Shape in Isomyopes and 

Anisomyopes 

As both eyes of an individual are exposed to the same visual (environmental) 

influences and the confounding influence of differences in genetic background are 

avoided, the anisomyopia condition may be useful for understanding the relationship 

between retinal shape and myopia. This chapter investigates if there are differences 

in retinal shape and peripheral refraction between two eyes of isomyopes and 

anisomyopes. As mentioned in section 2.4.1, I am not aware of any studies that have 

investigated whether the biometry or the structural properties of higher myopic eyes 

of anisomyopes are different from that of eyes of isomyopes with similar refraction, 

and this will also be investigated. The chapter addresses the third aim: “to determine 

how retinal shape and peripheral refraction vary between the two eyes of individuals 

with isomyopia and anisomyopia” and its associated hypothesis 4: “retinal shapes are 

different in isomyopic eyes and anisomyopic eyes of the same refraction”. 

This chapter is divided into 3 sections. Section 6.1 is an overview of methods. 

Sections 6.2 describes the differences in retinal shape (PCIStage2 method) between the 

two eyes of isomyopes and anisomyopes and compares retinal shapes of myopic eyes 

of anisomyopic participants with isomyopic eyes of similar refraction. It includes 

differences in peripheral refraction between two eyes of isomyopes and 

anisomyopes. Section 6.3 gives the conclusions of the chapter. 

 

6.1 METHOD 

Here, twenty-one participants (12 isomyopes and 9 anisomyopes) were 

recruited. Anisomyopia was defined as the difference in M between two eyes of  

1.00 D.  As only isomyopes were included in the race comparison study of Chapter 

5, ten isomyopic participants from that cohort were recruited for this study. Mean age 

of both isomyopes and anisomyopes was 23 ± 4 years with a range of 18 to 29 years. 

All participants had on-axis astigmatism of less than 1.50 D. Table 6.1 summarizes the 

characteristics of participants.  
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Peripheral refraction was obtained with the Shin-Nippon auto refractor using 

the procedure described in section 3.5.4. RPR, J180, and J45 were plotted as a function 

of visual field position. For RPR and J180 data, second order polynomial fits were 

applied for each participant using equation (54) and for J45 data, first order linear fits 

were applied for each participant using equation (55). 

Peripheral eye length measurements were obtained with the Lenstar, using the 

procedure described in section 3.5.5. Retinal shape was estimated in terms of vertex 

radius of curvature (Rxv and Ryv) and asphericity (Qx and Qy) using the PCIStage 2 

method described in section 3.5.7. The Rv and Q parameters along each meridian 

were combined to form a “surface shape” using the procedure described in section 

3.5.8. Differences between retinal shapes of the two eyes of participants were given 

as percentages (section 3.5.8). 

I investigated how the higher myopic eyes of anisomyopic participants 

compare with isomyopic eyes of the same refraction. The retinal coordinates were 

fitted to a best sphere (Q = 0) to determine equivalent retinal radius of curvature 

(REq) and were compared with a large isomyopic group of 60 eyes (combined right 

and left eyes of isomyopes in this experiment and all myopes from the previous 

experiment in Chapter 5). Because of small sample size (due to difficulty in finding 

participants with anisomyopia despite many recruitment advertisements) and unequal 

spread of participants across the range of refraction, REq of isomyopic participants 

from three races were pooled together. This is a limitation of this study. 

 For peripheral refraction data, statistical significances between the two eyes of 

isomyopes and between two eyes (lower and higher  myopic eyes) of anisomyopes 

were determined with paired t-tests. For retinal shape data REq, analysis of covariance 

(ANCOVA) was performed to test the significance of differences in rate of change in 

REq with refraction slopes between three groups: combined right and left eyes of 

isomyopes, the lower myopic eyes of anisomyopes, and the higher myopic eyes of 

anisomyopes. 
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Table 6.1: Characteristics of isomyopic and anisomyopic participants.  

Condition ID MR (D) AL (mm) ML (D) AL (mm) 
Age 

(years) 
Gender Race 

ISO SO –1.00 23.52 –1.50 23.54 29 F EA 

ISO AS –4.00 25.19 –4.00 25.34 24 F CA 

ISO JW –3.75 25.9 –3.25 25.58 20 M CA 

ISO JL –6.00 26.73 –6.50 27.14 19 M EA 

ISO NB –1.25 23.13 –0.50 23.00 27 M SA 

ISO JV –3.00 25.66 –2.75 25.46 28 M CA 

ISO PA –1.25 24.11 –1.00 24.16 29 M SA 

ISO SL –2.00 25.29 –2.00 25.39 18 F EA 

ISO SFL –4.00 24.12 –3.50 24.13 22 F EA 

ISO MG –4.00 24.09 –4.50 24.28 24 F CA 

ISO AR –0.75 25.5 –1.25 25.49 24 F CA 

ISO JK –5.25 25.72 –5.00 25.69 20 F EA 

 
 

ANISO PP –3.50 23.11 –4.50 25.75 23 F EA 

ANISO NT –5.25 26.10 –2.75 25.22 20 F EA 

ANISO LC –3.75 24.5 –0.75 23.92 20 F CA 

ANISO AL –1.25 25.27 –4.25 26.32 19 F EA 

ANISO YT –3.25 25.12 –6.51 26.49 21 F EA 

ANISO AA –3.25 26.13 –5.25 27.27 24 F CA 

ANISO THH –5.00 25.11 –2.50 24.17 20 F EA 

ANISO AK –7.50 27.80 –6.25 27.67 29 M SA 

ANISO QZ –4.50 25.62 –3.00 25.11 27 M EA 

 

6.2 RESULTS  

Peripheral refraction 

Figure 6:1 to Figure 6:4 show relative peripheral refraction of the fellow eyes 

of both isomyopes and anisomyopes. For isomyopes, the fellow eyes had similar 

patterns with the coefficient “a” in equation (54) not being statistically significant 

different between the two eyes (p = 0.34, horizontal; p = 0.91, vertical). For 

anisomyopes along the horizontal meridian, the more myopic eyes clearly had more 

positive or less negative relative peripheral refraction in 7/9 cases and the “a” co-

efficients were significantly different between the more and less myopic eyes (p = 

0.02). Along the vertical meridian, the more myopic eyes clearly had more positive 
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or less negative relative peripheral refraction in 5/9 cases but the “a” co-efficients 

were not significantly different between the more and less myopic eyes (p = 0.11).  

The astigmatic components had similar patterns for fellow eyes of both 

isomyopes or anisomyopes, with the differences between the more and less myopic 

eyes for “a” coefficients (J180) and “b” co-efficients for (J45) not being significantly 

different.  

 

 

Figure 6:1: Relative peripheral refraction along the horizontal field meridian for 

fellow eyes of isomyopes (lower myopic eyes, red closed triangles and red dashed 

curves; higher myopic eyes, blue open circles and blue curves).  
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Figure 6:2: Relative peripheral refraction along the vertical field meridian for fellow 

eyes of isomyopes (lower myopic eyes, red closed triangles and red dashed curve; 

higher myopic eyes, open circles and blue curves). 
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Figure 6:3: Relative peripheral refraction along the horizontal field meridian for 

fellow eyes of anisomyopes (lower myopic eyes, red closed triangles and red dashed 

curves; higher myopic eyes, open circles and blue curves). 
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Figure 6:4: Relative peripheral refraction along the vertical field meridian for fellow 

eyes of anisomyopes (lower myopic eyes, red closed triangles and red dashed curves; 

higher myopic eyes, open circles and blue curves). 

 

Retinal shape 

Figure 6:5 shows the mean percentage difference in retinal shapes between the 

two eyes of both isomyopes and anisomyopes. For isometropes the fellow eyes had 

similar shapes (mean difference ± 95% CI 1.5 ± 0.5% horizontally, 2.7 ± 1.1% 

vertically). For anisometropes the fellow eyes had dissimilar shapes (mean difference 

95% CI 5.1 ± 2.5% horizontally, 4.1 ± 2.4% vertically). 

Figure 6:6 and Figure 6:7 show retinal shapes of fellow eyes of participants 

along horizontal and vertical meridians.  

Figure 6:8 shows frequencies of the ratios of areas under the surface shapes for 

fellow eyes. Along both the horizontal and vertical meridians, isometropes had ratios 

close to unity of between 0.98 and 1.02. For anisomyopic participants, the higher 
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myopic eyes had steeper retinal shapes (lesser area) than the lower myopic eyes for 7 

and 4 out of 9 participants along the horizontal and vertical meridians, respectively. 

 

 

Figure 6:5: Mean percentage differences in retinal surface shapes between fellow 

eyes for horizontal and vertical meridians. Error bars indicate 95% confidence 

intervals of means. 
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Figure 6:6: Retinal shapes of lower myopic eyes (red dashed curves) and higher 

myopic eyes (blue curves) of isomyopic participants for the horizontal and vertical 

meridians.  
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Figure 6:7: Retinal shapes of lower myopic eyes (red dashed curves) and higher 

myopic eyes (blue curves) of anisomyopic participants for the horizontal and vertical 

meridians  
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Figure 6:8: Frequency of participants against ratio of area under the “surface shapes” 

between fellow eyes of isomyopic participants (higher/lower myopic eye) along a) 

horizontal and b) vertical meridians, and of anisomyopic participants (higher/lower 

myopic eye) along c) horizontal and d) vertical meridians. 

 

To investigate how the higher myopic eyes of anisomyopic participants 

compared with isomyopic eyes of similar refractions, retinal coordinates were fitted 

to a best sphere to determine the equivalent retinal radius of curvature (REq) for each 

retina. The linear regressions of REq against central M are shown in Figure 6:9 for 

three refraction groups: combined right and left eyes of isomyopes, the lower myopic 

eyes of anisomyopes, and the higher myopic eyes of anisomyopes. The slopes of the 

regressions are shown in Table 6.2; none were significantly different from zero (p > 

0.05) and nor were they significantly different from each other (ANCOVA F2, 71 = 

2.71 p = 0.08, horizontal meridian; ANCOVA F2, 71 = 0.32, p = 0.72, vertical 

meridian). 
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Figure 6:9: Retinal equivalent radius of curvature as a function of central spherical 

equivalent refraction along a) horizontal and b) vertical meridians. Groups are eyes 

of isomyopes (black closed circles and black solid lines), lower myopic eyes of 

anisometropes (blue empty triangles and blue dashed lines) and higher myopic eyes 

of anisometropes (filled blue triangles and blue solid lines). 

 

Table 6.2: Linear regression fit coefficients for retinal equivalent radius of curvature 

REq as a function of central spherical equivalent refraction along horizontal and 

vertical field meridians. 

Refraction 

Group Eye 
Horizontal field meridian  

 
Vertical field meridian  

a  b  R2 p a  b  R2 p 
Isomyopes R and L  –0.055 +12.31 0.01 0.47 

 
–0.183 +12.62 0.05 0.10 

Anisomyopes  lower –0.286  +12.18 0.13 0.32 
 

–0.285  +12.51 0.09 0.42 

higher –0.796  +8.433 0.03 0.09 
 

–0.532  +11.03 0.09 0.43 

R and L = right and left eyes, lower = lower myopic eye, higher = higher myopic 

eye. The p values refer to the “a” co-efficients which are the slopes of the fits. 
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Discussion 

For isomyopes, retinal surface shape and peripheral refractions were similar in 

fellow eyes. For anisomyopes, the high myopic eyes showed significantly steeper 

retinas and significantly more positive/less negative relative peripheral refraction 

along the horizontal meridian. Peripheral J180 and J45 were not influenced by 

anisomyopia. The results support Logan et al. (2004), who used Dunne’s method to 

estimate retinal shape along the horizontal meridian and found steeper shapes of the 

higher myopic eye than of the fellow eye of anisomyopes. They referred to the 

former as being more prolate which in the context of mathematical fitting may not be 

accurate (see section 2.4.2.1).  

Previous studies investigating biomechanical, optical or structural properties in 

anisomyopic eyes did not compare the results of the higher myopic eyes with the 

isomyopic eyes of same refraction (Logan et al., 2004, Vincent et al., 2014). This 

was taken into account in this study by investigating whether the retina shapes of the 

more myopic eyes of anisometropes are different from those of isometropes with the 

same refractions. I did not find any evidence that this is the case, but it is possible 

that the limited anisomyope sample size (9) and pooling of data from different races 

prevented real differences being found. 

 

6.3 CONCLUSION 

Retinal shape and peripheral refraction were determined for the two eyes of 

isomyopes and anisomyopes, thus addressing the third aim of the thesis: “to 

determine how retinal shape and peripheral refraction vary between the two eyes of 

individuals with isomyopia and anisomyopia”. 

Retinal shapes and peripheral refraction were different between two eyes of 

anisomyopes but not generally of isomyopes. The higher myopic eyes of most 

anisomyopic participants had steeper retinas and more relative positive peripheral 

refraction than their fellow eyes along the horizontal meridian. However, there was 

no evidence that the higher myopic were different from isomyopic eyes with the 

same refraction. Because of small sample size and unequal spread of participants 

over wide range of refraction, the analysis involved pooling of participants from 

different races (EA, CA, SA). Therefore, the small sample size and a confounding 



  

Chapter 6: Retinal Shape in Isomyopes and Anisomyopes 174 

effect of race may have masked a true effect. Given the limitations of this 

experiment, it is more appropriate to put that hypothesis 4 of the thesis that “retinal 

shapes are different in isomyopic eyes and anisomyopic eyes of the same refraction” 

was not supported rather than to put that it was rejected.   
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Chapter 7-  Discussion and Conclusion 

7.1 SUMMARY 

Myopia is an important health issue, being associated with ocular disease in 

later life (section 2.3). Accompanying increase in the prevalence of myopia in the 

past few decades have been many theories involving the role of various factors in 

myopia development and progression, with the intention of developing preventive 

strategies.  

Most of the theories of myopia have been related to the central retina and the 

state of focus along the visual axis. Hoogerheide et al. (1971) reported different 

patterns of peripheral refraction in emmetropic and hyperopic trainee pilots who 

went on to develop myopia than in those who did not. Thirty years on, inspired by 

Hoogerheide et al., there was an explosion of both animal and human studies 

investigating the roles that the peripheral retina and peripheral vision might play in 

the development of myopia.  

One aspect related to peripheral vision and peripheral optics is the shape of the 

retina, for which there are only a few studies. Retinal shape has been determined 

directly using magnetic resonance imaging (MRI) (section 2.4.2.8). This is a hospital 

based procedure, whose expense and considerable testing time making it difficult to 

be a part of myopic research, particularly for large scale clinical investigations. 

Additionally, its resolution is poor, thus making it difficult to detect small changes 

over a period of time. In the absence of a better or a simple method, retinal shape or 

overall eye shape have been inferred from indirect methods of peripheral refraction 

and partial coherence interferometry (PCI) based peripheral eye length 

measurements. There are some assumptions in the use of these methods and they 

have not been compared against MRI.  

The purpose of this study was to develop and validate a PCI based method for 

estimating retinal shape, and then to use it to determine retinal shapes of different 

races and in anisomyopes. Three aims have been addressed with 4 associated 

hypotheses to be tested.  
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A summary of the results is as follows: PCI was used to measure peripheral 

(off-axis) eye lengths, combined with other measures and modelling. In Experiment 

1, retinal shapes estimates using PCI with different modelling sophistications were 

compared with those obtained from MRI in 58 young adults. The most appropriate 

eye model involved a common schematic eye with ray deviation at surfaces but 

without customization of optical parameters. The validated method was used to 

compare retinal shapes in young adult Caucasians, East Asians and South Asians. 

Steeper retinas were found along the horizontal than along the vertical meridian, in 

myopes than in emmetropes, and in East Asian myopes than in Caucasian myopes. 

The method was also used to compare retinal shapes of the two eyes in isomyopes 

and anisomyopes. While the higher myopic eyes of anisomyopic participants had 

greater relative peripheral hyperopia and steeper retinas than their fellow eyes along 

the horizontal meridian, there was no evidence that these eyes had different retinal 

shapes than isomyopic eyes of same refraction. The variations in retinal shape 

between meridians, with refraction, and between races indicate that retinal shape may 

play a role in myopia development. 

It should be mentioned that it has been shown recently that peripheral 

refraction in the Hoogerheide et al. study was most likely measured after, rather than 

before, pilots did or not develop myopia (Rosén et al., 2012), and thus it is unlikely 

that Hoogerheide et al. provided evidence that peripheral refractive patterns are 

predictive of myopia development. While there seems to have been a waning of 

interest in the role of the peripheral retina over the last couple of years, possibly in 

response to the Rosén et al. study, it should be borne in mind that the course of this 

thesis was set well before the revelation about the Hoogerheide et al. study was 

made. 
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7.2 VALIDATION OF PARTIAL COHERENCE 

INTERFEROMETRY INSTRUMENT FOR 

ESTIMATING RETINAL SHAPE 

The first aim of this study was to determine the reliability of a simple method 

for determining retinal shape using off-axis partial coherence interferometry, and to 

validate this method by comparing the results with that of MRI. The associated 

hypothesis 1 was that retinal shape can be accurately predicted by measuring “off-

axis eye lengths” with a commercial partial coherence interferometry instrument. The 

methodology was given in Chapter 3, including three preliminary investigations, and 

the main Experiment 1 was described in Chapter 4. 

Two PCI instruments were candidates to be used in the main study, the Carl 

Zeiss IOLMaster and the Haag-Streit Lenstar. A device was developed that could be 

attached to either instrument. Its fixation target could be moved in an arc to provide 

peripheral visual angles to ±35° horizontally and ±30° vertically. The results from 

the first preliminary experiment (section  3.5.5.2) showed an excellent agreement 

between IOLMaster and Lenstar for peripheral eye length measurements (mean ± 

SD: 0.01 ± 0.07 mm for the horizontal and 0.02 ± 0.07 mm for the vertical visual 

fields, SDs corresponding to only 0.25 D) with the Lenstar showing better intra-

session and inter-session repeatability than IOLMaster. The repeatabilities were 

similar to those reported in several on-axis studies and in one off-axis study. On the 

basis of this study, I decided to use the Lenstar. This work has been published  

(Verkicharla et al., 2013).  

As mentioned above, peripheral visual field angles were obtained by rotating 

the eye relative to the instrument rather than more technically difficult method of 

rotating the instrument relative to the head. In a second preliminary experiment 

(section 3.5.5.3), I determined whether eye rotation would affect results, such as 

through pressure exerted by eyelids or extra-ocular muscles. The Lenstar was 

modified so that peripheral measurements could be obtained under both “eye 

rotation” and “no-eye rotation” conditions. Peripheral eye lengths were not 

significantly different between the two conditions along the vertical meridian. 

Whereas the peripheral eye lengths for the conditions were significantly different 
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along the horizontal meridian, they were not at individual positions and the 

differences were not important. The eye rotation approach did not change the 

measurements significantly even after holding the eye in rotated positions for 210 

seconds. I concluded that the eye rotation approach to determine peripheral eye 

lengths was valid. This work has been published (Verkicharla et al., 2014). 

There was one further preliminary investigation (section 3.5.5.1). The Lenstar 

instrument gives axial length and intraocular distances, except for the vitreous 

chamber depth which is obtained from the other distances, but does not indicate 

whether these distances use a common “refractive index” conversion from optical 

pathlengths to physical lengths, or whether there are separate conversions for each 

media. This was important for the modelling to be used with PCI to determine retinal 

shape. Using the Lenstar Graphical User Interface, it was observed that boundaries 

between media could be manipulated and opposite changes in optical path lengths on 

either side of the boundary could be introduced. Those ratios were combined with the 

overall eye refractive index to estimate separate refractive indices. Furthermore, 

Haag-Streit provided my research group with a template to obtain ‘air thicknesses’ to 

compare with physical distances. It became clear that the Lenstar uses different 

refractive indices for different ocular media. Some of the refractive indices, such as 

that for the cornea, are not physiological, and therefore, it is likely that the 

calibrations in the instrument correspond to instrument specific corrections and are 

not the real optical paths. The decision was made to trust the Lenstar provided 

distances, and to use refractive indices in modelling based on accepted schematic 

with a correction for the wavelength (820 nm) of the Lenstar. 

Several procedures were required to obtain retinal shapes in terms of non-

rotationally symmetric conicoids from MRI images (section 3.5.6).This included fits 

using 35% of the retinal area in order to be comparable with the region covered by 

PCI measurements. Modelling to obtain retinal shape from PCI was done in three 

levels of sophistication, all using variants of the Le Grand model eye (section 3.5.7). 

All modelling made the assumption that the beam from the instrument is incident 

normal to the anterior cornea. For Stage 1, deviation at surfaces was disregarded and 

no customisation was made. For Stage 2, deviation at surfaces occurred but no 

customization was made. For Stage 3, deviation at surfaces occurred, and the 
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following customisations were made: individual intraocular distances, anterior 

corneal topography, and a lens with parameters derived from Phakometry.  

Following correction to the MRI based fits so that they were referenced to the 

fovea, the retinal shape estimates were compared between PCI and MRI in 58 

participants. From Stage 1 to Stage 2, the retinal shape co-ordinates changed so that 

the Z co-ordinates (the sags) increased and the X/Y co-ordinates moved laterally, but 

such that there was little change in mean retinal steepness. The differences between 

Stages 2 and 3 were subtle. 

Fitting conicoids (or conics) to surfaces gives two components of shape, the 

vertex radius of curvature Rv and asphericity Q, which are not independent. I had 

thought that these parameters could be used to make comparisons between MRI and 

PCI. In several cases there were significantly different estimates for both Rv and Q, 

but it was clear often that there was compensation such as a positive change in Q, in 

one method relative to the other, compensating for a positive change in Rv. I decided 

that a better approach to comparing MRI and PCI would be to combine these 

parameters to form a “surface shape”, and to determine the differences between 

shape estimates (section 3.5.8). 

The difference in retinal shape estimates between the MRI and PCI methods 

(<4% and <7% along horizontal and vertical field meridian) were within estimates of 

the uncertainty of MRI (12–14%), suggesting good agreement between the two 

methods for estimating retinal shape. For the majority of the participants, all three 

Stages of the PCI method gave slightly flatter estimates of retinal shape than did 

MRI, with the differences being smaller along the horizontal than along the vertical 

meridian. 

In section 4.6, reasons for the differences between the different PCI Stages and 

between PCI and MRI were discussed. It is likely that the three Stages of the PCI 

method give similar results because the assumption that the infrared beam is directed 

normal to the anterior cornea is reasonable and furthermore than the normals to the 

cornea pass close to the nodal points of the eye so that the deviation within the eye is 

small.  Differences between MRI and PCI might be attributed in part to thresholding 

and partial volume effects in MRI image processing, and the need to use bigger areas 

of the retina for the former so that the estimates were not overly affected by noise. 
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An alternate to the PCI based method of determining retinal shape is Dunne’s 

method, which involves manipulating ocular parameters so that the peripheral 

refractions of model eyes match those of measurements (section 2.4.2.2 and 3.5.7). 

Retinal shape estimated with Dunne’s method showed relatively poor agreement 

with MRI (6% along the horizontal meridian and 9% along the vertical meridian) 

compared with PCI (4% and 6% for horizontal and vertical), and the flatter estimates 

of retinal shape found with PCI were exacerbated with Dunne’s method.  It remains 

possible that Dunne’s estimates provide better agreement with MRI with a different 

foundation model eye; this was not investigated further.  

To conclude, there was good agreement between PCI based methods and MRI 

for estimating retinal shape. The hypothesis 1, that retinal shape can be accurately 

predicted by measuring “off-axis eye lengths” with a commercial partial coherence 

interferometry instrument, has been supported. As the relatively unsophisticated 

Stage 2 is easy to implement, and gave results similar to those of the customized 

Stage 3, it was used for the further investigations of retinal shape in the thesis.  

 

7.3 RETINAL SHAPE IN DIFFERENT RACIAL 

GROUPS 

The second aim of the study was to use the validated PCI method to estimate 

retinal shape in East Asian, South Asian and Caucasian emmetropes and myopes to 

determine how retinal shape and peripheral refraction are related in eyes of people 

with different racial backgrounds. The associated hypotheses 2 and 3 were “there are 

differences in retinal shapes among different racial groups” and “there are meridional 

(vertical and horizontal) variations in retinal shape”. This involved 94 participants of 

East Asian, Caucasian and South Asian background and was given as Experiment 2 

in Chapter 5.  

The results support the hypotheses as all of peripheral refraction, peripheral eye 

length and retinal shape were significantly affected by meridian, refraction and racial 

group. More relative peripheral hyperopia, more negative relative peripheral eye 

lengths and steeper retinas were found along the horizontal than along the vertical 

meridian, in emmetropes than in myopes, and in East Asian myopes than in 

Caucasian myopes. There were interactions between meridian and refraction, with 
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the retina becoming steeper as myopia increased along the horizontal but not along 

the vertical meridian.  

The conic fittings to the meridians showed smaller vertex radii of curvature for 

myopes than for emmetropes, and along the horizontal than along the vertical 

meridian, but there were no significant trends in asphericity with refraction or 

meridian, and thus retinas became steeper with increase in myopia over the retinal 

region investigated in the study (section 5.4). Many studies of peripheral refraction 

along the horizontal meridian have referred to either the retinal shape or eye shape 

becoming prolate as myopia increases. As technically the terms oblate and prolate 

refer to the asphericity of conics and conicoids (section 2.4.2.1 and the published 

paper Verkicharla et al. (2012)) with oblate shapes steepening away from the vertex 

and prolate shapes flattening away from the vertex, this study provides no evidence 

that this is the case. Over a much larger region of the retina, Atchison et al.’s (2005a)  

MRI study found that retinas of young adult became less oblate as myopia increased 

along both horizontal and vertical meridians, but with few retinas being prolate.  

It would be interesting to investigate whether the retinal shapes of the three 

races follow the same model or follow different models of retinal expansion (section 

2.4.2.2). As the measurements with PCI were limited to about 27% of the posterior 

eye, this study cannot provide information about this. Further investigation of the 

MRI derived retinal shapes over larger regions will later be undertaken for the 

participants used in this study.  

The changing relative peripheral refraction pattern with refraction, with 

negative (myopic) relative peripheral refraction in both meridians for emmetropia 

becoming positive in myopia along the horizontal meridian but not the vertical 

meridian, agrees with previous studies (Atchison et al., 2006, Berntsen et al., 2010). 

Similarly the changing relative peripheral eye length with refraction, with negative 

relative peripheral eye length in emmetropia becoming yet more negative in myopia, 

supports previous studies (Ehsaei et al., 2012, Faria-Ribeiro et al., 2013, Schmid, 

2003a, 2003b). The sign of relative peripheral eye length was always negative and 

therefore the sign alone does not indicate the shape of the retina or the sign of 

relative peripheral refraction.  

The meridional, refraction and racial patterns of both relative peripheral 

refraction and relative peripheral eye length are consistent with those of retinal 
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shape, when the latter are restricted to considering overall flattening or steepening 

over the region of interest in this study. Accordingly, predictions regarding two of 

these can be made validly from patterns derived from one of the other two. That is, 

more positive (hyperopic) relative peripheral refraction predicts more negative 

peripheral eye lengths and steeper retinas, more negative peripheral eye lengths 

predict more positive relative peripheral refraction and steeper retinas, and steeper 

retinas (derived from peripheral eye lengths) predict more positive relative peripheral 

refraction. While other ocular parameters, such as anterior corneal shape, may 

contribute to the relationship between peripheral refraction and retinal shape, these 

would seem to have minor influences at most. 

As the peripheral refraction and retinal shape in participants were not known 

before they developed myopia, we are not able to indicate whether one of relative 

peripheral hyperopic defocus or retinal shape drives the development/progression of 

myopia, or whether simply that both change as myopia develops. It is possible that 

the retinal shape, possibly through biomechanical factors, might be a determinant for 

the development of myopia rather than peripheral refraction. Steeper retinas in 

emmetropic East Asians than in emmetropic Caucasians may account for the higher 

tendency for myopia development and progression in the former. The results from 

this study can be related to the high prevalence rates in East Asians and indicate the 

possibility of steeper retinas being a risk factor for the myopia development, but this 

needs to be confirmed with longitudinal studies. 

It is also interesting to speculate on the possible influence of meridian on 

development of myopia, as changes in peripheral refraction or retinal shape with 

increase in myopia are more marked along the horizontal than along the vertical 

meridian, a difference which may be mechanical in that there is much more space in 

the orbit around the eye vertically than there is horizontally. I note that many 

researchers have either not tested along the vertical meridian or have made 

speculations about the roles of peripheral refraction or retinal shape in myopia 

development while ignoring the findings for the vertical meridian such as found by 

Atchison et al. (2006) and Berntsen et al. (2010). It is possible the retinal system is 

more sensitive to signals for the horizontal than the vertical meridian.  
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7.4 RETINAL SHAPE IN ISOMYOPES AND 

ANISOMYOPES 

The third aim of the study was to determine how retinal shape and peripheral 

refraction vary between the two eyes of individuals with isomyopia and 

anisomyopia. The associated hypothesis 4 was “retinal shapes are different in 

isomyopic eyes and anisomyopic eyes of the same refraction”. This work involved 

12 isomyopes and 9 anisomyopes (mean equivalent refraction difference between the 

fellow eyes  1.00 D) and was given as Experiment 3 in Chapter 6. I hoped that an 

investigation of anisomyopia might shed some light on myopia development, 

because it avoids the confounding effects of the environment and genetics.  

The higher myopic eyes of most anisomyopic participants had steeper retinas 

and higher relative peripheral hyperopia than their fellow eyes along the horizontal 

meridian. Previous investigations of anisometropia did not investigate ocular 

biometric differences between anisomyopic and isomyopic eyes of same refraction 

(section 2.4.1). There were no significant differences in the retinal shape between 

anisomyopic and isomyopic eyes of same refraction. However, the small sample 

sizes and a confounding effect of race may have masked a true effect. It is more 

appropriate to say that the hypothesis was not supported rather than it was rejected. 

Further studies are required to investigate this hypothesis in a large sample. 

 

7.5 FURTHER WORK 

There are some additional investigations that can be conducted on the 

considerable ocular biometric data collected in this study. The parameters, such as 

anterior corneal shape, can be used to explore racial differences and to investigate 

their influence on peripheral refraction. For the latter, I suspect that the influences 

will be minor (section 7.3). 

As mentioned in section 7.4, the anisomyopia investigation could be continued 

with a much larger participant group.  
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This study showed association between retinal shape and myopia, but not 

causation. It was a cross-sectional study in which the participant group consisted of 

young adult emmetropes and myopes, with refraction having stabilised in the latter. 

Further studies are recommended to investigate a role for retinal shape in 

myopiogenesis, including longitudinal studies involving children of different 

ethnicities and refraction (emmetropes, and stable and progressing myopes). For 

conducting the off-axis partial coherence interferometry method in children, the 

testing time of 12-14 minutes needs to be reduced to prevent fatigue and not to 

lengthen a testing protocol involving several tests. The method described here 

(section 3.5.5.2) requires manual adjustment of an attachment, and some automation 

should be considered.  

Another possible instrumentation that can be used for determining retinal shape 

is optical coherence tomography, which is based on partial coherence interferometry. 

Although there are issues with optical distortion of the retinal images, this can be 

corrected potentially by using optically based algorithms (Kuo et al., 2013). Further 

studies using OCT images would benefit myopia research as they provide 

measurements in very short time.  
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Development, validation and application of a clinical method for determining retinal 

shape in myopia 

QUT Ethics Approval Number1100001176 

 

Prof. David A Atchison, Vision Domain, IHBI, QUT  ph 3138 
6152d.atchison@qut.edu.au 

A/Prof. Katrina Schmid, Vision Domain, IHBI, QUT  ph 3138 6150   

k.schmid@qut.edu.au 

Prof. Jim Pope, IHBI, QUT  ph 3138  2325  j.pope@qut.edu.au 
Mr Pavan Kumar Verkicharla, PhD student, Vision Domain, IHBI, QUT  ph 3138 6164   

pavankumar.verkicharla@student.qut.edu.au 

DESCRIPTION 

Part of this project is being undertaken as part of the Masters study for Mr 

Pavan Verkicharla. The purpose of this research is to investigate how the shape of 

the retina differs between people with ethnicities and spectacle prescriptions. You are 

invited to participate in this project because you are aged between 18 and 30 years of 

age. 

PARTICIPATION 

Your participation in this project is entirely voluntary. If you do agree to 

participate, you can withdraw from the project at any time without comment or 

penalty. Your decision to participate, or not participate, will in no way impact upon 

your current or future relationship with QUT (for example your grades). 

Your participation will involve routine eye examination including eye and 

general medical history, refraction, intraocular distance measurements and 

biomicroscopy (viewing light reflected from the eye structures). It will also involve 

some specialist tests including aberrometry (measurements of the eye aberrations), 

peripheral refraction, phakometry (measurement of reflections from the lens), and 

off-axis ocular length. We may need to dilate the pupil of one eye with eye drops. 

The tests will take 2 – 4 hours of your time. 

For a limited number of participants, magnetic resonance imaging (MRI) will 

be undertaken at the Imaging facility at the University of Queensland. MRI is used 

PARTICIPANT INFORMATION FOR QUT 

RESEARCH PROJECT 
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routinely as a medical imaging modality without any adverse health effects on people 

undergoing a scan. All MRI scans will be carried out by qualified radiographers 

using equipment approved by the USA Therapeutic Goods Administration (TGA). 

This will take about an hour. 

EXPECTED BENEFITS 

It is expected that this project will not benefit you directly, although you may be 

interested in learning more about your eyes. In this study we will refine and evaluate 

a simple method of determining retinal shape. We will use it to increase our 

understanding of retinal shape in different population groups and in different parts of 

the eye. This will in turn be used to inform the design of devices to correct peripheral 

refractive errors. By achieving these aims we will contribute an important assessment 

device with applications for understanding myopia development risk and likely 

optical treatment effectiveness. This study will be of significant benefit to people at 

risk of myopia development. 

To compensate you for your contribution, should you choose to participate, the 

research team will provide you with out-of-pocket expenses in the form of 

supermarket vouchers at the rate of $20/hour of participation. 

RISKS 

There are minimal risks associated with your participation in this project. The 

drugs that we use are routinely used in clinical eye examinations, and there are 

minimal risks associated with using them. However, we will screen for the likelihood 

of possible side effects. One of the drops anaesthetises the eye and so it is possible to 

scratch the eye without feeling it. Please do not rub your eyes for at least 45 minutes 

after the drug is placed in the eye. One of the other drops, if needed, paralyses the 

focusing of the eyes for up to 8 hours and the pupil may be dilated for up to 48 hours. 

Another dilating drug does not affect focussing and dilation will last for a few hours 

only. As pupil dilation makes the eye more sensitive to bright light, we recommend 

that you bring your sunglasses to wear afterwards. If you require, we can provide 

transport to get you home. Until the pupil size returns to normal, you should not 

drive or cycle, and take care with walking and using machinery. We recommend 

wearing your spectacle or contact lens correction for these tasks.  
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PRIVACY AND CONFIDENTIALITY 

All comments and responses are anonymous and will be treated confidentially. 

The names of individual persons are not required in any of the responses. 

CONSENT TO PARTICIPATE 

We would like to ask you to sign a written consent form (enclosed) to confirm 

your agreement to participate. 

QUESTIONS / FURTHER INFORMATION ABOUT THE PROJECT 

Please contact the researcher team members named above to have any 

questions answered or if you require further information about the project. 

CONCERNS/ COMPLAINTS REGARDING THE CONDUCT OF THE PROJECT 

QUT is committed to research integrity and the ethical conduct of research 

projects. However, if you do have any concerns or complaints about the ethical 

conduct of the project you may contact the QUT Research Ethics Unit on [+61 7] 

3138 5123 or email ethicscontact@qut.edu.au. The QUT Research Ethics Unit is not 

connected with the research project and can facilitate a resolution to your concern in 

an impartial manner. 

 

Thank you for helping with this research project. Please keep this sheet for your 

information. 
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Prof. David A Atchison Mr. Pavan Verkicharla 

Vision Domain, IHBI , QUT Vision Domain, IHBI, QUT 

3138 6152  3138 6164  

d.atchison@qut.edu.au Pavankumar.verkicharla@student.qut.edu.au 

 

Statement of consent 

By signing below, you are indicating that you: 

 Have read and understood the participant information document regarding 

this project 

 Have had any questions answered to your satisfaction 

 Understand that if you have any additional questions you can contact the 

research tem 

 Understand that you are free to withdraw at any time, without comment or 

penalty 

 Understand that you can contact the Research Ethics Officer on +61 7 

31385123 or ethicscontact@qut.edu.au if you have concerns about the ethical 

conduct of the project 

 Agree and voluntarily consent your participation in this research project  

 

 

Full Name:  ________________________________       

 

Participant’s Signature: ________________________ Date:  ___/___/___ 
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QUT - Approval Certificate - Date of Issue: 23/9/11(supersedes all 

previously issued certificates) 

Dear Prof David Atchison 

A UHREC should clearly communicate its decisions about a research proposal 

to the researcher and the final decision to approve or reject a proposal should be 

communicated to the researcher in writing. This Approval Certificate serves as your 

written notice that the proposal has met the requirements of the National Statement 

on Research involving Human Participation and has been approved on that basis. 

You are therefore authorised to commence activities as outlined in your proposal 

application, subject to any specific and standard conditions detailed in this document. 

 

Within this Approval Certificate are: 

Project Details  

Participant Details  

Conditions of Approval (Specific and Standard)  

Researchers should report to the UHREC, via the Research Ethics Coordinator, 

events that might affect continued ethical acceptability of the project, including, but 

not limited to: 

(a) serious or unexpected adverse effects on participants; and  

(b) Proposed significant changes in the conduct, the participant profile or 

the risks of the proposed research.  

Further information regarding your ongoing obligations regarding human based 

research can be found via the Research Ethics website 

http://www.research.qut.edu.au/ethics/ or by contacting the Research Ethics 

Coordinator on 07 3138 2091 or ethicscontact@qut.edu.au 

University Human Research Ethics Committee 

HUMAN ETHICS APPROVAL CERTIFICATE 

NHMRC Registered Committee Number EC00171 

mailto:ethicscontact@qut.edu.au
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If any details within this Approval Certificate are incorrect please advise the 

Research Ethics Unit within 10 days of receipt of this certificate. 

 

 

 

 

PROJECT DETAILS 

Category of 

Approval: 
Human non-HREC 

Approved 

From: 

23/09/201

1 

Approved Until:  23/09/2014 (subject to annual 

reports) 

Approval 

Number: 
1100001176 

Project Title: 
Development, validation and application of a clinical method 

for determining retinal shape in myopia 

Experiment 

Summary: 

Investigate how the shape of the retina differs amongst people 

with different ethnicities and spectacle prescriptions. 

Investigator Details 

Chief 

Investigator: 
Prof David Atchison 

Other 

Staff/Student

s: 

 

Role 

Investigator 

Name 
 Type 

A/Prof Katrina 

Schmid 
 Internal Associate Investigator 

Adj/Prof 

James Pope 
 Internal Associate Investigator 

Mr Pavan Kumar 

Verkicharla 
Student 

Ethics- Student- 

Course-Masters 

Dr Edward 

Mallen 
 External Associate Investigator 

A/Prof Ian 

Morgan 
 External Associate Investigator 

Dr Ming 

guang He 
 External Associate Investigator 

Prof W Neil 

Charman 
 External Associate Investigator 

Participants: 

Approximately 150 in Australia and 1200 in China 

 

Location/s of the Work: 
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QUT 

Conditions of Approval 

Specific Conditions of Approval: 

No special conditions placed on approval by the UHREC. Standard conditions apply. 

Standard Conditions of Approval: 

The University's standard conditions of approval require the research team to: 

1. Conduct the project in accordance with University policy, NHMRC / AVCC 

guidelines and regulations, and the provisions of any relevant State / Territory 

or Commonwealth regulations or legislation;  

2. Respond to the requests and instructions of the University Human Research 

Ethics Committee (UHREC);  

3. Advise the Research Ethics Coordinator immediately if any complaints are 

made, or expressions of concern are raised, in relation to the project;  

4. Suspend or modify the project if the risks to participants are found to be 

disproportionate to the benefits, and immediately advise the Research Ethics 

Coordinator of this action;  

5. Stop any involvement of any participant if continuation of the research may 

be harmful to that person, and immediately advise the Research Ethics 

Coordinator of this action;  

6. Advise the Research Ethics Coordinator of any unforeseen development or 

events that might affect the continued ethical acceptability of the project;  

7. Report on the progress of the approved project at least annually, or at 

intervals determined by the Committee;  

8. (Where the research is publicly or privately funded) publish the results of the 

project is such a way to permit scrutiny and contribute to public knowledge; 

and  

9. Ensure that the results of the research are made available to the participants.  

Modifying your Ethical Clearance: 

Requests for variations must be made via submission of a Request for 

Variation to Existing Clearance Form 

(http://www.research.qut.edu.au/ethics/forms/hum/var/var.jsp) to the Research 

Ethics Coordinator. Minor changes will be assessed on a case by case basis. 

It generally takes 7-14 days to process and notify the Chief Investigator of the 

outcome of a request for a variation. 

Major changes, depending upon the nature of your request, may require 

submission of a new application. 

Audits: 

http://www.research.qut.edu.au/ethics/forms/hum/var/var.jsp
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All active ethical clearances are subject to random audit by the UHREC, which 

will include the review of the signed consent forms for participants, whether any 

modifications / variations to the project have been approved, and the data storage 

arrangements. 

End of Document 

 

 

PARTICIPATE IN 

RESEARCH 
Information for Prospective 

Participants 

Development, validation and application of a clinical method for 

determining retinal shape in myopia 
 

Research Team Contacts 
Principal  

Researchers 
Prof David A Atchison, Vision Domain, IHBI, QUT  

ph 3138 6152d.atchison@qut.edu.au 

 

Prof Jim Pope, IHBI, QUT  ph 3138 2325j.pope@qut.edu.au 

 

Mr Parvan Verkicharla, PhD student, Vision Domain, IHBI, QUT    

ph 3138 6164  pavankumar.verkicharla@student.qut.edu.au  

Please contact the researcher team members to have any questions answered or if you 

require further information about the project. 

What is the purpose of the research? 

The purpose of this research is to investigate how the shape of the retina differs 

between people with different ethnicities and spectacle prescriptions. This is 

important to the understanding of the progression of myopia as ethnic Chinese 

have a higher prevalence of myopia thanb European populations. 

Are you looking for people like me? 

The research team is looking for people aged between 18 and 30 years of age, in 

good ocular and general health, of either European/Caucasian or Chinese 

ancestry, and with a range of spectacle prescriptions. 

What will you ask me to do? 

This is part of a study being conducted through the Queensland University of 

Technology that involves magnetic resonance imaging (MRI) at the Centre for 

Advanced Imaging at the University of Queensland. MRI is used routinely as a 

medical imaging modality without any adverse health effects on people 

undergoing a scan. All MRI scans will be carried out by a qualified radiographer 

using equipment approved by the Therapeutic Goods Administration TGA. This 

mailto:d.atchison@qut.edu.au
mailto:j.pope@qut.edu.au
mailto:pavankumar.verkicharla@student.qut.edu.au
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will take a maximum of an hour. 

Are there any risks for me in taking part? 

Certain items should not be taken into the magnetic field. A checklist will be 

used to screen for this. 

Are there any benefits for me in taking part? 

It is expected that this project will not benefit you directly, although you may be 

interested in learning more about your eyes. In this study we will refine and 

evaluate a simple method of determining retinal shape. We will use it to increase 

our understanding of retinal shape in different population groups and in different 

parts of the eye. This will in turn be used to inform the design of devices to 

correct peripheral refractive errors. By achieving these aims we will contribute an 

important assessment device with applications for understanding myopia 

development risk and likely optical treatment effectiveness. This study will be of 

significant benefit to people at risk of myopia development. 

We will provide you with copies of your eye images. 

Will I be compensated for my time? 

To compensate you for your contribution, the research team will provide you 

with out-of-pocket expenses in the form of supermarket vouchers for $20 and will 

provide you with transportation to and from the Centre for Advanced Imaging. 

I am interested – what should I do next? 

If you would like to participate in this study, please contact the research team. 

You will be provided with further information to ensure that your decision and 

consent to participate is fully informed. Please note that you are free to withdraw 

from the study at any time without penalty 

 QUT Ethics Approval Number: 1100001176 

Information of a personal nature obtained in this study will not be shared with 

others. In any publications or reports, no information will be included that could 

identify you. 

 This study adheres to the Guidelines of the ethical review process of The 

University of Queensland. Whilst you are free to discuss your participation in this 

study with project staff (contactable on 3138 6152), if you would like to speak to an 

officer of the University not involved in the study, you may contact the Ethics 

Officer on 3365 3924. 
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CONSENT FORM FOR 

RESEARCH PROJECT 

Development, validation and application of a clinical method for determining 

retinal shape in myopia 

 

QUT Ethics Approval Number 1100001176 

UQ Ethics Approval 2012000175 

 

Research Team  

Principal  

Researchers 
Prof David A Atchison, Vision Domain, IHBI, QUT  

ph 3138 6152 d.atchison@qut.edu.au 

Prof Jim Pope, IHBI, QUT  ph 3138 2325 j.pope@qut.edu.au 

Mr Pavan Verkicharla, PhD student, Vision Domain, IHBI, QUT    

ph 3138 6164  pavankumar.verkicharla@student.qut.edu.au 

Statement of consent 

By signing below, you are indicating that you: 

 have read and understood the information document regarding this project 

 have had any questions answered to your satisfaction 

 understand that if you have any additional questions you can contact the 

research team 

 understand that you are free to withdraw at any time, without comment or 

penalty 

 understand that you can contact the UQ Ethics Officer on 3365 3924 if you 

have concerns about the ethical conduct of the project 

 agree to participate in the project 

 

Name  

Signature  

Date   

 

Please return this sheet to the investigator. 
 

 

mailto:d.atchison@qut.edu.au
mailto:j.pope@qut.edu.au
mailto:pavankumar.verkicharla@student.qut.edu.au
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Subject/Visitor Name: _____________________________DOB:______________ 

Date: _______________Time: _______________Checked By: ________________ 

 

Contact Phone Number__________________________________ 
 

DO YOU HAVE YES NO ARE YOU WEARING YES NO 

Pacemaker or a Heart valve   Hairpins, slides, wig, hair bands   

Syringe Driver   Ear rings   

Brain clip, aortic clip or 

neurostimulators 
  Necklace/Chains   

Metal mesh Implants/Clips/wire sutures   Safety pins/Broaches/Badges   

Medicated Skin Patches   Watch   

Hearing Aid/Implant   Bracelets   

Glass Eye   Body piercing   

Joint Replacement   Braces with metal clips   

Bullet/Shrapnel Wound   Mobile phone/Pager   

Metal Fragments in Eye, Head, Skin   Coins   

Artificial Limb or    Credit Cards   

Do you work with metals?   Wallet   

Do you suffer claustrophobia?   Penknife   

Could you be pregnant?    
Keys   

Do you have an IUD?   

Fractured bones treated with Metal?   

Have you had any major surgery?   Do you consent to undergo the MRI? YES/NO 

A Shunt, spinal or Ventricular?   I have read the MRI Information Sheet YES/NO 

Do you have any tattoos?   Signed: 

 

Volunteer: 
_____________________________ 

 

Authorised MRI 

Supervisor: 

____________________________ 

Dental Bridge or Dentures with wires   

Do you have a history of kidney  
disease/disorder? 

  

Blood Pressure: ____________Pulse_______ 

Height______________Weight___________ 

_________________________________ 
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Appendix 2- Publications                                                   

The following are the journal articles and presentations which have arisen from 

the work presented in thesis at the time of its submission. The first, second and third 

journal articles are preliminary investigations found in section 3.5.5 and the fourth 

journal article is an early version of the literature review (section 2.4.2). 

 

Journal Articles 

1. Suheimat M, Verkicharla PK, Mallen EAH, Rozema J and Atchison DA. 

Submitted: June 2014. “Refractive indices used by the Haag-Streit Lenstar 

to calculate axial biometric dimensions”. Ophthalmic and Physiological 

Optics. 35(1): 90-96. 

2. Verkicharla PK, Suheimat M, Mallen EAH, and Atchison DA. 2014. 

“Technical note: Influence of eye rotation on the peripheral eye length 

measurements obtained using partial coherence interferometry”. 

Ophthalmic and Physiological Optics, 34(1): 82-88. 

3. Verkicharla PK, Mallen EAH, and Atchison DA. 2013. “Repeatability 

and comparison of peripheral eye lengths with two instruments”. 

Optometry and Vision Science, 90(3):215-22. 

4. Verkicharla PK, Mathur A, Mallen EAH, Pope JM, and Atchison DA. 

2012. “Eye shape and retinal shape, and their relation to peripheral 

refraction”. Ophthalmic and Physiological Optics, 32(3): 184-199. 

 

Conference Abstracts 

1. Verkicharla PK, Atchison DA, Suheimat M, Schmid KL, Mathur A, 

Mallen EAH, Wei X, Brennan NA May 2014. Is retinal shape different in 

Asians and Caucasians? Estimation from peripheral refraction and 

peripheral eye length methods. Investigative Ophthalmology and Visual 

Science 55:3592. The Association for Research in Vision and 

Ophthalmology (ARVO) annual meeting 2014, Orlando, Florida. 
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2. Verkicharla PK, Atchison DA, Mallen EAH, Suheimat M, Mathur A, 

Schmid KL, and Dunne MCM, Wei X, Brennan NA August 2013. 

“Retinal shape estimation from peripheral refraction and peripheral eye 

length methods”. International Myopia Conference, California. 

Ophthalmic and Physiological Optics, 33(6), Appendix S1. 

http://onlinelibrary.wiley.com/doi/10.1111/opo.12088/suppinfo 

3. Verkicharla PK and Atchison DA. November 2012. “Intra and inter 

session repeatability of IOLMaster and Lenstar for measuring peripheral 

eye lengths”. Institute of Health and Biomedical Innovation’s IHBI 

Inspires postgraduate student conference, Gold Coast, Australia.   

4. Verkicharla PK, Mathur A, Mallen EAH, and Atchison DA. September 

2012. “Comparison of two partial coherence interferometry instruments 

for measuring peripheral eye lengths”. 14th Scientific Meeting and 8th 

Educators’ Meeting in Optometry, Melbourne, Australia. 

 

http://onlinelibrary.wiley.com/doi/10.1111/opo.12088/suppinfo



