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tainty in the physical, chemical and biological variables that control E. coli occurrence and sources in surface wa-
ters. This study proposes a novel approach by integrating hydro-climatic variables as well as animal density and
grazing pattern in the feature selection modeling phase to increase E. coli prediction accuracy for two cascading
dams at the US Meat Animal Research Center (USMARC), Nebraska. Predictive models were developed using re-
gression techniques and an artificial neural network (ANN). Two adaptive neuro-fuzzy inference system (ANFIS)
structures including subtractive clustering and fuzzy c-means (FCM) clustering were also used to develop models
for predicting E. coli. The performances of the predictive models were evaluated and compared using root mean
squared log error (RMSLE). Cross-validation and model performance results indicated that although the majority
of models predicted E. coli accurately, ANFIS models resulted in fewer errors compared to the other models. The
ANFIS models have the potential to be used to predict E. coli concentration for intervention plans and monitoring
programs for cascading dams, and to implement effective best management practices for grazing and irrigation
during the growing season.
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1. Introduction

Microbiological impairment of surface waters has a major impact on
the quality of human life. Water that is contaminated with fecal material
is a common source of transmission of many pathogens that cause
human and animal disease. Because E. coli is ubiquitous in the intestines
of mammals and birds, its detection is considered to indicate fecal con-
tamination. E. coli has been a common source identifier in microbial
source tracking methods (Pachepsky and Shelton, 2011). In agricultural
ecosystems, runoff from livestock pastures, as well as improper or over-
application of manure, are common non-point sources of E. coli to sur-
face waters and aquifers. E. coli contamination is a major concern near
dams and reservoirs, in both agricultural and urban aquatic ecosystems,
because of its implications on public health and food safety (Efting et al.,
2011). Although the microorganisms are usually expected to have a low
survival rate outside of the host organism (Zaleski et al., 2005), water
resources have often been found to be contaminated (Unc and Goss,
2004). Furthermore, one of the limitations of current E. coli monitoring
methods is the requirement for water samples to be collected, cultured,
and incubated for several hours before colony growth is visible, and re-
sults are usually not available until the next day (Whitman et al., 2003).
By the time the results are available, E. coli levels may have changed sig-
nificantly. Thus, there is a need for faster methods for predicting E. coli
concentrations.

In order to assess and manage natural water systems effectively,
simulation models are often employed for predicting E. coli fate and
transport. Prediction of E. coli fate in surface waters is complicated by
the physical (e.g., temperature, UV light), chemical (e.g., pH, nutrients,
sulfate, and nitrate), and biological (competing microflora, chlorophyll)
factors and processes involved, which impede the development of use-
ful and accurate predictive models (Flint, 1987; Sjogren and Gibson,
1981; Lessard and Sieburth, 1983; Robakis et al., 1983; Noguchi et al.,
1997; Nevers and Whitman, 2005). Since it is almost impossible for
any model to account for all these factors and heterogeneity involved
in E. coli fate and transport, care should be taken not to generalize the
results. For agricultural non-point source pollution, livestock waste de-
position both on land and in streams is not well defined in terms of
spatio-temporal patterns of loading, and concentrations of E. coli in live-
stock waste and manure vary widely.

The relationship between E. coli loads and fate and transport factors
becomes more complex with the addition of flow rate (Whitman et al.,
2004; McKergow and Davies-Colley, 2009). Whereas Vidon et al. (2008)
observed E. coli loads were significantly higher at high flows compared
to low flows, McKergow and Davies-Colley (2009) reported E. coli peak
loads always preceded discharge and turbidity peaks even though both
had similar timings. Thus, there is clearly a nonlinear relationship be-
tween E. coli and both flow and turbidity. E. coli in surface waters are as-
sociated with sediment, which influences their transport characteristics
(Jamieson et al., 2005). Models that do not account for resuspension and
deposition usually capture spatial trends successfully, but they tend to
be incapable of explaining changes in concentrations in water during
and after storm events (Hellweger and Masopust, 2008). Even when re-
suspension is incorporated into models, there is still a high level of un-
certainty involved in predicting the amount of E. coli that has been
resuspended. In most studies, the resuspension rate is either specified
(Petersen et al., 2009) or expressed primarily as a function of flow
(Tian et al,, 2002; Collins and Rutherford, 2004).

Understanding the relative importance and the relationships among
physical, chemical and biological variables is required to strengthen de-
velopment of increasingly detailed models for predicting E. coli fate and
transport in dams and other water bodies. However, for practical water-
quality monitoring designs in dams, and in order to better inform envi-
ronmental decision-making, it is important that predictive models are
developed using variables that can be easily measured.

Several process-based models have been developed that use mass
conservation principles (Baffaut and Benson, 2003; Coffey et al., 2007)

and complex mechanistic and empirical relationships to predict E. coli
loads in surface waters at different scales (Arnold and Fohrer, 2005;
Pachepsky et al., 2006; Benham et al., 2006). However, the effectiveness
of these models is limited due to excessively complex mechanistic rela-
tionships among input variables. The approximation and simplification
of input parameters describing transport processes often results in high
uncertainties in E. coli load estimations. Other models have been devel-
oped that use statistical and machine learning algorithms for predicting
E. coli loads using variables such as water quality, meteorological, and
hydrodynamic data. Regression methods have been used to predict
E. coli levels (Brooks et al., 2016; Gonzalez et al., 2012; Nevers and
Whitman, 2005, 2011; Shively et al., 2016). Nevers and Whitman
(2005) used multiple linear regression to predict E. coli loads using tur-
bidity, wave height, and lake chlorophyll for individual beaches of
southern Lake Michigan, while Brooks et al. (2016) predicted E. coli con-
centrations at seven beaches in Wisconsin by applying multiple regres-
sion models. Linear mixed effects (LME) models were used to predict
E. coli levels at Lake Michigan beaches (Jones et al., 2013). Park et al.
(2018) evaluated and compared the performance of artificial neural
network (ANN) and support vector regression (SVR) for predicting the
concentration of E. coli at two recreational beaches.

Although different models are applicable for different surface water
systems, such as reservoirs and freshwater lakes (Jin et al., 2003; Hipsey
etal., 2008), streams and rivers (Medema and Schijven, 2001), as well as
coastal lagoons and estuaries (Steets and Holden, 2003; McCorquodale
et al., 2004), it is difficult for users to confidently implement these
models since most of the physical, chemical and biological input vari-
ables cannot be easily measured. For this study, in order to predict
E. coli concentrations at the outlets of two cascading dams, there was a
need to use easily measured hydrometeorological variables (e.g. air
temperature, water temperature, rainfall, water depth, and flow) as
well as animal management variables (e.g. pasture utilization and ani-
mal density) that control its occurrence and sources. The objectives of
this study were (i) to develop models to predict E. coli concentrations
in cascading dams using regression, ANN and ANFIS by selecting and
transforming the “most important” features (input variables) and (ii)
to evaluate and compare the prediction accuracy of the machine learn-
ing models.

2. Materials and methods
2.1. Study area

This study was conducted at the U.S. Meat Animal Research Center
(USMARC) near Clay Center, Nebraska, during summer and fall of
2018. During World War I, the site was used for the production and
storage of ammunition, which led to groundwater contamination. A
groundwater remediation plan was developed and implemented by
the U.S. Army Corps of Engineers (USACE) in order to treat the contam-
inated groundwater water for agricultural reuse (USACE, 2010). The re-
mediation plan, which involved the installation of abstraction wells and
a water treatment facility, started operation in April 2013. The wells
continuously remove and treat groundwater at a rate of 14,000 I/min
throughout the year. The groundwater is then discharged as surface
water into an existing stream at the Discharege Well (DW), which
flows 11.3 km through the USMARC property to an 81-ha reservoir
(Fig. 1).

Nine cascading dams or grade control structures (GCS) restricted the
flow of water across the site in order to store water for irrigation, sup-
press floods by preventing erosion from high-flow storm events, and re-
charge the underlying aquifer through percolation of the treated water.
Five of nine GCSs (#1, 2, 4, 5, and 6) had the capability to control dis-
charge by adding or removing stop logs, with a maximum of four stop
logs per GCS. Each stop log is 1.2 m long and 0.3 m high.

Except at GCS4 which usually has no stop logs installed, in a normal
spring, one or two stop logs were usually installed at the remaining four



0.P. Abimbola et al. / Science of the Total Environment 722 (2020) 137894 3

logged GCSs (#1, 2, 5, and 6) once the reservoir below GCS9 was full
(Fig. 2). However, because the winter and spring of 2018 were dry,
only two stop logs were installed (Table 1). From September 1 to 4,
2018, USMARC received approximately 94 mm of rain (which was
more than the long-term average of 62 mm for the month of September,
and after also having 30% higher than normal rainfall in June, July, and
August) which filled the reservoir. Due to the heavy rains in early Sep-
tember and risk of flooding, all the stop logs were installed between
September 4 and 5, even at GCS4.

2.2. Hydrologic monitoring

For this study, hydrologic monitoring was conducted at the outflow
from the groundwater treatment system (discharge well (DW)) and the
first two GCSs downstream of DW (GCS1 and GCS2) using portable sur-
face water samplers to collect water for determination of E. coli concen-
trations moving through the cascading dams during the summer and
fall of 2018 (ISCO, Teledyne, Lincoln, NE, USA). A sampler was installed
at the DW, the first grade control structure (GCS1) and the second grade
control structure (GCS2) from March 2018 through October 2018. The
sampler installation included a pressure sensor for recording water
depth every five minutes. To supplement the ISCO depth measure-
ments, additional HOBO U20L water level loggers (Onset HOBO, Bourne,
MA, USA) were installed at DW, GCS1 and GCS2 to record water depth
every fifteen minutes. Throughout the study period, the flowrate at
DW was taken directly from the recorded flowmeter from the treatment
well pump. Flow rates at GCS1 and GCS2 were calculated using the
Kindsvater-Carter equation for suppressed rectangular, sharp-crested
weir:

3
Q= (0.4000 <g> + 3220) (L—0.003)(H + 0.003)2

x 0.028316847 (1)

where Q = flowrate (m>/s), H = water level (ft), P = height of the weir
(ft) and L = length of the weir crest (ft).

2.3. Water quality monitoring and analysis

Water temperature at the sampling stations were measured with
HOBO U20L loggers since E. coli survival rates vary based on water

| Lake MARC
[J USMARC Boundary
— Stream

temperature (Blaustein et al., 2013; Jamieson et al., 2004). An ISCO sam-
pler and rain gauge were installed at each study site. Each sampler was
configured to activate sampling based on rainfall for six storm events
during the study period. Water sampling was set to begin immediately
after the rainfall rate reached 0.254 cm hr™'. In order to catch the first
flush of E. coli through the weirs at GCS1 and GCS2, the first six samples
were taken at a 30-minute interval, while the remaining six samples
were taken at a rate of 1 sample/h to measure E. coli concentrations
once flow returned to baseflow. A total of 84 samples were collected
ateach site: 72 samples from six storm events and an additional 12 sam-
ples from a non-storm event.

To ensure accurate determination of bacteria levels, the samples
were collected and analyzed within 24 h of each rainfall event. E. coli
concentrations were determined with the IDEXX Colilert® reagent
and 97-well Quanti-Tray®/2000 analysis. This method provides results
within 18 h, instead of 48-72 h in previous analytical methods (Sartory
and Vandevenne, 2009).

24. Pasture management and cattle grazing

In order to manage pasture forage at the USMARC facility, cattle
were rotated on 790 individual pastures. Detailed grazing records
used for this study included daily information on forage type, number
and type of cattle grazing, and the number of days each group stayed
in each pasture for the entire study period. Given most contamination
was typically observed in streams with unrestricted cattle access
(Bragina et al., 2017), pasture locations and grazing dates were used
to identify potential cattle interactions with the stream during the stud-
ied storm events.

The number of pastures was narrowed down to include only those
pastures that drained into the cascading dams and/or were within
50 m of the streams (Fig. 3). This proximity limit was based on the as-
sumption that a higher likelihood of E. coli delivery and contamination
occurred when cattle were in close proximity to the stream (Berry
et al.,, 2015). Of all the pastures within 50 m of the streams, forty-one
pastures drained into the stream above GCS1 while forty-six pastures
drained into the stream above GCS2.

To account for the difference in animal weights, the number of Ani-
mal Units (AUs) for each pasture was determined based on the number
of head of grazing cattle present. AUs are used as a basis for standardiz-
ing and expressing stocking rates based on metabolic bodyweight and
development, with one AU defined as one 454-kg cow with or without

Fig. 1. The study site within the U.S. Meat Animal Research Center in Nebraska, USA. GCS represents grade control structure. DW = Discharge Well; GCS = Grade Control Structure.
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Rainfall
tipping
bucket

Fig. 2. USMARC facility with (left) GCS locations having stop logs; (right) ISCO 6712 water sampler setup at GCS1 and GCS2. DW = Discharge Well; GCS = Grade Control Structure (Taken

from Hansen et al., 2020).

her unweaned calf. They also help normalize other factors that are re-
lated to the number of head of grazing cattle (Manske, 1998).

2.5. Dimensional reduction and feature selection

Identifying the sources of E. coli contamination of dams in an agricul-
tural area requires a clear understanding of the influence of the various
variables that influence E. coli fate once it enters the waterways. How-
ever in machine learning, as the dimensionality (number of variables
or features) of the data increases, the amount of data required to
make reliable and accurate predictions increases exponentially (Hira
and Gillies, 2015). A common approach to the problem of high-
dimensional datasets is “reduction of dimensionality”. This means sim-
plifying the understanding of data by searching for a projection of the
data onto a smaller number of predictor variables (or features) which
preserves the information as much as possible. Large datasets with the
“large p, small n” problem (where p is the number of features and n is
the number of samples) are susceptible to overfitting. An overfitted
model often mistakes small fluctuations for important variance in the
data, which may lead to prediction errors (Lever et al., 2016). Our
study is typical of this type of small sample problem, where only six
storm events were captured and each data point (water sample) had
many features. To overcome this problem in E. coli prediction, it was im-
portant to find a method to reduce the number of features considered
for the model.

Principal component analysis (PCA) (Abdi and Williams, 2010;
Razmkhah et al.,, 2010; Zhang et al., 2012) and feature selection (Seo
et al., 2014; Asghari and Nasseri, 2014; Hira and Gillies, 2015) are two
techniques often used to minimize the number of features used in pre-
dictive models. PCA reduces the dimensionality of data while retaining

Table 1
Status of stop log installation at each grade control structure on the indicated date during
the study.

GCS no./date  5-23-2018 9-4-2018 9-5-2018 11-8-2018  11-13-2018
GCSs1 2 4 4 4 3
GCS2 2 2 4 4 3

most of the variation in the dataset (Ringnér, 2008; Jolliffe, 2002). De-
pending on the selection method, feature selection adds features that
are significantly important or removes features that are redundant.

Although PCA makes the direct visualization of high dimensional
datasets possible since humans can only comprehend three dimensions,
it also makes the dataset difficult to interpret as it only outputs linear
combinations of the features. Thus, the strength of PCA in giving visual
representation of the dominant patterns in a dataset was coupled with
feature selection in this study.

2.5.1. Hypothesizing based on prior knowledge

Developing a simple model for a complex system requires prior
knowledge and understanding of the processes and features (variables)
controlling the system. To select the “most important” features, we first
hypothesized that E. coli concentration at the outlet of a dam was a

Legend

O ow
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Fig. 3. USMARC grade-control structures (GCS) and pastures within 50 m of stream
system.



0.P. Abimbola et al. / Science of the Total Environment 722 (2020) 137894 5

function of recent (due to runoff, fecal inputs and stream sediments)
and past (due to resuspension of E. coli stored in dam sediments)
storm events, as well as past AUs (within the proximity limit), flow
rate and temperature. This hypothesis was based on studies that have
attempted to determine the influence of hydrometeorology and cattle
grazing practices on E. coli concentrations within watersheds (Wagner
et al., 2012; Derlet et al., 2012; Hansen et al., 2020; Larsen et al., 1994;
Hancock et al., 1994). Although a small fraction of the E. coli in fecal ma-
terial may remain viable for a grazing season or longer at a site
(Buckhouse and Gifford, 1976), there is still a potential for contamina-
tion long after the cattle have been rotated from the site (Larsen et al.,
1994). However, before contamination can be measured at a dam outlet,
bacteria in fecal material have to reach a stream (upstream of the dam)
by either direct deposit or by overland transport in surface runoff
events. Larsen et al. (1994) observed that the contamination of surface
waters from E. coli and other fecal bacteria depended on the size and
number of cattle, distance of the cattle and their fecal deposits from
water bodies, characteristics of the fecal deposition site, and the viability
of bacteria from the time of deposition to surface runoff events. In a re-
cent study at USMARC, Hansen et al. (2020) found that E. coli concentra-
tions had a strong correlation with increasing accumulation of cattle (i.e.
by adding the total number of cattle within each pasture for each day)
on the pastures throughout the grazing season. Similar to previous stud-
ies (Wagner et al., 2012; Derlet et al., 2012) focusing on cattle, the study
by Hansen et al. (2020) found a strong correlation when cattle were
present on pastures adjacent to the stream on the day of rainfall events.

2.5.2. Selecting the “most important” features

Although there are many features that control E. coli fate at a dam
outlet, there is a need to avoid over-parameterization when developing
predictive models. In order to extract the most important information
from the features, PCA was first used to analyze these features, which
were inter-correlated in general. The goal was to express them as a set
of new orthogonal variables (principal components) that allow visual
assessment of similarities and differences between samples and deter-
mine whether samples can be grouped by displaying them as points
in maps. Using a few components, each sample can be represented by
relatively few “most important” features instead of by values for many
features.

After PCA analysis, the “most important” features were selected
based on the statistical dependence of the log-transformed E. coli con-
centration on all potential features. Forward stepwise selection was
chosen because it is a widely used feature selection method based on se-
quential forward selection (Ruan et al., 2019; Ouali et al., 2017). It in-
volves starting with no features in the model, testing the addition of
each feature using a chosen model fit criterion (e.g. residual sum of
squares, Akaike Information Criterion), adding the feature (if any)
whose inclusion gives the most statistically significant improvement
of the fit, and repeating this process until none improves the model to
a statistically significant extent.

A description of all the features (independent variables) and target
(dependent variable) prior to feature selection and model development
is shown in Table 2. Although weighted averages of rain gauges were
used at GCS1 and GCS2, rainfall values were also weighted on a 3-day
basis such that the cumulative rainfall 1 day before the sampling time
accounted for 20%, the cumulative rainfall between 1 day and 2 days
to the sampling time accounted for 60%, and the cumulative rainfall be-
tween 2 days and 3 days to the sampling time accounted for 20% (see
Wtdrain on Table 2).

2.6. Statistical analysis and model development

E. coli sample data were logo-transformed before developing the
machine learning models since concentration values ranged over
three orders of magnitude. In addition, although features related to

rainfall and AU were numerical, but because they were not continuous,
they were converted into categorical features using three or four bins.

Machine learning algorithms such as multiple linear regression, re-
gression trees, decision tree ensembles, support vector regression,
Gaussian process regression, and artificial neural network (ANN) were
used to analyze datasets in MATLAB 2019b. Adaptive neuro-fuzzy infer-
ence system (ANFIS) models were also developed using two clustering
methods (subtractive and fuzzy c-means).

The multiple linear regression (MLR) attempts to model the rela-
tionship between two or more features and a target by fitting a linear
equation to observed data. Every value of a feature is associated with a
value of the target. An MLR equation with k features (predictor vari-
ables) X;, X, ..., X, and a target (dependent variable) Y’, can be written
as follows:

Y' = Bo+B1X1 + BoXz + ... + BiXi (2)

where Y’ is the estimated target, 3o is the intercept which is a constant
value, and 3; (i = 1, 2, ..., k) are the regression coefficients which assign
the effects of the features X; on the target. For MLR, we used four model
types: regular (features only), interaction, robust and stepwise linear
models. A regular MLR fits a linear equation using Eq. (2). An interaction
MLR model includes features and the two-way interaction between
them, while a robust linear model returns a (p + 1)-by-1 vector 3 of co-
efficient estimates for a robust MLR. By default in MATLAB, the algo-
rithm uses iteratively reweighted least squares with a bisquare
weighting function.

Aregression tree (RT) builds regression models in the form of a tree
structure where each internal node of the tree represents a test of one of
the features used for prediction. The topmost node in a tree which cor-
responds to the best feature is called root node. RT tests whether the
value of a numeric feature is less than or greater than a threshold
value stored at the node, or whether the value of a Boolean feature is
true. It breaks down a dataset into smaller subsets such that there is a
corresponding or associated subtree for each possible test outcome.
Each leaf node in the tree stores the values that satisfy all the tests

Table 2
Description of the features and target used in the development of the models.

Variable  Description of variables

Features Atemp Air temperature on the sampling time (°C)

Wtemp Water temperature on the sampling time (°C)
Wdepth ~ Water depth at the outlet on the sampling time (m)
Flow Discharge through the dam weir (m>/s)

RainDayl Cumulative rainfall 1 day to the sampling time (mm)
Cumulative rainfall between 1 day and 2 days to the
sampling time (mm)

Cumulative rainfall between 2 days and 3 days to the
sampling time (mm)

CumRain2 Cumulative rainfall 2 days to the sampling time (mm)
CumRain3 Cumulative rainfall 3 days to the sampling time (mm)

RainDay2

RainDay3

Wtdrain ~ Weighted? rainfall on 3-day basis (mm)
AUOsum '{Aotja)l AUs within 50 m of the stream on the day of sampling
AUOdens® Amma} density within 50 m of the stream on the day of
sampling (AU/ha)
Total AUs within 50 m of the stream 1 day before the
AUlsum .
sampling day (AU)
AU1dens Amma} density within 50 m of the stream 1 day before the
sampling day (AU/ha)
Total AUs within 50 m of the stream 2 days before the
AU2sum .
sampling day (AU)
AU2dens Amma} density within 50 m of the stream 2 days before the
sampling day (AU/ha)
Target  E. coli Escherichia coli concentration (MPN/100 mL)

¢ (0.2* RainDay1) + (0.6* RainDay2) + (0.2* RainDay3).

b Animal density was calculated by dividing Total AUs within 50 m of the stream by the
sum of pasture hectares.

€ MPN, most probable number.
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between the root node and that leaf node. The RT prediction algorithm
navigates the tree structure by applying the node tests to the features,
starting with the test at the root node, and continuing on to the subtree
selected by the test (Dale et al.,, 2010). For RT modeling in this study, a
fine tree, a medium tree and a coarse tree with minimum leaf sizes of
4,12 and 36 respectively were used according to MATLAB settings.

In addition to using individual RT algorithms, we investigated deci-
sion tree ensembles (DTE) for E. coli prediction. The DTE is a method
that functions by combining many RTs to produce better predictive per-
formance than using a single RT. The main principle behind the DTE
model is that a group of weak RTs are combined to form a strong
model. Two ensemble techniques were used in this study: bagged
trees and boosted trees. Whereas in bagged trees, the prediction made
by an ensemble is obtained by combining the predictions made by indi-
vidual RTs (taking bootstrap samples of dataset with replacement)
using averaging, on the other hand, boosted trees use all the data to
train each RT but with weights assigned in order to take a weighted av-
erage of their predictions.

Support vector machine regression (SVR) is a nonparametric tech-
nique that relies on kernel functions. Smola and Scholkopf (2004) and
Awad and Khanna (2015) provided a detailed description of SVR. Linear,
quadratic, cubic, and Gaussian kernel functions were used in this study.
The Gaussian process regression (GPR) is also a non-parametric method
that uses a measure of similarity between samples (kernel function) to
predict the value for an unseen sample from training data. It defines a
distribution over functions which can be used for Bayesian regression.
Detailed description of GPR was provided by Rasmussen (2004). For
GPR, exponential, squared exponential, rational quadratic, and matern
5/2 kernel functions were used in this study.

ANNSs are mathematical models consisting of a network of computa-
tion nodes called neurons with established connections between them
(Sattari et al., 2017). An advantage of ANN is that it does not require
any a priori assumptions about the relationships between features and
targets as well as the functions to be used (Wu et al., 2013). For ANN
in this study, one hidden layer with both five and ten neurons was
tested. An alternative method to ANN is fuzzy logic which can generate
models by integrating expert knowledge and available measurements
for a system by using a set of easily understandable rules in the form
of a fuzzy inference system (FIS) (Zadeh, 1965). ANFIS is one of the
most successful methods which integrates fuzzy logic and ANN to give
better performance of predictive models especially when dealing with
complex systems (Sattari et al., 2017; Rudnick et al., 2015; Naderloo
et al., 2012). Five separate layers are used to describe an ANFIS model
structure, and it usually requires division of features and target data

into rule patches (Guillaume, 2001). The first layer is the fuzzification
layer; the second layer is the rule base layer; the third layer is for nor-
malizing the membership functions; the fourth and fifth layers are the
defuzzification and summation layers, respectively (Jang, 1993).

A number of clustering methods such as fuzzy c-means (FCM)
(Bezdek, 1981), subtractive clustering (Yager and Filev, 1994), and
grid partitioning (Giotis and Giannakoglou, 1998) can be used to get
membership functions when creating a FIS. These clustering methods
allow the grouping of features into groups with each group having sim-
ilar properties that help to discern the correlation between the data thus
simplifying the prediction process (Benmouiza and Cheknane, 2018).
For each clustering method, two different FIS models (Mamdani-type
FIS and Sugeno-type FIS) have been developed (Nayak et al., 2013). In
order to obtain a small number of fuzzy rules due to the relatively
small sample size in this study, ANFIS with subtractive clustering
(radii of influence of 0.4 and 0.8) and FCM clustering were applied in
this study using MATLAB (MathWorks Inc. Product 2018a).

2.6.1. Model performance evaluation

To develop the predictive models, the dataset was randomly divided
into a training dataset (80% of the total data) and a test dataset (20% of
the total data). With five-fold cross-validation, four folds (80%) were
used for training and the last fold (20%) was used for testing. For one
run, this process was repeated five times, leaving one different fold for
evaluation each time. For the results to be valid, the performance of
each model was averaged on thirty runs. The coefficient of determina-
tion (R?) and root mean squared log error (RMSLE) statistics were
used for comparing the performance of the different algorithms
(Egs. (3) and (4), respectively). RMSLE was chosen instead of the com-
monly used root mean squared error (RMSE) since the E. coli concentra-
tions were log-transformed due to the presence of high concentration
values. These outliers can increase the error to a very high value. RMSE
value increases in magnitude if the scale of error increases, whereas
RMSLE only considers the relative error between predicted and actual
values, and the scale of the error is nullified by the log-transformation.

Furthermore, RMSLE penalizes underestimation more than overesti-
mation. This is especially useful in our study where the underestimation
of the target variable (E. coli concentration) is not acceptable but overes-
timation can be tolerated. For example, if our predictive models overes-
timate E. coli concentration, a water-quality monitoring manager can
quickly provide timely information for making a same-day dam or graz-
ing notification decision, and this slight overestimation is acceptable.
However, the problem arises when the predicted E. coli concentration
is less than the actual concentration. In this case, the manager is more

Table 3
Descriptive statistics of all features and target at GCS1 and GCS2.
Variable Unit GCS1 GCS2
Min Max Mean Standard deviation Min Max Mean Standard deviation

Atemp °C 4.4 243 12.3 6.4 4.4 244 11.6 6.5
Wtemp °C 9.4 271 16.2 6.2 8.5 274 15.9 6.9
Wdepth m 0.7 12 1.0 0.2 0.8 12 1.0 0.2
Flow m3/s 0.0 0.2 0.1 0.1 0.0 0.2 0.1 0.1
RainDay1 mm 1.7 40.7 11.2 12.1 1.6 439 103 11.3
RainDay2 mm 0.0 40.7 6.7 10.6 0.0 439 6.8 11.5
RainDay3 mm 0.0 26.7 49 9.7 0.0 26.3 5.1 9.8
CumRain2 mm 1.7 579 17.9 19.1 1.6 62.6 171 19.3
CumRain3 mm 1.7 71.0 22.8 21.7 1.6 76.7 223 22.6
Wtdrain mm 0.3 30.5 7.2 8.3 0.3 329 7.2 8.9
AUOsum AU 0.0 846.8 566.7 301.0 0.0 11125 589.6 361.7
AUOdens AU/ha 0.0 18.2 8.5 5.1 0.0 18.2 8.4 53
AU1sum AU 0.0 1090.7 671.9 368.3 0.0 11125 726.6 382.2
AU1ldens AU/ha 0.0 18.2 10.3 59 0.0 18.2 10.2 5.6
AU2sum AU 0.0 1109.9 635.1 402.9 0.0 1401.4 722.5 440.0
AU2dens AU/ha 0.0 18.2 94 5.9 0.0 18.2 9.9 5.7
LogoE. coli Log(MPN/100 mL) 0.7 34 1.8 0.8 0.4 34 1.8 1.0
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likely to assume all is fine, and as a result, the problem will go uncor-
rected.

s Yik—x)
RiZM%Z °
RMSLE = \/% > " log(x; + 1)— log(% + 1) 4
i=1

where ¥x; is the observed E. coli concentration (most probable number
(MPN)/100 mL), %; is the predicted E. coli concentration (MPN/
100 mL), X is the mean of the observed E. coli concentration (MPN/
100 mL), and n is the total number of samples considered.
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2.6.2. Statistical significance testing

Since this study compared different machine learning algorithms on
a single domain, paired t-tests were conducted to determine if the RMSE
were significantly different. This was an important step because the
paired t-tests helped us understand the degree to which the RMSE re-
sults represent the general behavior of the algorithms. A summary of
model evaluation and the description of the paired t-test can be found
in Japkowicz and Shah (2011). To check the validity of the results, the
performance of each algorithm was averaged based on thirty runs.

3. Results and discussion
For the six storm events used in this study, all except two samples at

the DW were below the detection limit and were treated as 0.5 MPN/
100 mL. These two samples fell between 1 and 2 MPN/100 mL thus
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Fig. 4. Correlation matrix for (top) GCS1 and (bottom) GCS2; (left) with two stop logs in, and (right) with four stop logs in. Features and target are arranged according to first principal

component.
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indicating that DW rarely recorded any detectable E. coli because the
treated groundwater was its only source of water. While most of the
samples fell within the countable E. coli range at GCS1 and GCS2, 8.5%
and 19.2% of the samples were above the detection limit respectively
and treated as the maximum countable 2419.6 MPN/100 mL.

3.1. Descriptive statistics

Descriptive statistics of the features and target are shown in Table 3.
The log-transformed mean and maximum E. coli concentrations at GCS1
and GCS2 were the same. The log-transformed minimum E. coli concen-

tration at GCS1 was slightly higher than that of GCS2. Except for the tar-
get and the features related to pasture management (AU sum and
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density), the remaining features have similar distributions for both
GCS1 and GCS2.

Fig. 4 shows the magnitude of coefficient of correlation (r) among
the features and target studied at GCS1 and GCS2 (when two and four
stop logs were put in), with features/target arranged according to first
principal component (PC1). At GCS1, when two stop logs were installed,
the E. coli concentrations had stronger positive correlations (r > 0.60)
with AU and temperature features than with rainfall features at p-
value <0.05. Conversely, flow and water depth showed negative correla-
tion with E. coli concentrations with two stop logs installed. When four
stop logs were installed, E. coli concentrations was positively correlated
with AU and rainfall features while negatively correlated with flow,
water depth and temperature features.
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Table 4
Most important features for predicting E. coli, ordered by information gain based on for-
ward selection.

GCS1 GCS2

Variable RSS AIC value Variable RSS AIC value
RainDay3 29.2 —80.8 AUOsum 46.0 —37.1
AUTldens 18.0 —118.2 AU2sum 19.2 —103.2
RainDay2 121 —149.0 Atemp 71 —178.8
AU2dens 10.7 —157.3 AUTsum 5.1 —202.7
AUTsum 8.3 —175.5 AUOdens 42 —216.2
AU2sum 7.4 —182.8 RainDay3 39 —220.7
Wtemp 5.8 —200.8 AU2dens 3.1 —235.7
Wdepth 49 —2129 AU1ldens 2.7 —244.0
Flow 4.1 —2253

AUOsum 4.0 —225.5

AUOdens 3.6 —2319

Similarly, at GCS2 when two stop logs were installed, E. coli concen-
trations had a strong, positive correlation with AU and temperature fea-
tures at p-value <0.05. Water depth was the only feature that was
negatively correlated with E. coli concentration with two stop logs.
When four stop logs were installed, E. coli concentrations resulted in a
strong negative correlation with temperature features as well as flow
and water depth, whereas in general, E. coli concentrations showed
strong positive correlation with most rainfall and AU features.

With aggregated datasets for both two and four stop logs, PCA-
biplots were constructed for both GCS1 and GCS2 (Fig. 5). PC1 is labeled
as Dim 1 while Dim 2 is the second principal component (PC2). At GCS1
and GCS2, the first two principal components explain 68.6% and 67.4% of
total variations respectively. The seven clusters show the samples col-
lected during the six storm events and those collected in March 2018
(at the beginning of this study) before it started raining in the spring.
The contributions of the features and target to the first two principal
components are shown in the Scree plots with a reference dashed line,
which corresponds to the expected value (5.9%) if the contributions of
the seventeen features and target were uniform (Fig. 6). At both GCS1
and GCS2, the first ten features that contribute most to PC1 were the
same, although not in the same order of contribution. At GCS1,
RainDay3 had the highest loading on the PC2, whereas at GCS2,
AU1sum had the highest loading on PC2. The common major contribu-
tors to PC2 at both locations were E. coli, Flow, Wdepth, and AU1sum.

3.2. Feature performance

Table 4 presents the results of the forward selection of the “most im-
portant” features based on the residual sum of squares (RSS) and Akaike
information criterion (AIC). Based on the RSS and AIC values only,
eleven features were selected as input variables to predict E. coli at

GCS1, while eight features were chosen to predict E. coli at GCS2. Except
for Atemp that was selected at GCS2, as well as RainDay2, Wtemp,
Wdepth, and Flow that were selected at GCS1, the same seven features
were common to both GCSs. However, combining the results of forward
selection as well as the contributions of the features to both PC1 and
PC2, twelve features from the union of the two “feature sets” were even-
tually selected as input variables for predicting E. coli concentration at
both GCS1 and GCS2.

3.3. Model performance

Table 5 shows the performance of the “best subset models” for each
machine-learning algorithm at GCS1 and GCS2. For both locations, we
tested the effect of using the aforementioned algorithms (five regres-
sion types, ANN and ANFIS) for training and testing while varying the
components of each algorithm and using the twelve selected features
as input variables. Of all the five regression algorithms, the MLR model
had the best performance for GCS1 (RMSLE = 0.21) while the SVM
model had the best performance for GCS2 (RMSLE = 0.22). For ANN,
we varied the number of hidden neurons starting with five, and then
ten. We found that the performance of using either five or ten neurons
was almost the same and there was no improvement in model perfor-
mance when compared to the best regression models for each GCS
(Table 5). For ANFIS, although the number of epochs was not as impor-
tant as the prediction error, 5, 10, 20, 50, and 500 epochs were tried for
both subtractive and FCM clustering methods in order to avoid
overfitting. It was observed that 10 epochs was sufficient as higher
epochs did not significantly increase model performance.

For subtractive clustering method, we again varied the radius of in-
fluence, starting with 0.8, and then 0.4. There was no significant differ-
ence between subtractive clustering and previous models when both
radii were used at GCS1. At GCS2, we found lower performance of sub-
tractive clustering irrespective of the radius. For FCM clustering method,
we tested five and seven rules and found that seven rules performed rel-
atively better than five rules at GCS1 while the converse was true at
GCS2 (Table 5). On the average, we found a significant improvement
in performance with ANFIS FCM algorithms, with up to approximately
12% and 36% reductions in error for GCS1 and GCS2 respectively.

Comparison of all algorithms showed that better E. coli concentra-
tion predictions were obtained at both locations using ANFIS than re-
gression models and ANN. Although ANFIS and ANN algorithms are
both based on neural networks, one of the major limitations of ANN is
its lack of explanatory power, often referred to as the “black box prob-
lem” (Dastorani et al., 2010). ANFIS eliminates some of these limitations
by integrating both neural networks and fuzzy logic principles. The su-
periority of ANFIS over ANN modeling approach has been well
established by Nayak et al. (2004), Dastorani et al. (2010), Talebizadeh
and Moridnejad (2011), Emamgholizadeh et al. (2014), and Luo et al.

Table 5
Comparison of “best subset models” during model training and testing phases at GCS1 and GCS2.
Model Components GCS1 GCS2
R? RMSLE R? RMSLE
(logMPN/100 mL) (logMPN/100 mL)
Training Training Testing Training Training Testing
MLR Linear 0.93 0.20 0.21 0.95 0.22 0.24
DT Fine tree; minimum leaf size = 4 0.90 0.24 0.26 0.94 0.25 0.28
DTE Boosted trees; minimum leaf size = 8; number of learners = 30 0.90 0.24 0.25 0.93 0.26 0.27
SVM Kernel function = Gaussian; Kernel scale = 0.87 0.93 0.21 0.22 0.96 0.21 0.22
GPR Kernel function = exponential; basis function = constant 0.94 0.19 0.23 0.96 0.21 0.24
ANN Number of hidden neurons = 5; Levenberg-Marquardt fitting 0.97 0.18 0.22 0.97 0.22 0.22
ANN Number of hidden neurons = 10; Levenberg-Marquardt fitting 0.97 0.18 0.20 0.98 0.21 0.21
ANFIS subtractive Number of epochs = 10, radius = 0.8; FIS type = Sugeno 0.99 0.09 0.20 0.98 0.22 0.31
ANFIS subtractive Number of epochs = 10, radius = 0.4; FIS type = Sugeno 0.99 0.10 0.22 0.99 0.16 0.31
ANFIS FCM Number of epochs = 10; number of rules = 5; FIS type = Sugeno 0.98 0.15 0.18 0.98 0.17 0.16
ANFIS FCM Number of epochs = 10; number of rules = 7; FIS type = Sugeno 0.99 0.11 0.18 0.99 0.16 0.15
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Fig. 7. Actual versus predicted E. coli concentrations (log cfu/100 mL) at GCS1 (AB) and GCS2 (C,D) using ANFIS FCM clustering with 7 rules; (left) training set, and (right) testing set.

(2019) in various fields of ecohydrology. Scatter plots between actual
and predicted E. coli concentrations at GCS1 and GCS2 using ANFIS
with subtractive clustering are shown in Fig. 7.

4. Conclusions

We have demonstrated the application of different machine-
learning algorithms for E. coli concentration prediction at two cascading
dams (GCS1 and GCS2). A major finding of this study was the integra-
tion of hydrometeorology, animal density, and grazing pattern in a
unique way to extract and select the most important features used for
developing and validating the models. These features included those
that were newly developed in this work, which are less explanatory in-
dividually, but can contribute to E. coli prediction accuracy and perfor-
mance. We observed that only twelve out of the sixteen features carry
most of the information for predicting E. coli concentration. Specifically,
the number of animals close to the streams, grazing density and cumu-
lative rainfall between two and three days to the sampling time were
the most informative features. The integration of features provides an
important foundation for future work on E. coli prediction at the nine
cascading GCSs at the USMARC facility, and other dams and surface wa-
ters in other areas. Despite the fact that it is almost impossible for any
model to account for all the processes and heterogeneity involved in
E. coli transport in dams, our results show that machine-learning algo-
rithms, provided with good extraction and selection of features, provide
potential tools for predicting E. coli transport through dams. As more
samples are taken at different times of the year during high and low
flows (within and outside storm events), and curation of data associated
with all the important features is done, the set of available training data
will grow. New features can be incorporated and tested in combination

with existing features. Further, novel prediction algorithms have the po-
tential to be implemented and tested.

The ANFIS models we have developed provide good estimates of
E. coli concentrations and have the ability to be modified by the users
based on their preferences for accuracy and precision. However, since
the models were developed using data for our study area, the level of
uncertainty in applying our models or methods to another dam would
depend on the knowledge of the study area, data quality, and a thor-
ough understanding of all the processes involved and features used in
modeling.

CRediT authorship contribution statement

Olufemi P. Abimbola:Methodology, Formal analysis, Writing - orig-
inal draft.Aaron R. Mittelstet:Conceptualization, Methodology, Funding
acquisition, Writing - review & editing, Project administration.Tiffany L.
Messer:Conceptualization, Funding acquisition, Writing - review &
editing.Elaine D. Berry:Investigation, Writing - review & editing, Re-
sources.Shannon L. Bartelt-Hunt:Writing - review & editing.Samuel
P. Hansen:Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This project is based on research that was supported by the Nebraska
Agricultural Experiment Station with funding from the State of



O.P. Abimbola et al. / Science of the Total Environment 722 (2020) 137894 11

Nebraska in collaboration with the Agricultural Research Service, U.S.
Meat Animal Research Center, U.S. Department of Agriculture and the
U.S. Department of Agriculture - National Institute of Food and Agricul-
ture (Hatch project NEB-21-177). The authors also thank Alan Boldt and
Shannon Ostdiek for their technical assistance.

References

Abdi, H., Williams, LJ., 2010. Principal component analysis. WIREs Computational Statis-
tics 2, 433-459.

Arnold, ].G., Fohrer, N., 2005. SWAT2000: current capabilities and research opportunities
in applied watershed modelling. Hydrol. Process. 19 (3), 563-572.

Asghari, K., Nasseri, M., 2014. Spatial rainfall prediction using optimal features selection
approaches. Hydrol. Res. 46 (3), 343-355. https://doi.org/10.2166/nh.2014.178.
Awad, M., Khanna, R., 2015. Support vector regression. Efficient Learning Machines.

Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9_4.

Baffaut, C., Benson, V.W., 2003. A bacterial TMDL for shoal creek using SWAT modeling
and DNA source tracking. Total Maximum Daily Load (TMDL) Environmental
Regulations-II Proceedings of the Conference. ASAE, St. Joseph, MI ASAE Publication
No. 701P1503.

Benham, B.L., Baffaut, C., Zeckoski, RW., Mankin, K.R., Pachepsky, Y.A., Sadeghi, A.M.,
Brannan, K.M., Soupir, M.L., Habersack, M.J., 2006. Modeling bacteria fate and trans-
port in watersheds to support TMDLs. Trans. ASABE 49, 987-1002.

Benmouiza, K., Cheknane, A., 2018. Clustered ANFIS network using fuzzy c-means, sub-
tractive clustering, and grid partitioning for hourly solar radiation forecasting.
Theor. Appl. Climatol., 1-13 https://doi.org/10.1007/s00704-018-2576-4.

Berry, E.D., Wells, J.E., Bono, J.L., Woodbury, B.L., Kalchayanand, N., Norman, K.N., Suslow,
T.V., Lépez-Velasco, G., Millner, P.D., 2015. Effect of proximity to a cattle feedlot on
Escherichia coli 0157:H7 contamination of leafy greens and evaluation of the poten-
tial for airborne transmission. Appl. Environ. Microbiol. 81, 1101-1110. https://doi.
org/10.1128/AEM.02998-14.

Bezdek, ].C., 1981. Pattern Recognition With Fuzzy Objective Function Algorithms.
Springer US, Boston.

Blaustein, R.A., Pachepsky, Y., Hill, R.L., Shelton, D.R., Whelan, G., 2013. Escherichia coli sur-
vival in waters: temperature dependence. Water Res. 47, 569-578.

Bragina, L., Sherlock, O., van Rossum, AJ., Jennings, E., 2017. Cattle exclusion using fencing
reduces Escherichia coli (E. coli) level in stream sediment reservoirs in northeast
Ireland. Agric. Ecosyst. Environ. 239, 349-358. https://doi.org/10.1016/j.
agee.2017.01.021.

Brooks, W., Corsi, S., Fienen, M., Carvin, R., 2016. Predicting recreational water quality ad-
visories: a comparison of statistical methods. Environ. Model. Softw. 76, 81-94.
https://doi.org/10.1016/j.envsoft.2015.10.012.

Buckhouse, ].C,, Gifford, G.E., 1976. Water quality implications of cattle grazing on a semi-
arid watershed in southeastern Utah. ]. Range Manag. 29, 109-113.

Coffey, R., Cummins, E., Cormican, M., Flaherty, V.0., Kelly, S., 2007. Microbial exposure as-
sessment of waterborne pathogens. Hum. Ecol. Risk. Assess. 13, 1313-1351.

Collins, R., Rutherford, K., 2004. Modelling bacterial water quality in streams draining pas-
toral land. Water Res. 38 (3), 700-712.

Dale, .M., Popescu, L., Karp, P.D., 2010. Machine learning methods for metabolic pathway
prediction. BMC Bioinformatics 11, 15 (http://www.biomedcentral.com/1471-2105/
11/15).

Dastorani, M.T., Moghadamnia, A., Piri, ]., Rico-Ramirez, M., 2010. Environ. Monit. Assess.
166, 421-434. https://doi.org/10.1007/s10661-009-1012-8.

Derlet, RW., Richards, J.R,, Tanaka, L.L., Hayden, C,, Ger, K.A., Goldman, CR., 2012. Impact
of summer cattle grazing on the Sierra Nevada watershed: aquatic algae and bacteria.
J. Environ. Public Health 2012, 1-7. https://doi.org/10.1155/2012/760108.

Efting, A.A., Snow, D.D,, Fritz, S.C.,, 2011. Cyanobacteria and microcystin in the Nebraska
(USA) Sand Hills Lakes before and after modern agriculture. ]. Paleolimnol. 46,
17-27. https://doi.org/10.1007/s10933-011-9511-3.

Emamgholizadeh, S., Moslemi, K., Karami, G., 2014. Prediction the groundwater level of
Bastam Plain (Iran) by Artificial Neural Network (ANN) and adaptive neuro-fuzzy in-
ference system (ANFIS). Water Resour. Manag. 28, 5433-5446. https://doi.org/
10.1007/s11269-014-0810-0.

Flint, K.P., 1987. The long-term survival of Escherichia coli in river water. J. Appl. Bacteriol.
63, 261-270.

Giotis, A.P., Giannakoglou, K.C,, 1998. An unstructured grid partitioning method based on
genetic algorithms. Adv. Eng. Softw. 29, 129-138.

Gonzalez, RA,, Conn, K.E., Crosswell, ].R., Noble, R.T., 2012. Application of empirical pre-
dictive modeling using conventional and alternative fecal indicator bacteria in east-
ern North Carolina waters. Water Res. 46 (18), 5871-5882. https://doi.org/10.1016/
Jj-watres.2012.07.050.

Guillaume, S., 2001. Designing fuzzy inference systems from data: an interpretability-
oriented review. Fuzzy Sys. IEEE Trans. 9, 426-443.

Hancock, D., Besser, T., Kinsel, M., Tarr, P., Rice, D., Paros, M., 1994. The prevalence of
Escherichia coli 0157.H7 in dairy and beef cattle in Washington State. Epidemiol.
Infect. 113 (2), 199-207. https://doi.org/10.1017/S0950268800051633.

Hansen, S., Messer, T., Mittelstet, A., Berry, E., Bartelt-Hunt, S., Abimbola, O., 2020.
Escherichia coli concentrations in waters of a reservoir system impacted by cattle
and migratory waterfowl. Sci. Total Environ. 705, 135607. https://doi.org/10.1016/].
scitotenv.2019.135607.

Hellweger, F.L., Masopust, P., 2008. Investigating the fate and transport of Escherichia coli
in the Charles River, Boston, using high-resolution observation and modeling. J. Am.
Water Resour. Assoc. 44 (2), 509-522.

Hipsey, M.R., Antenucci, ].P., Brookes, ].D., 2008. A generic, process-based model of micro-
bial pollution in aquatic systems. Water Resour. Res. 44, W07408. https://doi.org/
10.1029/2007WR006395.

Hira, Z.M.,, Gillies, D.F., 2015. A review of feature selection and feature extraction methods
applied on microarray data. Adv. Bioinforma. 2015, 198363 13 pages. https://doi.org/
10.1155/2015/198363.

Jamieson, R., Joy, D.M., Lee, H., Kostaschuk, R., Gordon, R., 2005. Transport and deposition
of sediment-associated Escherichia coli in natural streams. Water Res. 39 (12),
2665-2675.

Jamieson, R.C,, Joy, D.M., Lee, H., Kostaschuk, R., Gordon, RJ., 2004. Persistence of enteric
bacteria in alluvial streams. Eng. Sci. 3, 203-212.

Jang, ].S.R,, 1993. ANFIS: adaptive-network-based fuzzy inference system. Sys. Man.
Cybern. IEEE Trans. 23, 665-685.

Japkowicz, N., Shah, M., 2011. Evaluating Learning Algorithms: A Classification Perspec-
tive. Cambridge University Press.

Jin, G., Englande, AJ., Liu, A., 2003. A preliminary study on coastal water quality monitor-
ing and modeling. J. Environ. Sci. Health A38, 493-509.

Jolliffe, I.T., 2002. Principal Component Analysis. 2nd edition. Springer, New York.

Jones, R.M,, Liu, L., Dorevitch, S., 2013. Hydrometeorological variables predict fecal indica-
tor bacteria densities in freshwater: data-driven methods for variable selection. Envi-
ron. Monit. Assess. 185 (3), 2355-2366. https://doi.org/10.1007/s10661-012-2716-8.

Larsen, R.E., Miner, ].R., Buckhouse, ].C., Moore, ].A., 1994. Water-quality benefits of having
cattle manure deposited away from streams. Bioresour. Technol. 48, 113-118.
https://doi.org/10.1016/0960-8524(94)90197-X.

Lessard, EJ., Sieburth, ].M., 1983. Survival of natural sewage populations of enteric bacte-
ria in diffusion and batch chambers in the marine-environment. Appl. Environ.
Microbiol. 45, 950-959.

Lever, J., Krzywinski, M., Altman, N., 2016. Points of significance: model selection and
overfitting. Nat. Methods 13, 703-704.

Luo, W., Zhu, S., Wu, S., Dai, J., 2019. Comparing artificial intelligence techniques for
chlorophyll-a prediction in US lakes. Environ. Sci. Pollut. Res. https://doi.org/
10.1007/511356-019-06360-y.

Manske, L.L., 1998. Animal Unit Equivalent for Beef Cattle Based on Metabolic Weight.
North Dakota State University Dickinson Research Extension Service, Fargo ND,
pp. 1-3.

McCorquodale, J.A., Georgiou, L, Carnelos, S., Englande, AJ., 2004. Modeling coliforms in
storm water plumes. J. Environ. Eng. Sci. 3, 419-431.

McKergow, L.A., Davies-Colley, RJ., 2009. Stormflow dynamics and loads of Escherichia
coli in a large mixed land use catchment. Hydrol. Process. 24 (3), 276-289. https://
doi.org/10.1002/hyp.7480.

Medema, G.J., Schijven, J.F., 2001. Modelling the sewage discharge and dispersion of Cryp-
tosporidium and Giardia in surface water. Water Res. 35, 4307-4316.

Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M.Y., Alimardani,
F., 2012. Application of ANFIS to predict crop yield based on different energy inputs.
Measurement 45 (6), 1406-1413.

Nayak, G.K., Narayanan, SJ., Paramasivam, 1., 2013. Development and comparative analy-
sis of fuzzy inference systems for predicting customer buying behavior. Int. Jour. Eng.
Tech. 5 (5), 4093-4108.

Nayak, P., Sudheer, K., Rangan, D., Ramasastri, K., 2004. A neuro-fuzzy computing tech-
nique for modeling hydrological time series. J. Hydrol. 291 (1-2), 52-66.

Nevers, B.M., Whitman, R.L., 2005. Nowcast modeling of Escherichia coli concentrations at
multiple urban beaches of southern Lake Michigan. Water Res. 39 (20), 5250-5260.
https://doi.org/10.1016/j.watres.

Nevers, M.B., Whitman, R.L., 2011. Efficacy of monitoring and empirical predictive model-
ing at improving public health protection at Chicago beaches. Water Res. 45 (4),
1659-1668. https://doi.org/10.1016/j.watres.2010.12.010.

Noguchi, K., Nakajima, H., Aono, R., 1997. Effects of oxygen and nitrate on growth of
Escherichia coli and Pseudomonas aeruginosa in the presence of organic solvents.
Extremophiles 1, 193-198.

Ouali, D., Chebana, F., Ouarda, T.B.MJ., 2017. Fully nonlinear statistical and machine-
learning approaches for hydrological frequency estimation at ungauged sites. J. Adv.
Model. Earth Sy. 9 (2), 1292-1306. https://doi.org/10.1002/2016MS000830.

Pachepsky, Y.A., Shelton, D.R., 2011. Escherichia coli and fecal coliforms in freshwater and
estuarine sediments. Crit. Rev. Environ. Sci. Technol. 41, 1067-1110. https://doi.org/
10.1080/10643380903392718.

Pachepsky, Y.A., Sadeghi, A.M., Bradford, S.A., Shelton, D.R., Guber, A.K., Dao, T.H., 2006.
Transport and fate of manure-borne pathogens: modeling perspective. Agric. Water
Manag. 86, 81-92.

Park, Y., Kim, M., Pachepsky, Y., Choi, S.H., Cho, J.G., Jeon, J., Cho, K.H., 2018. Development
of a nowcasting system using machine learning approaches to predict fecal contam-
ination levels at recreational beaches in Korea. ]. Environ. Qual. 47, 1094-1102.
https://doi.org/10.2134/jeq2017.11.0425.

Petersen, C.M., Rifai, H.S., Stein, R., 2009. Bacteria load estimator spreadsheet tool for
modeling spatial Escherichia coli loads to an urban bayou. J. Environ. Eng. 135 (4),
203-217.

Rasmussen, C.E., 2004. Gaussian processes in machine learning. In: Bousquet, O., von
Luxburg, U., Rdtsch, G. (Eds.), Advanced Lectures on Machine Learning. ML 2003. Lec-
ture Notes in Computer Science. Springer, Berlin, Heidelberg, p. 3176.

Razmkhah, H., Abrishamchi, A., Torkian, A., 2010. Evaluation of spatial and temporal var-
iation in water quality by pattern recognition techniques: a case study on Jajrood
River (Tehran, Iran). J. Environ. Manag. 91, 852-860.

Ringnér, M., 2008. What is principal component analysis? Nat. Biotechnol. 26 (3),
303-304.

Robakis, N., Cenatiempo, Y., Meza-Basso, L., Brot, N., Weissbach, H., 1983. A coupled DNA-
directed in vitro system to study gene expression based on di- and tripeptide forma-
tion. Methods Enzymol. 101, 690-706.


http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0005
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0005
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0010
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0010
https://doi.org/10.2166/nh.2014.178
https://doi.org/10.1007/978-1-4302-5990-9_4
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0025
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0025
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0025
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0025
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0030
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0030
https://doi.org/10.1007/s00704-018-2576-4
https://doi.org/10.1128/AEM.02998-14
https://doi.org/10.1128/AEM.02998-14
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0045
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0045
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0050
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0050
https://doi.org/10.1016/j.agee.2017.01.021
https://doi.org/10.1016/j.agee.2017.01.021
https://doi.org/10.1016/j.envsoft.2015.10.012
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0065
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0065
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0070
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0070
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0075
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0075
http://www.biomedcentral.com/1471-2105/11/15
http://www.biomedcentral.com/1471-2105/11/15
https://doi.org/10.1007/s10661-009-1012-8
https://doi.org/10.1155/2012/760108
https://doi.org/10.1007/s10933-011-9511-3
https://doi.org/10.1007/s11269-014-0810-0
https://doi.org/10.1007/s11269-014-0810-0
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0105
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0105
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0110
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0110
https://doi.org/10.1016/j.watres.2012.07.050
https://doi.org/10.1016/j.watres.2012.07.050
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0120
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0120
https://doi.org/10.1017/S0950268800051633
https://doi.org/10.1016/j.scitotenv.2019.135607
https://doi.org/10.1016/j.scitotenv.2019.135607
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0135
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0135
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0135
https://doi.org/10.1029/2007WR006395
https://doi.org/10.1029/2007WR006395
https://doi.org/10.1155/2015/198363
https://doi.org/10.1155/2015/198363
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0150
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0150
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0150
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0155
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0155
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0160
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0160
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0165
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0165
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0170
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0170
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0175
https://doi.org/10.1007/s10661-012-2716-8
https://doi.org/10.1016/0960-8524(94)90197-X
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0190
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0190
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0190
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0195
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0195
https://doi.org/10.1007/s11356-019-06360-y
https://doi.org/10.1007/s11356-019-06360-y
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0205
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0205
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0205
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0210
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0210
https://doi.org/10.1002/hyp.7480
https://doi.org/10.1002/hyp.7480
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0220
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0220
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0225
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0225
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0230
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0230
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0230
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0235
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0235
https://doi.org/10.1016/j.watres
https://doi.org/10.1016/j.watres.2010.12.010
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0250
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0250
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0250
https://doi.org/10.1002/2016MS000830
https://doi.org/10.1080/10643380903392718
https://doi.org/10.1080/10643380903392718
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0265
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0265
https://doi.org/10.2134/jeq2017.11.0425
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0275
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0275
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0275
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0280
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0280
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0280
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0285
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0285
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0285
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0290
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0290
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0295
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0295
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0295

12 O.P. Abimbola et al. / Science of the Total Environment 722 (2020) 137894

Ruan, X., Huang, J., Williams, D., Harker, K., Gergel, S., 2019. High spatial resolution land-
scape indicators show promise in explaining water quality in urban streams. Ecol.
Indic. 103, 321-330. https://doi.org/10.1016/j.ecolind.2019.03.013.

Rudnick, D.R., Sharma, V., Meyer, G.E., Irmak, S., 2015. Using fuzzy logic to predict and
evaluate the magnitude and distribution of precipitation on rainfed maize and soy-
bean yields in Nebraska. Trans. ASABE 58 (5), 1215-1229. https://doi.org/10.13031/
trans.58.10831.

Sartory, D.P., Vandevenne, C.A., 2009. Improved Methods for Detecting E. coli and Coli-
forms in Drinking Water: AFNOR Validation of Colilert-18/Quanti-Tray (Alella, Spain).

Sattari, M.T., Dodangeh, E., Abraham, ]., 2017. Estimation of daily soil temperature via data
mining techniques in semi-arid climate conditions. Earth Sci. Res. J. 21 (2), 85-93.

Seo, J.H,, Lee, Y.H., Kim, Y.H., 2014. Feature selection for very short-term heavy rainfall
prediction using evolutionary computation. Adv. Meteorol. 2014, 203545 15 pages.
https://doi.org/10.1155/2014/203545.

Shively, D.A., Nevers, M.B., Breitenbach, C., Phanikumar, M.S., Przybyla-Kelly, K., Spoljaric,
AM.,, Whitman, R.L, 2016. Prototypic automated continuous recreational water qual-
ity monitoring of nine Chicago beaches. J. Environ. Manag. 166, 285-293. https://doi.
org/10.1016/j.jenvman.2015.10.011.

Sjogren, RE., Gibson, M.J,, 1981. Bacterial survival in a dilute environment. Appl. Environ.
Microbiol. 41, 1331-1336.

Smola, AJ., Schélkopf, B., 2004. A tutorial on support vector regression. Stat. Comput. 14
(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.

Steets, B.M., Holden, P.A., 2003. A mechanistic model of runoff associated fecal coliform
fate and transport through a coastal lagoon. Water Res. 37, 589-608.

Talebizadeh, M., Moridnejad, A., 2011. Uncertainty analysis for the forecast of lake level
fluctuations using ensembles of ANN and ANFIS models. Expert Syst. Appl. 38,
4126-4135.

Tian, Y.Q., Gong, P., Radke, ].D., Scarborough, J., 2002. Spatial and temporal modeling of
microbial contaminants on grazing farmlands. J. Environ. Qual. 31 (3), 860-869.
Ung, A., Goss, M., 2004. Transport of bacteria from manure and protection of water re-

sources. Appl. Soil Ecol. 25 (1), 1-18. https://doi.org/10.1016/j.aps0il.2003.08.007.

USACE, 2010. Record of decision, sitewide groundwater, former naval ammunition depot,
Hastings, Nebraska. URL. https://semspub.epa.gov/work/HQ/189068.pdf (Accessed
on 07/01/2019).

Vidon, P., Tedesco, L.P., Wilson, ]., Campbell, M.A,, Casey, LR., Gray, M., 2008. Direct and
indirect hydrological controls on concentration and loading in midwestern streams.
J. Environ. Qual. 37 (5), 1761-1768. https://doi.org/10.2134/jeq2007.0311.

Wagner, K.L., Redmon, LA, Gentry, TJ., Harmel, RD., 2012. Assessment of cattle grazing
effect on E. coli runoff. Trans. ASABE 55, 2111-2122.

Whitman, R.L, Shively, D.A., Pawlik, H., Nevers, M.B., Byappanahalli, M.N., 2003. Occur-
rence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore
water and beach sand of Lake Michigan. Appl. Environ. Microbiol. 69 (8),
4714-4719. https://doi.org/10.1128/AEM.69.8.4714-4719.2003.

Whitman, R.L., Nevers, M.B., Korinek, G.C., Byappanahalli, M.N., 2004. Solar and temporal
effects on Escherichia coli concentration at a Lake Michigan swimming beach. Appl.
Environ. Microbiol. 70, 4276-4285.

Wu, W., Tang, X.P., Guo, N.J,, Yang, C,, Liu, H.B., Shang, Y.F., 2013. Spatiotemporal modeling
of monthly soil temperature using artificial neural networks. Theor. Appl. Climatol.
113, 481-494.

Yager, R.R,, Filev, D.P., 1994. Generation of fuzzy rules by mountain clustering. ] Intell
Fuzzy Syst Appl Eng Technol 2, 209-219.

Zadeh, LA, 1965. Fuzzy sets. Inf. Control. 8, 338-353.

Zaleski, KJ., Josephson, K.L., Gerba, C.P., Pepper, LL., 2005. Survival, growth, and regrowth
of enteric indicator and pathogenic bacteria in biosolids, compost, soil, and land ap-
plied biosolids. ]. Residuals Sci. Technol. 2 (1), 49-63.

Zhang, B., Song, X, Zhang, Y., Han, D., Tang, C,, Yu, Y., Ma, Y., 2012. Hydrochemical char-
acteristics and water quality assessment of surface water and groundwater in
Songnen plain, Northeast China. Water Res. 46, 2737-2748.


https://doi.org/10.1016/j.ecolind.2019.03.013
https://doi.org/10.13031/trans.58.10831
https://doi.org/10.13031/trans.58.10831
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0310
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0310
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0315
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0315
https://doi.org/10.1155/2014/203545
https://doi.org/10.1016/j.jenvman.2015.10.011
https://doi.org/10.1016/j.jenvman.2015.10.011
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0330
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0330
https://doi.org/10.1023/B:STCO.0000035301.49549.88
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0340
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0340
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0345
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0345
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0345
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0350
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0350
https://doi.org/10.1016/j.apsoil.2003.08.007
https://semspub.epa.gov/work/HQ/189068.pdf
https://doi.org/10.2134/jeq2007.0311
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0370
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0370
https://doi.org/10.1128/AEM.69.8.4714-4719.2003
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0380
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0380
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0380
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0385
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0385
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0385
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0390
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0390
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0395
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0400
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0400
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0400
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0405
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0405
http://refhub.elsevier.com/S0048-9697(20)31407-8/rf0405

	Predicting Escherichia coli loads in cascading dams with machine learning: An integration of hydrometeorology, animal density and grazing pattern
	
	Authors

	Predicting Escherichia coli loads in cascading dams with machine learning: An integration of hydrometeorology, animal densi...
	1. Introduction
	2. Materials and methods
	2.1. Study area
	2.2. Hydrologic monitoring
	2.3. Water quality monitoring and analysis
	2.4. Pasture management and cattle grazing
	2.5. Dimensional reduction and feature selection
	2.5.1. Hypothesizing based on prior knowledge
	2.5.2. Selecting the “most important” features

	2.6. Statistical analysis and model development
	2.6.1. Model performance evaluation
	2.6.2. Statistical significance testing


	3. Results and discussion
	3.1. Descriptive statistics
	3.2. Feature performance
	3.3. Model performance

	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


