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Inter- and Intra-specific Interactions in Germination and Seedling  
Establishment of Cheatgrass and Russian Wildrye 

ERIN K. ESPELAND1

USDA ARS Pest Management Research Unit, 1500 N. Central Avenue, Sidney, MT 59270, USA 

ABSTRACT Cheatgrass (Bromus tectorum) is an invasive species in the arid and semi-arid west of the USA, and is weedy in 
disturbed prairie landscapes.  Perennial Russian wildrye (Psathyrostachys juncea) limits population growth of cheatgrass, but 
the mechanism is unclear.   I conducted glasshouse and greenhouse experiments to test if intra- and inter-specific competitive 
interactions of seeds and seedlings of cheatgrass and Russian wildrye were different across a geographic soil gradient with dif-
ferent cultivation legacies in eastern Montana, USA.  Seed-seed interactions occurred in both species.  Cheatgrass and Russian 
wildrye inhibited one another’s emergence in one edaphic condition in one experiment.  Cheatgrass growth was less inhibited by 
Russian wildrye than by intraspecific neighbors.  It appeared that cheatgrass was more sensitive to environmental conditions such 
as edaphic conditions and intraspecific competition than Russian wildrye.  Understanding how environmental conditions prevent 
cheatgrass emergence is a key aspect of controlling cheatgrass invasion.

KEY WORDS cheatgrass, competition, germination, Russian wildrye, seed coat, soil

Since the 1930s, cheatgrass (Bromus tectorum) has in-
vaded the arid western United States, changing the fire re-
gime in this part of the continent and converting the Great 
Basin ecosystem from a carbon sink to a carbon source 
(Bradley et al. 2006).  Annual weeds also are problematic 
in the northern Great Plains, particularly in disturbed areas 
(Eiswerth et al. 2009).  Many experiments to determine fac-
tors that limit cheatgrass populations, such as herbicide con-
trol and competitive effects from perennial grass species, 
have been performed (Klomp and Hull 1972, Whitson and 
Koch 1998, Beckstead and Augsperger 2004, Mazzola et al. 
2008, Blank 2010).  Competition from perennial grasses may 
be important in limiting expansion of cheatgrass populations                
(Thacker et al. 2009).  However, the effects of soil on com-
petitive interactions that control cheatgrass are complex and 
need further study (Mazzola et al. 2008, Blank 2010, Emam 
et al. 2014).

Russian wildrye (Psathryrostachys juncea) is planted as 
a pasture grass throughout the intermountain west and north-
ern Great Plains of the USA. Competition from Russian wil-
drye has been shown to reduce cheatgrass cover (Whitson 
and Koch 1998) as well as the cover of other invasive spe-
cies (Ferrell et al. 1998), while other sown perennial grasses 
such as Siberian wheatgrass (Agropyron fragile) and crested 
wheatgrass (A. cristatum) do not compete well against cheat-
grass in the western USA (Klomp and Hull 1972, Mazzola 
et al. 2008).  Russian wildrye alters soil nutrient conditions 
by decreasing soil organic carbon and increasing soil pH, so-
dium, and sodium absorption ratios (Smoliak and Dormaar 
1985, Dormaar et al. 1995), while cheatgrass either increases 
or decreases available nitrogen post-invasion depending on 
the ecological context (Rimer and Evans 2006, Stark and 
Norton 2015).  High nitrogen levels increase cheatgrass com-
petitive ability (Rimer and Evans 2006, Adair et al. 2008, 

Rowe et al. 2008, Emam et al. 2014), however, some North 
American native soil microbial communities are able to se-
quester nitrogen away from this species, thus reducing its 
competitive advantage (Rowe et al. 2008). 

Legacies of land use can affect plant community composi-
tion long after landscapes are returned to non-cultivated sta-
tus (Jones et al. 2005, Morris et al. 2011). Legacies affecting 
plant community composition may be due to the signature of 
the disturbance of plowing (Dormaar et al. 1995, Davenport 
et al. 2014), propagule limitation in a landscape dominated 
by agricultural activities (e.g., Bekker et al. 1997), or changes 
in nutrients or microbial communities from cultivated plants 
(Smoliak and Dormaar 1985). Many soils of northern Great 
Plains of the USA have soils low in organic matter due to the 
farming practices of the region (USDA NRCS 2006).  

Although other work has shown competitive dominance 
of Russian wildrye over cheatgrass (Mazzola et al. 2008, 
Whitson and Koch 2008), these studies have not determined 
which life history stage is responsible for the outcome of this 
interaction and whether this interaction may be edaphically-
dependent.  Edaphic conditions not only refer to soil nutri-
ent and texture status but also the legacy effects mentioned 
above.  Using a combination of glasshouse and greenhouse 
experiments, I tested three hypotheses: 1) Russian wildrye 
excludes cheatgrass pre-emergence, 2) Russian wildrye com-
petitively excludes cheatgrass by resource pre-emption, and 
3) strength of direct and apparent competitive effect depends 
on edaphic conditions. 

STUDY AREA

At a north-south fence line in Bloomfield MT USA 
(533904E, 5232376N), cheatgrass was absent in the inter-
spaces of Russian wildrye (RWR) on the west side of the 

1 Corresponding author email address: Erin.Espeland@ars.usda.gov
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fence, but present within the plant interspaces on the east side 
of the fence.  Soils on both sides of this fence line are clas-
sified as Lonna silt loam with 2 to 4% slopes (USDA NRCS 
2014).  However, cultivation history and most recent biotic 
conditioning differs between the two pastures.  The western 
hayfield consists mostly of Russian wildrye and a few crested 
wheatgrass plants that were sown in the early 1990s.  The 
eastern Conservation Reserve Program lot was planted ap-
proximately 5 years later with a variety of perennial grass 
species native to the area as well as with crested wheatgrass 
and alfalfa.  Although it was not seeded, Russian wildrye has 
colonized this pasture.  It is likely that each field was fertil-
ized at the time of planting.  Neither field experienced live-
stock grazing since the time of seeding.  To test the effect of 
edaphic conditions on seed-seed and plant-plant interactions, 
I collected soil from each field as well as from the bound-
ary (three areas) and performed a glasshouse and a growth 
chamber experiment to determine the degree of influence 
of edaphic conditions on competitive dynamics under con-
trolled conditions.

METHODS

I collected soil and seeds from three areas on 11 August 
2009 along a fence line ecotone (300 m × 18 m).  This eco-
tone spans a gradient of population densities for each of the 
study species.  On the west side of the fence, Russian wildrye 
was planted in the early 1990s (HAYFIELD site); there were 
no cheatgrass plants (CHG) on this side of the fence.  On the 
east side of the fence, a variety of native perennial bunch-
grasses were planted prior to 2003 and a dense population 
of cheatgrass occurs in the interspaces (CONSERVATION 
site).  Since 2003, the Russian wildrye population has ex-
panded east across the fenceline into the cheatgrass popu-
lation.  The zone of expansion is the FENCE site.  While 
this site has historically had high cheatgrass densities, in the 
years of the study there were few cheatgrass plants in Rus-
sian wildrye interspaces.  I collected soil from each of the 
three sites (HAYFIELD, FENCE, and CONSERVATION).  I 
collected seeds along a 100-m long transect in each of the 
three areas and collected four soil subsamples from perennial 
grass interspaces (each 0.5-m2 and 10-cm deep) mixed within 
each transect for use in the glasshouse experiment.  I sent one 
sample from each of the three bulked samples to Midwest 
Laboratories (Omaha, NE, USA) for nutrient analysis (Table 
1).  I stored soil and seeds at room temperature until the start 
of the experiment.

Glasshouse experiment

The experiment in the glasshouse was to test plant-plant 
interactions and their edaphic dependence on seedling emer-
gence and growth in Russian wildrye and cheatgrass.  I 
planted seeds in mid-December 2009 into square pots (9-cm 

× 9-cm × 9-cm Dura pots; www.hummert.com).  In each of 
the three edaphic conditions, I planted cheatgrass seeds ei-
ther singly (123 seeds/m2, eight replicates), at a density of 
four (494 seeds/m2, five replicates), or a density of eight (988 
seeds/m2, five replicates) per pot.  I planted Russian wildrye at 
a density of one (eight replicates), four (five replicates), eight 
(five replicates), or sixteen seeds (1,975 seeds/m2, five repli-
cates).  Single-seed treatments had more replicates to reduce 
the variation I expected to see in this treatment because of 
the binary nature of emergence in single-seeded pots.  Sown 
Russian wildrye seed densities were higher than cheatgrass 
due to lower seed germination rates of Russian wildrye ob-
served in viability testing.  Preliminary germination tests also 
showed that HAYFIELD-collected seeds were not viable, 
so only FENCE-collected Russian wildrye seeds were used 
in this experiment.  To examine interspecific competition, I 
planted five replicates of mixes of cheatgrass and Russian 
wildrye (4 seeds of cheatgrass plus 8 seeds of Russian wild-
rye, total density 1,482 seeds/m2) in each soil.  Temperatures 
in the glasshouse averaged 11° C at night and 18° C during 
the day, with a 14-hr day length maintained by high-pressure 
sodium and metal halide lights.  Plants were well-watered 
with reverse osmosis water.  Emergence occurred within ten 
days of planting.  After four months (mid-Apr), I collected all 
above-ground biomass of each plant, dried at 30° C for three 
days, and weighed to the nearest 0.01 milligram.

There was a seed bank in the FENCE and CONSERVA-
TION pots; more cheatgrass plants germinated than the num-
ber of cheatgrass seeds sown in 48 of the 82 pots of these 
soil collections in this experiment.  One HAYFIELD pot had 
more cheatgrass emerged than was sown.  To limit the po-
tential for extremely abundant cheatgrass seed banks to in-
fluence my results, I eliminated pots with greater than eight 
cheatgrass plants from all summaries and analyses (8 pots).  
There were three pots of CONSERVATION where singly-
sown Russian wildrye produced more than one Russian wil-
drye plant.  These three pots were removed from the emer-
gence summary but included in the competition analyses.  I 
calculated average number of emerged plants per species per 
treatment (Table 2).  To test for experimental effects on emer-
gence, I only analysed pots of HAYFIELD where there was 
negligible evidence of a seed bank. I evaluated the effects of 
sowing treatment on square root-transformed percent emer-
gence of Russian wildrye and of cheatgrass using a multiple 
regression least square means method in JMP 10.0.2 (SAS 
Institute, Cary, NC, USA).  I determined differences among 
treatments for emergence with Tukey’s HSD. 

Because of the presence of a seed bank and variable ger-
mination, I chose to represent the inter- and intra-specific 
competitive environment during seedling growth by a con-
tinuous predictor variable (number of plants/pot of each spe-
cies).  I used an index of relative competitive intensity as 
the dependent variable to examine how the number and type 
of plant neighbors affect individual plant growth.  Relative 
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competitive intensity (RCI) is calculated by using the aver-
age biomass of the species grown singly in pots as a constant 
(μs).  For each pot with more than one plant in it, the average 
per plant biomass (μc) is subtracted from the constant (μs),  

and divided by the constant (μs).  RCI = 
μs – μc

 (Goldberg et 
                                                                    

μs

al. 1999).  Thus, when plants grown with neighbors are larger 
than plants grown alone this index is a negative number (fa-
cilitation).  The largest value of this index is 1 (complete com-
petitive suppression).  I calculated the constant (μs) and RCI 
for each species, using only biomass for Russian wildrye in 
the RCIRWR calculation and only using biomass for cheatgrass 
in the RCICHG calculation.  Using a multiple regression least 
square means method model in JMP 10.0.2, I examined the 
effects of the number of emerged cheatgrass plants, the num-

ber of emerged Russian wildrye plants, edaphic condition, 
and all two-way interactions on arcsine-transformed RCIRWR 
and RCICHG.  The RCI index calculates the competitive effect, 
and the statistical model asks if competitor identity, competi-
tor density, edaphic condition and their interaction contrib-
ute significantly to the competitive effect.  Shapiro-Wilk W 
values of transformed RCI were > 0.69, which indicates the 
data were close to normal distribution.  Because I performed 
this analysis to examine interactions among growing plants 
(not seed-seed or plant-seed interactions), only pots with 
emerged plants were included in this analysis.  The exclusion 
of pots with no emerged plants and the exclusion of pots with 
more than eight cheatgrass plants resulted in per site sample 
sizes of RCIRWR on CONSERVATION = 21, HAYFIELD = 
16, and FENCE = 24 and RCICHG on CONSERVATION =27, 
HAYFIELD = 8, and FENCE = 20.

Table 1.  Measured characteristics of HAYFIELD, FENCE and CONSERVATION edaphic conditions.

Edaphic conditions HAYFIELD FENCE CONSERVATION
Organic Matter (ppm) 2.2 2.9 2.9
Weak Bray P (ppm) 4 33 41
Strong Bray P (ppm) 24 103 124
Bicarbonate P (ppm) 6 34 36
Potassium (ppm) 320 496 590
Magnesium (ppm) 367 485 451
Calcium (ppm) 2,841 2,226 1,401
Sodium (ppm) 7 8 10
pH 8.1 7.8 6.9
CEC (meq/1000g) 181 165 123
Nitrate-N (ppm) 2 2 13

Table 2. Average number of Russian wildrye (RWR) and cheatgrass (CHG) plants per pot in the glasshouse experiment by edaphic 
condition and sowing treatment. Numbers in parentheses are one standard deviation.

Treatment HAYFIELD FENCE CONSERVATION
RWR CHG RWR CHG RWR CHG

Single species RWR
1 seed 0.5 (0.5) 0.0 0.5 (0.5) 0.6 (1.2) 0.6 (0.6) 6.4 (1.5)
4 seeds 1.4 (1.9) 0.0 1.6 (1.1) 1.4 (3.1) 1.4 (0.6) 5.2 (0.8)
8 seeds 3.6 (2.3) 0.2 (0.4) 4.4 (1.7) 0.8 (0.5) 2.6 (1.7) 4.6 (3.4)
16 seeds 4.4 (1.8) 0.0 7.0 (2.2) 1.2 (0.8) 4.6 (2.5) 4.6 (2.3)
Single species CHG
1 seed 0.3 (0.5) 0.4 (0.5) 0.13 (0.4) 0.63 (0.5) 0.0 3.0 (3.7)
4 seeds 0.4 (0.6) 4.0 (0) 0.6 (0.9) 4.2 (1.1) 0.2 (0.5) 5.0 (2.8)
Mixed species 0.0 0.0 2.6 (1.1) 4.6 (0.9) 3.0 (1.6) 13.2 (2.4)
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When competitor density was significant in the initial RCI 
model, I ran a follow-up model, including pots only with more 
than one competitor of the significant species and constrain-
ing the predictor variable to the same data range for each soil 
type when the interaction was significant.   For the RCICHG 
model, intraspecific density did not vary in HAYFIELD pots 
(density always equal to 4), so this edaphic condition was 
removed from the follow up model.

Growth chamber experiment

Emergence measured in the glasshouse experiment com-
bines experimental effects of the life history stages of ger-
mination and emergence.  I used the growth chamber ex-
periment to examine germination dynamics alone.  I tested 
germination of cheatgrass with and without Russian wildrye 
on filter paper and in each edaphic condition in petri plates in 
July 2012.  Seeds used for this experiment were from original 
2009 collections that had been stored at room temperature, 
while the soil was freshly- collected from the site in July 
2012.  As in the previous experiment, I took four soil samples 
from perennial grass interspaces on 100 m transects in each 
site type and bulked within transects.  These samples were 
smaller than for the previous experiment: each was taken 
with an 11-cm tall conical bulb planter (base and top diam. 
6 and 7.5 cm, respectively).  Each petri plate was lined with 
filter paper then sown.   Cheatgrass was sown with one of 
three treatments: 4 or 8 seeds (single species); or 4 seeds of 
cheatgrass plus 8 seeds of Russian wildrye (mixed-species).  
Russian wildrye was sown with one of four treatments: 4, 
8, or 16 seeds (single species); or 4 seeds of cheatgrass plus 
8 seeds of Russian wildrye (mixed-species).  For non-filter 
paper emergence media, I placed 0.5 cm of each edaphic 
condition (HAYFIELD, FENCE, and CONSERVATION) 
on top of the seeds.  I sieved soil to remove the seed bank 
prior to deposition in the petri plate.  The replication level of 
this experiment was five.  Prior to initiating the experiment, 
I watered soil in the petri dishes and loosely wrapped each 
dish with Parafilm (Beemis Flexible Packaging, Neema WI, 
USA).  Seeds were germinated for two weeks in a dark en-
vironmental chamber with 14 hr at 17.2° C and 10 hr at 8.9° 
C.  The soil in the petri plates was still damp at the end of the 
two weeks.  I classified a seed as emerged if cotyledons were 
visible.  At the end of the experiment, I excavated unemerged 
cheatgrass seeds to determine if germination (radicle protru-
sion through the seed coat) occurred.  

I tested differences among emergence media and sow-
ing treatment using a multiple regression least square means 
method model in JMP 10.0.2 on square root transformed ger-
mination percentages.  I performed Tukey’s HSD to further 
explore significant effects.   I used a chi-squared test to de-
termine if germinated, but not emerged cheatgrass seeds (or, 
“failed germination” as in Chambers and MacMahon 1994) 
were distributed differently across the treatments.

RESULTS

Glasshouse experiment

Treatment effects on seedling emergence test apparent 
competition: plants are too small to directly compete for re-
sources.  The effect of sowing treatment on emergence was 
tested only in the HAYFIELD soil because of the presence 
of cheatgrass seed banks in the other two edaphic condi-
tions.  There was no significant effect of seeding treatment 
on Russian wildrye (F4, 27 = 2.18, P = 0.10), but the presence 
of Russian wildrye seeds inhibited cheatgrass emergence in 
HAYFIELD pots, with no cheatgrass emerging in the mix 
sowing (F2, 17 = 10.28, P < 0.001), and 100% of sown cheat-
grass emerging in the cheatgrass-only high-density sowing 
(Table 2). 

 I used RCI to examine direct resource competition among 
plants.  RCICHG was affected by the interaction of intraspecific 
density and edaphic condition (F2, 54 = 29.57, P < 0.001).  The 
follow up model indicates that RCICHG increases with increas-
ing intraspecific density and this relationship differs between 
FENCE and CONSERVATION edaphic conditions (F1, 43 = 
22.68, P < 0.001, Fig. 1A).  RCICHG was marginally affected 
by Russian wildrye densities (F1, 54 = 3.87, P = 0.06, Fig. 1B), 
in FENCE and CONSERVATION pots (cheatgrass did not 
emerge in the mix treatment in HAYFIELD pots).  RCIRWR 
was affected by both intraspecific and interspecific densities 
when all pots were included in the analysis (F = 35.281, 60 P < 
0.001; F = 15.821, 60 P < 0.001, respectively).  The follow up 
model analysing pots where only multiples of the significant 
competitor were present indicated that increasing cheatgrass 
densities did not affect RCIRWR (F1, 89 = 0.03, P = 0.87), but 
that increasing intraspecific densities reduced Russian wild-
rye growth (F1, 43 = 22.68, P < 0.001, Fig. 2). 

Growth chamber experiment

Emergence results exhibited in the glasshouse could 
be due to either germination or emergence dynamics.  The 
growth chamber experiment specifically examines the ger-
mination response to seeding treatment and germination me-
dium (the three edaphic conditions plus filter paper).  In the 
petri plate germination test, both Russian wildrye and cheat-
grass were affected by germination medium (F3, 79 = 7.67, P 
< 0.001; F3, 59 = 7.00, P < 0.001, respectively).  Cheatgrass 
germination did not differ among the three sowing treatments 
or the interaction between treatment and medium (P > 0.5).  
Russian wildrye did not differ among the four sowing treat-
ments or the interaction between treatment and medium (P > 
0.5).  Filter paper supported the greatest germination for both 
species. Russian wildrye exhibited nearly twice the germina-
tion on filter paper compared to other media, and cheatgrass 
demonstrating almost complete germination (Table 3).  There 
were 2 germinated, unemerged seeds in the CONSERVA-
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Figure 1.  Plant density is associated with relative competitive intensity (RCI) for cheatgrass.  Bars equal to one standard error.  
Note differences in y-axes.  (A) Edaphic conditions alter relationship of competitive intensity to per capita intraspecific competi-
tion (P < 0.05).  As the number of cheatgrass plants per pot increases, intraspecific competitive effect (RCICHG) increases.  In CON-
SERVATION pots, transformed RCICHG = 1.021 + 0.046 × # cheatgrass plants per pot (P = 0.0003, R2 = 0.56). Per capita competitive 
intensity is greater in FENCE pots: transformed RCICHG = 0.837 + 0.094 × # cheatgrass plants per pot (P < 0.001, R2 = 0.89).  (B) As 
the number of Russian wildrye plants per pot increases, interspecific competitive effect (RCICHG) decreases: transformed RCICHG = 
1.197 − 0.066 × # Russian wildrye plants per pot (P < 0.001, R2 = 0.14).  

Espeland • Seed interactions in cheatgrass and Russian wildrye 27

Figure 1A.

Espeland • Seed interactions in cheatgrass and Russian wildrye 28

Figure 1B.
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Figure 2.  Intraspecific density is associated with a increase relative competitive intensity (RCI) for Russian wildrye.  Bars equal to 
one standard error.  As the number of Russian wildrye plants per pot increases, intraspecific competitive effect (RCIRWR) increases. 
Transformed RCIRWR = 1.006 + 0.062 × # Russian wildrye plants per pot (P < 0.001, R2 = 0.35).

Table 3. Mean percent germination of Russian wildrye (RWR) and cheatgrass (CHG) by emergence medium and sowing treatment 
in the growth chamber. Numbers in parentheses are one standard deviation. Data superscripted different symbols indicate signifi-
cant differences within species among germination media (Tukey’s HSD, P < 0.05).  Blank cells represent no data.   

HAYFIELD FENCE CONSERVATION Filter Paper
Treatment RWR CHG RWR CHG RWR CHG RWR CHG
Single species
4 seeds 20 (21) 85 (14) 40 (38) 63 (18) 25 (25) 95 (11) 55 (37) 95 (11)
8 seeds 13 (18) 83 (27) 28 (28) 85 (27) 18 (17) 90 (6) 40 (14) 100 (0)
16 seeds 9 (3) 11 (8) 8 (3) 35 (14)
Mixed species 12 (15) 75 (0) 29 (19) 75 (18) 13 (22) 90 (14) 58 (29) 100 (0)
Average 13 (14) * 81 (14) ¶,+ 25 (23) *,§ 74 (21) ¶ 16 (17) * 92 (10) +,γ 47 (23) § 98 (6) γ

Espeland • Seed interactions in cheatgrass and Russian wildrye 29

Figure 2.

TION, 5 in FENCE, and 9 in HAYFIELD emergence media.  
The distribution of germinated, unemerged seeds was not sig-
nificantly different among edaphic conditions (χ2

3 = 11.09, P 
= 0.27).   

DISCUSSION

These experiments show that Russian wildrye has a great-
er potential to limit cheatgrass pre-emergence than through 
competitive dynamics expressed during early plant growth. 
Cheatgrass is not suppressed by Russian wildrye presence 
once cheatgrass has emerged. In addition to commonly-

found interspecific competitive suppression of cheatgrass 
(Perry et al. 2009, Thacker et al. 2009), other studies have 
shown interspecific facilitation of cheatgrass where the pres-
ence of intraspecific neighbors increases cheatgrass biomass 
(Adair et al. 2008), although this relationship can depend on 
the genotype of the neighbor (Rowe and Leger 2011).  The 
direct competitive effect of Russian wildrye on cheatgrass 
was small compared to intraspecific competition.  Per capita 
effects of Russian wildrye on cheatgrass got smaller the more 
Russian wildrye plants were present in a pot. Although cheat-
grass emergence was too low in HAYFIELD pots to examine 
intraspecific competition in this edaphic condition, per capita 
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intraspecific growth interference occurred in the other two 
conditions.  In the glasshouse experiment, cheatgrass emer-
gence in the soil collected from the HAYFIELD area was 
reduced to zero by the presence of Russian wildrye seeds, 
and Russian wildrye also did not emerge in this treatment 
under this edaphic condition.  Cheatgrass germination was 
also low in HAYFIELD petri plates.  Although not statisti-
cally significant, the highest number of failed germinations 
(germinated but unemerged seeds) was in HAYFIELD plates.  
This evidence, taken together, suggests that edaphic condi-
tions in association with Russian wildrye presence may play 
a role in moderating cheatgrass abundance at very early life 
history stages.

In contrast to cheatgrass, Russian wildrye seems to be 
quite stable in emergence and competitive dynamics.  Edaph-
ic conditions alone did not influence Russian wildrye com-
petitive response, germination, or emergence.  Parallel with 
cheatgrass, Russian wildrye did not emerge in the mixed sow-
ing of HAYFIELD pots in the glasshouse.  The significance 
of cheatgrass presence in the preliminary competition model 
but not in the follow up model indicates that the presence of 
cheatgrass reduced Russian wildrye growth, but there were 
no per capita effects of cheatgrass on Russian wildrye.  Rus-
sian wildrye exhibited reduced growth when there were more 
intraspecific competitors. However, intraspecific competition 
in Russian wildrye appears to be less influential in the bi-
ology of Russian wildrye than the influence of intraspecific 
competition on cheatgrass: less of the variance in Russian 
wildrye size is explained by intraspecific competition than 
the variance explained in cheatgrass size.

Parallel interpretation of the glasshouse and growth 
chamber results are not only hampered by the presence of a 
seed bank in the edaphic conditions used for the glasshouse 
experiment, but also by differences in soil storage and seed 
storage that occurred in between the two experiments.  Soils 
used in the glasshouse experiment were stored at room tem-
perature for 4 months, while soils used in the growth cham-
ber experiment were freshly-collected.  Storage can alter 
both nutrient and microbial conditions in soils (Zornoza et 
al. 2009, Mian et al. 2011).  However, these changes are of-
ten minimal in soils from arid environments (Zornoza et al. 
2009), such as in eastern Montana.  In addition, in situ soil 
nutrient levels and microbial communities can change among 
years (Fernandes et al. 2002, Bottomley et al. 2006), which 
could have caused differences among collections made in 
2009 and those made in 2012.  Seeds used in the glasshouse 
experiment were recently-collected, while seeds used in the 
growth chamber experiment had been stored at room tem-
perature for three years.  Seed storage generally reduces both 
dormancy (Allen and Meyer 2002) and seed viability (Allen 
1957), and I observed that RWR germination percentages did 
appear to be lower in the growth chamber experiment.  It is 
possible that differences in soil collection timing and storage 
as well as seed age explain differences in Russian wildrye 

and cheatgrass emergence in HAYFIELD edaphic conditions 
between the two experiments.  While freshly-collected HAY-
FIELD soil reduced cheatgrass germination, the combination 
of stored HAYFIELD soil with fresh Russian wildrye seed 
inhibited cheatgrass emergence.  It is also important to note 
that freshly-collected Russian wildrye seed did not emerge 
in the HAYFIELD soil collection when cheatgrass was also 
sown, although both Russian wildrye and cheatgrass emerged 
in this soil collection when planted monospecifically.

While the lack of multiple samples make the potential for 
inference from soil nutrient availability to plant growth ex-
tremely limited, we can see that the HAYFIELD and FENCE 
edaphic conditions appear to have much lower nitrogen com-
pared to CONSERVATION.  In the long term, Russian wild-
rye has been shown to reduce organic material and raise pH 
and sodium in soils (Smoliak and Dormaar 1985, Dormaar 
et al. 1995).  Therefore, I expected that HAYFIELD would 
be distinct from the other two conditions.  Although organic 
matter appeared a little lower, and pH a little higher, sodium 
actually appeared lower in the HAYFIELD collection than 
CONSERVATION and FENCE.  The low levels of nitro-
gen in FENCE could have reduced competitive intensity in 
that edaphic condition, similar to the results of Emam et al. 
(2014).  There are indications that cheatgrass growth is nitro-
gen limited in other studies (Rimer and Evans 2006, Adair 
et al. 2008, Rowe et al. 2008).  The effects of nitrogen limi-
tation on cheatgrass emergence are unknown: none of these 
works cited above have specifically examined early life his-
tory stages such as emergence dynamics.

Because both Russian wildrye and cheatgrass emerged in 
the HAYFIELD edaphic condition in monospecifically-plant-
ed pots in the glasshouse experiment, and because mixed-
sown pots supported emergence of both species in the pots, 
I conclude that seed-seed interactions modified by edaphic 
conditions are likely responsible for the lack of emergence of 
both species in the mixed-sown HAYFIELD pots.  Seed-seed 
interactions found in other studies have largely been exam-
ined in ex situ conditions using neutral germination media 
(Dyer et al. 2000).  However, Laterra and Bazzalo (1999) 
found that the strength of seed-seed interactions increased in 
pasteurized soil compared to filter paper.  Although those re-
sults indicate that physical and chemical soil characteristics 
can increase allelopathic effects, the function of allelopathic 
chemicals can also be modified by soil microbial communi-
ties (Kobayashi 2004).  The mechanism of the exclusion of 
Russian wildrye and cheatgrass emergence in HAYFIELD 
edaphic conditions observed in the glasshouse experiment is 
unknown.  However, these experiments do show that edaphic 
conditions can determine the outcome of seed-seed interac-
tions as well as plant-plant interactions for Russian wildrye 
and cheatgrass in controlled environments.

Competition from desirable species is critical for inexpen-
sive, long-term invasive species control (Whitson and Koch 
1998, Waldron et al. 2005), although herbicide use is also an 
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important component (Blank and Young 2004, Weidenhamer 
and Callaway 2010).  When cheatgrass biomass is reduced 
by competition, smaller, competitively suppressed cheatgrass 
is still capable of producing seed (Pierson and Mack 1990).  
Others have suggested that effective integrated management 
of cheatgrass invasion should exploit factors that cause ex-
treme variation in emergence and survival (Mack and Pyke 
1984, Pierson and Mack 1990).  Biocontrol soil biota for 
cheatgrass that targets germinating seed is under develop-
ment (Kennedy et al. 1991, Meyer et al. 2007), however, 
pathogens that prevent cheatgrass emergence can depend on 
edaphic context for efficacy (Finch et al. 2013), therefore we 
need to understand the specific contribution of soils to this 
form of cheatgrass control.

MANAGEMENT IMPLICATIONS

This study shows that cheatgrass is limited by intraspecific 
competition and that increasing the density of one desirable 
species does not result in additive interspecific competitive 
suppression of cheatgrass. However, interspecific seed-seed 
interactions mitigated by edaphic conditions can reduce 
cheatgrass emergence to zero. This study suggests that focus-
ing on conditions that prevent emergence may be the most 
effective management strategy for this invasive species.
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