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Introduction 

Pedigo and Rice (2009) 

described a concept that 

some ecologists subscribe 

to called the “balance of 

nature” phenomenon.  

This idea holds that spe-

cies in communities 

achieve certain status in 

their ecosystem and that this status becomes fixed 

and resistant to change.  On average, individuals 

are only able to replace themselves.  Fluctuations 

may occur, but ultimately the various species in the 

community will retain their position and relative 

population size in the ecosystem.   

According to these ecologists, when humans alter 

and reduce the diversity of an ecosystem they are 

acting counter to this balance.  In an attempt to re-

turn the altered system to its ordinary state, ex-

traordinarily strong forces of nature will act in op-

position to these activities.  It could be argued that 

among these forces are biotic maladies which im-

pair or destroy European honey bee (Apis mellifera) 

colonies.  Oftentimes when honey bee diseases and 

pests explode and devastate apiaries, these activi-

ties are merely a reaction to the “overpopulation” 

of the single species which humans have selected.  

Thus many of the problems with honey bees should 

come as no surprise; they function just as they 

would in any other scenario where a single species 

becomes too numerous.  The only distinction is 

these insects are of value to humans. 

This is not to suggest that honey bees should be 

kept at “natural” rates.  Honey bees provide ap-

proximately $15 billion dollars in annual pollination 

services in the United States (U.S.) (Morse and Cal-

derone, 2000).  If the environment is left on its own 

to determine how many honey bee colonies are to 

exist, it could have severe humanitarian and eco-

nomic consequences.  Such a proposal is just as ab-

surd as keeping apples, melons or tomatoes at the 

rate which nature sees fit. 

Honey bee diseases and pests are considered in 

ecology to be perfectly density-dependent, mean-

ing that an increase in the density of the honey 

bees will result in more intense pressure from hon-

ey bee pests.  To attribute all of the problems in 

beekeeping to this single notion is a gross oversim-

plification.  Indeed many European honey bee pests 

came from other hosts such as the Asiatic honey 

bee (Apis cerena); therefore their deleterious 

effects are much more severe than would be if they 

had coevolved with their host.  Furthermore, some 

of the problems with honey bee health have been 

attributed to abiotic factors such as inadequate nu-

trition and pesticide exposure.  Yet the point re-

garding density-dependence is made because popu-

lar sentiment often suggests that the solution to 

problems with honey bees is simply that more hon-

ey bees are needed.  The human population on 

Earth is expected to reach 10 billion in the 21st cen-

tury (Bongaarts, 2009).  As a result, there will likely 

need to be more honey bees added to our global 

agroecosystems  in order to meet future food de-

mands and keep food affordable.  However, as new 

colonies are added it is imperative that disease and 

pest issues are kept under control, colonies are 

managed to maximize pollination capabilities and 

alternative pollinators are incorporated.  Merely 

adding honey bee colonies without any considera-

tion for the pest and disease “reaction” will only 

exacerbate problems in beekeeping .   

This guidebook is meant to assist in the promotion 

of honey bee health and prepare for the likely inevi-

table need for an increased number of managed 

colonies.  However it is not intended to be a diag-

nostic tool or a prescription for solutions.  Rather it 

is a summary of scientific knowledge about honey 

bee immunity, disease etiology, pest problems and 

abiotic stressors.  The goal of this guide is for the 

reader to: 1) develop a deeper familiarity with hon-

ey bee biology and the conditions that harm these 

insects; and 2) better understand the relative im-

portance of the various problems that negatively 

affect colonies. 

David Cappaert, Bugwood.org 
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Honey Bee Immune System 

Mechanical and Biochemical Immunity 

The honey bee exoskeleton provides structure for 

the body and serves as an important barrier from 

diseases.  In entomology the exoskeleton is also 

referred to as the integument.  There are three 

main components to the integument:  the base-

ment membrane, the epidermis and the cuticle 

(Klowden, 2007).  The insect cuticle portion of the 

integument is a critical first line of defense.  The 

cuticle is subdivided into the epicuticle, exocuticle, 

mesocuticle and endocuticle (Elzinga, 2004).  The 

innermost segment, the endocuticle, is comprised 

of chitin and proteins which cross link to form a rig-

id structure; this structure serves as an insurmount-

able obstacle to many pathogens (Kaltenpoth and 

Engl, 2014).  

Honey bees also have internal adaptations which 

aid in mechanical defense.  The proventriculus is a 

specialized apparatus that serves as a valve for the 

movement of food from the crop to the midgut in 

insects (Klowden, 2007).  In honey bees the proven-

tricular valve serves as a filter which reduces the 

ingestion of pathogenic spores (Sturtevant and Rev-

ell, 1953).  Another example of internal mechanical 

defense is found in the anterior portion of the mid-

gut.  In this part of the honey bee there is a peri-

trophic membrane, which acts as a physical barrier 

to pathogens that have been digested (Cornman et 

al., 2013).  

The biochemical composition of the honey bee mid-

gut provides some degree of protection against cer-

tain diseases which are ingested (Aronstein and 

Murray, 2010).  For instance regulation of gut pH is 

a means of preventing the growth of harmful mi-

crobes and potential infection (Fries and Camazine, 

2001).  Chalkbrood (Ascosphaera apis) is one such 

fungal disease that can be prevented by these bio-

chemical protections (Aronstein and Murray, 2010).  

Yet it should be noted that in other instances, the 

environment of the midgut is conducive to patho-

genesis of other fungal and bacterial diseases (Chen 

et al., 2009).   

Innate and Cell-Mediated Immunity 

Klowden (2007) summarized two of the cell-

mediated immune responses in insects.  The first 

described response is the deployment of hemo-

cytes, which are cells that devour pathogens by a 

process known as phagocytosis.  This progression 

begins when pathogens enter an insect’s body and 

hemocytes recognize the foreign entities.  Upon 

detection, the hemocytes move toward the invad-

ing microbes and fuse with the foreign bodies.  The 

pathogens are destroyed by digestion.  In the sec-

ond described cell-mediated response, hemocytes 

bind together to sequester pathogens too large for 

phagocytosis.  This phenomenon is known as encap-

sulation and it protects the insect by separating the 

pathogens from host cells, thereby depriving the 

invaders of oxygen and nourishment.  The for-

mation of nodules may also occur.  Nodules are 

large accumulations of hemocytes, which create a 

bacteria-intercepting extracellular matrix.  Bacteria 

are sometimes captured and encapsulated by these 

structures.  The honey bee immune system employs 

these strategies with much success in certain in-

stances.  For example Chan et al. (2009) point out 

that the highly infectious Paenibacillus larvae bacte-

ria which causes American foulbrood can some-

times be effectively phagocytized.  This is an exam-

ple of a cell-mediated response which suppresses 

an infection.   

Humoral Immunity 

Cell-mediated immunity is augmented by humoral 

immunity.  Klowden (2007) describes humoral de-

fense as the production of various antimicrobial 

peptides (AMPs), which are amino acid chains creat-

ed by an insect’s fat body organ in response to an 

infection.  The author notes that this process is 

fast—peptides are employed 2 to 4 hours after the 

contagion is recognized and they have the capacity 

to replicate at a pace significantly faster than the 

reproductive rate of the pathogen.   However, 

speed does not come at the cost of precision.  In-

deed a fungal invader will trigger an antifungal pep-

tide without triggering the release of an  
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antibacterial peptide.  Antimicrobial peptides are 

known to protect honey bees against certain diseas-

es.  For instance, immature bees infected with P. 

larvae are found to have dramatically increased lev-

els of antimicrobial peptides such as hymenop-

taecin and apidaecin (Chan et al., 2009).  Up-

regulation of antimicrobial peptide expressions is 

thought to be an important component of honey 

bee larval defenses against diseases (Chan et al., 

2009; Cornman et al., 2013).   

Social Immunity 

Darwin (1859) observed that worker honey bees 

behave altruistically toward nestmates.  Altruism is 

behavior that reduces an actor’s fitness but im-

proves a recipient’s fitness (Freeman and Herron, 

2004).  Hamilton (1964) proposed that altruism may 

be favored by evolution if the actor and beneficiary 

are closely related.  He claimed that individuals can 

improve their fitness “indirectly” by taking actions 

which hinder their own fitness, but increase the 

reproductive capabilities of relatives far beyond 

what would have been achieved acting selfishly.  It 

has been suggested that the high-relatedness 

among nestmates of ancestral bees (Hughes et al., 

2008) explain the altruistic behavior in A. mellifera.  

Unlike most female animals, worker bees do not 

usually reproduce but instead serve as helpers for 

their mother and siblings for the entirety of their 

lives.  This form of extreme altruism is characteristic 

of a social system known as eusociality.  It is a high-

ly advanced arrangement of social behavior and is 

described by three main criteria: overlap in genera-

tions between progeny and parents, members of 

the group engaging in cooperative brood care and 

the group producing a self-sacrificing sterile caste 

(Freeman and Herron, 2004).  Insects which exhibit 

eusocial behavior possess two distinct advantages 

over insects that live solitary lives: 1) Resources are 

swiftly exploited by social groups through communi-

cation and collective action; 2) A social group can 

maintain territory and quickly construct nests—

both of which provide protection from competitors, 

natural enemies and harsh environments 

(Triplehorn and Johnson, 2005). 

In the context of disease and pest transmission, so-

cial behavior is a double-edged sword.  On the one 

hand, pathogens can spread quickly amongst social 

insects due to sharing of resources and numerous 

individuals living in high densities (Schmid-Hempel, 

1998).  Yet novel group-level tactics for disease re-

sistance have also evolved to compensate.   

Simone et al. (2009) found evidence that worker 

bee collection of plant-based resins are a means of 

altering the colony’s environment in a way that con-

tributes to “social” defenses.  Resins are collected 

from various trees and shrubs and mixed with wax 

to form an adhesive substance called propolis, 

which is used to seal gaps in the nest’s construction.  

However these resins also contain chemical com-

pounds that are helpful to colonies in other ways.  

For instance propolis contains sesquiterpenes, 

which have antimicrobial, antifungal, anti-

inflammatory and antioxidant properties.  In the 

authors’ experiment, hives treated with two differ-

ent resins exhibited lower bacterial loads and bees 

with reduced expression of certain immune-related 

genes compared to controls.  This suggested that 

resins are not only collected for the purpose of seal-

ing the hive, but also have a role in reducing patho-

gens in the hive’s environment and thereby reduc-

ing the need for immune-gene expression.  Like-

wise, antimicrobial peptide fractions found in royal 

jelly have been found to inhibit P. larvae and these 

fractions may serve as a mechanism for larval host  

BOX A  Enzymes are proteins which make chemical reactions occur faster by lowering the activation energy of a reaction 

(Soloman, et al. 2005).  Honey bees, like most insects, use detoxification enzymes to rid the body of foreign chemicals 

known as xenobiotics (Johnson et al., 2012).  Xenobiotics include naturally occurring substances and human-made chemi-

cals, such as pesticides.  Cytochrome P450 is a principal detoxifying enzyme in honey bees (Feyereisen, 2006).  Diet ap-

pears to be a significant factor in the expression of genes that regulate cytochrome P450.  Johnson et al. (2012) illustrat-

ed this point in an experiment where bees fed sucrose or high fructose corn syrup experienced reduced cytochrome 

P450 activity.  This appeared to make honey bees more susceptible to the fungal toxin aflatoxin.  Therefore the authors 

suggested that sugar diets do not result in detoxification capacities which are equivalent to diets composed of honey.  

This is important because beekeepers commonly provide honey substitutes to colonies during a nectar dearth.   
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defense (Bilikova et al., 2001).  The chemical prop-

erties of honey and pollen also have antimicrobial 

qualities that bees can sometimes rely on to pre-

vent infections (Fries and Camazine, 2001).   

It has also been proposed that colonies can produce 

social fevers in response to contraction of disease.    

The fungal disease Chalkbrood caused by Asco-

sphaera apis favors temperatures that are lower 

than normal honey bee brood-rearing conditions 

between 33-36° C (Bailey, 1991).   When infected 

larvae are exposed to temperatures around 30° C, 

the conditions are prime for mycelium growth of 

the pathogen (Bailey, 1991).  Starks et al. (2000) 

found that colonies demonstrated an up-regulation 

in normal brood comb temperatures after being 

inoculated with A. apis.  Since this pathogen is heat 

sensitive and there is no evidence to suggest that 

elevated brood comb temperatures confer any oth-

er benefit, it was concluded that the rise in temper-

ature was a deliberate means of defending the colo-

ny by creating conditions unfavorable to the mi-

crobe.  

Other social immunities include hygienic behavior, 

which is the ability of bees to recognize and remove 

diseased or parasitized brood (Aronstein and Mur-

ray, 2010).  For instance certain bees are able to 

sense when brood is infested with Varroa mites 

(Varroa destructor).  These hygienic individuals pro-

ceed to uncap and remove these parasitized devel-

oping pupae from the colony (Navajas et al., 2008).  

Immature Varroa development requires the unique 

environment of the honey bee brood cell, so re-

moval of the bee pupae from the colony essentially 

dooms the larval mites (Spivak, 1996) and reduces 

the colony mite load.  However, it has been ob-

served that most adult mites appear to abscond 

from brood cells throughout the opening process 

(Boecking and Spivak, 1999).  This would suggest 

that much of the reduction in the mite load via hy-

gienic behavior is actually due to a disruption in the 

mite reproductive cycle and a lengthening of mite’s 

phorectic phase (a period when the mite is attached 

to the adult bee) and not the physical removal of 

mites (Rosenkranz et al., 2009).      

Hygienic behavior is likewise useful for the control 

of diseases.  American foulbrood has been found to 

be controlled when worker bees quickly detect, un-

cap and rid the colony of infected brood (Spivak and 

Reuter, 2001).  Removal of larvae while the patho-

gen is still in its non-pathogenic rod stage is key to 

the success of this strategy (Woodrow and Holst, 

1942).  Chalkbrood can also be controlled by worker 

hygiene (Spivak and Reuter, 2001).   

In addition to hygienic behavior, honey bees exhibit 

grooming behavior which can be useful in removing 

mites from the honey bee body.  When honey bees 

groom themselves and dislodge mites this is known 

as auto-grooming and when bees groom other nest-

mates it is known as allo-grooming (Rosenkranz et 

al., 2009).  This behavior likely reduces harm to the 

colony either by the physical removal of Varroa 

mites from the bee’s body and/or by causing injury 

to the mite, which makes them less effective at par-

asitism (Spivak, 1996). 

If honey bees are to be anthropomorphized, then 

surely the most sentimental of their behavioral de-

fenses are those categorized under the umbrella of 

altruistic suicide.  The most famous example of this 

behavior is sting autonomy, which is the thrusting 

of the poison apparatus into a perceived enemy 

that result in self-amputation and ultimately death 

of the bee (Hermann, 1971).  A more obscure activi-

ty in this suite of behaviors is altruistic self-removal, 

or the self-imposed exile of individuals that have 

become compromised by disease or parasitism 

(Rueppel et al., 2010).  Rueppell et al. (2010) 

demonstrated that most honey bees made artificial-

ly ill by exposure to CO₂ or cell growth inhibiting 

drugs absconded from the hive and failed to return.  

These authors purposely used artificial means for 

sickening bees because the previous anecdotal evi-

dence which supported altruistic self-removal was 

perceived to have short-comings (i.e. parasitism 

may merely cause the affected bee to lose orienta-

tion abilities or the infected bees are ejected by 

healthy bees).  Likewise, McDonnell et al. (2013) 

found that honey bees afflicted with Varroa and 

Nosema ceranae which absconded from the nest 

did not have significant differences in behavior and 

were not met with hostility amongst nestmates.  

This augmented previous data that described altru-

istic self-removal in honey bees. 
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Detoxification Complexes 

Honey bee cells are capable of protecting the insect 

from dangerous natural and synthetic chemicals in 

the environment.  This protection comes in the 

form of enzymatic complexes that can detoxify xe-

nobiotics (foreign chemicals).  In honey bees these 

include systems such as cytochrome P450 monoox-

genase (P450s), glutathione S-transferases (GSTs), 

and carboxyl/cholinesterases (CCEs) (Claudianos et 

al., 2006; Feyereisen, 2006).  According to Elliot and 

Elliot (2009), P450s are considered a phase I meta-

bolic process, whereby a hydroxyl functional group 

is added to either aliphatic or aromatic groups.  

GSTs and CCEs are categorized as phase II metabolic 

systems; these involve adding highly polar groups to 

a hydroxyl group.  Simply put, these systems make 

xenobiotics more water soluble and thus easier to 

excrete. 

Much research has been conducted on P450s and 

their benefits to honey bee immunity.  Johnson 

(2008) discovered that the honey bee genome in-

cludes approximately 46 genes that code for P450s.  

The author noted that this is far fewer than typically 

found in other insects.  Yet the scheme serves the 

insect well in many instances.   P450s are known to 

provide protection from a wide range of potential 

dangers in animals generally (Elliot and Elliot, 2009).  

In honey bees this is true of everything from patho-

gens to pesticides.  For instance, data presented by 

Niu et al. (2010) suggest that P450s are instrumen-

tal in honey bee tolerance to mycotoxins which are 

produced by saprophytic fungi.  These authors point 

out that these fungi are common in hives and were 

it not for P450s, the bees would likely suffer.  P450s 

are also important in the context of in-hive treat-

ments.  For instance, Mao et al. (2011) discovered 

that honey bee tolerance to the pyrethroid tau-

fluvalinate (used to control parasitic mites) is due to 

the detoxification abilities of P450s in the midgut.  

In the absence of these enzymatic complexes, use-

ful acaricides would hurt the bees and therefore be 

useless as a mite control.  Interestingly, the effec-

tiveness of P450s are improved by consumption of 

honey and beebread, which serve as nutraceuticals 

(Berenbaum, 2015).  Box A on page 3 discusses how 

the abilities of P450s to detoxify xenobiotics are 

hampered by poor nutrition. 

In recent years both North American and European 

beekeepers have reported unusually high annual 

losses of honey bee colonies (Oldroyd, 2007).  This 

is sometimes correctly or incorrectly referred to as 

Colony Collapse Disorder (CCD)—see Box B.  In re-

sponse to reports of CCD and high annual losses of 

colonies due to other problems, a workshop in War-

renton, Virginia was organized in 2012 which gath-

ered 19 leading honey bee experts to evaluate the 

numerous threats to honey bees.  The findings of 

this work group were published by Staveley et al. in 

2014.  This workgroup utilized a “causal analysis 

framework” which is means of organizing expert 

opinion on potential causes of specific problems.  

The process essentially ranked the importance of 

various threats to honey bees.  Candidate causes 

were evaluated on their probability of reducing 

overwintering success of colonies and categorized 

into the following groups:  probable, possible, con-

tributing factor, unlikely alone and indeterminate.  

Throughout this guide, conclusions reached by the 

Causal Analysis Workgroup and other scientific au-

thorities will be presented when specific maladies 

are reviewed.  Honey bees face a plethora of prob-

lems—and there is no shortage of opinions as to 

where to assign blame.  Therefore this guide will 

provide the reader with context regarding the im-

portance and, at times, uncertainty regarding the 

various biotic and abiotic pressures that honey bees 

experience by referring to the conclusions of this 

workgroup. 

Problems in Beekeeping 

BOX B  The term Colony Collapse Disorder (CCD) often 
becomes an umbrella description for all problems in bee-
keeping, especially in the popular media.  However, CCD is 
a specific honey bee condition with a number of observa-
ble signs.  Underwood and vanEngelsdorp  (2007) provided 
the following description of a hive with CCD: 1) A rapid loss 
of most adults in the colony 2) There are ample food 
stores and brood present 3) A queen remains with a small 
band of younger workers  4) Food stores will remain un-
touched by robber bees and secondary pests for an ex-
tended period.  Reports of this malady were numerous 
between the winter of 2006 and spring of 2007 (Oldroyd, 
2007).  However, since that time confirmed cases with this 
specific set of symptoms have declined drastically and high 
annual losses are being framed in terms other than CCD 
according to the U.S. Environmental Protection Agency.  
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Bacterial, Fungal and Microsporidian Diseases 

American foulbrood 

American foulbrood  is a 

highly contagious and 

deadly honey bee brood 

disease caused by the per-

sistent endospore-forming 

bacteria (Paenibacillus lar-

vae) which has spread 

worldwide (Genersch, et 

al., 2006).  Adult bees do 

not develop symptoms of the disease, but they can 

vector the pathogen.  Infection reduces the imma-

ture bee to brown viscous remains (Sturtevant, 

1932), which can as soon as one month later be-

come a hardened, infectious, crust-like scale (Ritter 

and Akratanakul, 2014).  A colony can fail within 

years or even months as a result of infection 

(Hansen and Brodsgaard, 1999).  It is undoubtedly 

the most devastating of honey bee brood diseases.  

Interestingly, the disease’s presence can even dis-

place other existing bacterial infections due to the 

pathogen’s production of a powerful antibiotic 

(Shinmanuki and Knox, 2000).  American foulbrood 

has been known to spread and kill honey bee colo-

nies that are unmanaged in some instances (Fries 

and Camazine, 2001).  Yet the disease is likely to be 

of reduced importance in nature.  Its virulence in 

apiculture appears to be due to beekeeper practices  

which intensify infective pressures (Fries et al., 

2006).  Practices which facilitate transmission in-

clude the movement of colonies, congregation of 

hives closely together and, perhaps most signifi-

cantly, swapping frames from one hive to another 

hive.   

The causative agent is a Gram-positive bacterium 

that in the vegetative state is slender, rod shaped 

and 2.5 to 5 micrometers (µm) in length and 0.5 µm 

wide; in the spore stage it is oval and is 0.6 x 1.3 µm 

(Shimanuki and Knox, 2000).  The spores can remain 

viable for over 35 years and are able to withstand 

extreme heat, cold, drought and humidity 

(Hasemann, 1961).  The spore’s resilience is aided 

by seven defensive layers of lamella, which act as 

protective sheaths.  Vegetative bacteria cannot 

cause infection, indeed only spores have the capaci-

ty to cause illness (Ritter and Akratanakul, 2014).  

Larvae are the only stage that is susceptible and 

they can become infected by ingesting 10 or fewer 

spores (Brodsgaardet al., 1998).  The disease can 

affect the larval stage of any caste, yet it is quite 

rare for drone or queen immatures to develop in-

fections (Ritter and Akratanakul, 2014).  When ad-

justed for body size, both workers and drones ap-

pear to have a similar lethal thresholds to the dis-

ease, though drone death occurs one day later than 

worker expiration (Behrens et al., 2010).  Immature 

bees are most vulnerable one day after hatching 

from their eggs (Crailsheim and Riessberger-Galle, 

2001).  However, larvae become immune to the 

disease after the third instar which is about 48 

hours after eclosion (Chan et al., 2009).   

Yue et al. (2008) was able to elucidate the pathway 

of pathogenesis using a technique known as fluo-

rescence in situ hybridization (FISH).  Once a spore 

has germinated in the larvae, the vegetative state of 

P. larvae begins to reproduce in the gut lumen.  For 

two to six days this proliferation occurs at a rapid 

rate.  The bacteria accumulate until they reach a 

threshold at which the peritrophic membrane is 

overcome and the epithelium is attacked.  The epi-

thelium is bypassed via paracellular space and this 

destroys cell to cell junctions.  The pathogen pro-

ceeds to either degrade the basement membrane 

or undermine bonding of the cell matrix.  This activ-

ity forms seepages in the tissue which separate the 

gut from other tissues and permits bacteria to in-

vade the haemocoel. Ultimately the larvae die of 

septicemia and the corpse is devoured by vegeta-

tive bacteria (Cornman et al. 2013).   

The production of new spores (sporulation) occurs 

throughout the infective process (Yue et al., 2008).  

However, spore production is higher as the infected 

larvae transition to a 5th instar prepupae—about 10

-11 days after egg hatching (Spivak and Reuter, 

2001).  A single larvae infected with the disease will 

produce approximately 2.5 billion spores 

Georgia Department of Agriculture 
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(Sturtevant, 1932).  Throughout much of the 19th 

and 20th century this disease became epidemic and 

caused massive disruptions in honey production.  

This led to the formation of regulatory inspection 

programs (Humphreys, 1995).  The importance of 

this disease has diminished in recent decades, due 

to the advent of antibiotics, inspection services and 

improved beekeeping practices.  Yet the disease can 

still be problematic due to antibiotic-resistant 

strains of the disease and lack of knowledge among 

some beekeepers.  The Causal Analysis 

Workgroup  ranked American foulbrood as unlikely 

as a major contributor to high annual losses of colo-

nies.   

European foulbrood 

This disease is induced by the Gram-positive bacte-

rium Melissocccus plutonius (Forsgren, 2010).  Euro-

pean foulbrood cells are lancet shaped and shorter 

than American foulbrood—measuring just 0.5-0.7 

µm x 1.0 µm (Shimanuki and Knox, 2000).  This dis-

ease does not form spores (Shimanuki and Knox, 

2000).  Larvae of any age are susceptible to this 

pathogen, however it tends to kill the immature 

bees when they are 4-5 days old (Forsgren, 2010).  

Symptoms of the disease begin when the larvae 

lose their characteristic “C” shape and become 

twisted around the walls of the cell or are found 

lying lengthways (Forsgren, 2010).  Occasionally 

larvae will die after their cell is sealed and this may 

result in two symptoms similar to American 

foulbrood: sunken caps and a foul smell (Forsgren, 

2010).   

While the disease is not ubiquitous in the environ-

ment, M. plutonius can be present in hives without 

colonies manifesting symptoms (Forsgren et al., 

2005).  One scientific estimate suggested that more 

than one-third of hives include adult bees that har-

bor the bacterium, but larvae do not exhibit symp-

toms (Forsgren, 2005).  McKee et al. (2004) de-

scribed factors involved in developing or resisting 

an infection.  Infection begins when bacterium is 

ingested by the larvae and replication commences 

in the midgut.  The authors note that in a clinical 

environment, an effective threshold for larval infec-

tion appears to by 200 organisms per mL.  Yet, even 

larvae fed high concentrations of inoculum can 

demonstrate variable resistance.  This is potentially 

due to genetic advantages or enhanced immune 

systems of individual larvae.  Interestingly it is the 

larvae which survive infection that typically spread 

the disease to other susceptible bees.  This is be-

cause surviving carriers of the disease pupate and 

defecate bacterial-laden feces into comb, whereas 

infected larvae that die before pupation are re-

moved by housekeeping bees along with the bacte-

ria (Forsgren, 2010).   

The cause of larval expiration is ambiguous.  Ac-

cording to Bailey (1983) the bacteria competes with 

larval cells for food resources and this essentially 

starves the immature bee to death.  However 

McKee, et al. (2004) seemed to deflate this hypoth-

esis by artificially rearing honey bee larvae and in-

fecting them with European foulbrood in the pres-

ence of excess food.  These authors found evidence 

for an alternative explanation for larval demise: the 

bacteria causes dissolution of the peritrophic mem-

brane in the gut, leading to permanent physiologi-

cal damage and possibly inhibition of proper diges-

tion.   

Although the disease is potentially lethal, the de-

gree of fatality is variable around the world.  Certain 

regions are impacted much worse than others 

(Forsgren, 2010).  Since the bacterium is unable to 

persist both inside the hive and within the environ-

ment, it is certainly of diminished risk in both dan-

ger and transmission compared to American 

foulbrood (Mutinelli, 2011).  The Causal Analysis 

Workgroup thought the disease was not a major 

contributor to honey bee losses. 

Georgia Department of Agriculture, Bugwood.org 
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Nosemosis  

Bee diseases in the genus 

Nosema are obligate, in-

tracellular microsporidi-

ans (Gisder et al., 2011) 

meaning growth and divi-

sion does not occur out-

side of the host cell.  

Nosema apis and N. cer-

anae are the two species 

which cause the condition 

known as Nosemosis (Chen et al., 2009).  In labora-

tory settings all castes  can become infected with 

this disease (Chen et al., 2009), though in the field 

workers are most commonly infected.  It is possible 

that queen bees are frequently spared infection due 

to changes in behavior of infected workers that 

make them less likely to feed the queen (Wang and 

Mofller, 1970).  The disease is more prevalent and 

infection intensity is higher in older, foraging work-

er bees compared to younger, house worker bees 

(Smart and Sheppard, 2012).  According to annual 

surveys of honey bee health in the U.S., N. ceranae 

has largely displaced N. apis in recent years 

(Runckel et al., 2011).  N. ceranae is a pathogen that 

recently arrived in the United States and the earli-

est known infection was detected in bees collected 

in 1995 (Chen et al., 2008).  Box C describes some 

of the notable distinctions between the two species 

of Nosema and a possible explanation as to why 

one strain is becoming more prevalent than the 

other.   

Both species of Nosema have been detected in the 

hypopharyngeal glands, thoracic salivary glands and 

mandibular glands which would suggest that food 

production and comb building may contribute to 

sinks and sources of the disease and promote hori-

zontal transmission (Copley and Jabaji, 2011). An 

explanation of difference between horizontal versus 

vertical transmission of pathogens is provided in 

Box D on page 9.  Risk of transmission may also be 

increased when bees are smashed by routine hive 

management (Mutinelli, 2011).  Nosema spores 

cause infection in the digestive system of honey 

bees when food containing spores pass the proven-

tricular valve of the foregut and enter the midgut 

Katie Lee,  

Bee Informed Partnership 

BOX C   

Nosema apis 

Spores of this species are large and oval measuring 4-6 
µm long X 2-4 µm wide (Shimanuki and Knox, 2000).  N. 
apis spores are heat sensitive and perish if exposed to 
temperatures of 60° C for 15 minutes (Fenoy et al., 
2009).  Nosemosis due to infection by this species can 
cause dysentery in bees, which is thought to enhance 
the fecal-oral route of transmission (Fries et al., 2009).  
In fact, comb soiled with feces is thought to be the pri-
mary source of transmission of this pathogen (Bailey, 
1955).   

Nosema ceranae 

While difficult to distinguish, even with light microsco-
py, N. ceranae spores are on average 1 µm smaller than 
those produced by N. apis (Fries et al., 2006). Spores of 
this species demonstrate tolerance to heat.  Fenoy et 
al. (2009) found that 90% of spores were still viable 
after a six-hour heat treatment at 60° C.  N. ceranae 
exhibits far higher spore intensity than compared to N. 
apis (Williams et al. 2014).   

Bees infected with this species notably lack the dysen-
tery symptoms which are characteristic of the disease 
Nosemosis caused by N. apis (Fries et al. 2006).  It is 
not clear why this is the case, however Chen et al. 
(2009) suggested that N. ceranae may lack specific PCR 
signals that affect muscles and fat bodies, which induce 
such symptoms.  Infections by this species appears to 
result in higher worker mortality than compared to N. 
apis (Williams et al. 2014).  

Williams et al. (2008) demonstrated that the antibiotic 
Fumagilin-B (fumagillin dicyclohexylammonium) was 
effective in controlling both species of Nosema.  How-
ever, Huang et al. (2012) presented data which sug-
gested that the two species respond differently to 
treatment with this antibiotic.  The medicine is effec-
tive at reducing spore loads of both diseases when ini-
tially applied.  However, there is a rebound of spore 
production as the chemical degrades.  These authors 
monitored responses of both microsporidia to dimin-
ishing concentrations of the drug and found that N. 
ceranae spore production recovered significantly faster 
than N. apis.  It was also discovered that Fumagilin-B 
may result in hyperproliferation of N. ceranae and ex-
acerbate the infection.  This information led the au-
thors to conclude that fumagillin may be a factor in the 
replacement of N. apis by N. ceranae because wide-
spread use of the drug is controlling the former while 
invigorated the latter.   
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physical environment of the midgut that induces 

germination of the spores (Chen et al., 2009).  Infec-

tion of a host cell unfolds in this manner:  1) spore 

germination begins with an extension of the polar 

tube; 2) the tube penetrates the host cell mem-

brane of a midgut cell; 3) sporoplasm is forced into 

the host cell (Gisder et al., 2011).  The microsporidi-

an devours the nutrients of the cell and grows until 

it eventually splits; this continues until the cell is 

exhausted (Mussen, 2011).  These spores can infect 

other cells in the midgut or they are excreted from 

the host and act as infectious agents for other hon-

ey bees (Chen et al., 2009).  Spore formation 

(sporulation) occurs sometime between 4 and 9 

days post infection (Mussen, 2011). 

Visual symptoms are not sufficient to determine if 

there is an infection, as positive diagnosis of the 

pathogen can only be done by microscopic exami-

nation (Shimanuki and Knox, 2000).  Infection re-

sults in bees becoming energetically stressed and 

hungry (Mayack and Naug, 2008).  This prompts the 

infected to be more likely to solicit food from nest-

mates and less likely to share food with others 

(Naug and Gibbs, 2009).  Queen bees infected with 

N. apis early in their life are generally superced-

ed (replaced by worker bees) within a month 

(Mussen, 2011).  The queen is more likely to be-

come infected in winter months in temperate re-

gions, since the bees are confined and there are 

more opportunities for her to come into contact 

with infected workers (Higes et al., 2009).  Nosema 

infections can significantly increase worker bee 

mortality.  An infection of N. ceranae can reduce an 

average worker’s lifespan by 9 days (Goblirsh et al. 

2013).  Kralj and Fuchs (2010) found that workers 

artificially infected with Nosema spp. were 2.5 

times less likely to return to a colony than disease-

free bees.  The authors could not explain why this 

occurred, but suggested that inoculated bees may 

have experienced fatigue as a consequence of infec-

tion.  Infection can also circumvent age polyethism 

of adult workers, causing them to abandon brood 

rearing altogether and prematurely become forag-

ers (Mussen 2011).  McDonnell (2013) supported 

the notion that these behavioral changes were a 

means of preventing transmission of the disease.  

Effects of the disease at the colony level has also 

been studied.  For example the pathogen has been 

found to act in a synergistic manner with certain 

pesticides and increase colony mortality rates 

(Alaux et al., 2012).    

Despite all of the documented deleterious effects of 

this condition, it is not clear how problematic Nose-

mosis is to beekeeping by and large.  For instance, 

Nosema spp. tends to be seasonal in prevalence 

and intensity because colonies typically exhibit in-

fections more often in spring than in fall (Gisder, et 

al. 2010).  Data presented by Dainat et al. (2012) 

downplayed the role of Nosema in widespread colo-

ny losses by demonstrating that overwintering 

deaths were generally the same between infected 

and uninfected colonies.  Cornman et al. (2012) dis-

covered that colonies infected with N. apis tended 

to be associated with extensive losses, but the same 

could not be said of N. ceranae.  Yet the authors 

note that N. ceranae is often found alongside vari-

ous honey bee viruses, which would suggest that 

the disease makes bees more vulnerable to other 

pathogens and abiotic stresses.  Further compli-

cating matters are data revealed by Zheng et al. 

(2014), which showed a direct correlation with  

BOX D  Chen et al. (2006) explained that transmission 

of honey bee pathogens occurs by one of two routes.  

The first is horizontal transmission, where individual 

bees are infected by other individuals of the same 

generation.  The second is vertical transmission.  This 

is where adults transmit maladies to their offspring.  

Fries and Camazine (2001) explained that the degree 

of virulence of honey bee pathogens is complex, how-

ever it often corresponds with the mode of transmis-

sion.  Vertical transmission tends to select for reduced 

virulence and horizontal transmission favors increased 

virulence.  In the case of vertical transmission the ob-

jective of the parasite and the host are one and the 

same: effective reproduction.  Extreme virulence in 

this case will result in pathogens with no progeny in 

which to reproduce.  However in horizontal transmis-

sion of disease, there is reduced advantage in lower 

virulence because the pathogen does not need host 

offspring to reproduce, it merely needs a new host of 

the same generation.   
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sterile pollen feeding and increases in Nosema cer-

anae spore load, which is commonly measured to 

determine the level of infection.  Based on what is 

known about Nosemosis, increases in spore loads 

would hypothetically reduce worker longevity.  Yet 

when pollen feeding was halted in test bees this 

resulted in higher mortality levels compared to bees 

that continued to receive pollen and consequently 

had higher spore loads.  Simply put counting spore 

loads by itself is not likely useful in determining the 

severity of Nosema ceranae infections.  This finding 

seriously hampers the development of proper treat-

ment thresholds, since spore loads may not corre-

spond with hive health.  It also may partially explain 

why healthy colonies can sometimes have elevated 

Nosema spore loads.  The Causal Analysis Workshop 

participants determined that both species of Nose-

ma were unlikely alone responsible for widespread 

losses in honey bee colonies.  However they may be 

contributing factors.   

Chalkbrood 

Ascosphaera apis is the causative fungal agent of 

Chalkbrood infections (Shinmanuki and Knox, 2000).  

The disease exclusively affects bee brood (any 

caste) (Aronstein and Murray, 2010).  Adults are not 

susceptible, however they can act as disease vec-

tors (Aronstein and Murray, 2010).   

Chalkbrood is a heterothallic organism (Shinmanuki 

and Knox, 2000), which means that spore formation 

only results when fungal hypha mate with different 

mating types (Solomon et al. 2005).  Different 

mating types are designated as (+) and (-) and not 

male and female, since there are no physical dis-

tinctions between the different hypha (Solomon et 

al., 2005).   When a (+) and (-) strain combine, a 

spore cyst is formed; these cysts contain spore 

balls, which hold individual spores (Shinmanuki and 

Knox, 2000).  The cysts measure 47-140 µm in diam-

eter, the spore balls are 9-19 µm in diameter and 

the spores are 3.0-4.0 X 1.4-20 µm (Shinmanuki and 

Knox, 2000).  Spores can remain viable in hives for 

up to 15 years (Toumanoff 1951, reviewed in Ar-

onstein and Murray, 2010).   

Infection occurs when spores are ingested by honey 

bee larvae and germination begins in the gut.  Fun-

gal mycelia penetrate mechanical defenses in the 

gut and the pathogen proceeds to infiltrate internal 

organs and devour nutrients (Cornman et al., 2012).  

Mycelia eventually emerge from the host cadaver 

and transform it into a cotton-like mummy 

(Shinmanuki and Knox, 2000).  The mummies range 

in color from white to brown to black.  Lighter col-

ors typically indicate that the mummy is young and 

few ascospores are present (Aronstein and Murray, 

2010).  This transformation of the larval host into 

mummies makes diagnosis of the disease simple.   

The pathogen is cosmopolitan (Aronstein and Mur-

ray, 2010).  Chalkbrood spores are likely to be ubiq-

uitous within individual honey bee colonies, yet 

many colonies never demonstrate symptoms due to 

hygienic behavior (Spivak and Reuter, 2001).  How-

ever if climate conditions are conducive to fungal 

growth or larvae are exposed to high doses of 

spores, the disease can lead to severe colony losses 

(Cornman et al., 2012).  The Causal Analysis 

Workgroup suggested that this disease is unlikely 

alone to be responsible for major losses of colonies, 

however it could be a contributing factor. 

Crithidia 

Crithidia melificae is a trypanomatid parasite first 

described by Langridge and McGhee (1967).  These 

authors reported decades ago that the disease was 

not known to be deleterious to honey bees.  The 

relative importance of this little studied disease is 

unknown even today.  Recent data suggests that 

this pathogen may be linked to high overwintering 

mortality in Belgium, especially when found in com-

bination with other stressors like Nosema ceranae 

(Ravoet et al., 2013).  This is potentially troubling 

considering that a survey of large scale migratory 

beekeepers in the U.S. found that Crithidia was pre-

sent in roughly one-third of colonies (Runckel et al., 

2011).  It was also discovered that in contrast to  

Jeff Pettis, Bugwood.org 
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many other honey bee maladies which reach their 

zenith in the summer, this disease peaks in the win-

ter (a time of year when colony mortality is com-

mon).  The disease has a worldwide distribution 

(Runckel et al., 2014). The Causal Analysis 

Workgroup deemed that the importance of Crithid-

ia in beekeeping losses was indeterminate.   

Stonebrood 

Aspergillis spp. are fungi that tend to be beneficial 

decomposers, however some are pathogenic to 

honey bee larvae such as A. flavus, A. fumigatus 

and A. niger (Foley et al., 2012).  Symptoms of the 

disease begin with a yellowish collar-like ring ap-

pearing around the larval head; afterwards the im-

mature bee develops a hardened exterior and vari-

ous colored powdery fungal spores are discharged 

(Shinmanuki and Knox, 2000).  The colors of the 

spores are loosely diagnostic: A. flavus spores are 

yellow-green, A. fumigatus are gray-green and A. 

niger are black (Shinmanuki and Knox, 2000).  Foley 

et al. (2014) discovered that individual larvae easily 

succumb to infection in lab experiments.  Yet this 

disease is quite rare in colonies.  The authors sug-

gested that colony-level defenses are enormously 

helpful in suppressing the disease.  However nutri-

tion is likely a factor in keeping infections under 

control.  For instance, it was discovered that larvae 

in colonies subjected to insufficient nutrition were 

significantly more likely to contract the disease than 

hives sufficiently nourished (Foley et al., 2012).  

Members of the Causal Analysis Workgroup dis-

counted the importance of this disease. 

 

 

 

 

 

 

 

 

 

 

Varroa Overview 

It has been frequently proclaimed that the ecto-

parastic Varroa mite (Varroa destructor) is the sin-

gle greatest global threat to the health of the man-

aged European honey bee (Francis et al., 2012; 

Rosenkranz et al., 2009 ).  It is without doubt the 

most destructive honey bee pest (Spivak 1996).  The 

Causal Analysis Workgroup participants ranked Var-

roa mite and the viruses it transmits as probable in 

causing high annual colony losses.  Interestingly, the 

mite is of little detriment to the fitness of its natural 

host A. ceranae (Asiatic honey bee) as detailed in 

BOX E on page 12 (Sumpter and Martin, 2004).  The 

genus Varroa contains four species:  V. underwoodi, 

V. rindereri, V. jacobsoni, and V. destructor 

(Rosenkranz , et al. 2009).  Initially, the penultimate 

species was incorrectly identified as the mite that 

had spread to Europe and the Americas.  The only 

species in this genus that is of economic importance 

is V. destructor (Rosenkranz et al., 2009).  The term 

“Varroa mite” in this guidebook will be in reference 

to this specific species. 

V. destructor is found on every continent that pro-

duces honey with the exception of Australia (AQIS, 

Australian Government, 2016).  In regions of the 

world where European honey bees are unmanaged 

and population densities are low there are few op-

portunities for horizontal transmission of this pest 

(Fries and Camazine, 2001).  However, apiculture 

practices promote opportunities for horizontal 

transmission of Varroa (Fries and Camazine, 2001) 

and if mites are not controlled in managed systems 

by external human intervention, colonies with high 

Varroa Mite and Viruses 

Scott Bauer, USDA Agricultural Research Service, Bugwood.org 



12 

infestations typically perish (Tentcheva et al., 2004).   

Varroa Biology and Life Cycle 

Varroa mites are found on adult bees, on immature 

bees, inside brood cells and throughout other parts 

of the hive (Shinmanuki and Knox, 2000).  These 

mites are so closely linked with their host that there 

is no free living stage in their life cycle (Rosenkranz 

et al., 2009).  When mites are attached and feeding 

on adult bees they are considered to be in a 

phoretic phase  (Sumpter and Martin, 2004).  When 

these parasites are inside sealed brood they are in a 

reproductive phase (Rosenkranz et al., 2009).  There 

is sexual dimorphism amongst this species.  Adult 

females are pale to reddish brown, ovoid and meas-

ure 1.1 mm long  X 1.55 mm wide (Shinmanuki and 

Knox, 2000); males are markedly smaller, round and 

pale to light tan in color (Delfinado-Baker, 1984).  

Male mites only live during the reproductive stage 

and do not become phoretic mites (Boecking and 

Genersch, 2008).   

A pregnant female mite usually lays five eggs in a 

single worker cell, but in some instances can pro-

duce six (Martin, 1994).  The mother mite begins by 

moving down into the cell, past the prepupal bee 

into the larval food where it becomes stuck; it will 

stay in this area until the brood is capped and the 

larvae consumes the food (Boecking and Genersch, 

2008).  It is possible that staying at the bottom of 

the cell is a means of avoiding early detection by 

hygienic worker bees (Rosenkranz et al. 2009).  The 

first mite larva is a haploid male and is deposited 

about 60 hours after the host brood cell is capped 

(Martin, 1994).  The remaining mite larvae are fe-

males and are laid in 26-32 hours segments (Martin, 

1994).  The mite larvae feed on the honey bee 

host’s hemolymph, undergo several nymphal stages 

and ultimately mate (Boecking and Genersch, 

2008).  Many of the mother mite’s progeny natural-

ly perish before reaching maturity, resulting in an 

average of just 1.45 female adult offspring which 

emerge from the host bee (Martin, 1994).  Howev-

er, in drone brood this reproduction rate is almost 

doubled due to a more conducive reproductive en-

vironment for the parasite (Martin, 1994). BOX F on 

page 13 provides an explanation of Varroa mite’s 

penchant for drone brood and aversion to queen 

brood.  4-14 days after emergence mated female 

daughters crawl into new brood cells and lay eggs 

of their own (Boecking and Genersch, 2008).  This 

parasite can be passed to other colonies in many 

ways.  However, transmission principally occurs 

when mites are attached to bees and the infested 

hosts invade other hives (Shen et al., 2005). 

Varroa Mite Damage and Parasitic Mite Syndrome  

There are many negative consequences of Varroa 

parasitism.  First, the mite can cause physiological 

damage to the host.  These injuries include:  

BOX E  The Asiatic honey bee (Apis cerana) is a host of Varroa mite (Varroa destructor).  However, the health effects of 

infestation on the Asiatic honey bee are marginal compared to the negative responses exhibited by the European honey 

bee (A. mellifera).  The difference in seriousness on host health can be attributed to a number of factors. 

First, Varroa mites are only able to reproduce in drone brood of A. cerana (Boecking and Genersch, 2008), whereas they 

can breed in both worker and drone brood of A. mellifera.  The Asiatic honey bee also exhibits three behavioral adapta-

tions that aid in tolerance: 1) advanced grooming behavior which dislodges the mites from themselves and nestmates 

(Spivak, 1996); 2) enhanced hygienic behavior, allowing the bees to remove mites from the colony (Spivak, 1996); and 3) 

the ability to close the central pore of a cell’s capping of infested drones; this process is known as “entombing” and it 

kills both the host and the mites (Boecking and Spivak, 1999).   

A thorough reader may have remembered in the “Honey Bee Immune System” section that European honey bees also 

exhibit some of the behavioral adaptions to Varroa mite infestations mentioned above and wonder why these do not 

provide effective control.  While European bees do exhibit grooming and hygienic behavior, they are expressed to a 

much lesser extent than in their Asian cousins.  Indeed an astonishing study conducted by Peng et al. (1987) found that 

98% of mites artificially implanted into an Asiatic honey bee colony were groomed from the bodies of bees and removed 

from the hive within minutes.  It is also worth noting that European honey bees do not perform entombing, a practice of 

sealing infested brood which prevents adult emergence from the cocoon (Rosenkranz et al., 2009).   
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interference in production of molting hormone 

(Amdam et al., 2004), decreases in the protein con-

tent of the honey bee body (Yang and Cox-Foster, 

2007) and reduction of the adult bee’s eventual 

body weight (Rosenkranz et al., 2009).  These physi-

ological impairments result in bees that are shorter-

lived and less adapted for overwintering survival 

(Amdam et al., 2004).  A second problem with Var-

roa is that they induce immunosuppression in 

afflicted bees (Yang and Cox-Foster, 2005), making 

them more susceptible to diseases and stressors.  

Yang and Cox-Foster (2007) found that mite infesta-

tions reduced the expression of genes involved in 

antimicrobial peptides and immune-system related 

enzymes.  This impaired both cellular and humoral 

immunity functions.  Di Prisco et al. (2011) discov-

ered that increased levels of Varroa correlated with 

a decrease in the level of antimicrobial peptides 

(apidaecin) in colonies.  The effects of parasitism on 

host physiology and immune function are harsh.  

Colonies that are excessively parasitized usually die 

within months if left untreated (Shen et al., 2005).   

The set of common visual indications of severe mite

-related stress on a colony is collectively called hon-

ey bee Parasitic Mite Syndrome (PMS).  Shinmanuki 

and Knox (2000) described honey bee PMS as a col-

ony which exhibits a spotty brood pattern, queen 

supersedure (replacement) and the presence of 

easily removed scale (dead and dried remains of 

brood).  Individual larvae may also become twisted 

in the cell, liquefied and change color to light 

brown, gray or black.   

Viruses  

As Soloman et al. (2005) explain, viruses are small, 

acellular, infectious particles.  They do not exhibit 

characteristics commonly found in living organisms.  

For instance, viruses contain either deoxyribonucle-

ic acid (DNA) and ribonucleic acid (RNA) but not 

both.  This differs from living organisms, which have 

both DNA and RNA.  Viruses cannot conduct meta-

bolic processes or reproduce on their own.  They 

must hijack the machinery of living cells to perform 

these functions.    

When viruses are present in non-parasitized honey 

bees they tend to be persistent, yet latent, and are 

likely suppressed by the host’s immune system 

(Shen et al., 2005).  In fact, preceding the introduc-

tion of Varroa to European honey bee colonies, A. 

mellifera had an arguably commensal relationship 

with their RNA viruses.  Sumpter and Martin (2004) 

explain that while individual bees may have exhibit-

ed reduced foraging ability or decreased life-span 

from viral infections, the consequences at the colo-

ny level was negligible.  However once Varroa 

reached previously uninfested regions of the world, 

the viruses gained a new route of transmission via 

mite feeding.  As a result, many of the previously 

innocuous viruses became severely injurious and 

epidemic within colonies.  

This change in virulence is due to a number of possi-

ble causes.  Viral genotypes may have evolved to 

become more deadly, however it seems more likely 

that Varroa has dramatically increased the frequen-

cy of lethal viral phenotypes as a result of their role 

in vectoring many of these pathogens (Sumpter and 

Martin, 2004; Bowen-Walker et al., 1999).  Previous 

to Varroa, deadly phenotypes often perished along 

with their host, but now these strains can be trans-

mitted before host death occurs.  It may also be the 

case that mite feeding itself activates normally be-

nign viruses which are already commonly present in 

the honey bees (Bowen-Walker et al., 1999).   

BOX F  While Varroa can parasitize the brood of all 

honey bee castes, the mite demonstrates a clear pref-

erence for drone larvae.  It commonly afflicts worker 

brood, but almost never parasitizes larval queens.  

Male bees take three days longer to develop than fe-

male workers and it is presumed that this additional 

time is helpful for the Varroa mite’s reproductive suc-

cess (Boecking and Genersch, 2008).  Calderone et al. 

(2002) attributed the low incidence of mites in queen 

brood to the repellant effects of royal jelly and vari-

ances in larval chemistry among different castes.  In a 

repellant bioassay, these authors found that mites 

exposed to higher concentrations of royal jelly result-

ed in a higher repellant effect.  Since larval queens are 

fed more royal jelly than larval workers, this may part-

ly explain the mite’s distaste for queens.  They also 

discovered in binary-choice tests, that mites preferred 

the chemical environment of 5th instar worker brood 

to that of a queen larvae’s environment of the same 

age.  
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Moreover, viruses may have made the mite itself 

more damaging—creating a sort of synergistic feed-

back loop of honey bee pestilence.  For instance, 

Boecking and Genersch (2008) chronicled that when 

Varroa first arrived in Germany an established colo-

ny could tolerate up 10,000 mites before dying.  

Today’s German bees are fortunate to survive an 

infestation less than 1/3 of that.  These authors 

attributed the markedly reduced honey bee toler-

ance of Varroa infestation to the rise of galvanized 

viruses, which have possibly weakened the ability of 

bees to cope with parasitism itself.  Even so, the 

ultimate failure of an excessively infested colony is 

more likely a consequence of viral infections than of 

the direct feeding of the mites (Rosenkranz et al., 

2009).   

Tentcheva et al. (2004) demonstrated through a 

survey of honey bees in France that certain viral 

infections are common in apiaries and often persist 

without inducing clinical symptoms.  Nonetheless 

the high rate of certain viruses in mites led the au-

thors to the conclusion that Varroa acts as both a 

vector and activator of many different viruses.   

However not all honey bee viruses are transmitted 

by Varroa.  For instance, evidence suggests that 

many viruses can be transmitted by the consump-

tion of contaminated food products such as honey, 

pollen, bee bread and royal jelly (Shen et al., 2005).  

Transmission may also occur via the fecal-oral route 

(Chen et al., 2006).  There are data to suggest that 

queen bees may contract viruses through trophal-

laxis with infected workers and occasionally from 

mating with drones (Francis et al., 2013).  It is also 

possible that queen bees can transmit viruses to 

offspring via infected ovarian tissue (vertical trans-

mission) (Chen et al., 2006).  Furthermore, external 

environmental factors are thought to be important 

in facilitating the spread of viruses from their begin-

ning replication sites to targets in the honey bee 

body (initial viral infections typically begin in the 

epithelial cells and pass to the nervous system).  

Regardless of the means of transmission, high viral 

loads are often correlated with significant colony 

losses  (Cornman et al., 2012).   

 

Acute Bee Paralysis Virus 

This disease appears to be transmitted by both Var-

roa mite and through bee to bee contact (Tencheva 

et al., 2004).  Larvae with Acute Bee Paralysis Virus 

(ABPV) may turn brownish black and experience 

impediments in weight gain (Azzami et al., 2012).  

Martin (2001) proposed that due to this pathogen’s 

extreme virulence, nearly all pupae infected with 

this virus die before becoming adults as a conse-

quence of infection.  When honey bees die in the 

pupal stage, so too do the parasitic mites which 

may have vectored the disease.  Since the virus is 

not favorable to Varroa reproduction, this author 

suggested that there must be a large population of 

mites present for this disease to be solely responsi-

ble for a colony’s death. 

Azzami et al. (2012) found that upon viral infection 

by injection, the honey bee immune system does 

not respond with either a cellular or humoral im-

mune response.  Indeed, inoculation failed to pro-

duce a nodulation response or AMPs from the hon-

ey bee when exposed to the virus alone.  Yet the 

immune system responded when the virus was pre-

sented with a bacterial coinfection.  The virus repro-

duces prolifically in the bees’ hemolymph—which 

allows it to spread to the brain and other parts of 

the body—and the hypopharyngeal glands appear 

to be the major target of this virus (Bailey and 

Milne, 1969; Azzami et al., 2012).  A survey of win-

ter colony losses found that this virus along with 

deformed wing virus were both present at high lev-

els in colonies that didn’t survive, suggesting a link 

between this disease and seasonal survival 

(Berthoud et al., 2005). 

Black Queen Cell Virus 

This virus affects immature 

queens bees and infections 

typically occur in the spring 

time (Locke et al. 2014).  Larval 

queens that demonstrate clini-

cal symptoms become dark-

ened, hence the name Black 

Queen Cell Virus (BQCV) (Leat 

et al., 2000).  The worker caste 

act as carriers but rarely  
Rob Synder,                                  

Bee Informed Partnership 
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develop the disease in their larval stage; effects of 

the pathogen on adult workers are unknown (Locke 

et al., 2014).  Tencheva et al. (2004) determined 

that transmission of this virus by Varroa was proba-

bly minimal.  It appears that the virus is ubiquitous 

among honey bee colonies (Madella et al., 2015) 

and its importance in honey bee health is likely to 

be negligible. 

Chronic Bee Paralysis Virus 

Adult bees with symptoms of Chronic Bee Paralysis 

Virus (CBPV) are unable to fly and are found on the 

tops of hive frames or on the ground in a relentless 

shaking frenzy (Shinmanuki and Knox, 2000).  Some 

bees afflicted with this disease will become shiny, 

hairless and black (Shinmanuki and Knox, 2000) 

which makes them sometimes mistaken for robber 

bees.  This disease has been commonly called 

“hairless black syndrome” or “little blacks” because 

of symptomatic characteristics (Ribie’re et al., 

2007).  Like Black Queen Cell Virus, this disease 

does not appear to be readily transmitted by Varroa 

(Tencheva et al., 2004).  However symptomatic 

bees will sometimes exhibit dysentery and this is 

thought to be a route of continued infection 

amongst the nest mates in a soiled hive (Ribie’re et 

al., 2007).  This disease was rarely found in U.S. 

hives in the past, however in recent years the virus 

has become more prevalent (Madella et al., 2015).    

Cloudy Wing Virus 

As the name implies, Cloudy Wing Virus can some-

times cause the wings to become whitish and 

opaque (Bailey and Ball, 1991).  Carreck et al. (2010) 

provided data on this little studied virus and pro-

posed some conclusions from their research.  First, 

there are no reliable overt symptoms to diagnose 

the disease.  Second, the disease is not likely to be 

highly pathogenic, however it may be more prob-

lematic if it is present among other infections.  

Third, the disease is probably not transmitted by 

Varroa, but instead is passed by nurse bees to de-

veloping larvae via an oral route.  Bailey and Ball 

(1991) reported that it is possibly transmitted by 

direct contact, when conditions in the hive become 

too crowded.  It is not likely a disease of major sig-

nificance. 

Deformed Wing Virus 

This is a virus of great importance in honey bee 

health.  As the name suggests, this virus can cause a 

crippling of honey bee wings (Gisder et al., 2009).  

High levels of adult bees manifesting symptoms of 

Deformed Wing Virus (DWV) will exhibit reduced 

survivorship and imperil the colony (Francis et al., 

2012).  Physical symptoms of the disease in the ab-

sence of Varroa are possible, but rare (Bowen-

Walker et al., 1999).  It has been established that 

Varroa is not merely a potentiator of this disease, 

but indeed acts as a host vector (Bowen-Walker, et 

al. 1999).  Mites can also transmit the disease to 

other mites by contaminating communal food 

sources (bees) (Bowen-Walker, Martin and Gunn, 

1999). 

Sumpter and Martin (2004) proposed that there 

were two requirements for a colony to express 

symptoms of DWV: 1) The disease must be trans-

mitted by Varroa mite feeding; and 2) The mite pop-

ulation must be high.  Gisder et al. (2009) agreed 

that transmission via Varroa parasitism was a pre-

requisite to the deformation of wings.  However, 

they suggested that in order to induce clinical symp-

toms, the virus must first replicate within the 

mite—thus making the mite carry a higher viral 

load.  Based on their data, which measured the viral 

titre of numerous phoretic mites, they found that 

bees with deformed wings were parasitized by 

mites with a DWV titre of 10ˆ10 viral genomes per 

mite and mites with lower viral titres did not induce 

wing crippling in their host.  The authors offered 

two explanations for this observation.  First, there is 

a threshold at which the number of viral particles 

must reach to sufficiently circulate within the he-

molymph and induce symptoms. Second, DWV is 

largely benign to bees.  What induces detrimental 

symptoms are mutated virulent strains of the dis-

ease.  The higher the viral load, the more likely it is 

to contain mutant, injurious strains.  Yang and Cox-

Foster (2005) concluded from their data that dra-

matic increases in the replication of DWV were as-

sociated with a bacterial coinfection.  Consequently, 

the authors hypothesized that antibiotic treatments 

may reduce the replication of this virus.   
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If a colony of 30,000 to 60,000 bees is infested with 

roughly 6-9% mites carrying DWV, this will likely 

result in overwintering death in temperature re-

gions (Martin, 2001).  Colonies in temperate regions 

are much smaller during winter, therefore between 

2,000-3,000 virus-vectoring mites need only infect 

two adult bees for roughly half of the colony to be 

dead by December (Martin, 2001).  Members of the 

Causal Analysis Workgroup suggested that DWV in 

combination with other factors may be possibly re-

sponsible for high annual losses or a contributing 

factor. 

Invertebrate Iridescent Virus 

In 2010 Bromenshenk et al. described Invertebrate 

Iridescent Virus-6 (IIV-6) which was discovered us-

ing mass spectrometry-based proteomics (MSP).  

The virus is said to be a large DNA virus (in contrast 

to small RNA viruses which characterize most honey 

bee viruses).  This pathogen in combination with 

Nosema disease was said to be tightly correlated 

with widespread losses in beekeeping.  The basis of 

this claim resided in consistent coinfection of both 

pathogens in samples collected from colonies in the 

U.S. that experienced rapid declines.  The method-

ology behind this study was disputed by Foster 

(2011) and the importance of this virus in honey 

bee health has been questioned by other research-

ers (Cornman et al., 2012).  This pathogen’s contri-

butions to colony losses was classified as indetermi-

nate by the Causal Analysis Workgroup.   

Israeli Acute Paralysis Virus 

Members of the Causal Analysis Workgroup sug-

gested that Israeli Acute Paralysis Virus (IAPV) may 

be possibly responsible for extensive hive losses or 

a contributing factor.  This disease infects all stages 

and sexes of honey bees (Chen et al., 2014).  The 

virus has the ability to make replica in all bee tis-

sues, yet it tends to collect in gut tissues, nerve tis-

sues and in the hypopharyngeal gland (Chen et al., 

2014).  Presence in the hypopharyngeal glands may 

elucidate why the virus is found in royal jelly, as this 

is the gland which produces the substance (Chen et 

al., 2014).  High concentrations in the gut would 

suggest that food acts as a source of transmission 

within the colony (Chen et al., 2014).  Varroa have 

likewise been implicated in transmission.  Di Prisco 

et al. (2011) established that Varroa was capable of 

acting as a vector and that there was a significant 

link between the occurrence of this disease and the 

parasite population.  The authors found evidence 

that mites may transmit the disease amongst them-

selves if multiple parasites feed on the same bee.  

Replication of the virus may also occur within the 

mite.   

Symptoms of the disease are similar to that of ABPV 

(Maori et al., 2007) and include shivering wings, 

paralysis and death (Li et al., 2013).  High concen-

trations of the virus in nervous tissues may stimu-

late nerves that trigger behavioral characteristics of 

the disease (Chen et al., 2014).  High levels of IAPV 

have also been found to adversely affect the hom-

ing abilities of infected honey bees and in some cas-

es the bees are unable to return to the hive (Li et 

al., 2013).  This virus is most closely related to Kash-

mir Bee Virus (KBV) and ABPV (Maori et al., 2011).   

Kashmir Bee Virus 

This virus is closely related to ABPV (de Miranda et 

al., 2004).  It potentially causes premature death 

among adult and immature bees (Shinmanuki and 

Knox, 2000).  Chen et al. (2004) presented evidence 

that this virus was transmitted by Varroa.  It is also 

possible that the disease can be transmitted from 

the queen to eggs and from workers to larvae by 

food (this includes honey, pollen and royal jelly) 

(Shen et al., 2005).  Hung (2000) found the disease 

in fecal material of both workers and queens, which 

inferred another route of transmission.  Annual sur-

veys of honey bee viruses in the U.S. have found the 

prevalence of this disease to be declining in recent 

years (Madella et al., 2015).  

Lake Sinai Virus Group 

It has been established that Lake Sinai Virus (LSV) is 

actually a complex of viruses (Ravoet et al., 2013) 

and there are at least seven strains (Daughenbaugh, 

2015).  This group is believed to be closely related 

to CBPV (Granberg et al., 2013).  The strains LSV-1 

and LSV-2 have been detected in Varroa mite and 

bees infected with LSV-1 tend to have high levels of 

the pathogen in their gut (Daughenbaugh, 2015).  

This suggests that transmission of the disease may 
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occur by mite vector, contaminated food or a fecal-

oral pathway.  In the U.S. LSV-2 demonstrates sea-

sonal fluctuations; infected colonies seem to experi-

ence the highest viral loads in spring (Madella et al., 

2015).  The significance of the virus complex is still 

unknown (Granberg et al., 2013).   

Sacbrood Virus 

This virus causes clinical symptoms exclusively in 

bee brood (Shinmanuki and Knox, 2000), but adults 

may act as carriers (Shen et al., 2005).  When infect-

ed the larvae changes color from pearly white to 

gray and the head region will become black 

(Shinmanuki and Knox, 2000).  Affected larvae form 

a watery sac which can be removed from cells 

(Shinmanuki and Knox, 2000).  The sac formation is 

due to buildup of fluid that amasses under the lar-

val cuticle (Shen et al., 2005).  Infected larvae are 

often found in capped cells, because death occurs 

just prior to pupation (Shinmanuki and Knox, 2000).  

This pathogen may be transmitted from queen to 

progeny via egg laying, workers to nestmates by 

glandular secretions mixed with food and through 

Varroa mite parasitism (Shen et al., 2005).   

Slow Bee Paralysis Virus 

Bailey and Woods described Slow Bee Paralysis Vi-

rus (SBPV) in 1974.  The name is meant to differen-

tiate it from the much faster acting ABPV.  In a bio-

assay performed by these researchers, it was dis-

covered that inoculation of the virus induced death 

of workers within 12 days.  Anterior legs became 

paralyzed shortly before expiration.  SBPV is not 

thought to be present in the U.S. based on annual 

state and federal surveys (Madella et al., 2015).  

                       In conclusion, viruses are often present 

in honey bee colonies, but they are usually kept 

latent by properly functioning immune systems.  

These pathogens become problematic when bees 

are excessively parasitized, nutritionally deprived, 

exposed to xenobiotics or otherwise stressed.  

There are currently no treatments for honey bee 

viruses, however good management practices such 

as removing old brood comb, regular replacement 

of queens, minimizing nutritional stress and breed-

ing resistant stock will reduce problems associated 

with these maladies (Somerville, 2010). 

Small Hive Beetle 

Lundie (1940) provided the 

first record of the small 

hive beetle (Aethina tu-

mida) in a beehive in South 

Africa over half a century 

ago.  It was eventually 

transported into the U.S. in 

the 1990s and has proven 

to be a destructive pest of 

comb, honey and brood, especially in the southeast 

(Shinmanuki and Knox, 2000).  Climate change is 

expected to expand the range in which this pest 

thrives and creates problems for beekeepers (Le 

Conte and Navajas, 2017).  However in its native 

range, it is considered a secondary pest (Lundie, 

1940).  It has been suggested that this geographical-

based distinction in pest status is due to the numer-

ous defenses possessed by African honey bee (Apis 

mellifera scutellata) colonies but absent in Europe-

an honey bees (A. mellifera) (Neumann and Hartel, 

2004).   

The larvae are white and can be as large as ½ inch, 

while adults are reddish-brown and half the length 

of an immature beetle; both life stages can be 

found in the hive, but pupation occurs outside the 

hive in nearby soil (Shinmanuki and Knox, 2000).  

Eggs are laid in cluttered groups often in crevices of 

the hive (Lundie, 1940).  Yet gravid females will 

sometimes oviposit under capped brood cells 

where about 10 eggs are laid in each cell (Ellis et al., 

2003).  This pest voraciously devours pollen and 

honey however it appears that it has a preference 

for bee brood (Elzen et al., 2000).   

Eyer et al. (2009) reported data suggesting that the 

beetles may transmit DWV.  These authors report 

that beetles can develop an infection by feeding on 

adult bees with deformed wings, eating brood that 

are DWV-positive and engaging in trophallaxis with 

infected adult bees.  Infestations of small hive bee-

tle have also been implicated as a potential cause of 

colonies absconding (Ellis et al., 2003).  Yet, the 

Causal Analysis Workgroup did not think this pest 

was responsible for high annual losses. 

Other Honey Bee Pests 

Jamie D. Ellis  

University of Florida          
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Tracheal mite 

The tracheal mite (Acarapsis woodi) is a difficult to 

detect pest that lives in the honey bee’s prothoracic 

trachea (air tubes) (Sanford, 1987).  The female is 

143-174 µm long; the male size ranges from 125-

136 µm (Shinmanuki and Knox, 2000).  Although 

positive diagnosis can only be made by dissection, 

visible symptoms of an infestation include bees 

with wings that are unhinged (k-wing) and bees that 

crawl on the ground (Shinmanuki and Knox, 2000). 

Eischen et al. (1989) demonstrated a negative cor-

relation between honey production and infestation.  

These results were especially dramatic in moderate 

to highly infested colonies.  Colonies co-infested 

with both tracheal mite and Varroa mite have been 

documented to exhibit far higher mortality than 

colonies with Varroa mite alone (Downey and Win-

ston, 2001).  It has also been suggested that trache-

al mites are more problematic in colder climates.  

For instance, a study demonstrated that honey bees 

infested with tracheal mite are less likely to return 

to colonies when day time temperatures are below 

12° C (Harrison et al., 2001).  This may be a conse-

quence of reduced tracheal gas exchange due to 

parasitism.   

Rennie et al. (1921) first reported on tracheal mite 

infestations and it was linked to what was known as 

“Isle of Wight disease,” a mysterious malady that 

was reported to have decimated many colonies in 

Great Britain.  Bailey (1964) later debunked this as-

sertion.  Today tracheal mites are a peripheral hon-

ey bee health concern.  In 2011, the USDA-APHIS 

Honey Bee Pest and Disease Survey removed tra-

cheal mite from their monitoring program, because 

subsequent years yielded no detections of this pest 

(Madella et al., 2015). Tracheal mites were consid-

ered by the Causal Analysis Workgroup to be unlike-

ly contributors to major problems in beekeeping.  

Tropilaelaps mites 

Tropilaelaps mites (Tropilaelaps clareae; T. mer-

cedesae) are ectoparasites that feed solely on im-

mature bees (Sammataro et al., 2000).  Their natu-

ral host is the giant honey bee Apis dorsata (Woyke, 

1987), which is native to Asia.  T. clareae females 

measure 1 mm long and 0.6 mm wide; the male 

mites are somewhat smaller (Shinmanuki and Knox, 

2000).  Mother mites will lay three to four eggs on 

larvae just before capping; one male and several 

females hatch and reach maturity within a week 

(Sammataro et al., 2000).  T. clareae only spend 1-3 

days outside of sealed brood cells, whereas Varroa 

mites will remain outside for nearly 10 times as long 

(Woyke, 1986).  This reduced ability to survive out-

side of brood temporally may limit the spread of 

this mite into areas that have cold winters with ex-

tended brood-less periods (Forsgren et al., 2009). 

Like Varroa mite, it has been demonstrated that T. 

mercedesae can vector viruses such as DWV in Eu-

ropean honey bees (Dainat et al., 2009).  It is also 

well established that T. clareae reproduce faster 

than Varroa mites (Sammataro et al., 2000).  The 

capacity for substantially swifter reproduction com-

pared to Varroa mite potentially make Tropilaelaps 

a more severe pest of European honey bees 

(Woyke, 1987).  The annual USDA-APHIS National 

Honey Bee Survey has actively been monitoring for 

these mites but has not detected them in the U.S. 

(Madella et al., 2015).  Preventing the entrance of 

this pest remains a high biosecurity priority. 

Wax moths 

The greater wax moth (Galleria mellonella) and the 

lesser wax moth (Achroia grisella) are secondary 

pests known to damage honey comb in weak or 

dead colonies  (Shinmanuki and Knox, 2000).  These 

moths can be especially problematic when bee-

keepers are storing equipment (Sanford, 1987).   

Female moths lay their eggs in cracks and crevices 

of the hive (Shinmanuki and Knox, 2000).  Once the 

eggs hatch, larvae emerge and create damage by 

burrowing into combs and leave tunnels filled with 

webbing (Sanford, 1987).  Fecund female moths will 

be obstructed from entering the hive by guard bees 

in the day, however at night they manage to pene-

trate the hives and oviposit (Nielsen and Brister, 

1976). Most hives likely have a wax moth infesta-

tion, however when colonies are strong, bees effec-

tively remove the moth larvae once they hatch 

(Sanford, 1987).  The Causal Analysis Workgroup 

determined that wax moths were not likely contrib-

uting to high overwintering losses. 
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Pesticides 

Pesticides are defined as chemical substances that 

are used to control unwanted pests (Yu, 2008).  Pes-

ticide risk is determined not merely by a chemical’s 

toxicity, but also potential of exposure to toxic com-

pounds (Krupke et al., 2012).  In other words, if a 

compound is highly toxic to an organism, but the 

probability of exposure is low then the risk is corre-

spondingly low.  Depending on the toxicity of the 

chemical used and the degree of exposure, honey 

bee poisonings may manifest in different ways.  

Devillers (2002) described two scenarios for agro-

chemical exposure: 1) foraging bees can be exposed 

to lethal chemicals in the field and die there or 2) 

bees can become exposed to lethal or sub-

lethal doses and then fly back into the hive.  The 

former scenario may be the least devastating of 

circumstances because the toxin is not brought 

back to the colony.  If contaminated foragers do 

manage to find their way back to the hive, the xe-

nobiotic may poison younger adults performing 

nest duties or be fed to immature bees via pollen or 

nectar.  This often results in neglect of the larvae 

due to fewer nurse bees or outright death of larvae 

on account of being fed toxic food.  Pesticide expo-

sure to the queen bee may result in diminished egg 

laying abilities; this often encourages the workers to 

attempt supersedure.  If a toxic xenobiotic is 

brought back in large enough quantities, the colony 

may perish.   

It is well understood that particular pesticides can 

result in honey bee mortality or have negative 

effects on development, longevity, immune func-

tion, and behavior by interfering with the activity of 

physiological processes (Chauzat et al., 2009; van 

der Sluijs et al., 2014).  However not all pesticides 

are toxic to bees.  There is a great variability in risk 

depending on the type of chemical, formulation, 

dose, etc.  Insecticides—by definition—kill insects, 

thus many are toxic to honey bees (Johnson, 2014).  

Yet some insecticides, like tau-fluvalinate are rela-

tively non-toxic to bees and in fact are used in the 

hive for Varroa mite control (Johnson et al., 2010).  

Herbicides and fungicides are not acutely toxic to 

bees, however certain chemicals have been found 

to cause sub-lethal effects or problems in brood 

rearing (Johnson, 2014).  Surfactants are not pesti-

cides, but are commonly mixed with pest control 

products to enhance penetration into plant surfaces 

or the insect cuticle.  They are considered inert and 

therefore assumed to be non-toxic to bees, yet cer-

tain compounds have nonetheless demonstrated 

oral and topical toxicity (Goodwin and McBrydie, 

2000).   

Unfortunately pesticides are often detected in bee-

hives; these include agrochemicals which are picked 

up by bees in agroecosystems and beekeeper-

applied miticides deliberately introduced into the 

hive for Varroa mite control.  For instance, a two-

year multistate pesticide survey of commercial bee-

hives in the United States by Mullin et al. (2010) 

found significant residues of 98 different miticides, 

insecticides, fungicides and herbicides in sampled 

hives.  Other field studies have demonstrated simi-

lar findings (Chauzat et al., 2009; Wu et al., 2011; 

Rennich et al., 2014).  Making matters worse, honey 

bees are generally known to be more sensitive to 

pesticides when compared to certain other insects.  

For instance Claudianos et al. (2006) demonstrated 

that honey bees possessed far fewer genes that 

encode for enzymes which detoxify xenobiotic 

chemicals, when compared to certain dipertans.  

These authors report that honey bees had about 

half the P450s, GSTs and CCEs of Drosophila mela-

nogaster and Anopheles gambiae.   

Yet it is unclear what severity of harm these various 

residues have alone or in combinations on bee 

health (Chauzat et al., 2009; Mullin et al., 2010; 

Staveley et al., 2014).  This uncertainty is especially 

John C. French Sr., Clemson and University of Missouri, Bugwood.org 
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augmented when pesticides are found in hives at 

low and chronic levels (Chauzat et al., 2009).  The 

Causal Analysis Workshop participants deemed that 

the relationship between external (non-beekeeper 

applied) insecticides and high annual colony loss 

was indeterminate (Staveley et al., 2014).  However 

a 2005 economic impact assessment suggested that 

pesticide exposure to both honey and native bees 

resulted in approximately $286 million in annual 

losses due to colony deaths, lowered pollination 

rates, reduced honey yields and other problems 

(Pimentel, 2005). 

A comprehensive overview of pesticide effects on 

bee health is not reviewed here.  Instead three 

different groups of chemicals will be explored.  This 

will include the highly controversial class of insecti-

cides known as the neonicotinoids.  The less often 

discussed umbrella groups of herbicides and bee-

keeper-applied pesticides will also be examined.  

Neonicotinoids 

Perhaps no other class of insecticides has received 

as much attention and scrutiny in the context of 

honey bee health as have the neonicotinoids.  In-

deed some beekeepers have blamed certain neon-

icotinoids insecticides for high annual losses 

(Rortais et al., 2005).  Neonicotinoids are plant pro-

tection chemicals that act as agonists of the nicotin-

ic acetylcholine receptors (nAChR) (Fisher et al., 

2014) and are often preferred to many other classes 

of chemicals by applicators because of their low 

toxicity to mammals (Yu, 2008). Neonicotinoids are 

known as systemic insecticides because they are 

absorbed upon application and transported 

throughout the plant, effectively making them toxic 

to target insects via feeding (van der Sluijs et al., 

2015).  These chemicals can be applied like other 

insecticides as a foliar application, however a sub-

stantial portion of their usage occurs in the form of 

root drenches and seed treatment (Pisa et al., 

2015).  There is special concern regarding seeds 

treated with neonicotinoids.  Seeds treated with 

these chemicals are often mixed with talc in me-

chanical equipment to ensure that they do not be-

come stuck together.  During the planting process 

the talc becomes a pesticide-laden waste product, 

which in a dust form can be exhausted into the en-

vironment.  This waste dust may be transported by 

wind away from the planting site and come into 

contact with honey bees (Krupke et al., 2012).   

There are numerous routes in which honey bees 

may become exposed to neonicotinoids.  Samson-

Robert et al. (2014) presented data which demon-

strated that puddles of water near corn fields be-

came contaminated with neonicotinoid compounds 

shortly after treated seeds were planted.  These 

puddles are attractive to bees, as they need to col-

lect water for colony needs.  Therefore, it is possi-

ble for bees to become exposed to these chemicals 

in this way.  Krupke et al. (2012) outlined two other 

routes which honey bees can come into contact 

with neonicotinoids.  First, honey bees may forage 

for floral resources during a treatment window and 

bring contaminates back to the hive.  This is possi-

ble because the insecticide is transported to all 

plant parts, including nectar and pollen.  Second, 

when treated seeds are being planted, the neonico-

tinoid-contaminated dust byproduct can be trans-

ported onto flowers which honey bees visit or the 

dust can land on the bees.  These authors suggest 

that the latter route likely creates the greatest op-

portunity for exposure.   

There is little question that neonicotinoids are 

acutely toxic to bees.  For example, imidacloprid, 

the first chemical registered in the class, has a very 

low oral LD₅₀ of 13 ng/bee and is therefore catego-

rized as “highly toxic” (Sanchez-Bayo et al., 2016).  

Other chemicals in the class are also considered 

toxic to honey bees, especially the nitro-containing 

neonicotinoids (Pisa et al., 2015).  Yet the problem 

with these chemicals isn’t merely that they are toxic 

to bees.  There is an unfortunate overlap in the win-

dow of time in which treated-seeds are usually 

planted in fields and the period in which honey bee 

colonies are most vulnerable.  Data suggests that 

small colonies are at highest risk from these chemi-

cals, since fewer workers are able to provide a buff-

er between chemical exposure and the queen (Wu-

Smart and Spivak, 2016).  This is concerning since 

treated seeds are typically planted in early spring, 

when honey bee colonies are small.   

Due to the various concerns about this class of 

chemicals, the European Union restricted the use of 
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the neonicotinoids imidacloprid, clothianidin and 

thiamethoxam (metabolized into clothianidin) in 

2012.  These chemicals are part of the nitro-

containing neonicotinoids, which are thought to be 

more toxic to bees than the cyano-containing neon-

icotinoids such as acetamiprid and thiacloprid (Pisa 

et al., 2015)—for this reason this section will focus 

on the nitro-containing chemicals. 

However attributing widespread colony losses to a 

single or even a handful of chemicals has proved 

elusive.  Firstly, it has been acknowledged that ne-

onicotinoids are just one group among many chemi-

cals found in hives and that many other classes of 

chemicals are likely to have negative effects on hon-

ey bees as well (Chauzat et al., 2009; Mullin et al., 

2010).  Indeed a multi-year survey of pesticide resi-

dues in pollen sampled from nearly 600 apiaries 

throughout the U.S. found numerous agricultural 

and beekeeper-applied chemicals, yet neonico-

tinoids comprised only about 2% of  chemical resi-

dues that were identified (Rennich et al., 2014)—

see Box G.  Secondly, there has been much research 

which has documented various problems with ne-

onicotinoid exposure to bees in lab settings, howev-

er these same issues at times do not manifest in 

field conditions under field-relevant doses 

(Blacquiere et al., 2012).  Finally, studies on the sur-

vival of colonies exposed to specific neonicotinoids 

have not provided a “smoking gun.”  Dively et al. 

(2015)  provides a prime example of this in a field 

study where full-sized honey bee colonies were 

chronically exposed to various concentrations of 

imidacloprid: 5µg/kg, 20 µg/kg and 100 µg/kg over 

a 12-week period.  The lowest concentration was 

meant to simulate “normal” dietary exposure 

(where bees come into contact with the pesticide 

properly applied), whereas the highest concentra-

tion was intended to represent a “worst case sce-

nario” of exposure (the pesticide applied during 

bloom).  Colonies exposed to the higher concentra-

tions exhibited significantly increased overwintering 

loss, however the bees subjected to the lower field-

relevant dose was inconsequential on overwinter-

ing success.  This study along with others, have led 

many researchers to suggest that neonicotinoids 

contribute to high annual losses of colonies, 

(Krupke et al., 2012; Di Prisco et al., 2013) however 

placing blame exclusively on this class of chemicals 

has yet to be demonstrated by indisputable re-

search.  The Causal Analysis Workshop participants 

buttressed this notion by noting that neonicotinoids 

were not likely alone responsible for reduced sur-

vival of colonies, however they were thought to be 

a possibly contributing factor.  Furthermore the sci-

entists involved in the E.U. ban noted that it was 

not clear to what extent neonicotinoids were re-

sponsible for widespread problems in beekeeping 

(O’Neal and Hodgson, 2013).   

Yet high annual colony losses due to neonicotinioid 

exposure is not the only concern; there is also inter-

est in the effects that sub-lethal doses of these 

chemicals cause and the possibility that these prob-

lems will topple hives in the presence of other bio-

tic or abiotic pressures.  It has been established that 

sub-lethal neonicotinoid exposure has been linked 

to impaired learning, memory loss, modifications of 

navigation abilities and immune-suppression 

(Desneux et al., 2007; Di Prisco et al., 2013).   

BOX G  USDA-APHIS coordinates the National Honey 

Bee Pest and Disease Survey, which monitors for ex-

otic pests, overall honey bee health and pesticide resi-

due in beehives.  Perhaps surprisingly, the percentage 

of neonicotinoid residues found in honey bee pollen 

has consistently been found to be low.  Below is a 

graphical breakdown of pesticide residues by category 

found in pollen samples that were collected from 

nearly 600 apiaries over multiple years. 

Source: Rennich et al., 2014    
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Henry et al. (2012) performed a study to evaluate 

whether sub-lethal doses of thiamethoxam in-

creased the rate of homing failure in exposed forag-

er bees.  Foragers were gathered and given 1.34 ng 

of the insecticide in a 20-µl sugar solution, which is 

considered a field-relevant dose.  Exposed bees and 

control bees were monitored with radio-frequency 

identification technology to determine whether 

they returned to their colony after release.  The 

bees given thiamethoxam were roughly twice as 

likely to fail to return as control bees.  When these 

data were entered into a honey bee population dy-

namics model, it was discovered that colonies sig-

nificantly suffered even in cases where only 50% of 

foragers were exposed.  In instances where 90% of 

foragers were exposed a colony of 15,000 bees 

could dwindle to 5,000 bees in less than 40 days of 

foraging on treated crops.  The authors noted that 

the negative effects of exposure were more pro-

nounced if the bees were foraging in territory that 

had not been visited recently.   

The sub-lethal effects of imidacloprid on honey bee 

health has also been reviewed.  It is suspected that 

this insecticide can make honey bees prone to in-

fection at concentrations not thought to be acutely 

harmful to bees.  For example, Pettis et al. (2012) 

fed colonies protein patties spiked with sub-lethal 

concentrations of imidacloprid and demonstrated a 

clear correlation with increased susceptibility to 

Nosema disease.  At concentrations of 5 and 20 ppb 

bees were found to have as much as a four-fold in-

crease in the number of Nosema spores compared 

to bees from colonies fed patties without imidaclo-

prid.  Di Prisco et al. (2013) found a similar impair-

ment of the immune system when bees were ex-

posed to clothianidin and imidacloprid.  In this 

study bees were exposed to various sub-lethal dos-

es of both pesticides and it was discovered that as a 

consequence: 1) the transcription of the antimicro-

bial apidaecin genes were significantly reduced; 2) 

the rate of DWV measurably increased.  It was de-

termined that there was a dose-dependent relation-

ship for the latter result:  the more active ingredient 

bees were exposed to, the higher the DWV replica-

tion. 

                   Data have demonstrated that neonico-

tinoid exposure can have negative impacts on hon-

ey bee colonies and mechanical planting of seeds 

treated with these chemicals presents special con-

cern.  However, it is also true that chemical residues 

in this class are not commonly detected by pesticide 

surveys of hives in the U.S.  Determining what level 

of restriction should be applied to these chemicals 

is a matter of difficult deliberation.  What makes 

this conundrum especially challenging is that ex-

treme restrictions will potentially result in other 

classes of pesticides filling the need for plant-

protection products that are likely also toxic to 

bees, but possibly more dangerous to mammals and 

other non-targets.   

Herbicides 

Herbicides are generally considered to be safe to 

use around honey bees.  Many have high LD₅₀s for 

both oral and contact exposure to honey bees.  

Some of these chemicals work on plant-specific 

pathways, which likely reduces toxicity to non-

targets (Herbert et al., 2014).  However numerous 

sub-lethal effects have been documented when 

bees are exposed to certain herbicides.   

Glyphosate has a high LD₅₀ (>0.1mg/bee) with expo-

sure having little effect on the survival of adult bees 

or bee brood (Thompson et al., 2014).  Herbert et 

al. (2014) found that field-relevant acute and chron-

ic exposure did not result in increased mortality of 

adult bees.  Though, these authors found significant 

sub-lethal impairments of cognitive abilities such as 

learning and sensory sensitivity when bees were 

subjected to 0.125 to 0.25 µg of the pesticide.  It 

has also been demonstrated that sub-lethal expo-

sure can impair navigation.  Balbuena et al. (2015) 

documented this by spiking sugar water with vari-

ous concentrations of the chemical and feeding it to 

bees.  Bees fed 0.5 µg of glyphosate took longer to 

return to hives after being released from novel loca-

tions and performed more indirect flights (flights 

with loops) than control bees.  This is problematic 

because it suggests that forager efficiency is poten-

tially impaired by field-relevant glyphosate expo-

sure. 

Like glyphosate, 2,4-D has a relatively high LD₅₀ for 

honey bees at 11.5 µg/bee and is therefore  
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considered relatively non-toxic (Mayeret al. 1999).  

However, Papaefthimious et al. (2002) found that 

the honey bee heart has unusual sensitivity to 2,4-

D.  Indeed a mere 1 µM exposure to this chemical 

permanently reduced heart function of adult work-

ers by 70%.  This concentration is well below the 

recommended field application rate of 90-180 µM.  

Negative effects of 2,4-D have also been found on 

brood rearing.  A study found that when bees are 

fed a sublethal concentration of 500 ppb, brood 

rearing stops altogether (Moffett and Morton, 

1975).  The same study found that at a fifth of the 

concentration, eggs do not hatch at normal rates 

and nurse bees have difficultly rearing larvae.  In 

both cases the effects were found to be temporary 

and once 2,4-D was not fed to the bees, the colony 

recovered.   

Another herbicide that is considered relatively non-

toxic to bees (LD₅₀ = 36 µg/bee) is paraquat (Mayer,  

et al., 1999).  However at concentrations above 

what is recommended for field application, it can be 

deadly to bees.  When workers are injected directly 

with 15 µg of paraquat they experience a tenfold 

reduction in lifespan (Corona et al., 2007).  Likewise 

when bees are exposed to 4.5 kg/ha of paraquat in 

the field, they die within about three days (Moffett 

and Morten, 1972).   This concentration is roughly 

four times the maximum recommended field appli-

cation rate.  These data underline the importance 

of not exceeding the concentrations prescribed by 

the herbicide label.   

One may ask how this information is able to be rec-

onciled with the notion that herbicides are typically 

safe for use around honey bees.  First, toxicity data 

collected in the registration of most herbicides 

merely determine acute toxicity and not chronic 

effects or sub-lethal effects; second, it is also im-

portant to consider that honey bees have sophisti-

cated detoxifying capabilities which may prevent 

active ingredients from reaching the organism’s site 

of action (Papaefthimious et al., 2002).   

However the most deleterious effects of herbicides 

on honey bees may in fact be indirect, since their 

use has the potential to significantly reduce the 

abundance and diversity of honey bee forage 

(Devillers, 2002).  USDA has identified nutritional 

deficiencies as a major contributor to the problems 

in honey bee health.  Yet it should be noted that in 

certain instances herbicides can be used for the 

long-term benefit of diverse floral resources.  For 

instance, herbicides are sometimes used by weed-

abatement programs to protect native plants and 

habitats (Goldner, 1984).  Without the use of herbi-

cides as part of an integrated weed management 

strategy, certain noxious plants may turn thriving, 

diverse habitats into monocultures.  A noxious plant 

may provide nectar and pollen to honey bees for a 

short period of time.  However if a single plant 

dominates the flora of an environment, the benefit 

of that forage source may be quite small.  Indeed, 

honey bee health is improved when bees are pro-

vided with a diverse set of flora that bloom 

throughout the season, instead of small number of 

plants that bloom periodically (Decourtye et al., 

2010).  

Beekeeper-Applied Miticides and Medicines 

Perhaps unsurprisingly, residues from beekeeper-

applied miticides are frequently found in honey bee 

colonies and often in very high concentrations 

(Rennich et al., 2014; Mullin et al., 2010).  These 

pesticides are intended to control the honey bee 

parasite Varroa mite, which as previously men-

tioned is the most serious honey bee pest (Tarpy et 

al., 2007).  One might question if the presence of 

these chemicals is problematic since miticides are 

thought to be selective (ideally killing mites, with-

out harming bees).  Despite the fact that miticides 

approved in the U.S. for use in hives exhibit high 

LD₅₀s for individual honey bees, they nonetheless 

can have an array of negative effects on  

Florida Department of Agriculture and Consumer Services 
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colonies (Berry et al., 2013).  Beekeepers also use 

antibiotics for the treatment of honey bee patho-

gens; these medicines can have deleterious interac-

tions with other chemicals found in hives 

(Hawthorne and Dively, 2011).  These problems are 

often amplified when beekeepers use products not 

registered by regulatory institutions for Varroa mite 

control or fail to follow instructions on the label of 

pesticides legally permitted for use in hives.  These 

actions have the potential to harm bees just as se-

verely as misuse of chemicals by growers or pesti-

cide applicators (Johnson et al., 2010). 

Miticides used in the hive can be damaging to de-

veloping immature honey bees.  Zhu et al. (2014) 

demonstrated this by exposing larvae to pesticides 

commonly found in honey bee hives, specifically: 

coumaphos (organophosphate), tau-

fluvalinate  (pyrethroid), chlorothalonil 

(organochlorine) and chlorpyrifos 

(organophosphate).  The former two pesticides are 

beekeeper-applied miticides, and the latter two are 

plant-protection chemicals (a fungicide and an in-

secticide, respectively).  Compared to controls, lar-

vae exposed to this cocktail of chemicals (at con-

centrations frequently found in hives) exhibited 

more than a two-fold increase in mortality.  The 

authors noted that the interactions between the 

chemicals were mostly additive (combined effect of 

chemicals equal to the sum), however the chloro-

thalonil fungicide was found to synergize both miti-

cides as binary mixtures.  In addition to this re-

search, Berry et al. (2013) found that tau-fluvalinate 

and coumaphos exposure to immature bees re-

duced the 3-day brood survivorship rate.   

Since queen bees are critical to the success of a col-

ony, various studies have evaluated the effects of 

miticides on these reproductive individuals.  

Queens tend to be more tolerant of miticides than 

workers or drones (Dahlgren et al., 2012).  Howev-

er, in a queen rearing experiment, Haarmann, et al. 

(2002) found they were vulnerable to certain bee-

keeper-applied chemicals.  When tau-fluvalinate 

was used per manufacturer recommendations (two 

strips per hive), there was no significant effect on 

queen bee health.  However, at levels exceeding the 

label queen body weight suffered—emphasizing the 

importance of following the pesticide label.  Yet 

coumaphos demonstrated harmful effects on 

queens even at low doses (1 strip).  Exposure of this 

miticide during queen development caused high 

mortality rates and sub-lethal effects in survivors, 

such as physical deformation and behavioral abnor-

malities.  Berry et al. (2013) also found problems 

with both coumaphos and tau-fluvalinate residues 

in hives and suggested that they catalyzed in-

creased frequency of queen supercedure cells .  

Queen supercedure cells can be an indicator of 

queen health, since they are built by worker bees in 

response to a sick, injured or poorly laying queen. 

Interactions of honey bee medications can also in-

crease the susceptibility of bees to other pesticides.  

For instance, Ellis et al. (1997) discovered in a caged

-bee bioassay that Apistan (tau-fluvalinate) made 

colonies more susceptible to harm from the agro-

chemical bifenthrin (pyrethroid).  The authors didn’t 

claim that this evidence could be extrapolated to 

field conditions, but they did suggest that beekeep-

ers avoid using tau-fluvalinate at times when bees 

would forage on crops treated with bifenthrin.  

Likewise, hives that were previously treated with 

coumaphos or tau-fluvalinate exacerbated the tox-

icity of the essential oil thymol, which is the active 

ingredient in the miticides Apiguard and ApiLife Var 

(Johnson et al., 2010).  A multiple drug interaction 

analysis of miticides and fungicides found that 

about half of miticide-miticide and miticide-

fungicide combinations had a synergistic effect, and 

consequently made the miticide more toxic 

(Johnson et al. 2013).  Zhu et al. (2014) found that 

larvae exposed to a cocktail of chemicals that were 

found in hives time and again suffered.  Indeed the 

commonly detected combination of coumaphos, 

tau-fluvalinate, chlorothalonil and chlorpyrifos at 

field-relevant rates caused a two-fold increase in 

mortality of immature bees.  The former two pesti-

cides are beekeeper-applied miticides, and the 

latter two are plant-protection chemicals.  Research 

has also suggested that the beekeeper-applied anti-

biotic oxytetracycline can increase the sensitivity of 

bees to the toxic effects of both coumaphos and tau

-fluvalinate (Hawthorne and Dively, 2011).  It should 

be noted that Varroa mite has developed wide-

spread resistance to coumaphos and tau-fluvalinate 
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and therefore many beekeepers have ceased using 

these products.  However, even after discontinua-

tion these chemicals continue to be found in the 

hive for years because they persist as residues in 

wax (Johnson et al., 2010).   

In an effort to find new, effective, “softer” mite 

treatments, some beekeepers have turned to natu-

ral chemicals and plant secondary products with 

miticidal properties.  A few of these chemicals have 

been formulated into commercially available acari-

cides for beekeepers; this includes Apiguard 

(thymol), ApiLife Var (thymol, eucalyptol, menthol 

and camphor), HopGuard (salts of hops beta acids), 

Mite Away Quick Strips (formic acid) and Mite-A-

Thol (menthol).  Yet as Paracelsus (1493-1541 AD) 

famously remarked “All substances are poisons:  

there is none which is not a poison.  The right dose 

differentiates a poison and a remedy.”  This notion 

applies to naturally occurring chemicals.  A labora-

tory analysis evaluating the toxicity of various es-

sential oils and organic acids by Ebert et al. (2007) 

revealed that compounds such as wintergreen, 

menthol, sage oil and cineole were found to be fair-

ly benign.  However, Carayon et al. (2013) found 

that there were negative effects resulting from hon-

ey bee exposure to thymol at approved concentra-

tions.  This study exposed honey bees to ApiLife Var 

(74% thymol) under laboratory conditions, and 

found that they exhibited significant impairment in 

phototaxis just one day after application.  Thymol 

can also be problematic in combination with other 

chemicals as discussed previously. 

                 Despite the negative effects on bee health 

associated with these inputs, data has consistently 

demonstrated that beekeepers which keep mites 

under control improve survival rates compared to 

apiaries which do not receive treatment (Traynor et 

al., 2016).  The elimination of miticides would likely 

make modern, commercial beekeeping uneconomi-

cal.  Therefore, it is often stressed that beekeepers 

should not aim to eliminate inputs but rather mini-

mize them.  Keeping an apiary clean, strictly follow-

ing the label instructions on miticides and practicing 

Integrated Pest Management (IPM) techniques in 

Varroa mite control may reduce the degree of com-

plications associated with these inputs.  IPM efforts 

include consistent inspection for maladies, utilizing 

non-chemical methods of Varroa control (drone 

trapping), breeding pest resistant stock and making 

treatment decisions based on economic thresholds 

(MAAREC, 2000). 

 
Jeffrey W. Lotz, Florida Department of Agriculture and 

Consumer Services, Bugwood.org 
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