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A Multi-level Analysis of the Relationship between Instruc-
tional Practices and Retention in Computer Science 

 

ABSTRACT 
Increasing retention in computer science (CS) courses is a goal of 
many CS departments. A key step to increasing retention is to un-
derstand the factors that impact the likelihood students will con-
tinue to enroll in CS courses. Prior research on retention in CS has 
mostly examined factors such as prior exposure to programming 
and students’ personality characteristics, which are outside the 
control of undergraduate instructors. This study focuses on fac-
tors within the control of instructors, namely, instructional prac-
tices that directly impact students’ classroom experiences. Partic-
ipants were recruited from 25 sections of 14 different courses over 
4 semesters. A multi-level model tested the effects of individual 
and class-average perceptions of cooperative learning and teacher 
directedness on the probability of subsequent enrollment in a CS 
course, while controlling for students’ mastery of CS concepts and 
status as a CS major. Results indicated that students’ individual 
perceptions of instructional practices were not associated with re-
tention, but the average rating of cooperative learning within a 
course section was negatively associated with retention. Con-
sistent with prior research, greater mastery of CS concepts and 
considering or having declared a CS major were associated with a 
higher probability of taking a future CS courses. Implications for 
findings are discussed. 

CCS CONCEPTS 
Social and professional topics~Computer science education 

KEYWORDS 
Computer science education; Retention; Multi-level models; Co-
operative learning; Student-centered classrooms 
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1 INTRODUCTION 
In recent years in the United States, there has been an influx of 
interest and energy in growing computer science (CS) education 
across all educational levels. From the CSforAll consortium in the 
United States to the increase in European countries that have 
added coding to the elementary and secondary school curriculum 
[6], there is growing consensus that knowledge of CS concepts, 
computational thinking skills, and familiarity with coding will 
play an important role in future workforce readiness. In order for 
the United States to meet future workforce demands for CS pro-
fessionals [15], it is important for tertiary CS programs to attract 
and retain students. However, at the collegiate level, college 
STEM disciplines have historically seen large proportions of stu-
dents not completing the degree they initially pursue [26, 30], and 
CS is no exception [9].  

A history of low retention and degree completion rates in CS 
[13, 14] have prompted research into factors contributing to re-
tention because understanding these factors can help educators 
develop strategies to attract and retain students in CS programs. 
For example, researchers have found prior exposure to CS and 
programming [13], personality characteristics [1], motivation for 
a given course [23], the learning environment [9], and achieve-
ment in introductory CS courses [13] are factors that predict stu-
dents’ continued enrollment in CS courses. In addition to these 
factors, students’ experiences in classes within a certain discipline 
can impact whether they keep taking classes [2, 5, 31]. 

To date, we are unaware of any research on the impact of CS 
students’ perceptions of instructional practices on their retention 
in CS courses. The present study is intended to help fill this gap 
in the literature. As instructors, programs, and universities seek 
to improve retention rates, it is especially important to under-
stand factors related to retention that are within the control of ed-
ucators. Many aspects of instruction are under the complete or 
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near complete control of the teacher, making instructional prac-
tices a potentially fruitful area for interventions that can impact 
retention.   

The purpose of this study was to examine how retention in CS 
courses is impacted by (a) students’ perceptions of an infor-
mation-transmission orientation to teaching (later called teacher 
directedness, TD) and (b) the perceptions of peer cooperation and 
interaction within a course section (later called cooperative learn-
ing, CL). The research question guiding this study was, do stu-
dents’ perceptions of instructional practices impact the likelihood 
they will enroll in at least one CS course the following semester? 
In the next section, we review research related to this research 
question. Then, we describe the study that was conducted, fol-
lowed by results of the study, a discussion of the findings and 
their implications, and finally, we present concluding remarks. 

In addition to contributing to the CS education literature by 
addressing the main research question, this study also contributes 
to the field by demonstrating an application of a multi-level lo-
gistic regression model within a CS education context. Multi-level 
models (MLMs) are used within education research to account for 
“clustering” within data, which naturally occurs in samples that 
consist of students who are clustered within a set of courses, a set 
of schools, or both. In this study, students were recruited from 25 
different course sections over 4 semesters. Failing to account for 
this type of clustering within a dataset biases statistical estimates 
because individuals within a cluster tend to be more similar to each 
other than to individuals from different clusters because of the 
shared influence of the environment of their cluster (in this case, 
being in the same course section). As CS education research con-
tinues to grow and studies continue to draw larger samples from 
multiple courses and institutions, it will become more and more 
necessary for scholars to be familiar with MLMs and their appli-
cations in order to account for clustering biases in their studies. 

2 RELATED RESEARCH 

2.1 Perceptions of the Classroom  
Students’ perceptions of the classroom influence their behavior 
related to that course. Importantly, students’ perceptions can dif-
fer markedly from teachers’ beliefs about students’ perceptions of 
their course. For example, this difference is evident to every in-
structor who has been shocked by end-of-term student evalua-
tions. Because instructors are not always able to objectively judge 
the climate of their classroom or the way their instruction is per-
ceived, it is important to consider the role of students’ percep-
tions. Researchers in a variety of disciplines have examined the 
impacts the perceived classroom environment has on multiple 
outcomes. For example, [25] studied the relationship between col-
lege students’ perception of the classroom environment, cheating, 
and justifications for cheating. Across a range of disciplines, as-
pects of students’ classroom perceptions were associated with 
cheating in that course. Specifically, students who perceived the 
course as being better organized and were more satisfied with 
their experiences in the course were less likely to cheat. Class-
room perceptions were also related to justifications for cheating, 
whether or not the student had cheated (or admitted to cheating). 

Students reported greater justifications for cheating when (a) 
they felt less of a personal connection to their instructor, (b) they 
reported less engagement during classes, (c) felt less collegiality 
toward classmates, (d) were less satisfied with the course, (e) per-
ceived classes as less organized, and (f) felt less autonomy and 
control over their work in the course.  

In [3], undergraduate chemistry students’ perceptions of the 
relative emphasis of learning and assessment outcomes (e.g., 
grades), cognitive engagingness of lectures, and the harshness of 
grading practices were related to the types of achievement goals 
they set for the course, which in turn impacted their achievement 
and motivation for the course. Students who perceived the in-
structor as being focused on grades, rather than learning, were 
less likely to set goals to master course content (mastery goals) 
and were more likely to set goals related to their final grade and 
others’ judgments of their competence (performance goals). Stu-
dents who perceived grading practices as harsh were also less 
likely to set mastery goals and were more likely to focus on not 
failing (performance-avoidance, as opposed to goals to work to-
ward a desirable grade, performance-approach). Finally, students 
who judged lectures as engaging were more likely to set mastery 
goals and were less likely to set performance-avoidance goals. 
Course perceptions had an indirect impact on motivation and 
course grades, with mastery goals positively related to both out-
comes, performance-avoidance goals negatively related to both, 
and performance-approach goals positively related to grades. 

Finally, [32] studied the relationships between marketing stu-
dents’ perceptions of the classroom “climate” and self-regulated 
cognition, motivation, and behavior. Students’ perceptions of the 
classroom climate were predictive of their achievement goal ori-
entation, perceived competence, and perceived autonomy in the 
course. Additionally, perceptions of the climate related to grades 
and performance evaluation in the course were predictive of stu-
dents’ use of planning strategies when studying for the course. 

2.2 Interventions Targeting Retention  
There are numerous examples of interventions aimed at increas-
ing retention in science, technology, engineering, and mathemat-
ics (STEM) disciplines being implemented, evaluated, and re-
ported through peer-reviewed publication. For example, Wilson 
et al. [31] described a program implemented at the Howard 
Hughes Medical Institute at Louisiana State University (LSU-
HHMI). The LSU-HHMI Professors Program integrated mentor-
ing, undergraduate research experiences, and supplemental aca-
demic and professional development opportunities through a 
multi-tiered mentoring model. Students in the mentoring pro-
gram had higher six-year graduation rates than LSU STEM stu-
dents not in the program and STEM students across the US who 
enrolled in a STEM program in the same year.  

As a second example, Dagley et al. [5] described a STEM learn-
ing community that increased undergraduate students’ retention. 
The two-year EXCEL program at the University of Central Florida 
incorporates residential, (an on-campus learning community) so-
cial (STEM-oriented social events), and curricular (undergraduate 
research experiences and cohort-based math courses) compo-
nents. Analysis of student retention over several years indicated 
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that students in the EXCEL program were more likely to still be 
enrolled in their STEM major one year after matriculation and 
were more likely to graduate than comparable STEM students 
who did not participate in the EXCEL program during the same 
time period.   

Though programs like those described in [31] and [5] have 
been shown to be effective, they are comprehensive, resource-in-
tensive programs that can only be implemented if key personnel 
at multiple levels of an institution agree to devote the resources 
to implementing such a program. When budgets are tight or being 
cut or other barriers to large-scale change exist, smaller interven-
tions that can be implemented by one or a few committed indi-
viduals are a more viable option. In today’s climate, academic 
units are asked to do more for an increasing number of students 
with fewer financial resources. As a result, it is increasingly im-
portant for efforts to increase retention to be less resource-inten-
sive than comprehensive programs like the ones described above. 
Program- or department-level changes and classroom-level in-
structional choices are two possibilities for increasing retention 
while placing a minimal demand on resources.  

A few program-level changes and classroom-level interven-
tions have been shown to increase CS majors’ retention in CS. For 
example, Ott et al. [21] reported a program-level change that im-
pacted student retention. At the studied institution, two versions 
of introductory CS were offered: one for students with program-
ming experience and another for students with no prior program-
ming experience. For several years, students could opt-in to the 
course for students with programming experience, but relatively 
few students with programming experience did. . When students 
were required to take a placement exam, more students enrolled 
in the course that was appropriate for their level of prior experi-
ence, and the change in placement procedures increased the like-
lihood that students would continue taking CS courses. In a class-
room-level intervention reported by Carver et al. [2], pair pro-
gramming was used during an introductory course’s laboratory 
exercises. Pair programming is a collaborative approach to pro-
gramming activities that involves pairs of students who take 
turns working in two roles, the programmer or “driver” and the 
debugger or “navigator” [28]. First-year students in introductory 
programming courses that used pair programming were more 
likely to persist in their computing major than students in the 
same courses that did not include pair programming activities [2]. 
In both of these examples, an intervention heavily tied to the CS 
curriculum was successful in increasing retention among stu-
dents with a computing major. In contrast, our interest lies with 
determining whether aspects of the instructional practices impact 
whether students take additional CS courses. 

Classroom-level changes that might impact student retention, 
such as choices related to instructional practices, are relatively 
low-cost and simple to implement, as compared to the large-scale 
programs outlined by [5, 31]. For example, the model put forth by 
Graham et al. [10] identified instruction that incorporated active 
learning as a contributor to students’ persistence in STEM pro-
grams. Active-learning instruction, which can include coopera-
tive learning (CL), is a relatively low-cost way to potentially im-

prove the learning experience of all students, majors and non-ma-
jors alike. It is possible that multiple aspects of instruction are 
related to the likelihood that students will continue taking CS 
courses. Understanding how instructional practices are associ-
ated with retention can provide a basis for implementing class-
room-level interventions for increasing retention in CS. 

3 METHOD 
The study was approved by the university IRB and students par-
ticipated voluntarily in data collection. Data used in this study 
were collected as part of a larger NSF-funded study of computa-
tional thinking in undergraduate CS. Only the data collection and 
materials that pertain to the present study are described here. 

3.1 Participants and Procedure  
Participants in the study were undergraduate students enrolled in 
CS courses at a large, public, Midwestern university (N = 607; 502 
male, 105 female). The sample contained students at all academic 
levels (213 freshmen, 206 sophomores, 129 juniors, 59 seniors) and 
were recruited from five 100-level courses (n = 420), one 200-level 
course (n = 64), three 300-level courses (n = 82), and five 400-level 
courses (n = 41) over four semesters. The number of unique sec-
tions (i.e., the number of clusters in the analysis) was 25. 

Survey-based data collection took place three times during the 
semester: the first week, around the eighth week (depending on 
the timing of each course’s events), and the week prior to final 
exams. The surveys contained instruments that assessed aspects 
of students’ motivation, self-regulation, course-related affect, 
studying behaviors, and perceptions of classroom instruction as 
well as demographic information. The end-of-semester survey 
also included a test of core CS concepts (described in Section 3.2). 

Upon consenting to participate in the study, participants had 
the option of granting the researchers access to their future 
course enrollment. Enrollment data were obtained from the uni-
versity after the open drop/add period for that semester had 
ended. Students who did not enroll in any classes during the se-
mester following their participation in the study were not in-
cluded in the analysis because of the multiple reasons students 
might not enroll in classes (e.g., graduation, transferring, drop-
ping out of school). As a result, the comparison is of students who 
enrolled in a CS course and students who were enrolled at the 
university, but did not enroll in a CS course during that semester. 
Enrollment data were coded dichotomously and indicated 
whether students did (enrollment = 1) or did not (enrollment = 0) 
enroll in a CS course the following semester. Instances of students 
re-enrolling in the course from which they were recruited were 
not counted: students retaking a course had to be enrolled in at 
least one additional course to be counted as enrolling in CS during 
that semester. In the sample, 53.4% of participants (n = 356) en-
rolled in a CS course the following semester. 

3.2 Predictor Variables  
Student perceptions of instructional practices were measured by 
the Student Perceptions of Classroom Knowledge Building 
(SPOCK) scale. The SPOCK is a course-specific instrument that 
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measures students’ self-regulation and use of learning strategies, 
question-asking behaviors, and perceptions of the classroom en-
vironment, including CL and TD. A shortened version of the 
SPOCK that has been used in other studies [7, 27] was used here, 
and only the items relating to the classroom environment (Coop-
erative Learning and Teacher Directedness subscales) were in-
cluded in the analysis. The shortened version contains 27 items 
that make up the same subscales as the full version. Items in the 
SPOCK are paired with a 5-point response scale that ranges from 
“almost never” to “almost always”. Each response category has a 
brief description (e.g., Often, occurred frequently: occurred about 
¾ of the time) to assist respondents in interpreting the labels. 

The Cooperative Learning subscale contained 3 items (“In this 
class, my classmates and I actively worked together to help each 
other understand the material.” “In this class, my classmates and 
I actively worked together to complete assignments.” “When I did 
my work in this class, I got helpful comments about my work 
from other students.”). For this sample coefficient alpha was .82. 
The Teacher Directedness subscale contained 3 items (“In this 
class, the instructor focused on getting us to learn the right an-
swers to questions.” “In this class, the instructor told us what the 
important information was.” “In this class, the instructor gave us 
specific instructions on what we were to do.”). For this sample 
coefficient alpha was .78. 

Scores on the Nebraska Assessment of Computing Knowledge 
(NACK) were used to control for the relationship between stu-
dents’ mastery of CS content and retention. The NACK is a 13-
item multiple-choice test of core CS concepts. It served as a meas-
ure of CS mastery that was uniform across courses and instruc-
tors. The test has been used in prior studies and information on 
its development is available in [20, 27]. Coefficient alpha for this 
sample was .78. 

Participants’ self-report of their status as a declared CS major 
was used to control for the relationship between one’s major and 
retention. For the question, “Are you considering a major or mi-
nor in Computer Science/Computer Engineering?” the response 
options were “Yes,” “No,” and “I am already majoring/minoring 
in Computer Science/Computer Engineering. Because declared or 
intended major/minor is one of the strongest influences on the 
classes one takes, we included major status as a control in our 
model. The three options were dummy coded into two binary var-
iables: one for “considering” status (considering = 1, else = 0), one 
for “majoring” status (major = 1, else = 0), leaving the intercept as 
those not considering or majoring in CS or computer engineering.  

3.3 Multi-level Models (MLMs) 
In education research, samples are often drawn from naturally 
clustered systems, such as students nested within courses that are 
nested within schools. Clustering introduces bias into statistical 
estimates because of the probability that individuals within the 
same cluster are more similar (in terms of measured and unmeas-
ured variables) than individuals from different clusters. Multi-
level models [8,12] make it possible to account for multiple levels 
of clustering within data, and can be used with a range of classic 
single-level statistical approaches including regression, random-
coefficient models, and structural equation modeling (SEM).  

When generating a MLM, one specifies relationships among 
variables at the within- or micro- level (also, Level 1) and the be-
tween- or macro- level(s) (also, Level 2, Level 3, etc.), and possibly, 
between levels. In the present study students were nested within 
course sections, making Level 1 the student level and Level 2 the 
section level (there were not enough unique courses to model a 
third level for course). The Level 1 portion of our model specifies 
relationships between Level 1 predictor variables—perceptions of 
instructional practices, major status, and achievement—and Level 
1 outcomes—enrollment in a CS course the following semester. 
The Level 2 portion of our model specifies relationships between 
Level 2 predictors—the section mean of perceived instructional 
practices—and Level 2 outcomes—the section mean for enroll-
ment in a CS course the following semester. A logistic regression 
model was used because enrollment was coded as a dichotomous 
variable. Figure 1 shows a visual depiction of the model. 

A statistic of interest for MLMs is the intra-class correlation 
(ICC). The ICC indexes the amount of variability in the outcome 
(here, retention) that is accounted for by the clustering included 
in the model (here, course sections). If there are large differences 
in the outcome variable between groups (course sections) but lit-
tle difference within each group, the ICC will be close to 1. Con-
versely, if there are large differences within groups and group 
means are nearly identical, the ICC will be close to 0. In this study, 
a high ICC would indicate most students in some course sections 
took subsequent CS courses and most students in other courses 
did not, and a low ICC would indicate the rate of retention was 
similar across all course sections.  

Other statistics of interest for the model used in this study are 
(1) R2, (2) regression coefficients, and (3) odds ratios. In logistic 
regression, the interpretation of R2 is similar to that of regression 
with continuous outcomes. Logistic regression coefficients esti-
mate the change in the natural log of the odds that the outcome 
will occur (here, enrollment = 1) that is associated with every 1- 
unit increase in the predictor variable, and thus, are not intui-
tively interpretable. The odds ratio, however, indicates the 
change in the odds of the outcome occurring that is associated 
with a 1-unit increase in the predictor variable, and is more read-
ily understandable. For example, an odds ratio of 2.0 for majoring 
or not majoring in CS in this study would indicate that the stu-
dents already majoring in CS (x = 1) were twice as likely to take 
a CS course as students not already majoring in CS (x = 0). 

Finally, the fit statistics used for model comparison were the 
Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC). AIC and BIC can be used to compare the fit of 
related models. They take into account model fit (in terms of log 
likelihood) and model complexity (in terms of the number of pa-
rameters estimated), with BIC giving a steeper penalty for addi-
tional parameters. For both statistics, smaller values indicate a 
better fitting model, but because they are heavily influenced by 
the nature of the tested model, there are no conventions or cutoffs 
for interpreting them like there are for some other fit statistics.  

The analysis for this study was conducted in Mplus V. 8.1 [18] 
using the analysis command “TYPE = TWOLEVEL,” indicating a 
two-level clustering structure and the inclusion of randomly var-
ying intercepts for each cluster (i.e., a separate cluster mean was 
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Figure 1: Diagram of the Tested Multi-level Model. 

estimated for each cluster). The cluster variable indicated the 
unique course section from which participants were sampled. In-
cluding a random intercept for course section is a way to account 
for uniqueness associated with a given cluster, including the in-
structor, the course level, and the shared environment of the 
course section. Student ratings of CL and TD included in Level 1 
were centered within-cluster so that estimated parameters would 
reflect a students’ perception of the environment, relative to his 
or her classmates. This method of centering also makes it possible 
to separate the individual-level effects from the class-level effects 
[16]. The indicators of CL and TD included in Level 2 were cluster 
means, therefore capturing the relationship between average rat-
ings of CL and TD and proportion of students in a cluster that 
enrolled in a CS course the following semester. Assuming that the 
group average ratings of instructional practices approximates ac-
tual instructional practices, the inclusion of centered-within-clus-
ter parameters and group mean parameters allowed us to model 
the effect of the individual’s perception on retention as well as 
the effect of the actual instructional environment. 

When using aggregations of individual ratings as an indicator 
of a classroom-level variable, the reliability of the classroom-level 
variable must be checked [16]. This is done by calculating the ICC 
for the variable and then using the Spearman-Brown formula to 
adjust the ICC according to the average number of units (here, 
students) per cluster (Eq. 2 in [16]). The estimate of reliability of 
the aggregate variable increases as the cluster size increases, sim-
ilar to the expected increase in the reliability of test associated 
with increasing the number of items on the test.  

4 RESULTS 

4.1 Baseline Model 
First, we tested a baseline model to determine the extent to which 
participants’ section predicted their enrollment. The ICC for the 
empty model was 0.734, indicating the majority of variability in 
enrollment was accounted for by the course section in which  

Table 1: Model Statistics 
Model AIC BIC ICC 
Empty 504.77 513.77 0.743 
Full 363.33 403.13 0.476 

Table 2: Logistic Regression Statistics for the Full Model 
 B S.E. Wald p Odds 

ratio 
Level 1      
CL* 0.17 0.15 1.14 .256 1.18 
TD* -0.18 0.20 -0.89 .374 0.84 
CS Knowledge Test 0.14 0.06 2.47 .013 1.15 
Considering Major 3.10 0.35 8.80 <.001 22.11 
Already a Major 3.81 0.66 5.74 <.001 44.98 
Level 2      
CL** -1.33 0.66 -2.01 .044 -- 
TD** 0.12 0.90 0.13 .893 -- 

Note. B = regression coefficients, S.E. = standard error, CL = cooperative learning, 
TD = teacher directedness, *centered-in-cluster, **cluster mean. 

participants were enrolled. ICCs and fit statistics for both models 
are shown in Table 1. The high ICC was unsurprising, as students 
in advanced courses were likely CS majors who would take addi-
tional CS courses and some of the introductory sections at this 
university were mostly taken by non-CS majors. Because our hy-
pothesized model included Level 2 predictors (i.e., predictors re-
lated to characteristics of the different course sections), we ex-
pected the ICC to be lower once the predictors were added. 

4.2 Reliability of Aggregate Variables 
The reliability of the aggregate classroom perception variables 
was then estimated. This was done by following the procedure 
described in Section 3.3. For Cooperative Learning, ICC = 0.332, 
and for Teacher Directedness, ICC = 0.203. The average number 
of students per cluster was 26.68. As a result, the reliability esti-
mates for the class means were CL = 0.930 and TD = 0.872. 

4.3 Hypothesized Model 
The “full” hypothesized model that included all the predictor var-
iables was then tested. Model fit statistics indicate the full model 
better approximated the data than the empty model. As expected, 
the ICC for the full model was lower, ICC = 0.476, than for the 
empty model, indicating the set of predictors partially explained 
the differences between clusters. The predictors and their statis-
tics are shown in Table 2.  
 As expected, the control variables were significant. Majors 

were 45 times more likely and those considering a CS major 
were 22 times more likely to enroll in a CS course than non-
considering non-majors. Higher mastery of course content was 
associated with a slightly higher likelihood of taking additional 
CS courses.  

 Level 1 perceptions of CL and TD were not significant.  

 Interestingly, a higher cluster mean rating of CL was associated 
with a lower likelihood of taking additional CS courses.  

5 DISCUSSION AND IMPLICATIONS 
This paper demonstrates an application of a MLM in CS education 
research. Because of the naturally occurring nesting in education 
settings, MLMs are needed when samples are drawn from multi-
ple courses or institutions. As the CS education field continues to 
grow and conduct larger studies, it will be necessary for research-
ers to become familiar with and be able to implement MLMs.  
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Of central importance to this paper, students’ individual per-
ceptions of instructional practices were not associated with reten-
tion. A student who perceives the classroom as using more peer 
cooperation or as being more teacher-directed is no more or less 
likely to take additional CS courses than a student who perceives 
that same classroom environment as less so. A second central 
finding of this paper is that the aggregate rating of CL in a course 
section was associated with a lower retention rate. It is possible that 
this unexpected relationship is due to a greater emphasis on using 
CL in introductory courses, which contain higher numbers of 
non-major students who are unlikely to take CS beyond that level.  

Reviewing the course section means for CL revealed, not that 
CS1 courses were consistently higher in using CL, but that CS1 
course sections tended to be more similar in their aggregate rat-
ings of CL (Ms from 2.43 to 3.56) than upper-level courses (Ms 
from 1.57 to 3.86). At this time, it is unknown how this variability 
in the extent to which CL is used in upper-level courses might 
impact students’ experiences and satisfaction with their course, 
but future research should explore this topic. 

The measures of perceived instructional practices included in 
this study were targeted at general instructional practices, and did 
not include CS-specific practices that are prominent in the litera-
ture. Future research should examine the impact of more specific 
instructional practices on retention, such as active learning [17], 
pair programming [24, 29], game-based learning [22], context-
based instruction [4], and the use of multimedia [11]. A final point 
of importance is that the general instructional practices examined 
here were not predictive of retention in CS, but concept mastery 
was, underscoring the importance of using high-quality, evi-
dence-based teaching practices that increase the likelihood that 
students will master CS concepts and skills.  

Unsurprisingly, the strongest predictor of students’ continued 
enrollment in CS courses was their status as a major or consider-
ation of a major in CS. Because students’ majors have an excep-
tionally large influence on the courses they take, it is critical to 
take major into account when studying retention in a specific dis-
cipline. The sample in this study included students in introductory 
CS (CS1) courses that were required for their non-CS major, with 
engineering students comprising a substantial portion of students 
in the CS1 course sections. It also included CS1 sections for CS 
majors and upper-level CS courses that were overwhelmingly 
taken by CS majors. Even after accounting for the different sec-
tions students were in (by using a MLM), students’ individual sta-
tus as a major, non-major, or considering a major strongly pre-
dicted whether they would take an additional CS course. It should 
be noted, however, that the modes tested in this study did not in-
clude random slopes, and thus specified that the relationship be-
tween the instructional practices variables and retention is the 
same for all of the courses. Future research (with a larger sample 
of course sections) should consider the possibility of differences 
in this relationship by including random slope parameters. 

Students scoring higher on the test of core CS concepts were 
also more likely to continue taking CS courses. However, the cau-
sality of this relationship cannot be determined from this study: it 
is possible that students who have greater mastery of the course 

perceive that mastery as a cue they should continue in the disci-
pline, but it is also possible that students who have decided to take 
multiple CS courses are more likely to master the content. In all 
likelihood, both explanations are at least partially true. 

Given the above observations, we propose that the reason is 
that students’ decisions to take additional courses in a discipline 
is based on their major and future career plans, which has been 
shown to be related to retention in CS [19], and is not influenced 
much by the instructional practices used in any one course. It 
should be noted that there is abundant research indicating in-
structional practices can influence students’ learning: this expla-
nation does not dispute that literature, but rather suggests that the 
relationship of instructional practices with learning is separate from 
the relationship with retention. 

6 CONCLUSION  
As CS educators continue to be concerned with increasing reten-
tion rates of students in undergraduate programs, it is important 
for the community to better understand the factors that contribute 
to success and retention in CS. This study examined how four fac-
tors, (1) students’ perceptions of instructional practices, (2) class-
level indicators of instructional practices, (3) students’ status as a 
CS major, and (4) students’ mastery of course content, are associ-
ated with the likelihood students will continue enrolling in CS 
courses. Through multi-level modeling, these relationships were 
tested simultaneously across a large number of course sections 
that included courses from CS1 to senior-level courses. Findings 
from this study indicate that after controlling for students’ indi-
vidual plans related to majoring in CS and their mastery of CS 
concepts, the general instructional practices used in the course sec-
tion do not predict retention. Additional research on other CS-spe-
cific instructional practices might help CS educators identify those 
practices that can encourage students to keep taking CS courses.  

One of the contributions from this study is the use of multi-
level modeling. Without multi-level modeling, it would not be 
possible to analyze the relationships of course-level variables 
across a set of courses, and person-level estimates would not be 
accurate. Had only the person-level variables been used in this 
study, the course-level effect of CL would not have been detected.  

In addition to investigating the impact of other instructional 
practices on retention, future research should further study the 
role of content mastery and students’ majors on retention. With 
content mastery, more closely examining the aspects of core CS 
content that predicts retention and success in later classes could 
provide insight into how course topics should be timed, reviewed, 
and paired with other interventions designed to increase reten-
tion. With students’ major, considering the possibility of differen-
tial impacts of instructional practices on CS majors and non-CS 
majors could provide insights into which practices are best suited 
for which groups of students, with respect to retention. If the re-
lationships between instructional practices and retention are dif-
ferent for majors and non-majors, it would suggest that some 
practices are more suited for CS1 courses and others for later 
courses. Overall, there is still much to be learned about how in-
structional practices are related to retention in CS. 
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