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Abstract

Unmanned Aircraft Systems (UAS) represent an important future technology, with the
ability to augment or replace conventionally piloted aircraft for a range of military and
commercial applications. Multiple industry sectors are rapidly embracing the technology,
further diversifying the application base and broadening their operational scope. The
result is an increased demand to allow unmanned aircraft regular access to unrestricted
civilian airspace. Integrating unmanned aircraft in such a complex and structured envi-
ronment is not trivial, and creates a set of challenging technical, regulatory and social
issues that remain unresolved.

The most restrictive, and arguably most important, issue is the lack of automated See and
Avoid systems for unmanned aircraft. This capability refers to the uncooperative, reactive
collision avoidance conducted by pilots in response to immediate threats, both static and
dynamic. It involves the pilots’ visual system, recollection of regulatory procedures and
pilot knowledge and skill. The encounter environment and collision avoidance approach is
quite unique, so although advertised for See and Avoid, many proposed solutions do not
adequately model or realistically consider the problem space. In particular range, aircraft
intent information or cooperative sensor technology is typically assumed.

This thesis addresses the automated See and Avoid problem from a realistic perspective,
leveraging only the information directly available from a single imaging sensor. In par-
ticular, range is not assumed or estimated, and explicit consideration is given to existing
aviation standards, practice and procedures. Under such constraints, and assuming object
detection, emphasis is placed on investigating how an effective vision-based decision and
control strategy can be developed. The problem presents a series of key challenges and
considerations. First, an avoidance decision must be made using only image features mea-
surements, that remains consistent with aviation practice to ensure predictable behaviour.
Second, a stable, effective and robust image-based control solution must be able to safely
re-position the unmanned aircraft to avoid potential collision objects. Third, a resolution
decision is required to cease the avoidance behaviour at an appropriate instance. Forth,
the system should be practical. The associated performance limits and parameter tuning
may be accomplished with appropriate simulation studies, but the system should be ver-
ified empirically. After all, if the system cannot be implemented, it is of no operational
significance.
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Considering the avoidance control, a set of spherical image-based controllers are derived,
that require only a single point feature and a coarse range approximation for feedback
control. Two general control approaches using classical partitioned image-based visual
servoing and visual predictive control are developed, comparatively assessed and subse-
quently implemented on a small aerial platform. The effects of over and underestimating
object range, added uncertainty and reference image feature placement are analysed. The
visual predictive control approach is shown to better manage the See and Avoid problem
constraints, whilst demonstrating sufficient robustness properties and real-time perfor-
mance. The results constitute the first implementation of both schemes for the relative
navigation of aerial platforms. The empirical nature of the research helps support the
viability of using image-based control for real applications, and represents a practical
contribution to vision-based control.

Leveraging the success of the visual predictive control approach, stability-based design
approaches for general nonlinear model predictive control are then applied to the control
problem. A Quasi-Infinite Horizon Visual Predictive Control (QIH-VPC) framework is
used to realise two significant benefits. First, an average reduction in the control effort
by 3% can be achieved compared to the standard (classical) visual predictive control
approach. Second, the inclusion of the terminal region in the control structure can be
used to select better reference image feature locations from a stability and feasibility
perspective. To explain, the terminal region size reflects the system nonlinearity and can
be used to approximate the domain of attraction for each reference image feature location.
For a single point feature, the terminal region is directly mapped to an image region,
providing a convenient visualisation of the system properties. The idea is general, so can
be extended to other camera models, object types and image-based control applications.
As determining the domain of attraction is difficult or impossible for classical image-based
control, the results represent a general contribution for vision-based control.

Considering the avoidance and resolution decision strategies, a novel threshold based
approach is derived for each function. The avoidance decision is based on assessing vi-
sual cues to actively re-position the object on the image surface. The specific reference
position is selected by considering the properties of spiral motion, aviation right-of-way
rules and the expected uncertainty on image feature measurement. The resolution de-
cision uses an objective function to indicate an appropriate time to stop the avoidance
behaviour, by coupling the platform heading and visual controller. The avoidance and
resolution decisions remain decoupled, and can be tuned using two mutually exclusive
decision thresholds. The complete decision strategy can be used with any imaging or
bearing-only sensor, complementing existing detection and tracking algorithms, and rep-
resenting a novel contribution toward See and Avoid subsystem development.
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As the optimal decision threshold values cannot be determined analytically, a new prob-
abilistic performance analysis methodology is introduced. Modified System Operating
Curves (SOC) are used to simultaneously evaluate system performance and visualise the
design tradeoffs. In this work, the key tradeoffs concern the decision threshold placement,
but the framework allows the effects of other system parameters to be uniformly com-
pared and visualised. Considering the attributes of a proposed system, an augmented set
of collision outcomes and associated collision avoidance metrics are derived. The metrics
acknowledge the fact that the system is reactive and fully automated such that action is
always taken, and taking avoidance action does not imply satisfactory resolution. By re-
maining consistent with aviation practise, this unique probabilistic evaluation framework
provides a novel tool to aid See and Avoid system analysis and development.

Combining each of the research elements and using the proposed evaluation framework,
the decision thresholds can be optimised such that the See and Avoid system is over 90% ef-
fective at avoiding collisions with minimum negative outcomes (collisions). The encounter
attributes that cause difficulty for the decision and control strategy are also identified.
The system performance was more sensitive to the resolution decision threshold, with
both liberal and conservative avoidance thresholds resulting in similar performance. Of
note, the predictive control strategy remained stable regardless of the encounter type,
whilst managing problem constraints.

Designing, verifying and certifying operational See and Avoid systems is a challenging
task that remains in the developmental stage worldwide. The approach presented in
this thesis demonstrates how vision-based decision and control for automated See and
Avoid can be derived, implemented and statistically evaluated in a generalised framework.
These advances constitute an important step toward certifying See and Avoid systems,
and provides a good foundation in which to stem further development and research. As
such, the results represent a particularly unique contribution toward the progression of
automated See and Avoid systems.

Keywords: Visual Servoing, Collision Avoidance, See and Avoid, Unmanned Aircraft,
Nonlinear Model Predictive Control, System Operating Curves
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Chapter 1

Introduction

1.1 Unmanned Aircraft Systems

An unmanned aircraft can be described as an aircraft flown without a pilot-in-command
onboard. The aircraft is either remotely and fully controlled or programmed and fully
autonomous. An Unmanned Aircraft System (UAS) can be described as an unmanned
aircraft and all supporting components and crew required for its operation. This may
include single or multiple command, control and support stations geographically dispersed
from the unmanned aircraft and situated on the ground, airborne or in space [1]. Existing
infrastructure such as navigational aids (global positioning satellites, terrestrial nav-aids
etc.) and air traffic control surveillance equipment (radars, instrument landing systems
etc.) are not considered as part of the unmanned aircraft system.

1.1.1 Benefits & Potential

The fundamental reason for developing any unmanned aircraft systems is to remove the
pilot from the aircraft in order to realise a number of key operational benefits. First, the
unmanned aircraft can stay airborne for longer hours (days) and travel greater distances,
without inducing pilot fatigue. Second, the unmanned aircraft may be operated in close
proximity or within environments that are either inhospitable or potentially harmful,
without the associated human risk. Third, some platforms may be operated at consider-
ably low cost and human resource. These benefits make unmanned aircraft an attractive
alternative to conventionally piloted or manned aircraft (CPA) for typically dull, dirty
and dangerous tasks. They also open up the possibility of new tasks, impossible with
manned aircraft. As such, unmanned aircraft systems have since been exploited for a
diverse set of existing and novel military and civilian applications.

For civilian applications, unmanned aircraft are typically viewed as a useful tool for
advanced surveillance and data collection [2]. Recent developments have seen smarter
platforms emerge, capable of interacting with the environment or delivering increasingly
diverse payloads [3, 4]. This has seen government departments (public service) and pri-
vate industry consider unmanned aircraft for a range of tasks within search and rescue,
border protection, infrastructure monitoring, agriculture, law enforcement and disaster
monitoring. Over the short term, precision agriculture and biosecurity applications are
expected to dominate [5, 6]. Current examples including weed identification and spraying
[7]-[9], crop and livestock monitoring [10, 11] and disease prevention [12]. Public services

1
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and infrastructure inspection are expected to follow, with current examples including fire
monitoring [13] and the inspection of power lines [14, 15]. In the longer term, it is an-
ticipated that unmanned aircraft will also be used for long-haul cargo and commercial
passenger transport [16].

This depth and diversity of applications are expected to provide significant benefits to the
community and across multiple industries. As an example, consider the frequent collection
of imagery over broad-acre commercial crops. The data can be used to better manage land
use, pesticide application and general health as well as predict optimal harvest times. In
turn, there is strong potential to increase productivity and improve profit margins. The
economical and environmental benefits are clear and similar examples can be formulated
for other natural resources and man-made assets. Alternately, a parallel argument can be
extrapolated for the social benefits inherent for other applications such as law enforcement
and disaster monitoring.

The perceived economical, social and environment benefits across multiple industries have
seen an increased investment in research and development of commercial platforms. As
a result, advanced low-cost systems are becoming available and the business case is be-
coming increasingly viable for potential commercial operators. This trend is evidenced by
multiple certified operators currently offering UAS-based services [17]. As the adoption
of this new technology continues to spread into new applications, and public acceptance
of unmanned aircraft gains traction, more business opportunities and significant industry
growth is expected. Current projections suggest the global UAS market value will almost
double in the next 10 years1, with an estimated worth of $89 billion (USD) [18]. This
figure includes both procurement and research and development activities, and accounts
for the expected relative growth in various industry sectors mentioned previously. Un-
manned Aircraft Systems therefore represent an important future technology, with real
potential to positively impact society.

1.1.2 Issues & Challenges

Despite the abundance of applications and associated benefits, unmanned aircraft are not
without their drawbacks. A number of technological, social and regulatory barriers must
be addressed to ensure unmanned aircraft not only remain useful, but can be frequently
and freely operated in a legal and safe manner.

From an application specific perspective, the issues concern whether the intended task
can actually be accomplished successfully. The task itself may be considerably challeng-
ing when using an unmanned aircraft. For example, this may be due to limitations of
onboard sensors or operator workload. Additionally, the physical environment in which
the unmanned aircraft must operate may be demanding. Dust, rain, visibility, temper-
ature, terrain or adverse weather (tropical storms) may need to be accounted for and
managed appropriately. As such, further research and development may be required to
bring technology to a satisfactory level required for success. Many of these issues are

1Includes civilian and military unmanned aircraft systems and associated technology.
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currently being addressed in the robotics community to ensure that unmanned aircraft
remain useful.

From a regulatory perspective, a more general issue concerns whether the unmanned
aircraft can operate both legally and safely in the intended environment [19, 20]. For
indoor operations, rules and regulations do not exist as such flights are generally not
considered as aviation. For outdoor operations, dedicated regulatory bodies2 determine
the rules and regulations for all aircraft operations within their respective airspace. For
such operations, it is infeasible to suggest existing air traffic management systems are
modified in light of this new airspace user. Unmanned aircraft must therefore comply
with existing practice and procedure such that they operate seamlessly with other airspace
users and existing infrastructure [21]. This means that UAS must operate at an equivalent
level of safety (ELOS) to manned aircraft so as to not degrade the overall safety of
the current air traffic management system. This requirement introduces a significant
number of non-trivial issues that must be addressed. Multiple attempts have been made
to enumerate each specific issue [22]-[24] and suggest possible solutions [25]-[27]. For
many issues, this involves defining the equivalent level of safety itself and subsequently
providing solutions to meet that level.

Consider again an unmanned aircraft conducting aerial work over agricultural land. Op-
eration will be primarily in daylight and in remote non-populous locations. From a appli-
cation perspective, this means the UAS may be required to operate Beyond Visual Line
of Sight (BVLOS) within Class G (uncontrolled) and possibly class C or D (controlled)
airspace [28]. From a regulatory perspective, this means the UAS must conform to Visual
Flight Rules (VFR), respect Visual Meteorological Conditions (VMC) and maintain con-
tinuous radio communication (VHF Air-Band) [29]-[33]. The unmanned aircraft should
also operate in a manner that is consistent and predictable to other airspace users and air
traffic controller expectations [34, 35]. A number of complex navigation, communication,
surveillance and information management tasks must therefore be replicated to at least
the equivalent level of safety as manned aircraft.

Most UAS lack sufficient capability to adequately perform all of the key functions required
by the regulator, and are therefore unable to operate freely within the airspace. Instead,
potential UAS operators must apply for an operators certificate3 to gain access to civilian
airspace [29, 30]. This process can be rigorous, costly and time consuming with significant
restrictions on where, when and how the UAS can be operated [36]-[38]. As such, the full
potential of unmanned aircraft cannot be realised until appropriately certified solutions
addressing strict regulatory requirements are derived.

2International Civil Aviation Organisation (ICAO), Federal Aviation Administration (FAA), Civil Avi-
ation Safety Authority (CASA) and EUROCONTROL (Europe).

3Certificate of Authorization (United States), Unmanned Operators Certificate (Australia) or experi-
mental certificate.
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1.1.3 See and Avoid

Collision avoidance and separation assurance is a multi-layered process at the core of
aviation safety. One of the key collision avoidance layers that is consistently identified
as a major roadblock to civil UAS integration, is the absence of See and Avoid (SAA)
capability. It is considered the last line of defence against a mid-air collision once all
auxiliary layers of the collision avoidance process have failed. In short, it is a form
of decentralized short term collision avoidance in which the pilot must independently
identify and avoid any unplanned hazard, be it static or dynamic [39]. It involves the
pilots visual system, recollection of regulatory procedures and pilot knowledge and skill.
It does not rely on existing infrastructure (radar etc.), onboard surveillance equipment
(TCAS, ACAS, ADS-B etc.) or air traffic services. The SAA function is thus a particular
type of collision avoidance constrained by pilot ability and behaviour.

The See and Avoid task itself is typically dissected into a subset of functions including
Detect, Decide and Act (DAA) or Observe, Orient, Decide and Act (OODA) [40, 41].
Taking a more generic approach, the system components can be positioned in the common
collision avoidance system framework namely; Detection (Detect or Observe and Orient),
Avoidance (Decide and Act) and Resolution. Detection involves the visual acquisition of
a potential collision threat. Avoidance involves the decision of how to act in response
to the threat and the implementation of that action. This may mean the alteration of
the aircraft path or indeed no action at all. Resolution, in this work, denotes when the
collision can be considered over or resolved and the aircraft is free to cease the avoidance
behaviour and return to its original path. The alignment of proposed See and Avoid
architectures with the traditional collision avoidance framework is depicted in Fig.1.1.

Recalling that UAS must be able to demonstrate an equivalent level of safety4 to that
of manned aircraft, the same applies to SAA capability. This means that either a pilot
remains in the loop or the system performs this task autonomously. Considering that a
pilot’s ability to adequately See and Avoid has also been deemed questionable [42]-[44],
research has focused on how an automated system may be able to aid, augment or replace
the pilot completely. This presents its own set of challenging problems [45]-[48].

Defining the exact technical design and performance requirements for SAA systems re-
mains as challenging as developing the systems themselves, and they continue to be refined
simultaneously [49]-[52]. In an attempt to classify SAA systems, two criteria are com-
monly used based on the sensor technology employed [53, 55]. Cooperative systems rely on
two-way communication between aircraft or ground equipment, where as uncooperative
technology is self reliant. The later is typically divided into active and passive methods.
Active systems broadcast and receive return signals where as passive systems only receive
signals from the environment. Active radar based solutions are attractive, but are typi-
cally either too heavy or too expensive for many small unmanned aircraft operations [56].
Recent solutions have started to overcome such issues, but at the expense of very small

4Note, the equivalent level of safety (ELOS) regarding See and Avoid is in itself difficult to quantify.
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Detection Avoidance Resolution 

Detect Decide Resolution Act DAA 

Observe Decide Resolution Act OODA Orient 
Figure 1.1: Collision avoidance system components including Detection, Avoidance and Resolution with
respect to common See and Avoid architectures. These include Detect, Decide and Act (DAA) and
Observe, Orient, Decide and Act frameworks (OODA).

detection ranges5 [57]. Alternatively, and in a more realistic attempt to replicate pilot
performance, passive sensors such as onboard video cameras are a more natural choice for
target detection [58]. These electro-optic devices are often small, lightweight and low-cost.
This means that despite typical size, weight and power (SWaP) constraints on some UAS,
a collision avoidance system leveraging computer vision may be used on both small and
large platforms. For larger platforms, cameras could augment additional sensors such as
radar (or laser scanners) in an attempt to improve object detection (sensor fusion) [59].
For smaller platforms however, the additional sensor remains restricted by the platform
constraints. In any case, the benefits of using computer vision may also extend to manned
aircraft. The technology could augment existing systems by directing the pilots attention
to potential collision threats earlier than if visually scanning [60]. Visual sensors may also
be useful for other key safety functions including forced landing [61].

Autonomous computer vision-based See and Avoid systems can therefore be considered
a key enabling technology for a broad class of unmanned aircraft. The problem is sig-
nificantly complex and multiple challenges still remain in the design and implementation
of the individual subsystems for detection, avoidance and resolution [62, 63]. Careful
consideration must be given to any inherent limitations of visual sensing, regulatory con-
straints and existing aviation practise and procedure. This is key to ensuring any certified
system is able to maintain strict aviation safety standards, and provide an adequate level
of predictability for other airspace users and service providers.

5Detection ranges between 100m-300m have been demonstrated, which means a near mid-air collision
may have already occurred.
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1.2 Research Program

1.2.1 Outline

The proposed research program is motivated by the pending See and Avoid problem for
unmanned aircraft. In search of a generic approach, efforts are directed at technology
based solutions for specific components of an autonomous See and Avoid system using
only onboard visual sensing. In particular, object detection and tracking is assumed
and the focus of the work is on vision-based control and decision making (or logic) for
the avoidance and resolution functions. This includes the avoidance decision (Decide)
determining where to position the unmanned aircraft to avoid collision, the avoidance
control (Act) to actual maneuver the aircraft and the resolution decision (Resolution)
to stop the avoidance behaviour. A representation of the proposed research areas with
respect to the generic collision avoidance and See and Avoid frameworks is depicted in
Fig 1.2.

Detect Resolution Camera Visual Control Decide Act 

Camera Visual Control 
Figure 1.2: Graphical representation of the proposed research areas (Visual Control) with respect to the
generic See and Avoid system components (Detect, Decide, Act). Visual object detection and tracking
using computer vision is assumed (Camera).

Given the explicit consideration for the See and Avoid problem and the importance to
address the associated issues from a realistic perspective, emphasis is placed on four key
elements unique to this collision avoidance research. These include:

� The explicit consideration of visual sensing constraints inherent within the See and
Avoid environment. Often these limitations are neglected or simplified such that the
resulting solution is impractical in some aspects. This work uses realistic assumptions
regarding the available state information obtained from computer vision in typical See
and Avoid encounters.

� The explicit consideration of operational and regulatory constraints pertaining to the
See and Avoid function. Often existing aviation practices and procedures are ignored
in place of geometrically optimal or coordinated solutions regarding the collision avoid-
ance and resolution decision. Although optimality is desirable, predictability is more
important in such an uncooperative and shared environment relying on users to con-
form to regulations and advisories. This work uses existing aviation standards, prac-
tices and procedures for system design.

� The use of existing performance metrics and evaluation techniques used in the aviation
community for automated collision avoidance (or hazard alerting) systems. Often per-
formance evaluation methods (and metrics) are inconsistent with existing approaches.
For example, measures of miss distance may be analysed in a subset of encounters,
which may be insufficient to truly ascertain the expected performance level relative to
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existing approaches. In this work, performance is evaluated using existing metrics and
techniques within the aviation community, or extrapolated and extended to account
for the unique structure of automated vision-based collision avoidance systems.

� The implementation of an automated closed-loop system in a proof-of-concept ap-
proach. Due to strict regularity standards, any system will require extensive testing for
subsequent certification. This is difficult considering the economical and safety issues
surrounding the implementation of collision avoidance systems in the real environment.
This work implements a completely automated closed-loop collision avoidance system
in a scaled environment to ensure safety and repeatability whilst reducing costs.

1.2.2 Research Questions

Given the proposed research areas and specific considerations, a principle research ques-
tion can be formulated to fully encompass the research investigation.

Principle Question How can an automated vision-based decision and control
strategy for collision avoidance and resolution, using only the available state in-
formation from monocular computer vision observations, be derived that remains
consistent with existing aviation practise and procedure in See and Avoid encoun-
ters? How effective is such an approach and how can it be implemented using
existing hardware systems and technology?

In order to fully address this question and satisfy the overall research objectives, the
principle research question can be decomposed into three refined questions. Each question
helps to frame the research by directing the investigation around key underlying concepts
and issues to be addressed. The partitioning also helps to manage the research agenda.

Question 1 How can the state information obtained from computer vision alone be used
directly in decision and control for collision avoidance and resolution of both static and
dynamic objects?

The first component of the proposed research addresses the avoidance decision and res-
olution decision functions. First, the relative state information available using computer
vision in the See and Avoid environment must be investigated. This includes identifying
any temporal and spatial information, and associated uncertainty, that can be reliably
obtained using existing object detection and tracking algorithms. Second, decision and
control strategies consistent with aviation practise and standards must be investigated.
This includes determining common criteria used for making autonomous avoidance and
resolution decisions in existing and proposed systems. This also includes an investigation
into human navigation concepts and pilot behaviour relevant to the See and Avoid en-
vironment. Third, the information must be brought together to investigate how to best
design and construct a realistic and usable collision avoidance and resolution decision
framework. This may require the introduction of new concepts that can appropriately
align with the See and Avoid process, whilst managing any limitations and constraints on
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visually acquired state information. Importantly, the investigation seeks to find a generic
approach to for autonomous vision-based decision making for avoidance and resolution.

Question 2 How can visual-based control be used to safely re-position the unmanned
aircraft (avoidance manuever) once an avoidance decision has been made?

The second component of the proposed research addresses the avoidance control func-
tion. It involves an investigation into how vision-based control (visual servoing) can be
used directly to control the motion of the unmanned aircraft having acquired the object
and determined the avoidance maneuver. Considerations must be given to object visibil-
ity issues, platform constraints, state information limitations and stability. The emphasis
of this research component is both theoretical and practical in nature, seeking to extend
visual-servoing concepts through simulation and in proof-of-concept implementations.

Question 3 What are the performance limitations of the proposed collision avoidance
and resolution system, and what impact does this have on using such a concept as a
general framework for designing automated vision-based systems?

The third component of the proposed research addresses the performance of the closed-
loop collision avoidance and resolution system. First, existing metrics and performance
evaluation techniques used in aviation to assess automated collision avoidance systems
must be investigated. This includes identifying possible collision avoidance outcomes us-
ing automated vision-based systems. This also includes investigating how a generic per-
formance evaluation framework can be derived such that other vision-based collision
avoidance systems can be analysed using a common tool. Importantly, the investiga-
tion seeks to quantify the performance limitations of the proposed vision-based collision
avoidance system using a common or extensible evaluation framework to enable future
comparisons.

1.2.3 Scope

The scope of this research is bounded through the explicit considerations of the expected
See and Avoid operational environment and the safety and economical limitations imposed
on full scale implementation. This research considers:

� Pair-wise encounters involving only the unmanned aircraft and a single collision object.
� Short-term encounters with small time horizons in the order of seconds.
� Three-Dimensional (spatial) encounters in which the involved aircraft may manuever

in the horizontal (lateral and longitudinal) and vertical planes.
� Daylight operations conducted in uncontrolled (Class G) airspace, in visual meteorolog-

ical conditions (VMC) and under Visual Flight Rules (VFR). Collectively, this restricts
operations to under 10,000’, clear of cloud (weather) and full visibility (≥10km). Many
civilian unmanned aircraft operations, particular in agriculture, will be operated under
these environmental considerations and related regulatory constraints.
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Assumptions made in this research are either implicitly justified through the scope of
the research, supported by relevant literature or necessary to support the research focus
areas. Key assumptions include:

� The unmanned aircraft are small quadrotor (rotary wing) platforms less than 8kg. This
assumption is not restrictive as the proposed research can be extended to larger plat-
forms and/or fixed wing aircraft by altering the platform dynamics (dynamic model).

� The unmanned aircraft has adequate sensors available to determine its own state in
terms of position, velocity and orientation.

� The unmanned aircraft is operating in the en-route or mission flight phases such that
adequate way point navigation is available and active. Such navigation is disengaged
upon object detection.

� The unmanned aircraft has only a single electro-optic sensor (video camera) to ob-
serve the conflicting aircraft or object. The camera field of view approximates a full
spherical surface (spherical camera model) for simulation and a discrete section of the
spherical surface for experimentation. This allows a perspective camera to be used to
approximate a spherical camera section.

� Object motion is either static or dynamic. Dynamic objects are restricted to constant
velocity (≤250kts) and constant heading. This is a valid assumption when considering
short-term encounters, associated flight rules, airspace class and existing air traffic
models [64]-[67]

� Object detection and tracking is assumed in simulation and simplified in experimenta-
tion. Existing computer vision tools and algorithms [73] for detection and tracking are
modified to realistically model the appearance of the object in typical See and Avoid
encounters.

� Assuming initial object detection, in the event that the vision-based tracking fails, it
is assumed that the See and Avoid system is suspended (disabled) and an alternate
navigation system assumes control. Failure may be due to missed frames, occlusion
or noise for example. If object tracking is recovered, the See and Avoid system may
resume.

� Simulation studies use stochastic collision and non-collision encounter trajectories
based on nominal flight paths and full nonlinear dynamic models of the unmanned
aircraft. Uncertainty is included through wind (turbulence) disturbance models, actu-
ator imperfections and sensor noise.

� Experimental studies use collision encounters of real static objects or virtual dynamic
objects. Virtual objects are created by assuming a known position then approximating
the object position in the image with added noise (uncertainty).

� Experimental studies are conducted indoors as a proof-of -concept approach. A motion
capture system (Vicon T40) is used for ground truth and not for vision-based decision
and control. This ensures a more realistic hardware/sensor arrangement as the real
environment whilst circumventing regulatory and cost issues.
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1.2.4 Contributions & Significance

The main contribution of this research is the further progression of automated vision-
based collision avoidance and resolution systems. Consequently, a number of significant
theoretical and practical contributions advancing the vision-based control (visual servo-
ing) and aviation fields are presented. Specifically, the research makes a total of five main
contributions as described below.

� Contribution 1 An extension to Spherical Image-Based Control (S-IBVS). This in-
cludes a new partitioned control scheme for effectively tracking spirals that is verified
in simulation and empirically. The work constitutes the first successful practical im-
plementation of S-IBVS on an aerial vehicle. It is found that the controller is capable
of satisfactory spiral tracking for collision avoidance.

� Contribution 2 A novel derivation of Spherical Visual Predictive Control (S-VPC).
This includes a new partitioned scheme for tracking spirals that is verified in simu-
lation and empirically. The work constitutes not only the first successful practical
implementation of S-VPC, but the only existing practical implementation of image-
based Visual Predictive Control (VPC) of any form for aerial vehicles. It is found that
the controller is capable of improved spiral tracking for collision avoidance compared to
S-IBVS schemes, whilst remaining computationally tractable. Other benefits include
better management of platform dynamics and problem constraints. Qualitatively, the
approach shows improved robustness to parameter uncertainty and image processing
delay, important for vision-based control.

� Contribution 3 The first application of Quasi-Infinite Horizon Nonlinear Model Pre-
dictive Control (QIH-NMPC) to visual predictive control (QIH-VPC). This includes
the subsequent identification of its benefits to spiral tracking and collision avoidance,
apart from the inherent nominal stability guarantees. It is found that the control de-
sign implicitly enables better selection of reference image features for spiral tracking
and collision avoidance, and decreases the control effort by 3% compared to visual
predictive control.

� Contribution 4 Novel vision-based decision strategies for collision avoidance and res-
olution. The work constitutes significantly unique yet very realistic approaches to
decision making for See and Avoid. The leading approach combines spherical imag-
ing and associated uncertainty, the properties of conical spiral motion and common
aviation practice and procedure (rules of the air [36]). The avoidance and resolution de-
cisions are de-coupled and rely on tuning two mutually exclusive thresholds. Through
simulation, the decision strategy is shown to be over 90% effective at avoiding collisions.

� Contribution 5 A novel performance evaluation framework suitable to vision-based
collision avoidance systems, and strongly aligned to existing aviation methods. This
includes the identification of additional collision avoidance outcomes for completely au-
tonomous systems and the subsequent adaptation of System Operating Curves (SOC)
in the context of vision-based systems. It is found that the performance evaluation
framework may be used as a standard tool for refining existing systems and comparing
between different systems.
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The significance and potential impact of this research is best exemplified through the
consideration of every contribution and the way in which they relate to each other.

From a visual control perspective, contributions 1-3 provide empirically evidence to sup-
port the use of image-based visual control for unmanned aircraft. This increases the
diversity of potential control approaches and design choices for a range of complex navi-
gation tasks. Although applied to the collision avoidance task, the QIH-VPC framework
can be applied to other camera models, vehicles and applications. The QIH-VPC design
has the potential to decrease the control effort, which is an important practical consid-
eration given current battery limitations. The QIH-VPC control parameters can also be
used to guide selection of feasible reference values. This has implications for both set
point tracking (fixed and variable) and region reaching control.

From an aviation perspective, contributions 1-4 demonstrate a working autonomous vision-
based See and Avoid system. Although the experimental set-up is a scaled down version
of the real environment, the associated assumptions provide a reasonable approximation
to the real situation. As such, the work provides ample evidence to support the use
of vision-based See and Avoid systems. This is significant, as vision-based systems pro-
vide arguably the most realistic approach to See and Avoid. They can also be used to
complement existing systems onboard manned aircraft or provide a level or redundancy.

From a regulatory perspective, contributions 3-5 constitute a significant step toward cer-
tification of See and Avoid systems. Certified systems do not currently exist, but are
expected to be based on existing performance evaluation techniques currently used in
aviation. A performance metric that is most likely to be required is a verified estimate
of the probability of collision when using the See and Avoid system. This can be derived
from a performance evaluation framework using System Operating Curves. This work
uses such metrics derived from extensions to the System Operating Curve approach. The
evaluation framework is then applied to the proposed See and Avoid system. As such,
a direct attempt is made to align with the aviation community and work with the ex-
isting regulatory structure and requirements. As this is vital to ensuring See and Avoid
systems can be certified, the framework may serve as a preliminary guide to evaluating
vision-based See and Avoid system. It may also be used to help inform regulatory policy.

The See and Avoid problem for unmanned aircraft is considered a major roadblock to
unmanned integration into civilian airspace. In the absence of this key enabling capability,
the full potential of unmanned aircraft is currently unrealised. This work represents a
significant effort to contribute toward such a difficult global problem on multiple levels.



12 CHAPTER 1. INTRODUCTION

Research Tools

� Simulation Models: A number of researchers have simulated complex encounter
models based on real (radar) data to verify their collision avoidance concepts [64]-[67].
Such data is not freely available and cannot be obtained in the scope of this research. As
such, Monte Carlo Simulations are used, in part, to conduct the performance analysis
to validate the proposed See and Avoid approach. This is commonly used in collision
avoidance evaluation prior to implementation [68, 69].

� Software Tools: MATLAB [70], C/C++ [71] programming languages and software
tools are used for simulation development and implementation. The Robot Operating
System (ROS) [72], OpenCV [73] and ACADO Optimal Control Toolkit [347] are used
for practical implementation.

Publications

The following publications have been produced during this research:

� A. Mcfadyen, P. Corke and L. Mejias, “Visual predictive control of spiral motion,”
IEEE Trans. Robotics, vol. 30, no. 6, pp. 1441 - 1454, 2014

� A. Mcfadyen, L. Mejias P. Corke and C. Pradalier, “Aircraft collision avoidance using
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Robotics and Intelligent Systems (IROS’12), pp. 1199 - 1205 , 7 - 12 Oct. 2012

� A. Mcfadyen, A. Durand-Petiteville and L. Mejias, “Decision strategies for automated
visual collision avoidance,” Proc. Int. Conf. Unmanned Aircraft Systems (ICUAS’14),
pp. 715-725, May 2014

� A. Mcfadyen and L. Mejias,“Visual servoing approach to collision avoidance for air-
craft,” Proc. Int. Congress of the Aeronautical Sciences (ICAS’12), Sep. 2012
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1.2.5 Thesis Structure

Chapter 1 has since provided an introduction to the research area and an outline of
the specific research to be conducted. The remaining sections in this chapter provide
a comprehensive background to the See and Avoid problem. This includes a literature
review of the associated visual sensing considerations and existing collision avoidance
approaches. Focused literature reviews regarding specific vision-based control techniques
are reserved for Chapters 4 and 5 respectively.

Chapter 2 provides preliminaries regarding platform dynamics and control, as well as
the camera geometry and image kinematics used throughout this work.

Chapter 3 outlines the development of a collision avoidance and resolution decision strat-
egy based on conical spiral motion, current rules of the air and the expected uncertainty
on image feature measurements.

Chapter 4 presents a collision avoidance approach using Spherical Image-Based Visual
Servoing (S-IBVS) and a simple avoidance and resolution decision strategy. Simulated
and preliminary experimental results are presented using a small Parrot - ARDrone.

Chapter 5 presents a collision avoidance approach using Spherical Visual Predictive
Control (S-VPC) and an advanced avoidance and resolution decision strategy. Novel
Quasi-Infinite Horizon Visual Predictive Control (QIH-VPC) is also presented and used
to refine the avoidance decision strategy and improve control performance. Simulated
and preliminary experimental results are presented using a small Ascending Technologies
- HummingBird.

Chapter 6 provides a probabilistic performance assessment of the proposed vision-based
collision avoidance and resolution strategies using spherical visual predictive control. Ex-
tensions to collision avoidance outcomes, performance metrics and analysis techniques
are also presented. This includes a novel framework to evaluate vision-based collision
avoidance systems, aligned with existing aviation practise.

Chapter 7 provides conclusions regarding the research findings in the context of the
proposed research questions. Recommendations and suggestions for further work are also
presented.
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1.3 Background

1.3.1 Visual Sensing

In the context of See and Avoid, visual sensing involves the detection and tracking of
static and dynamic airborne objects that pose a potential collision threat to the unmanned
aircraft. Estimation is an attempt to determine more information about how the object
is moving. This section provides an important background on the detection, tracking and
estimation considerations for vision-based See and Avoid systems. The review aims to
provide relevant information regarding the limitations and constraints that visual sensing
imposes on the avoidance and resolution functions for automated See and Avoid systems.

Detection & Tracking

The primary concern for onboard detection and tracking is understanding how an aircraft
or object initially appears in the image an subsequently behaves over time. Specifically,
the objects’ spatial and temporal attributes when projected onto an imaging surface. In
the See and Avoid environment, an aircraft initially appears as a small, low contrast
point feature in the image that lacks distinguishable shape or color variation [39]. For a
collision or near collision encounter, the object will remain small and relatively stationary
in the image until the final moments before collision. At this point, the object expansion
rate increases and the object starts to fill the camera field of view. In a non-collision
encounter, the aircraft will show greater movement on the imaging surface, but will still
remain relatively small. As an example, a set of grey scale images taken from an onboard
camera observing another aircraft in a near collision encounter are shown in Fig 1.3.

The reason for the unique appearance of aircraft is due to a number of related factors.
These include the cameras intrinsic and physical parameters, the exact environmental
conditions and the object characteristics [75]-[77]. The details of how these factors in-
fluence object appearance, and subsequently effect detection and tracking systems, are
described below with the aid of Fig 1.4.

Camera Parameters: First, an object can only be detected if it lies within the cameras
field of view (FOV). This is defined by the maximum visible azimuth and elevation angles
measured from the camera focal point or centre of projection. As the aircraft maneuvers
the field of view is rotated, covering a different region of the airspace. If the field of view
is small, then the object could be lost. This is significant in terms of collision avoidance,
as objects outside the field of view may still pose a collision threat [79]. The expected
field of view requirement for See and Avoid systems has been quoted at ±110◦ in azimuth
and ±15◦ in elevation [39, 46, 51, 52, 55] and since verified in simulation [80]. As such,
a single perspective camera may not be suitable. Instead, an array of cameras [81], wide
angle cameras or a spherical camera may be required [82, 83]. Second, an aircraft will only
become visible to the camera once it occupies at least one pixel on the imaging surface.
Therefore, the cameras resolution and pixel size (spatial resolution) will significantly effect
detection distance. For a fixed camera field of view and focal length, if the resolution is
increased and the pixel sized reduced, then more distant objects can be detected. Each
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(a) (b)

(c) (d)

Figure 1.3: Example images taken at 15Hz from an unmanned aircraft (Silvertone Flamingo) in a near-
miss scenario with a general aviation aircraft (Cessna 172R). The intruder can be seen as the dark dot
within the red square in each case [95]. (a) r = 4078m, tcpa ≈ 40s (b) r = 2993m, tcpa ≈ 30s (c)
r = 1998m, tcpa ≈ 20s (d) r = 1578m, tcpa ≈ 15s

pixel occupies a smaller physical space and thus smaller or more distant objects can be
detected. A similar effect occurs using a longer focal length and reduced field of view.
Notably, the spatial resolution of current video cameras is often 0.1-1mrad compared to
the human eye at approximately 0.3mrad.

Environmental Conditions: First, existing aircraft color choices are often conspicuous
with respect to the background. This results in a low contrast projection of the aircraft.
Second, environmental conditions such as cloud, weather (rain and haze), dust, terrain and
background luminance (sunlight) can alter the appearance of the aircraft in the image.
The consistently changing background (terrain) and background luminance (sunlight)
will influence the entire image. This is strongly dependant of the camera sensitivity to
illumination differences6. In some cases, the brightness of the corresponding aircraft pixel
and those of background may be similar, resulting in a low signal to noise (SNR) ratio. As
such, it may not be detected at all or only partially projected onto the imaging surface.
Cluttered backgrounds including cloud, weather and terrain may partially occlude the
object or result in contour interaction, and again result in partial or no distinct projection
onto the image. This means an aircraft may not be detected as early or consistently as
possible for a given camera type.

Object Characteristics: First, due to the quantisation levels used in digital image
processing and the typically uniform aircraft color [78], the resulting projection onto the
imaging surface lacks color variation. Second, there exists an implicit coupling between

6CMOS cameras are generally more sensitive to lighting conditions than CCD.
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Figure 1.4: Factors affecting object detection and tracking. The objects (a1, a2, a3, a4, a5) can be seen as
variable sized ellipses (•), positioned at different distances (r1, r2, r3, r4, r5). The objects are projected
onto the imaging surface with focal point pf . (a) Effects of field of view, spatial resolution and object
size (b) Effects of sunlight (spectral reflectance and occlusion due to cloud cover and background clutter
(terrain)

aircraft and pixel size that influences the detection distance. A large target may be seen
further away than a small target using the same spatial resolution. In the See and Avoid
environment, object scale is generally unknown. For detection and tracking, this has little
impact considering all objects will initially appear pixel-sized. Third, the relative motion
of the object and associated geometry affects the projected image behaviour of the object.
Generally, exact knowledge of the underlying object motion is unknown. It is therefore
difficult to track all object types without accurate motion models.

It should be clear that a number of complex issues need to be addressed when developing
automated detection and tracking systems. As such, a large number of approaches using
optical flow [84, 85], cascaded learning [86]-[88], dynamic programming [89]-[91], hidden
markov models [92]-[98], particle filters [99, 100] and wavelets [101] have since been pro-
posed. Many algorithms rely on advanced image processing techniques, incorporating
both spatial and temporal filters (or filter banks) to account for the unique appearance
and behaviour of the object. Often each algorithm is designed or tailored to manage a
subset of particular issues, resulting in no global solution. Instead, performance is usu-
ally compared using the initial detection distance and the consistency at which correct
objects can be tracked and incorrect objects rejected. Consistency is usually expressed
as a probabilistic measure of correct detections, missed detections, false alarms and their
corresponding rates. Using such metrics, a simple plot can be constructed to provide a
rough comparison between some leading tracking algorithms7. This is shown in Fig 1.5.

In the context of this research, how the expected performance of existing detection and
tracking algorithms may impact subsequent avoidance and resolution functions is of more
importance. Improved tracking consistency provides better assurance that all collision
objects can be detected. If collision objects are missed, the avoidance and resolution
functions are useless. Improving the initial detection distance increases the available time
for avoidance and resolution. Considering though that the object motion is generally
unknown, it is difficult to determine an exact mapping from distance to time to closest

7A true comparison is difficult due to undisclosed performance measures, different noise characteristics,
camera parameters, aircraft types and the use of real and synthetic data.
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Figure 1.5: Some example detection distances and approximate detection rates for existing vision-based
dim target detection algorithms using real data [84]-[106]. Results include images taken from ground (+)
and airborne (+) observers

approach (or collision). An analytical approximation can be derived however using real-
istic assumptions on the expected See and Avoid encounter parameters [102]. This can
then be used to estimate the expected time constraints imposed on subsequent avoidance
and resolution functions (control).

Consider two aircraft moving with constant velocity and heading in a collision encounter.
Under this assumption, common for See and Avoid, the time to collision and detection
distances can be estimated. Assuming a worst case scenario, the object will approach
head with a zero relative heading. Using the expected maximum and minimum allowable
relative velocity8, the relationship between detection distance and time to collision is
depicted in Fig 1.6(a). A similar plot using en-route relative velocities for general aviation
aircraft and unmanned aircraft is shown in Fig 1.6(b). If the object approaches from in
front of the unmanned aircraft and at any non-zero relative heading, the time to collision
will be to the right of the corresponding relative velocity line. The approximation suggests
that current detection and tracking algorithms can provide at least 12-15 seconds for
avoidance and resolution, assuming a detection distance between 2000m and 3000m. As
such, existing algorithms can provide comparable or better performance than pilots in
See and Avoid encounters [39, 42, 44]. Therefore, it is feasible to assume vision-based
detection and tracking algorithms can be used successfully for See and Avoid systems.

Estimation

Estimation is a common problem in aerospace applications [103]. Typically aircraft mo-
tion is estimated using related observations from one or more sensors, in an appropriately
designed filter. In the context of See and Avoid, estimation involves the determination of
various quantities related to the relative motion of conflicting aircraft. For vision-based
systems, the collection of observations used in the filter must then come from visually ac-
quired measurements. Useful quantities for the avoidance and resolution functions include

8Determined by Visual Flight Rules to be approximately 100kts and less than 500kts.
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Figure 1.6: Example initial detection distances and available avoidance time in worst and best case (a)
as well as expected (b) encounters. Worst and best case encounters correspond to a closing velocity of
500kts and 100kts respectively. The commonly accepted mean avoidance time of 15s is also shown (−)

the relative angular position (and associated rate), range (relative position and velocity)
and the time to closest point of approach (or collision).

Angular Position & Velocity: Estimating relative angular position (azimuth and
elevation) and angular rates can be achieved using many of the detection and tracking
algorithms and filters previously discussed [84]-[98]. Inducing motion is not required
to obtain accurate estimates, regardless of the encounter geometry. Stable, convergent
filter behaviour can be achieved for both on line and off-line (batch) processing with
acceptable computation cost [104]-[106]. Such behaviour can be attributed to the fact
that the underlying process models are defined in the image space, and do not rely on
specific knowledge of the relative encounter geometry. For example, the assumption the
aircraft or object remains stationary in the image can be used to define relatively accurate
dynamic models (or transition matrix probabilities) used in temporal filtering stages.

The accuracy of the angular estimates depends on the camera parameters, camera cali-
bration and issues such as platform vibration. Recent algorithms [106] using real flight
data suggest azimuth and elevation angles can be estimated to less than 43.6mrad (2.5◦)
and 3.7mrad (0.21◦) RMS respectively. The azimuth and elevation angular rates can be
estimated to less than 2.3mrad/s (0.13◦/s) and 1.9mrad/s (0.11◦/s) respectively. This is a
considerable improvement on previous results suggesting RMS errors in angular position
of up to 129.2mrad (7.4◦) [107, 108].

Range, Position & Velocity: Estimating range, and subsequently relative position
and velocity, can be achieved using stereo vision or monocular vision. However, each has
significant drawbacks when realistically considering the See and Avoid environment.

Using stereo vision, two or more cameras positioned at different locations on the aircraft
must observe the same object at the same time. The object position in each image
must then be sufficiently different in order to triangulate position and estimate range
(and velocity) [109]. Considering the small size of unmanned aircraft and the expected
relative encounter geometries (scale), the approach can be considered overly optimistic
for See and Avoid. The camera baseline to object range will be too small and potentially
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inconsistent. The latter artefact is a result of aerodynamic (and wind) effects, and the
inherent flexibility and elasticity within the aircraft structures (wings, fuselage etc.). Only
recently has stereo vision been successful on small unmanned aircraft, but only at ranges
up to 100m [110].

Using monocular vision, an appropriate filter must be designed that now considers the true
underlying dynamics instead of those defined in the image space. As the only available
observation will be angular measurements, the problem is then a bearings-only tracking
or target motion analysis problem [111]. The problem has become well studied due to
the unique observability [112]-[115] properties and highly nonlinear measurement process
[116]. In short, range may be estimated using bearing measurements if the observer
(camera) has a higher non-zero motion derivative compared to the object. This is best
described as out-maneuvering the object in an attempt to acquire a unique sequence of
bearing measurements [117]. Some example cases are depicted in Fig 1.7 for observable
and unobservable geometries.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: Observability examples related to bearings-only estimation. The observer (•) motion is shown
with respect to the object (◦) (a)-(c) Observable geometries (d)-(f) Unobservable geometries

Considering the case when both objects move with constant velocity, range is then un-
observable [118, 119]. As seen in Fig 1.7(e), an infinite number of object trajectories
result from the same sequence of angular observations. The observer must accelerate,
effectively turning, in an attempt to acquire a unique sequence of observations as seen in
Fig.1.7(c). This is commonly referred to as passive ranging, and many studies have been
conducted to determine the optimal motion(s) required for full observability [120, 121].
Often the required motion cannot be realised by aircraft, so predefined maneuvers have
been investigated with the use of various Extended Kalman Filters (EKF). To help ad-
dress the observability issue, filters have been designed to decouple the observable and
unobservable states. As a result common filters include variants of Modified Spherical
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(MS-EKF) [122]-[125], Range-Parametrised (RP-EKF), [126, 127] and Log-Polar Coordi-
nate (LPC-EKF) [127, 128]. Theoretical results are encouraging, but it remains unclear
which exact maneuver to adopt given the generally unpredictable object motion. This
means the encounter geometry may be unintentionally degraded and there will exist cer-
tain geometries, and noise characteristics, that render range unobservable. Despite this,
some practical implementations for See and Avoid have been attempted [129, 130]. Large
convergence times (≥ 5s) and inaccurate range estimates (%10-30 error) were observed.
Importantly, even if improvements can be made, the available avoidance time has been
considerably reduced from 12-15s to 7-10s.

It is important to recall that the object motion is generally unknown, so the constant
velocity dynamic models used in many of the EKF approaches above may not be repre-
sentative of the actual motion [131, 132]. The result is highly uncertain (large variance)
range estimates, which effects the behaviour (convergence) of the observable states and
thus compromises filter stability [133]. As such, many extensions have been proposed to
account for such maneuvering objects [134] without inducing predefined observer motion.
Promising filter designs include methods based on multiple dynamic models [135]-[137]
and particle filters [138]-[140]. However, the computational expense may not be suit-
able to the short encounter duration [141]. Additionally, and congruent to the constant
velocity case, range observability (filter stability) is highly dependent on the encounter
geometry [112, 115].

Collision Time: Estimating time to closest point of approach (or collision), without
explicitly estimating relative state (range, position and velocity), can be achieved using
visual looming or object expansion [142]-[144]. Time to collision is estimated, or qual-
itatively approximated, by processing variations in the objects expansion rate through
observing the optic flow patterns created by relative motion. If a static or constant ve-
locity object of known size is assumed, measuring the objects expansion rate can yield an
accurate estimate of collision time. Alternatively, a collision can be inferred by approxi-
mating the time it will take the object to fill the camera field of view. The approach has
been considered for aircraft observing large objects with multiple image feature points, or
objects that are significantly close [145]-[147]. For distant or small objects (pixel sized),
as in a See and Avoid encounter, the approach has not been implemented. However, the
approach will likely fail, recalling that the object only demonstrates significant expansion
just prior to collision.
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1.3.2 Collision Avoidance Systems

In the See and Avoid context, collision avoidance systems refer to the automated technol-
ogy aimed at replicating the reactive collision avoidance function of pilots. Assuming the
object (aircraft, weather, terrain etc.) has been visually detected, the remaining collision
avoidance functions involve the pilots decision making and control actions in response to
the situation. Specifically, this includes determining if the object is a collision threat (con-
flict detection), deciding what (if any) avoidance maneuver to take (avoidance decision
or logic), and subsequently applying that action (avoidance control). The goal being to
avoid a Near Mid-Air Collision (NMAC) and safely resolve the conflict9. Importantly, the
See and Avoid process does not include the pilots leverage of existing collision avoidance
systems such as the Traffic Alert and Collision Avoidance System (TCAS I, TCAS II),
Automatic Collision Avoidance System (ACAS), Air Traffic Controller (ATCO) directives
or other cooperative communication devices (VHF, ADS-B etc.). This is a common point
of misunderstanding even in recently proposed See and Avoid systems [148]-[151].

This section provides an important background regarding relevant conflict detection,
avoidance decision and avoidance control concepts used in human navigation, manned
aviation and vision-based robotics. The term concept is used to describe a generic ap-
proach as opposed to specific details. The review aims to provide relevant information
regarding how such concepts may be used or extended in the design of vision-based See
and Avoid systems. The discussion is restricted to aircraft and obstacle avoidance, and
does not include terrain (ground) and weather avoidance systems.

Human Avoidance Systems

The human visual navigation system is a key component for effective collision avoidance
[152, 153]. Given the requirement for equivalence, the human visual navigation system is
an important consideration in the subsequent design of automated See and Avoid systems.
Although central to the See and Avoid discussion, human collision avoidance concepts are
commonly ignored or by-passed, particularly in the robotics community. This is typically
under the assumption that machines (automated systems) can do better. This may be
the case in some instances, but often coincides with complete negligence regarding the
notion of predictability. In aviation, it is important airspace users behave in a predictable
manner where possible, given the airspace is shared with manned aircraft. A system that
outperforms the human see and avoid function, although useful, may degrade the overall
airspace integrity (and safety). As such, human conflict detection, avoidance decision and
avoidance control concepts are discussed below.

Conflict Detection: Humans can perform conflict detection using visually acquired
measurements of angular position and rate. Specifically, a zero angular rate or constant
angular position is used to infer a collision object [154]. Importantly, the object is as-
sumed to be in front of the observer such that the magnitude of the relative angular
position is always less than 90 degrees. The object may be stationary or moving in a

9A Near Mid-Air Collision (NMAC) is defined as the incursion or breach of a cylindrical protection
zone of height 200’ and radius 500’ about each aircraft.
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(a) (b)

Figure 1.8: Example human conflict detection concepts between a single object (◦) and observer (bullet)
using angular (azimuth) rate α̇(·). Only collision cases (�) are shown for (a) Static Collision Object (b)
Dynamic Collision Object

linear or nonlinear manner (turning) [155]. As such, the constant angle model offers a
simple and useful conflict detection mechanism for objects moving in an arbitrary fashion.
Additionally, the model verifies many assumptions often made in manned aviation [39].
The conflict detection concept is shown in Fig 1.8

Considering practical limitations, such as sensor noise characteristics, the observed angu-
lar rate α̇ will rarely be zero in See and Avoid encounters. It is then necessary to place
a small threshold on the angular rate in an attempt to distinguish between collision and
non-collision aircraft. This can be defined as

C(t > k) ⇐⇒ α̇(k) ≤ ε, C̄(t > k) ⇐⇒ α̇(k) > ε (1.1)

or, by considering some arbitrary time history n of the angular observations

C(t > k) ⇐⇒ α̇(k − n, . . . , k) ≤ ε, C̄(t > k) ⇐⇒ α̇(k − n, . . . , k) > ε (1.2)

where C and C̄ denote collision and non-collision respectively, ε is a constant scalar
threshold and k is the current time. This approach was empirically investigated in a
number of See and Avoid flight trials [156] with mixed outcomes. Results showed collision
objects can be correctly identified (> 90%), but at the expense of multiple falsely classified
non-collision objects. This suggests that additional information may be required for
adequate threshold placement or enable the derivation of a continuous measure of collision
threat.

Avoidance Decision: Humans demonstrate a variety of behaviours with respect to
avoidance decisions [157]. This includes whether to pass in front of or behind a moving
obstacle. The decision is often ambiguous and indeed difficult to derive an explicit model
for the avoidance behaviour. From a See and Avoid perspective however, this ambiguity
may be resolved by considering the current right-of-way rules (see Appendix A). The
rules define the conditions in which to give way to nearby aircraft, and how to manage
(near) head on collision encounters using lateral separation. Using vertical separation
however, and except for the overtaking case, the rules-of-the air do not provide any
explicit guidelines. To this end, recent pilot centric studies suggest that a decision to
descend is preferable [158, 159]. Importantly, the avoidance decision is qualitative for
both vertical and lateral separation. This means direction (up, down, left, right) is used
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Figure 1.9: Example avoidance decision or logic for human collision avoidance systems.

and not a specific heading, velocity, altitude etc. Additionally, following the right-of-
way rules suggest that precautionary avoidance maneuvers may be prevalent in manned
aircraft for ambiguous collision objects.

Avoidance Control: Considering the qualitative nature of human avoidance decisions,
the subsequent control uses a direct visual feedback loop. Initial models, derived from
object interception (reciprocal of avoidance), suggest the object is visually steered in such
a way that a non-zero angular rate is maintained [160]. This is demonstrated for both
static and constant velocity objects and results in smooth control. Importantly, no specific
non-zero reference position or velocity in the eye is used for control. This means explicit
path planning or other waypoint based navigation is not used, and instead a reactive
control strategy is employed.

Extensions to the control strategy include the consideration of small object velocity
changes over the encounter [161, 162]. An intermediate anticipatory strategy was ob-
served whereby a predictive control strategy aims to command a non-zero angular rate
for a short time into the future (time horizon). Further research has showed that short
prediction times (0.5-3.5s) result in more robust and accurate control [163]. This means
predictive avoidance control strategies using relative angular observations may be repre-
sentative of actual human avoidance behaviour.

Aircraft Avoidance Systems

Many automated collision avoidance approaches have been derived for manned aircraft
[164, 165], including the well known Traffic Alert and Collision Avoidance System (TCAS)
[166]. However, most of the methods are aimed at planned separation assurance and not
reactive collision avoidance, as required for See and Avoid. The time at which the conflict
is detected and resolved differs such that separation assurance occurs prior (minutes) to
See and Avoid (seconds) [167]. Nonetheless, it is important to consider existing separation
assurance concepts from a See and Avoid perspective. This is for a number of reasons.
First, the basic separation assurance functions are very similar to those required for
See and Avoid. After all, they are both essentially aimed at separating aircraft. This
means some principles and concepts may be adapted or scaled to fit the See and Avoid
constraints. Second, many existing concepts were derived with a particular focus on
subsequent certification. Given See and Avoid systems will also require certification, it
may be wiser to adopt similar concepts and better align with regulatory expectations and
standards. As such, existing aircraft conflict detection, avoidance decision and avoidance
control concepts are discussed below.
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Figure 1.10: Example conflict detection concepts using state propagation to estimate conflict probability
Pc(t). Uncertainty in trajectories (•) and collision cases (�) are shown for (a) Nominal state propagation
without avoidance maneuvers where Pc(t) = 1 (b) Probabilistic state propagation considering multiple
avoidance maneuvers where 0 > Pc|a1(t) < 1

Conflict Detection: Conflict detection is primary accomplished by either monitoring
the current relative state (position, range) [168], or by predicting the future relative state
(state propagation) and acquiring an appropriate estimate of the probability of colli-
sion [169]. Although computational restrictive, state propagation is generally preferred,
providing a relative measure of the probability of collision Pc(t) by considering future
events. State propagation can be conducted in a nominal [170] or probabilistic manner
[171, 172] with respect to the predicted trajectories, and may consider one or more avoid-
ance manuevers. As such, multiple collision probability estimates given an action an was
taken can be obtained such that Pc(t) ∈ {Pc|a0(t), . . . , Pc|an

(t)}. Multiple definitions for
conflict probability exist including maximal [173], integrated [174, 175] and probability
flow [176], along with multiple analytical [177], numerical [178]-[180] and probabilistic
(Monte-Carlo) [181] approaches to approximate or calculate them. Regardless, conflict
detection is then based on comparing the collision probability estimates. Considering only
the current state or using nominal state propagation, then Pc(t) = {0, 1}. Considering
probabilistic state propagation, then 0 ≤ Pc(t), ≤ 1. Some simple examples of the dif-
ferences in these conflict detection concepts are depicted in Fig 1.10.
Applying conflict probability based approaches to vision-based systems in not straight

forward, often leveraging additional sensors and filters (fusion) [182]. For vision-only sys-
tems that estimate relative state, the approach can be applied directly. Recent results
demonstrate that the conflict of probability estimate is highly dependent on the filter per-
formance. Additionally, calculating the conflict probability can take up to 3s, reducing
the available avoidance time [183]. For vision-based system that do not estimate rela-
tive state, state propagation cannot be performed and the direct application of conflict
probability approaches is not feasible. Attempting to map the approach to the image
space will be considerably difficult. Essentially, a meaningless estimate for the conflict
probability may be obtained. This is due to the generally unknown motion of the aircraft,
sensitivity to state uncertainty, and the fact that multiple image positions (or the entire
image) could have an equally likely collision probability. Instead, by considering human
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navigation models directly, the amount of time the object remains stationary in the image
has been suggested as an alternate estimate of collision probability [184] such that

Pc(k) =
1

1 + 1
k−1

k−1∑
i=k−N

(α(k) − α(i))2 (1.3)

where α(·) is the relative azimuth, k is the current time instance and N is the number of
past observations considered. However, this has shown marginal performance in simula-
tion on a select set (head-on, overtaking) of encounter geometries. It is also unclear how
to select N , and although robustness to measurement uncertainty is claimed, no analysis
or evidence is provided.

Avoidance Decision: Traditionally, many aircraft systems, including the certified Traf-
fic Alert and Collision Avoidance System (TCAS), use discrete logic to make avoidance
decisions [164]. The logic is derived by placing one or more thresholds on the colli-
sion probability estimates in a tree-like (nested) decision structure10. Multiple prescribed
avoidance actions are generally considered in the collision probability estimates, but often
refined to a limited set of vertical climb, descend and level-off maneuvers due to aircraft
performance limitations [185, 186]. Some extensions including prescribed lateral avoid-
ance maneuvers have also been considered [187]. The resulting decision policy is often
complex with multiple stages, but can be designed to be conservative, delayed or delay-
conservative [188]. The nomenclature stems from the differences in sensitivity regarding
the time at which the resulting avoidance decisions are issued. In any case, the decision
policy is derived using an iterative process. The logic structure and associated thresholds
are specified, evaluated on simulated encounters, and then further refined using a set of
statistical performance metrics [189]. Importantly, the evaluation process is based on
well established signal processing theory, using derivatives of Receiver Operating Curves
(ROC) to visualise performance variations [190]. Such curves are designed to capture a
complete description of the decision threshold effects regardless of the system particulars,
so may be extended to other avoidance decision frameworks.

Recently, Dynamical Programming (DP), Markov Decision Process (MDP) and Partially
Observable Markov Decision Process (POMDP) techniques have been combined to better
optimise the avoidance decision policy [191]-[193]. The optimisation problem can be
solved offline [194], online [195] or in a hybrid approach [196]. The result is an optimal
logic table that maps the current state to an avoidance action (or lack thereof) [197, 198].
Similar to traditional approaches, a discrete set of avoidance actions is considered. In
contrast to traditional approaches, a reward structure (cost function) requires tuning
instead of collision probability thresholds. Additionally, a comprehensive encounter model
is required for the both logic optimisation and validation through a simulated statistical
performance evaluation.

10Updated specific TCAS II Minimum Operational Performance Specification (MOPS) have been pub-
lished by RTCA (DO-300A,DO-185B) and EUROCAE (ED-143).
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Figure 1.11: Example avoidance decision or logic design and validation approaches for aircraft collision
avoidance systems. (a) Traditional conflict probabilities approach (b) Optimal logic design using Dynamic
Programming and MDP/POMDP approaches.

Despite the optimality of recent approaches, the extensibility to vision-based See and
Avoid systems is questionable. Computational complexity can be restrictive and com-
prehensive encounter models for a mixed airspace environment are not readily available.
Only recently, have some approximations been derived using recorded radar data [64]-[67].
More importantly, they do not perform well when applied to angle-only sensors, inducing
unwanted oscillatory avoidance behaviour [194]. Given the limited avoidance time avail-
able in See and Avoid, this is unacceptable. Traditional approaches do not suffer from
these negative effects, and can still approximate the optimal logic reasonably well [188].
The inherent overhead using an iterative approach to refine the logic can also be reduced,
by minimising the number of variable design parameters and thresholds. Additionally,
traditional logic designs and associated performance evaluation methods were used in the
certification of current systems (TCAS) [186]. They may offer an attractive framework
in which to design vision-based See and Avoid avoidance logic [199].

Avoidance Control: Considering an onboard pilot is usually assumed with many aircraft
collision avoidance systems, the avoidance decision can be implemented either manually
or automatically. At a high level, the avoidance control is implemented in an open-loop
manner whereby a prescribed avoidance maneuver is set and generally followed unless an
updated maneuver is issued. The prescribed actions are quantitative in the sense they are
made up of both direction (up, level-off, left etc.) and magnitude defined by an achievable
rate (i.e. ±1500’/s etc.) for common aircraft types [196]. At a low-level, the specific action
is implemented in a closed-loop manner to establish and maintain the required vertical
rate. If automated, onboard autopilots are used. If manual, the pilot regulates the
corresponding rate using onboard instrumentation and available control inputs. Similar
to human navigation, the avoidance control does not use path planning or other optimal
control approaches. In contrast to human navigation, the localised controller regulates
the direction and rate at which to move in that direction given a unique reference value.
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Robot Avoidance Systems

Many automated collision avoidance approaches using a variety of sensors have been
derived for a range of robotic systems including small Micro Aerial Vehicles (MAV), Au-
tonomous Underwater vehicles (AUV), Unmanned Ground Vehicles (UGV) or humanoid
robots. Although the underlying dynamics (motion models) are significantly different, it
is important to consider existing robotic collision avoidance concepts from a See and Avoid
perspective. After all, flying robots are effectively aircraft [200] without a history of oper-
ational rules and regulations. This allows more freedom in the development of unmanned
systems, which may lead to novel automated collision avoidance approaches [201, 202].
This attribute is often overlooked in the aviation community. However, considering the
limitations imposed by the See and Avoid environment and the plethora of robot collision
avoidance systems, many approaches clearly violate the problem constraints so cannot
be considered11. As such, robotic vision-based conflict detection, avoidance decision and
avoidance control concepts are discussed below.

Conflict Detection: Conflict detection has been accomplished using localised maps,
feature or template matching and by directly exploiting the properties of optic flow.

Localised maps of the observed scene can be artificially re-constructed (in full or in part)
using dense or sparse image features, in an attempt to classify collision objects. First,
the optic flow field patterns and onboard inertial sensors are used to create the map,
instead of inferring collision objects directly [203, 204]. Second, the depth [205] or collision
time [146] of each object is used to prioritise potential collision objects within the scene.
Often, both visual and non-visual sensors (lasers, ultrasonic or stereo vision) are required,
but the task can be accomplished using monocular vision [206, 207]. However, it is
then assumed the observer is slow and the environment consists of large static objects
with sufficient texture. Indeed, extending the approach to dynamic objects is difficult
given the observability issues and image processing challenges associated with feature
correspondence (data association). As such, localised map-based conflict detection will
likely fail in the See and Avoid environment given the scene characteristics.

Feature or template matching based conflict detection first requires the detection of a
known object or specific feature set [208]. A visual template of the object or known
feature arrangements (corners, edges etc.) are used to find regions of the image that
match the model [209]. The computer vision algorithms used for detection can be trained
to detect a range of objects, but often require a comprehensive library of training data for
adequate detection rates. Additionally, the object itself must be distinct enough (shape,
color etc.) to be reliably identified amongst other objects in the scene. Once detected,
range or time to collision may then be approximated given the actual object size is known
(a priori) [210, 211]. As such, template matching based conflict detection will likely fail
in the See and Avoid environment given the object of interest is a single point feature and
the object size is unknown.

11Such approaches primarily include cooperative and/or intent based systems.
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Direct optic-flow based conflict detection has been inspired by the navigation and collision
avoidance behaviour of insects [212, 213]. It is generally accepted that insects use visual
looming and optic flow field properties to qualitatively asses collision objects for navigation
[214, 215]. An explicit estimation of range or time to collision is not required, and instead
the direction and magnitude of the optic flow vectors associated with specific objects are
used. A relatively stationary object that grows in size (positive optic flow) denotes a
collision [216]. Similar to map-based approaches, multiple features from the same near
or large object are usually required to obtain a reliable optic flow field pattern [217]. In
contrast to map-based approaches, the whole scene is not reconstructed and the conflict
detection is somewhat qualitative. When applied to See and Avoid encounters, and similar
to human navigation, the same principle may be used but applied to distant objects. In
this case, a collision can be detected by the lack (very small) optic flow from detected
objects compared to the background.

Avoidance Decision: For conflict detection approaches using relative position and veloc-
ity, a common approach to making avoidance decisions is based on geometric optimisation.
Geometric optimisation uses the current and projected geometry of the encounter to make
decisions that optimise the avoidance behaviour, with respect to miss distance. Common
approaches include optimal bang-bang control [218]-[221], collision cones [222, 223] and
velocity (and acceleration) obstacles [224]-[230]. In all cases the objective is to define an
optimal aiming point or waypoint for the aircraft to ensure collision avoidance. Often a
set of avoidance maneuvers could be used, so additional criterion is used to optimise the
decision and derive a single aiming point. For example, collision cones define the aiming
point as the position on an arbitrary safety boundary perpendicular to the velocity vector
of the object. Optimal bang-bang control determines the optimal left or right avoid-
ance decision by considering predefined turning rates and assuming timely cooperative
behaviour. Velocity obstacles define the minimum bearing change to realise a relative
velocity vector outside the velocity obstacle or collision field. Importantly, the emphasis
of geometrical approaches is to improve avoidance behaviour in a collision encounter by
optimising the relative geometry between objects.

Alternatively, many path planning [231]-[233] and potential field approaches [234, 235]
have been considered in order to include other criteria to better trade-off the compet-
ing navigation objectives and manage problem constraints. Successful path planning
approaches can simultaneously ensure collision avoidance, respect aircraft performance
limitations and better accommodate other desirable behaviours or objectives (such as
goal reaching). Although not strictly geometrically optimal, well-tuned potential field
methods can approximate an optimal avoidance path. The goal and collision object are
treated as (weighted) attractive and repelling forces to negotiate a suitable aiming point.
More recently, predictive potential fields have been used to better account for unmanned
aircraft dynamics [236]. Importantly, the emphasis of path planning and potential field
approaches is to improve overall behaviour in a collision encounter by optimising geomet-
ric and non-geometric objectives.
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For conflict detection approaches explicitly using only visual cues, a common approach
to making avoidance decisions is based on artificially inducing specific image feature
movement through prescribed observer actions. The avoidance decision is typically based
on changing the direction and magnitude of the image feature motion, and therefore the
optic flow pattern. For static obstacles, it is common to move the object toward the
edge of the image corresponding the side in which it is detected [237]. For example, the
aircraft should move right and down if detected to the left and above the image centre.
To achieve the desired motion, the direction (region) and a scaled magnitude may be
used [238, 239] or a specific image feature reference position may be given. In the latter
case, the position has been selected in an arbitrary fashion without justification [240] or
based on achievable or desired vehicle performance [241]-[243]. More recently, motion has
been derived by simultaneously attempting to avoid collision and improve observability
[244]-[246] or by considering an approximate object size [247]. In most cases, the resulting
unmanned aircraft motion tends to approximate a safe spiral trajectory about the object.
This particular behaviour is rarely identified using such approaches, but could be exploited
directly in the design of similar avoidance decision strategies.

Important to this discussion is how robotic collision avoidance system performance is eval-
uated. As operating standards are generally undefined, determining how safely a robot
performs collision avoidance is subjective. Indeed, no rules exist for collision avoidance
other than not to hit the object. As such, minimum safe distances are often chosen arbi-
trarily or based on the extent of the objects (size/scale), dynamics and control constraints
and/or application specific requirements. The performance of the system is then analysed
according to these metrics using a subset of encounters. Rarely, is the collision avoidance
system analysed using statistical performance metrics as in manned aviation. This in-
volves the comprehensive testing of the collision avoidance system through multiple high
fidelity simulated encounters (Monte-Carlo, Encounter Models, Airspace Models etc.). So
despite guarantees on collision avoidance, the introduction of modelling errors and un-
certainties present in a realistic environment should warrant such an analysis to prove
the safety case. This is particularly true of methods boasting robust range estimation
strategies that underpin subsequent avoidance decisions.

Avoidance Control: Depending on the information used, the avoidance decision can be
implemented at a high level using either a position-based or image-based visual closed loop
control framework (visual servoing) [248]. Using relative state information allows position-
based methods to be used. In this case, the unmanned aircraft can be guided to the aiming
point (or way point) using direct positional feedback such as proportional navigation [249],
prescribed maneuvers such as curves [250, 251], fuzzy systems [252] or optimal control
approaches [253] such as minimum effort guidance [254] and model predictive control
[255]. The latter has become increasingly popular due its ability to handle uncertainty,
parameter variations and multiple constraints whilst remaining computationally efficient
for practical implementations [256]-[259].

Using optic flow or feature position explicitly, reactive image-based methods derive feed-
back control directly from the image feature attributes. The approach is a natural way to
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realise avoidance decisions that depend on the optic flow patterns directly [260]-[262] or
to re-position objects in the image [314] without the computational over head of position-
based approaches. Additionally, the approach more accurately models the avoidance
control adopted in human navigation.

At a low-level, the specific action is implemented using onboard autopilots to regulate
the required speed and attitude. Many low-cost high quality commercial autopilots suit-
able to many unmanned aircraft types (fixed/rotary) and sizes have become available
that offer adequate performance. Typically, an arrangement of linear controllers such as
Proportional-Integral-Derivative (PID) or Linear Quadratic Regulators (LQR) are used
either coupled or de-coupled to control some or all aircraft degrees or freedom [264]-[266].

Resolution Strategies

A resolution strategy is generally required for automated systems to stop the avoidance
manuever and possibly return to the original course prior to conflict detection. See and
Avoid systems should therefore include an avoidance and resolution strategy to provide a
complete closed loop collision avoidance system.

In manned aviation, resolution sometimes refers to the actual avoidance maneuver [164].
This is primarily due to the fact that in some cases it is not considered as part of collision
avoidance, or that it is deemed less safety critical. However, this may be short-sighted for
unmanned aircraft. Indeed, just because an avoidance action is issued and adopted, does
not mean it will resolve the conflict. This is particularly true of fully automated systems,
which may indeed continually attempt to avoid the object in some circumstances. As
such, a decision strategy may be required for unmanned aircraft to be able to recognise
the end of a conflict during an avoidance maneuver.

For many collision avoidance systems using relative state information, a resolution strat-
egy is assumed or not disclosed. More precisely, the resolution decision may not be explicit
and instead incorporated into the complete avoidance maneuver. To this end potential
field, path planning and optimal control methods are common. Multiple waypoints may
be used to guide the aircraft away from the object and then back to a predefined position,
with no specific recognition required of when (or where) the collision encounter has ended.

For avoidance systems using optic flow or image feature position explicitly (including
human navigation), a conflict is considered resolved when the object can be seen behind
the observer. In some cases, this is inferred by the object passing outside the field of
view [237]. Strictly speaking however, a conflict can only be considered resolved if the
magnitude of the relative angular position is greater than 90 degrees in azimuth and
non-zero in elevation [238]. Such an approach to resolution decisions provides a simple
and flexible means in which to check for successful avoidance [267]. However, this places
constraints on the number of cameras, their arrangement and their respective viewing
angles (field of view). Additionally, it is unclear exactly how to incorporate such an
approach into an automated decision strategy, and realistically asses its effectiveness. If
the approach can be threshold based, then system analysis may be possible using (or
extending) existing aviation performance evaluation approaches.
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1.3.3 Research Implications & Summary

The previous sections have provided a comprehensive background on visual sensing and
collision avoidance system principles in the context of vision-based See and Avoid sys-
tems. Particular attention was given to human, aircraft and robot navigation and control
systems to provide a holistic approach to the problem whilst ensuring it can be addressed
from a realistic perspective.

A number of key findings can be derived from this preliminary review, and used to help
inform a useful investigation into the design and implementation of various system com-
ponents. This includes the avoidance decision, avoidance control and resolution
decision functions central to this research investigation. Important findings and their
associated implications for this research program include:

� General Decision & Control Approach. It is very difficult to estimate the relative
state (position, velocity, range etc.) for an arbitrary collision encounter in the Sense
and Avoid environment. Even with prescribed motion (passive ranging), the short
duration of the collision means no guarantee can be placed on filter convergence or
the availability of accurate and timely estimates. Considering highly accurate relative
angular positions can be obtained directly from monocular vision, it may be wiser to
use these variables directly for decision and control. Considering also the alignment
with human navigation models (constant angle assumption) and recent approaches to
angle-only collision avoidance, effective avoidance strategies could be built by actively
re-positioning the object on the image surface. For static objects, a spiral like trajectory
is induced. For dynamics objects, the effects have not yet been fully analysed. The
difficulty then resides in determining where or how to re-position the object in the
image (avoidance decision) and which control strategy to use (avoidance control) for
both static and dynamic objects.

� Avoidance Decision The majority of geometrically optimal and planned avoidance
decision strategies do not align well to the See and Avoid problem constraints. Explic-
itly using visual cues to re-position the object in the image provides a simple approach
to making avoidance decisions, that is well aligned to both human navigation mod-
els and the problem constraints. Specifically, the angular rate and position could be
combined with the properties of spiral motion to help build a unique decision strategy.
However, considering the ambiguity on some visual observations and the uncertainty
in the underlying encounter geometry, avoidance decisions may then need to leverage
existing rules of the air to be effective. Considering that predictable aircraft behaviour
is important, consistency across all airspace users can then be better assured to help
preserve airspace integrity.
Additionally, such an approach is likely to contain one or more thresholds upon which
decisions are based. The safety critical nature and short duration of typical encounters
suggests a conservative decision policy, that perhaps avoids all targets in the image,
should be adopted. Each object may be treated differently depending on the pro-
jected visual cues, threshold placements and decision structure. This bears strong
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resemblance to traditional collision probability approaches used in manned aviation
for certified systems. The difficultly in this case however, is in designing avoidance
strategies that minimise the number of decision thresholds. If the latter is possible,
existing statistical performance evaluation techniques used in manned aviation could
then be used to simultaneously optimise the decision policy (threshold placements).
and verify system performance. The findings suggests the avoidance decision strategy
could be assembled using only direct visual Cues or Optic Flow, existing Flight Rules,
Spiral Motion properties and a Conservative Policy or decision structure.

� Avoidance Control As the collision object needs to remain visible throughout the
conflict, and to avoid visibility issues, a wide field of view is required. A high spatial
resolution is preferred to improve detection distance to facilitate earlier target detection
in a broader range of environmental conditions. Considering also the direct use of
visually acquired angular observations, a natural choice for the imaging sensor is a
Spherical Camera or spherical imaging model.
Considering the lack of relative state information (position, velocity etc) position-
based visual servoing is not suitable for avoidance control. For a reactive approach
more aligned to the available information and human steering behaviour, a compu-
tational efficient Image-Based Visual Servoing scheme is better suited for avoidance
control. The success of optimal control approach in collision avoidance control (posi-
tion or image based), provides a strong argument for pursuing similar design principles.
Recent improvements in computational power have allowed position based Model pre-
dictive Control (MPC) approaches to be designed that can provide optimal avoidance
behaviour whilst considering a range of problem constraints. The finite prediction
horizons used allow some robustness to parameters uncertainty (model mismatch) and
measurement noise. Importantly, the use of short prediction horizons bears strong
resemblance to recent beliefs regarding human collision avoidance control. The finding
suggests that extensions to image-based visual servoing using Nonlinear Model Pre-
dictive Control (NMPC) could be used in a Visual Predictive Control approach that
better encapsulates the control problem.

� Resolution Decision Most resolution strategies used to stop avoidance motion are
not explicitly developed or disclosed, and instead inferred due to a planned avoidance
approach. Other resolution strategies make use of the fact that an object is behind the
observer if the magnitude of the azimuth angle is greater than 90 degrees. This simple
criteria could be used for a vision-based resolution strategy, provided the camera view-
ing angle is sufficient. Alternatively, the concept may have to be adapted to meet any
viewing deficiencies. In any case, the resolution strategy should be coupled with the
avoidance control such that the avoidance behaviour is not stopped prematurely. Ad-
ditionally, if the resolution strategy is threshold-based, it should be decoupled from the
avoidance decision, to ensure the effects of each on performance can be appropriately
distinguished.

� Performance Evaluation In order for any See and Avoid system to be certified, it
must demonstrate at least an equivalent level of safety to that of manned aircraft.
Despite the difficultly in completely defining this standard, a stronger safety case may
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be established by adopting similar performance evaluation techniques as those used in
manned aircraft systems (such as TCAS and ACAS). The finding suggests Statistical
Performance Metrics and simulation techniques aligned to common aviation collision
avoidance (and alerting) system analysis methods should be adopted. Focus could be
on using or extending System Operating Curve (SOC) and System Performance Curve
(SP) based methods derived from comprehensive encounter simulations (Monte-Carlo
or otherwise) to fit the vision-based decision and control strategies.

� Implementation The regulatory, safety, repeatability and economical difficulties as-
sociated with implementation of a full scale See and Avoid system prohibit such an
approach within the scope of this research. However, it is important to ensure that
the decision and control strategies can be implemented in a practical system. Indeed,
much work has focused on using small unmanned aircraft in preliminary flight tri-
als. The finding suggests implementation using a Proof-of-Concept approach using
Scaled Environmental Conditions that realistically represent See and Avoid encounters
(where possible). Safe and easy to implement small indoor multirotor platforms could
be used, as the avoidance and decision strategies can be extended to other platforms.
It is then feasible to suggest a proof-of-concept implementation could be realised pro-
vided aircraft performance limitations, sensing issues and environmental conditions are
realistically scaled and appropriately bounded.

The above findings simultaneously outline and justify the novelty of the particular ap-
proach to automated vision-based See and Avoid considered in this thesis. Specifically, the
investigation includes the design, implementation (proof-of-concept) and evaluation (sys-
tem operating curves) of new vision-based decision and control strategies, that uniquely
combine existing aviation rules and spiral trajectories with novel extensions to spherical
image-based visual servoing (IBVS) using nonlinear model predictive control (NMPC)
schemes. The details and results of such an investigation constitute a series of significant
and original contributions, and are described in the remaining chapters.



Chapter 2

Preliminaries

2.1 Notation

The following notation conventions and style are used in this thesis unless stated oth-
erwise. For a complete list of variables and constants, including the symbolism and
qualitative description, refer to Appendix E.

For any scalar x ∈ R
1, |x| denotes its absolute value. A vector valued function is denoted

by f(·). For any vector x ∈ R
n, ‖x‖ denotes the 2-norm and xP denotes the weighted

norm such that x2
P = xT Px. Positive definite and positive semi-definite matrices are

denoted by P � 0 and Q 	 0 respectively. The maximum and minimum real eigenvalues
of a matrix P are given by λmax(P) and λmin(P) respectively. A skew symmetric matrix
formed from the vector x is denoted by sk(x) and a diagonal matrix formed from the
vector y is denoted by di(y). A rotation matrix and translation vector from frame b to
frame a is denoted by aRb and atb respectively. Unit vectors are denoted using a tilde such
that r̃ denotes a unit range vector. Dot notation is used to represent variable derivatives
where the independent variable is time such that ẋ = dx/dt.

A setpoint or reference value is denoted with an asterisk. For example, u∗(·) defines
a reference control sequence. A star denotes optimality such that the minimum cost
resulting from the application of an optimal control sequence u�(·) is given by J

� .

2.2 Vehicle Dynamics

The focus of this thesis is a vision-based collision avoidance solution that may be amenable
to multiple platform types, from multi rotors to fixed wing aircraft. As a large number of
platforms exist, it is intractable to simulate, test and verify any such collision avoidance
system for all cases. Instead, a representative set of vehicle dynamics is required to
help determine system performance. If simulations alone were sufficient to derive system
performance attributes, the choice of dynamic model is not restrictive. If the goal is
to also flight test the system, only a limited set of platforms can be considered given
the safety concerns and regulatory environment. To this end, a small indoor quadrotor
platform is used in this thesis. This section first details the derivation of a suitable
generic dynamic model for the quadrotor. Platform specific attributes are then added to
the model. Although required for the experimental implementation, the vehicle dynamics
are not presented as a contribution to this thesis and have been based on [268, 269].

34
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2.2.1 Quadrotor Basics

A quadrotor is an aerial vehicle capable of quasi-stationary or hover flight similar to
conventional helicopters. The platform consists of four rotors configured in a symmetrical
cross pattern about the platform centre. Each rotor consists of a propeller blade directly
attached to a motor located at the extremity of each arm. The platform centre contains
the avionics and payload including telemetry links, autopilot and cameras.

The rotors are arranged in counter-rotating pairs such that the front and rear rotate
counter-clockwise and the left and right rotate clockwise. The propellers have a fixed
pitch and their axes of rotation are parallel to each other and the vertical. A vertical
thrust force and horizontal drag force acting through the centre of each rotor is thus
produced at each arm. As a result, a torque is also produced about each axis from the
platform centre. The net force and torque on the quadrotor result in translational and
rotational movement. Therefore, the motors are the only platform actuators. At a low-
level, the control inputs required are variations in motor speed Ωn for n = {1, 2, 3, 4}
rotors. The thrust force Fn from each rotor depends on the blade configuration and
physical parameters, and is directly proportional to the square of the motor speed such
that

Fn = kΩ2
n (2.1)

The torque τn produced at each motor depends, in part, on the propeller drag force F̄n

and propeller radius rp, but can be simplified as

τn = rpF̄n = kτΩ2
n (2.2)

At a higher level, a mixture of rotor speed variations can be used to construct four
separate control inputs Ui for i = {1, 2, 3, 4}. The input controls consist of a force U1 and
three input torques U2, U3 and U4. Although the platform is still under-actuated, the
controls provide a more direct correspondence to changes in roll, pitch, yaw and vertical
acceleration which is more useful for controlling position and attitude. A set of simplified
diagrams depicting the various forces and torques acting on the platform resulting from
changes in control input is given in Fig 2.1. The rotors are labelled 1-4 starting at the
front rotor and moving clockwise through to the left rotor.

If all motor speeds are identical such that Ω1 = Ω2 = Ω3 = Ω4, a net upward force FT is
produced. The net torque τc = 0 as the effects from each rotor cancel due to the counter-
rotating arrangement. If the speeds are decreased or increased by the same amount and
the pitch and roll angles are zero, the platform will descend, hover or ascend depending
on the relative magnitude of FT compared to the platform weight mg. For all other
attitudes, a lateral and longitudinal force will also be induced causing movement in the
horizontal plane. Setting U1 = FT ensures the magnitude of the thrust can be directly
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Figure 2.1: Quadrotor control inputs

controlled such that

U1 = F1 + F2 + F3 + F4 (2.3)

U1 = k(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4) (2.4)

The orientation of the thrust vector is controlled by changing the platform attitude by
inducing a non-zero torque. Increasing the right motor speed and decreasing the left
motor speed by the same amount ΔΩ results in a positive torque τx about the lateral axis
whilst retaining the overall thrust such that FT = F1 + (F2 +ΔF ) +F3 + (F4 −ΔF ). An
acceleration in roll angle is thus induced. Setting U2 = τx

U2 = rm(F4 − F2) (2.5)

U2 = rmk(Ω2
4 − Ω2

2) (2.6)

Increasing the front motor speed and decreasing the rear motor speed by the same amount
ΔΩ results in a positive torque τy about the longitudinal axis whilst retaining the overall
thrust such that FT = (F1 +ΔF ) + F2 + (F3 − ΔF ) + F4. An acceleration in pitch angle
is thus induced. Setting U3 = τy

U3 = rm(F3 − F1) (2.7)

U3 = rmk(Ω2
3 − Ω2

1) (2.8)

The torque produced by each motor is required to maintain the propellers spin and provide
the necessary thrust force. It also induces a drag force F̄n perpendicular to the associated
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thrust force such that each rotor contributes some torque about the body vertical axis.
Increasing the right and left motor speed and decreasing the front and rear motor speed
by the same amount ΔΩ results in a positive torque τz about the vertical axis whilst
retaining the overall thrust such that FT = F1 + (F2 + 2ΔF ) + F3 + (F4 − 2ΔF ). An
acceleration in yaw angle is thus induced. Setting U4 = τz

U4 = rp(F̄2 + F̄4 − F̄1 − F̄3) (2.9)

U4 = kτ (Ω2
2 +Ω2

4 − Ω2
1 − Ω2

3) (2.10)

The equations describing the control inputs can then represented in matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎝

U1

U2

U3

U4

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

k k k k

0 −rmk 0 rmk

−rmk 0 rmk 0

−kτ kτ −kτ kτ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.11)

The model for the quadrotor control inputs derived above has been simplified. The
simplifications include the following well-founded assumptions [270]-[272]:

� The effects of blade flapping resulting from deformation of the propeller moving at
high velocity are neglected.

� Each rotor is identical. The associated drag force on each propeller is assumed to act
at the tip of the blades to produce the rotor torque. The associated propeller velocity
is such that an approximately constant thrust is induced.

� The platform is symmetrical about the zx and zy planes.
� The principles of conservation of energy apply to each rotor such that all input energy

is transferred to a thrust and drag force.

2.2.2 Quadrotor Model

The physical variations between different quadrotor platforms renders the flight char-
acteristics of each vehicle unique. Coupled with environmental factors resulting from a
diverse operating region, an analysis of the forces and moments acting on a quadrotor
would result in a unique, complex and cross-coupled nonlinear dynamic model. However,
under some simplifying assumptions, some generic dynamic models can provide a suitable
approximation to the real dynamics for a large number of similar platforms operating over
a particular region of the flight envelope. To this end, a simplified generic point mass
model for a quadrotor can be derived using Newtonian mechanics and the principles of
linear momentum. The platform is considered to be a point object in space in which the
origin of the body fixed frame Fb coincides with the centre of mass. The body axis is also
assumed to coincide with the body principle axis of inertia. The vehicle is free to move
in 6 degrees of freedom (DOF) with respect to a fixed inertial or world frame Fw, but
is assumed to remain in quasi-stationary flight (hover). In this way, the platform is as-
sumed to be in a steady state either hovering or slowly moving such that the surrounding
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Figure 2.2: Coordinate frames for the quadrotor body Fb and the world frame Fw along with an example
point in space measured with respect to the body bp and world frame wp.

environment is stationary, aerodynamic drag and thrust forces due to the fuselage can be
neglected and only small pitch and roll angles are induced. The control inputs consist
of the forces U1 and torques U2, U3 and U4 derived earlier. The geometry is depicted in
Fig 2.2.

The point mass model can be derived in two stages. First, the forces and moments acting
on the vehicle are considered separately then merged to define the translational and an-
gular acceleration components on the platform. Second, by applying the aforementioned
simplifying assumptions, the dynamics are then reduced to a set of linear equations that
can be represented in a body or world frame.

The force acting on the quadrotor platform in the world frame wF can be defined in terms
of the gravitational force Fg, wind forces Fw and body forces bF such that

wF = wRb
bF + Fg + Fw (2.12)

where wRb defines a rotation matrix from the body to world frames in terms of the roll
φ, pitch θ and yaw ψ Euler angles. The force acting on the body can be defined in terms
of the control input force Fc and angular velocity vector ω such that

bF = Fc + ω × mbv (2.13)
bF = Fc − sk(mbv)ω (2.14)

where bv is the body velocity vector and the second term defines the Coriolis forces
resulting from the cross-coupling of angular velocities. As the platform remains close to
the hover point, with only small pitch and roll angles, the second term can be ignored as
its contribution to the resulting force is relatively small. Neglecting the effects of external
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disturbances due to turbulence and wind gusts, (2.14) becomes

wF = wRbFc + Fg (2.15)

Re-writing (2.15) in terms of translational accelerations wẍ and expanding for the indi-
vidual components ⎛

⎜⎜⎜⎝
wẍ

wÿ

wz̈

⎞
⎟⎟⎟⎠ =

1
m

wRb

⎛
⎜⎜⎜⎝

bFx

bFy

bFz

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝
0

0

g

⎞
⎟⎟⎟⎠ (2.16)

where m is the quadrotor mass and g is the gravitational constant. The control inputs
collectively result in an applied thrust U1 acting parallel to the vertical axis such that
U1 = −bFz. Equation (2.16) becomes

⎛
⎜⎜⎜⎝

wẍ

wÿ

wz̈

⎞
⎟⎟⎟⎠ =

1
m

⎛
⎜⎜⎜⎝

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ

−Sθ SφCθ CφCθ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

0

−U1

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝
0

0

g

⎞
⎟⎟⎟⎠ (2.17)

where C = cos(·) and S = sin(·). Expanding the above equation and simplifying

⎛
⎜⎜⎜⎝

wẍ

wÿ

wz̈

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

U1(− cosψ sin θ cosφ − sinψ sinφ)/m

U1(cosψ sinφ − sinψ sin θ cosφ)/m

g − U1(cos θ cosφ)/m

⎞
⎟⎟⎟⎠ (2.18)

The torque acting on the quadrotor platform in the world frame wτ can be defined in
terms of the body torque bτ and wind torque τw such that

wτ = wTb
bτc + τw (2.19)

where wTb defines a transformation matrix from the body to world frames in terms of the
roll φ, pitch θ and yaw ψ Euler angles. The torque acting on the body can be defined in
terms of the control torque τc and gyroscopic torque τg such that

bτ = τc + τg (2.20)
bτ = Jω̇ + ω × (Jω) (2.21)
bτ = Jω̇ − sk(Jω)ω (2.22)

where ω is the body angular velocity and J is the inertia matrix. As the platform is
symmetrical, J = di(Jxx, Jyy, Jzz) where the moments of inertia Jnn = mr2

nn. Neglecting
wind effects and assuming the algebraic sum of the motor speeds is approximately zero,
such that the gyroscopic effects resulting from any imbalance have a minimum impact on
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the resulting torque, the torque acting on the platform becomes

wτ = wTb
bτc (2.23)

wτ = wTb
bJω̇ (2.24)

The torque on the platform is thus a direct result of the applied control torque τc. Re-
writing (2.24) in terms of angular accelerations and expanding for the individual compo-
nents ⎛

⎜⎜⎜⎝
φ̈

θ̈

ψ̈

⎞
⎟⎟⎟⎠ = wTb

bJ−1

⎛
⎜⎜⎜⎝

τx

τy

τz

⎞
⎟⎟⎟⎠ (2.25)

Substituting the torque produced by the rotors for the control inputs and expanding
⎛
⎜⎜⎜⎝

φ̈

θ̈

ψ̈

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

U2/Jxx

U3/Jyy

U4/Jzz

⎞
⎟⎟⎟⎠ (2.26)

Under the assumption the quadrotor moves about the hover position, with small pitch
and roll angles, the transformation matrix can be simplified to the identity matrix I3.
This can be seen through inspection of the transformation matrix. As such

⎛
⎜⎜⎜⎝

φ̈

θ̈

ψ̈

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

U2/Jxx

U3/Jyy

U4/Jzz

⎞
⎟⎟⎟⎠ (2.27)

The complete set of dynamic equations can then be defined by combining (2.32) and
(2.27) such that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wẍ

wÿ

wz̈

φ̈

θ̈

ψ̈

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1(− cosψ sin θ cosφ − sinψ sinφ)/m

U1(cosψ sinφ − sinψ sin θ cosφ)/m

g − U1(cos θ cosφ)/m

U2/Jxx

U3/Jyy

U4/Jzz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.28)

Further simplifications can be made under some additional assumptions. Firstly, the yaw
angle is assumed to be zero such that ψ = 0. Secondly, the thrust dynamics of the
platform are assumed to be sufficiently fast such that the total input thrust keeps the
platform from accelerating in the vertical plane. To this end, consider a virtual body
frame F ′

b depicted in Fig 2.3 that is no longer displaced by a small angle Φ, but instead
remains level with the horizontal plane of the world frame. The force bF ′ acting along
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Figure 2.3: Simplification of quadrotor dynamics for a point mass model derivation

the associated axis in the horizontal plane is given by

bF ′ = FT sinΦ (2.29)

The vertical force in the virtual body frame is the same as that in the world frame and
can be expressed as

wFz = FT cosΦ = mg (2.30)

Combining (2.29) and(2.30) then

bF ′ = mg tanΦ (2.31)

Due to the symmetry of the platform, bF ′ can represent the force in the lateral or longi-
tudinal direction with Φ denoting the associated roll or pitch angle. Applying the small
angle theorem such that tanΦ ≈ Φ, sinΦ ≈ Φ, cosΦ ≈ 1 and substituting into the trans-
lational acceleration equations, the generalised quadrotor equations of motion become

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẍ

ÿ

z̈

φ̈

θ̈

ψ̈

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1θ/m

U1φ/m

g − U1/m

U2/Jxx

U3/Jyy

U4/Jzz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.32)

Note, the reference frame for translational acceleration has been omitted in the above
dynamics. As they are independent of the yaw angle, they could be considered to be the
translational dynamics of the virtual body frame. They describe the forward-backward,
left-right and up-down motion of the quadrotor. Without further manipulation, and
considering the assumptions under which they were derived, they could be used as an
approximation to the vehicle dynamics with respect to the body frame. Alternatively, they
can be used as an approximation to the vehicle dynamics in the world frame provided
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Figure 2.4: Generalised quadrotor control architecture where x∗ denotes the reference input vector to the
high level controller and Υ∗ denotes the reference input vector to the low-level controller. The actual
input to the quadrotor consists of motor speed commands through U = (U1, U2, U3, U4).

an additional term is added to account for the yaw offset. Essentially, correcting the
translational accelerations in the horizontal plane.

2.2.3 Quadrotor Control

Automatic control of most aerial vehicles is typically accomplished using a nested set of
control loops. The particular arrangement of control loops may depend on the platform
hardware, vehicle dynamics and actuators and the requirements of a particular applica-
tion [273]-[275]. For quadrotors, a typical control architecture consists of inner low-level
controller(s) and an outer high-level controller(s). The generalised quadrotor control ar-
chitecture is depicted in Fig 2.5 with each controller detailed in the following sections.

Low-Level Control

The low-level controller provides high rate onboard attitude stabilisation. Specifically,
the attitude controller regulates the roll, pitch, yaw rate, and thrust Υ = (φ, θ, ψ̇, FT )
by controlling rotor speeds through U = (U1, U2, U3, U4). The high level controller pro-
vides the roll, pitch, yaw rate and thrust references Υ∗ = (φ∗, θ∗, ψ̇∗, F ∗

T ). As many
commercially available quadrotors [276, 277] come with onboard stabilisation, the atti-
tude controller is often predetermined or fixed for a given platform. A common choice
is a set of Proportional-Derivative (PD) or Proportional-Integral-Derivative (PID) con-
trollers. Some vendors allow user access to the attitude controller parameters whilst
others do not [278]. Coupled with the motor particulars and avionics arrangement, the
attitude controller is generally very specific to the platform and the associated dynamics
can be difficult to determine analytically. They are therefore generally unknown before
the complete quadrotor system has been implemented.

The attitude dynamics can be approximated empirically using grey or black box system
identification. Provided the attitude controller is sufficiently fast, each command in Υ∗

can be treated independently. The controller can then be approximated as four decoupled
subsystems, one for each variable in Υ. Each subsystem can be identified by measuring
the response to a step command (issued during hover), then analysing the associated
input-output relationship to derive an appropriate subsystem transfer function. When
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required, this work leverages the experimentally identified attitude controller dynamics
for a small AscTec Hummingbird platform with modified payload [268, 269]. The attitude
controller dynamics for the Euler angles are defined by a set of 1st order transfer functions

L {φ(t)} → Φ(s) =
aφ

s + aφ
Φ(s)∗ (2.33)

L {θ(t)} = Θ(s) =
aθ

s + aθ
Θ(s)∗ (2.34)

L {ψ̇(t)} = Ψ(s) =
aψ

s + aψ
Ψ(s)∗ (2.35)

where L denotes the Laplace operator and aφ, aθ, aψ are experimentally determined con-
stants given in Appendix E. Taking the inverse Laplace transform of (2.33)-(2.35), the
corresponding continuous time differential equations are given by

φ̇(t) = −aφφ(t) + aφφ∗(t) (2.36)

θ̇(t) = −aθθ(t) + aθθ∗(t) (2.37)

ψ̈(t) = −aψψ̇(t) + aψψ̇∗(t) (2.38)

The above equation are of the form ẋ(t) = ax(t) + bu(t) and can be discretised according
to the method presented in [279]. Given the sampling instant k and a sufficiently small
sampling period Ts, a zero-order approximation to the continuous time equations results
in the corresponding difference equations

φ(kTs + Ts) = e−aφTsφ(kTs) + (1 − eaφTs)φ∗(kTs) (2.39)

θ(kTs + Ts) = e−aθTsθ(kTs) + (1 − eaθTs)θ∗(kTs) (2.40)

ψ̇(kTs + Ts) = e−aψTsψ̇(kTs) + (1 − eaψTs)ψ̇∗(kTs) (2.41)

The thrust dynamics are considerably faster and can be defined as a 0th order system
such that

L {FT (t)} = FT (s) =
1
s

FT (s)∗ (2.42)

Taking the inverse Laplace transform

FT (t) = F ∗
T (t) (2.43)

Substituting the thrust dynamics into the equation for vertical acceleration given by
(2.32), the continuous time differential equation for vertical acceleration can be expressed
as

z̈(t) = g − F ∗
T (t)
m

(2.44)
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Again, taking a zero-order approximation and assuming a sufficiently small sampling time,
the discrete time difference equation can be expressed as

ż(kTs + Ts) = ż(kTs) + Ts

(
g − F ∗

T (kTs)
m

)
(2.45)

The complete attitude controller system dynamics can then be expressed in discrete time
state space as

φ(kTs + Ts) = φ(kTs) + aφTsφ∗(kTs) (2.46)

θ(kTs + Ts) = θ(kTs) + aθTsθ∗(kTs) (2.47)

ψ̇(kTs + Ts) = ψ̇(kTs) + aψTsψ̇∗(kTs) (2.48)

ż(kTs + Ts) = ż(kT ) + Ts(g − F ∗(kT )
m

(2.49)

where the properties of the exponential series are used in the approximation such that
e−aTs ≈ 1 − aTs ≈ 1 and 1 − e−aTs ≈ aTs. Note, the time delay (dead time) for each
subsystem remains relatively small. This is particularly true for the thrust, roll and
pitch dynamics with the yaw rate observed to have a slightly longer time delay. Follow-
ing a similar procedure as above and including the time delays δtφ, δtθ, δtψ, δtFT

for the
corresponding subsystem, the resulting discrete time difference equations become

φ(kTs + Ts) = φ(kTs − δtφ) + aφTsφ∗(kTs − δtφ) (2.50)

θ(kTs + Ts) = θ(kTs − δtθ) + aθTsθ∗(kTs − δtθ) (2.51)

ψ̇(kTs + Ts) = ψ̇(kTs − δtψ) + aψTsψ̇∗(kTs − δtψ) (2.52)

ż(kTs + Ts) = ż(kTs − δtFT
) + Ts

(
g − F ∗

T (kTs − δtFT
)

m

)
(2.53)

Subsystem identification has been performed in this way for a number of real quadrotors
resulting in sets of 0th to 3rd order subsystems [268, 269, 272, 284]. When considering the
appropriate system order, there exists a tradeoff in complexity and performance. A higher
order system may better represent the true underlying attitude dynamics at the expense
of a more complex model. The first-order attitude dynamics derived above have shown
to provide an adequate representation of the platform dynamics for quasi-stationary and
non-aggressive (aerobatic) flight conditions [269]. Note, the dynamics pertain to the
platform used in flight trial experiments presented in Chapter 5.

High-Level Control

The high-level controller provides low rate control of the quadrotor state. Specifically, the
high-level controller regulates the quadrotor position x, velocity ẋ or both via the low-
level controller. Given the intended task, the reference state is provided to the controller
which then outputs the control vector u. The control vector is then fed as input to the
low-level controller such that u = Υ∗ = (φ∗, θ∗, ψ̇∗, F ∗

T ).
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Figure 2.5: Generalised low-level quadrotor control architecture where Υ∗ denotes the reference input
vector to the low-level attitude controllers. The actual quadrotor input consists of motor speed commands
U = (U1, U2, U3, U4).

The design of the controller largely depends on the application and platform hardware. As
many commercial quadrotors are intended for sports and recreation purposes, they often
rely on manual input for position and velocity control. Some vendors include some high
level control for position based on GPS sensors. In most cases however, a custom controller
is required to provide autonomous navigation suitable to the operating environment and
available sensors. When designing such a controller, a complete model of the system
dynamics may be required in order to implement advanced control techniques. This can
be derived by combining the point mass model and the attitude controller dynamics [280].

Consider three state vectors xx, xy and xz and associated control vectors ux, uy and uz

defined in discrete time such that

x = (xx xy xz), xx = (x ẋ θ̇ θ) xy = (y ẏ φ̇ φ), xz = (z ż ψ ψ̇)

u = (ux uy uz), ux = θ∗, uy = φ∗, uz = (ż∗ ψ̇∗)

Combining the attitude controller dynamics with the point mass model for xx the dy-
namics for the longitudinal (x) axis can be expressed as

xx(kTs + Ts) = Axxx(kTs) + Bxux(kTs) (2.54)

⎛
⎜⎜⎜⎜⎝

x(kTs + Ts)

ẋ(kT + T )

θ(kT + T )

θ̇(kT + T )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 Ts gT 2

s /2 0

0 1 gTs 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x(kT )

ẋ(kT )

θ(kT )

θ̇(kT )

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0

0

aθTs

0

⎞
⎟⎟⎟⎟⎠

(
θ∗(kT )

)
(2.55)

Combining the attitude controller dynamics with the point mass model for xy, the
dynamics for the lateral (y) axis can be expressed as

xy(kTs + Ts) = Ayxy(kTs) + Byuy(kTs) (2.56)

⎛
⎜⎜⎜⎜⎝

y(kTs + Ts)

ẏ(kT + T )

φ(kT + T )

φ̇(kT + T )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 Ts gT 2

s /2 0

0 1 gTs 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y(kT )

ẏ(kT )

φ(kT )

φ̇(kT )

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎝

0

0

aφTs

⎞
⎟⎟⎠ (

φ∗(kT )
)

(2.57)
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Combining the attitude controller dynamics with the point mass model for xz the dy-
namics for the vertical (z) axis can be expressed as

xz(kTs + Ts) = Azxz(kTs) + Bzuz(kTs) (2.58)

⎛
⎜⎜⎜⎜⎝

z(kTs + Ts)

ż(kT + T )

ψ(kT + T )

ψ̇(kT + T )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

z(kT )

ż(kT )

ψ(kT )

ψ̇(kT )

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−T 2
s /2m 0

−Ts/m 0

0 aψT 2
s /2

0 aψTs

⎞
⎟⎟⎟⎟⎠

(
F ∗

T (kT )

ψ̇∗(kT )

)
+

⎛
⎜⎜⎜⎜⎝

gT 2
s /2

gTs

0

0

⎞
⎟⎟⎟⎟⎠
(2.59)

Combining the system dynamics into a singe state-space representation

x(kTs + Ts) = A(kTs)x(kTs) + B(kTs)u(kTs) + G (2.60)

⎛
⎜⎜⎜⎝

xx(kTs + Ts)

xy(kTs + Ts)

xz(kTs + Ts)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Ax(kTs)

Ay(kTs)

Az(kTs)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xx(kTs)

xy(kTs)

xz(kTs)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

Bx(kTs)

By(kTs)

Bz(kTs)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ux(kTs)

uy(kTs)

uz(kTs)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

Gx

Gy

Gz

⎞
⎟⎟⎟⎠ (2.61)

The system dynamics presented above have some important implications for control.
First, control over the full vehicle state is not possible. This is natural considering that
all quadrotors are under-actuated. Direct control of movement along and about the
vertical axis is possible using U1 and U4 via F ∗

T and ψ̇∗ respectively. Indirect control of
movement along the lateral and longitudinal axis is possible by regulating the pitch and
roll attitude using U2 and U3 via φ∗ and θ∗ respectively. In any case, the specific states
to regulate will largely depend on the control task and available state estimates.

Second, as the resulting dynamics are essentially a linearisation of the true nonlinear
dynamics about a stable equilibrium operating point (hover), a range of linear control
techniques can be used to regulate platform motion. This includes Linear Quadratic
Regulators (LQR) [281, 282], Model Predictive Control (MPC) [283]-[285] and simple
Proportional-Integral-Derivative (PID) controllers [286, 287]. The techniques are well
studied and lead to simple control architectures that can be effectively implemented on
real platforms.

Lastly, the dynamics equations have been partitioned into three subsystems in the above
derivation. Due to the decoupling of the system dynamics, it is possible to partition
the dynamics in a number of other ways. This means that the control structure is not
limited to a single controller, but instead can be comprised of multiple controllers to
provide adequate control of the platform. This is an important consideration for the
work presented in this thesis. This research involves, in part, the design of a high-level
controller for a particular type of vision based collision avoidance. Full control of the
quadrotor is not possible with the visual information available, forcing the consideration
of such partitioned control schemes. The high-level control structure can then be divided
into the vision-based and non vision-based controllers.
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Figure 2.6: Generalised quadrotor control architecture where x∗ denotes the reference input vector to the
high level controller and Υ∗ denotes the reference input vector to the low-level controller. The actual
input to the quadrotor consists of motor speed commands through U = (U1, U2, U3, U4).

a) Non-Visual Controllers

The non-visual controllers include simple linear Proportional-Integral-Derivative (PID)
controllers and Linear Quadratic Regulator (LQR) controllers with integral action (LQRI)
to control forward and lateral velocity.

PID Control: The PID controller does not require an explicit model of the quadrotor.
Instead, the controller requires tuning of the three gain terms. The general form of the
PID controller can be defined as

u∗ = kpe + ki

∫ Ts

0
e dt + kd

de

dt
(2.62)

where kp, ki and kd denote the proportional, integral and derivative gain terms respec-
tively. The variable x is used in the general form of the controller but can be replaced by
the controlled state. Consider the control of forward ẋ and lateral ẏ velocity. Given the
decoupled nature of the quadrotor dynamics along the x and y axis, separate controllers
can be derived for each state such that

θ∗ = kp(ẋ − ẋ∗) + ki

∫ Ts

0
(ẋ − ẋ∗)dt + kdẍ (2.63)

φ∗ = kp(ẏ − ẏ∗) + ki

∫ Ts

0
(ẏ − ẏ∗)dt + kdÿ (2.64)

The corresponding gain terms can be estimated using Ziegler-Nichols tuning and further
refined empirically [287]. As the dynamics for forward and lateral velocity are approximate
similar linear transfer functions, the PIDs for pitch and roll were tuned with the same
parameters, such that

kp = 0.25, ki =
kp

ts/3
= 0.25, kd = 0.01 (2.65)

where ts corresponds to a 2% settling time and the derivative gain was tuned manually.
These parameters are used for the quadrotor system in Chapter 4, and are also given in
Appendix E.

LQRI Control: The Linear Quadratic Regulator controllers with integral action (LQRI)
require an augmented linear time-invariant (LTI) model of the dynamics about the x and
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Figure 2.7: Generalised PID control architecture where x∗ denotes the reference input vector to the PID
controller and u∗ denotes the reference input vector to the low-level attitude controllers.

y axis. Consider first the x axis dynamics. The position x is removed from the state
vector xx to get x1 such that

ẋ1(kTs + Ts) = A1x1(kTs) + B1u1(kTs) (2.66)

⎛
⎜⎝

ẋ(kTs + Ts)

θ(kTs + Ts)

θ̇(kTs + Ts)

⎞
⎟⎠ =

⎛
⎜⎝
1 gTs 0

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

ẋ(kTs)

θ(kTs)

θ̇(kTs)

⎞
⎟⎠+

⎛
⎜⎝

0

aφTs

0

⎞
⎟⎠ (

θ∗(kTs)
)

(2.67)

The resulting state-space model is then augmented with an x velocity error term ẋe
1 such

that ⎛
⎝ẋ1(kTs + Ts)

ẋe
1(kTs + Ts)

⎞
⎠ =

⎛
⎝ A1 0

−C1 0

⎞
⎠

⎛
⎝x1(kTs)

xe
1(kTs)

⎞
⎠ +

⎛
⎝B1

0

⎞
⎠ u1(kTs) +

⎛
⎝0

1

⎞
⎠ x∗

1 (2.68)

which can be re-written as

˙̄x1(kTs + Ts) = Āx̄1(kTs) + B̄u1(kTs) + x∗
1 (2.69)

An optimal state feedback control u�
1(kTs) can then be derived according to standard

Linear Quadratic Regulator (LQR) design for LTI systems [279]. Consider a feedback
controller of the form

u�
1(kTs) = K̄x̄1(kTs) (2.70)

where the reference control has been omitted due to system linearisation about hover such
that

u�
1(kTs) = −[K Ke][x1(kTs) xe

1(kTs)]T = −Kx1(kTs) − Kexe
1(kTs) (2.71)

The optimal constant gain matrix K̄ can be found by considering the minimisation of an
infinite horizon quadratic cost function of the general form

J =
∞∑

k=0
x̄(k)T Q̄x̄(k) + u(k)T Ru(k) (2.72)
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Figure 2.8: Generalised LQRI control architecture where x∗ denotes the reference input vector to the
LQRI controller and u∗ denotes the reference input vector to the low-level attitude controllers.

where the weighting matrices Q 	 0 and R 	 0. The solution P to the associated
(algebraic) Ricatti Equation

−Ṗ = ĀP + PĀ + CT Q̄C − PB̄R−1B̄T P = 0 (2.73)

can be used to find the gain such that

K̄ = −R−1B̄T P (2.74)

Including anti windup through amplitude saturation, the x velocity can be controlled via
a reference pitch command such that

θ∗ = u∗
1(t) = max[a,min(b, u1(t))] (2.75)

where u∗
1 denotes the saturated reference control input (1-vector) for the pitch attitude

controller, and a and b are constants denoting the maximum and minimum angular dis-
placements respectively. The y axis can be treated in the same manner to derive a similar
state-space model and LQRI controller. In this case, the corresponding state vector is
denoted by x2. The LQRI controllers are used for the quadrotor system in Chapter 5 and
6, and have been derived, tuned and validated using the comprehensive set of LQR de-
sign tools available in the MATLAB software package [70]. The resulting system models
(parameters) and gain matrices are given in Appendix E.

b) Visual Controller

The visual control is based on both predictive and classic image-based visual servoing
designs that rely primarily on visual observations to derive the control command. In
both cases, the visual controllers provide the reference yaw rate and thrust to the low-
level controller. The classical approach does not explicitly use the vehicle dynamics in
the control scheme (Chapter 4). The predictive controller requires a dynamic model of
the relevant vehicle states (Chapter 5). The details of the visual controllers are provided
in Chapters 4 and 5, but the associated vehicle dynamics are presented here for reference
and to avoid repetition. Removing the altitude from the state vector xz, the relevant
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Figure 2.9: Generalised quadrotor control architecture where x∗ denotes the reference input vector to the
high level controller and Υ∗ denotes the reference input vector to the low-level controller. The actual
input to the quadrotor consists of motor speed commands through U = (U1, U2, U3, U4).

state space model for the platform dynamics used by the visual control is given by

ẋ3(kTs + Ts) = A3x3(kTs) + B3u3(kTs) (2.76)

⎛
⎜⎝

ż(kT + T )

ψ(kT + T )

ψ̇(kT + T )

⎞
⎟⎠ =

⎛
⎜⎝
1 0 0

0 1 Ts

0 0 1

⎞
⎟⎠

⎛
⎜⎝

ż(kT )

ψ(kT )

ψ̇(kT )

⎞
⎟⎠+

⎛
⎜⎝

−Ts/m 0

0 aψT 2
s /2

0 aψTs

⎞
⎟⎠

(
F ∗

T (kT )

ψ̇∗(kT )

)
+

⎛
⎜⎝

gTs

0

0

⎞
⎟⎠ (2.77)

c) Controller Remarks and Considerations

� Reference Frames: The system states may be expressed in a local or world fixed frame.
If the control task was based on position-based visual control, it would make sense
to use dynamics expressed in the world frame. Conversely, for an image-based visual
control task considered in this thesis it makes more sense to select dynamics expressed
in a local frame. As such, the translational velocities are considered to be approxima-
tions to the quadrotor forward, sidewards and vertical velocity. This provides a more
natural interpretation of the quadrotor motion in relation to image feature motion
observed from a rigidly attached camera.

� Experimental Considerations: The high level controllers may be located onboard the
platform, at a ground station or even accessed over a network. The choice largely
depends on the application, platform hardware constraints and design stage. Posi-
tioning the controller at the ground station initially allows flexibility in development
and testing, having only to manage the communications link to the platform. The
onboard systems can then remain unchanged until the design matures and is ready for
migration onto the platform avionics suite.

� Simulation Considerations: The time delay is excluded in the partitioned dynamic
model presented above. Considering optimal controllers such as Model Predictive
Control, it may be useful to omit the time delay in the dynamic model used for state
propagation (prediction) within the controller. For simulations and validation however,
including the time delay in the plant model provides a realistic environment in which
to evaluate any control scheme. In this way, the model used in the controller and that
representing the real system in simulation are different. This simulation approach is
adopted in this thesis.
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2.3 Spherical Imaging

2.3.1 Camera Model

Spherical cameras are useful for many visual surveillance and navigation applications
in which a large field of view is required from a single device. The imaging surface is
represented by a sphere such that a 4π steradian field of view is possible in the ideal
case. Real spherical cameras are often created using a set of perspective or wide angle
cameras positioned in an array such that each cameras field of view constitutes a section
of the sphere. The images are then artificially stitched together to make up the spherical
imaging surface. As such, most practical spherical cameras cannot represent a complete
spherical image with current devices capable of up to 90% coverage [83].
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Figure 2.10: Simplified spherical projection model and ideal spherical imaging. (a) Azimuth angle re-
projection (b) Colatitude angle re-projection

To obtain the image feature representation of an arbitrary projective point in space, a
number of steps are required. The point is first mapped to the surface of a unit sphere
S then re-projected via S onto an imaging plane I. The exact mapping depends on the
cameras intrinsic parameters including focal point of re-projection and mirror type, and
can be described using the unified imaging model [82]. Applying the model, an optical
axis on the sphere is first chosen. A re-projection point fp along this axis and contained
within the sphere is then defined. The imaging plane is offset from the spherical centre
by a distance m and positioned perpendicular to the optical axis. The spherical centre
is then considered to be the origin of the camera frame. A simplified representation of
the spherical camera geometry and the unified imaging model is depicted in Fig 2.10.
Here, the x axis is chosen as the optical axis and the re-projection point is given by
fp(−d, 0, 0). A point defined in the camera frame cp(X, Y, Z) corresponds to the image
feature representation p(x, y, z) where

p(x, y, z) = (−m,
Y (d + m)
dr − X

,
Z(d + m)
dr − X

) (2.78)

and r2 = X2 +Y 2 +Z2 is the square of the distance between the projective point and the
spherical centre. Antipodal points resulting from the use of a spherical surface are not
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considered in (2.78), but would result in some minor sign changes. A more generic model
can then be defined as

p(x, y, z) = (−m, ±Y (d + m)
dr ∓ X

, ±Z(d + m)
dr ∓ X

) (2.79)

The unified imaging model can also be used to map image features measured using other
camera types, including wide angle and perspective, to an ideal imaging sphere [306].
As an example, consider a perspective camera with x as the optical axis and a focal
length f = 1. Assuming the spherical centre and re-projection point are aligned such that
fp(0, 0, 0) and the imaging plane lies tangential to the unit sphere such that m = f = 1,
(2.78) becomes

p(x, y, z) = (−1,
Y

X
,

Z

X
) (2.80)

which is the model for a perspective camera. The application of the unified imaging
model to perspective and wide angle imaging is important for practical implementations.
A spherical camera may not be available, but the corresponding image feature represen-
tations may be required or preferred.

The image features have previously been defined in Cartesian coordinates p(x, y, z) but
can also be represented in spherical coordinates s(σ, γ), providing a more natural inter-
pretation of the image feature position when using spherical imaging. A projective point
in the camera frame can be expressed in spherical coordinates as

cp(X, Y, Z) = (r sin σ cos γ, r sin σ sin γ, r cosσ) (2.81)

where the azimuth γ ∈ [−π, π) and colatitude σ ∈ [0, π) angles are measured from the
spherical centre. The angles can be considered similar to measuring the longitude and
latitude of a point on a sphere, where a constant colatitude defines a great circle. Using
the camera frame coordinates, the spherical image features can be defined as

s(σ, γ) = (arccos(Z/r), arctan(Y/X)) (2.82)

Using the Cartesian representation of the image features, x2 + y2 + z2 = 1 and p = cp/r

by virtue of the unit spherical imaging surface. The constraint results in a redundant
coordinate such that the spherical image feature angles can then be expressed as

s(σ, γ) = (arccos(z), arctan(y/x)) (2.83)

The perpendicular distance from the image feature to the camera z axis is denoted by
r̄, and can also be used to determine the spherical image features such that σ = arcsin r̄.
This can be inferred using Fig 2.11.

Combining the unified imaging model and the spherical image feature representation, a
perspective camera could be used to represent a partial section of the spherical image.
The particular section of the sphere will depend on the relative orientation of the camera
optical axis with respect to the vehicle or body frame. The image features measured
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Figure 2.11: Spherical image feature measurements (a) Colatitude measurement (b) Azimuth measurement

from the perspective camera f(u, v) could then be used to approximate the spherical
images features s(σ, γ) in that section of the sphere. For example, assuming again that
fp(0, 0, 0) coincides with the focal point of the perspective camera and assuming m = f ,
the spherical image features can be approximated as

s(σ, γ) ≈ (arctan ((v − vm)/f) + σo, arctan((u − um)/f) + γo) (2.84)

where (um, vm) denotes the centre coordinate of the perspective image and σo and γo

denote fixed offset angles. The angles are included to account for camera positioning such
that the correct section of the sphere is being represented. If the optical axis is switched
to Zc instead of Xc, then the spherical angles can be approximated as

s(σ, γ) ≈ (arctan ((v − vm)/f) + σo, arctan((v − vm)/(u − um)) + γo) (2.85)

Assuming Xc defines the optical axis and the camera and body frames are initially aligned,
if the perspective camera is then rotated about the Zc axis by ψc, (2.84) becomes

s(σ, γ) ≈ (arctan ((v − vm)/f) + π/2, arctan((u − um)/f) + ψc) (2.86)

For practical implementations, this thesis makes use of perspective imaging and (2.86) to
approximate a spherical camera section. A perspective camera is positioned on an aerial
vehicle such that the camera is offset from the direction of forward motion to ensure
coverage of key angular position important for collision avoidance. The particular field of
view will be made clearer in Chapter 3 through a discussion on conical spiral motion.

2.3.2 Image Kinematics

The image kinematics define the relationship between image feature velocity ṗ or ṡ and
camera velocity ẋ ∈ R

6. The camera velocity includes the translational τ and angular
velocity ω components such that ẋ = (v ω). Using the traditional approach used for
perspective imaging [288], a point in the camera frame cp has a velocity cṗ defined by

cṗ = −τ − ω × cp (2.87)
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which in scalar form becomes

Ẋ = −vxZ − ωy + Y ωz (2.88)

Ẏ = −vyX − ωz + Zωx (2.89)

Ż = −vzY − ωx + Xωy (2.90)

Taking the derivative of the spherical image features defined in (2.82)

σ̇ =
ZXẊ + ZY Ẏ + Z2Ż − r2Ż

r3 sin σ
(2.91)

γ̇ =
XẎ − Y Ẋ

r2 sin2 σ
(2.92)

Substituting equations (2.88)-(2.90) into (2.91)-(2.92) and simplifying

σ̇ =
−ZXvx − ZY vy − (Z2 − r2)vz + r3Y ωx − r2Xωy

r3 sin σ
(2.93)

γ̇ =
Y vx − Xvy + XZωx + Y Zωy − (X2 + Y 2)ωz

r2 sin2 σ
(2.94)

Substituting equations (2.81) into (2.93)-(2.94) and rearranging, the spherical image fea-
ture velocities become

σ̇ = −vx cos γ cosσ

r
− vy sin γ cosσ

r
+

vz sin σ

r
+ ωx sin γ − ωy cos γ (2.95)

γ̇ =
vx sin γ

r sin σ
− vy cos γ

r sin σ
+

ωx cos γ cosσ

sin σ
+

ωy sin γ cosσ

sin σ
− ωz (2.96)

Rewriting in matrix form, the image feature velocity ṡ is given by

ṡ = Ls(s, r) ẋ (2.97)

where Ls is the spherical image Jacobian1 defined as

Ls =

⎛
⎝− cosσ cos γ/r − cosσ sin γ/r sin σ/r sin γ − cos γ 0

sin γ/r sin σ − cos γ/r sin σ 0 cos γ cosσ/ sin σ sin γ cosσ/ sin σ −1

⎞
⎠

(2.98)
The optic flow equation can be represented in discrete time using small disturbance theory
such that

s(kTs + Ts) = s(kTs) + TsL̄sẋ(kTs) (2.99)

where Ts denotes a sufficiently small sampling time and L̄s denotes an approximation of
the image Jacobian at t = kTs. The optic flow equation given by (2.97) is important for
visual control. The camera is often rigidly attached to a vehicle so the equation can be
used to describe image feature motion as a result of vehicle motion. The observed feature
motion can then be used in estimation schemes or directly to derive control feedback.

1Also referred to as the Interaction Matrix or Feature Jacobian.



2.3. SPHERICAL IMAGING 55

−150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

140

160

180
Spherical Image Features

γ (deg)

σ 
(d

eg
)

(a) (b)

Figure 2.12: Example image feature trajectory. (a) Image feature trajectory in Cartesian representation
(b) Image feature trajectory on spherical imaging surface

Some example image feature motion on a planar representation of the spherical surface
and the unit sphere itself is shown in Fig 2.12.

Consider now that the point object moves with a small constant velocity of magnitude
vt. If the object is far away and its motion is initially unknown and cannot be estimated,
the resulting optic flow equation for the dynamic object can be expressed as

ṡ = Ls(s, r) ẋ +
∂s

∂t
(2.100)

where ∂s
∂t represents the contribution of the object motion to the image feature veloc-

ity. The rotational motion of the object is negligible for a point feature and the only
contribution to the image feature motion is a result of the object translational motion.
As the projection of the translational motion is proportional to the object range such
that ∂s

∂t ∝ 1
r . The further away the object, the less influence its motion will have on the

measured image feature velocity. As such, for a small time period (or horizon), a distant
object will move very little in the image. This is an important consideration in this work,
given the object of interest is considered to be relatively far away from the camera.



Chapter 3

Spiral Avoidance

3.1 Outline

This chapter presents an avoidance and resolution decision strategy for static and
dynamic objects using only angular observations, the properties of conical spiral motion
and the current right-of-way rules for manned aviation.

First, the properties of conical spirals are introduced. This includes how they can be visu-
ally tracked and the implications for avoidance decisions. Specifically, conical spirals are
presented as a viable avoidance trajectory for image-based control. Second, a conserva-
tive threshold based avoidance decision strategy (logic) is presented. Aviation right-of-way
rules, in conjunction with a unique representation of the observed image feature motion,
are used to appropriately select a set of reference image feature positions that implicitly
forces an avoidance spiral trajectory. Third, a threshold-based resolution decision concept
to stop tracking the reference spiral is revised in the context of See and Avoid. Each of
these elements are then brought together to define the complete vision-based avoidance
and resolution decision strategy.

3.2 Conical Spirals

3.2.1 Geometry Basics

Conical spirals have been called logarithmic, equiangular and conchospirals with each
name describing a particular characteristic of the resulting curve. Frequently occurring
in nature and broadly studied by mathematicians, artists and scientists, they describe
the set of trajectories that circumscribe the surface of a cone [289]-[291]. The idea can be
reduced to two dimensions, resulting in planar spirals.

Mathematically, conical spirals require minimal parametric representation. Consider a
fixed object reference frame Fo with its origin positioned at the apex of a stationary cone,
and its z axis along the cone axis as shown in Fig 3.1. The elevation angle β defines the
angle between the range vector to the apex and the positive vertical axis of the cone,
such that 0 < β < π. When β ∈ {0, π} the apex is situated directly above or below the
platform, and a degenerate case exists such that a conical spiral cannot be defined. The
bearing angle α is defined as the angle between the projection of the range vector and
platform velocity vector onto the xy-plane such that −π < α < π. When α ∈ {0, π, −π}
the apex is situated directly in front or behind the platform, and again a degenerate case

56
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Figure 3.1: Top view and side view of a reference cone (dashed), its apex (solid black dot) and parameters
defining conical spiral motion.

results such that a conical spiral is not defined. The speed is defined as the magnitude
of the translational velocity vector ẋt such that v =‖ ẋt ‖= (v2

x + v2
y + v2

z)
1
2 . The initial

range and vertical displacement from the apex are defined by r0 and z0 respectively. The
initial angular position from the apex measured from the positive x axis is defined by
η0. Importantly, fixing the conical angles c to a reference value such that c∗ = [β∗ α∗]
results in a particular spiral type, be it convergent, divergent or circular. Changing the
remaining parameters simple changes the position at which that particular spiral type
commences. The conical angles can then be used to represent the relative position of a
maneuvering aircraft with respect to a static or dynamic apex.

3.2.2 Tracking Spirals

In order to visually track or attempt to track a conical spiral, the appropriate conical
angles must be regulated directly from visual observations obtained from the unmanned
aircraft. A relationship between the conical angles c and the spherical image features s
is then required.

Consider a fixed object reference frame Fo, with origin at the conical apex and orientation
aligned to a fixed world frame Fw. Now consider a spiral reference frame Fs, attached
to an aircraft moving along a conical spiral trajectory. The origin of the spiral reference
frame and aircraft body frame Fb are initially aligned. The spiral frame inherits the body
translational motion, but only its angular velocity in the z axis. Therefore, the orientation
of the object frame Fo with respect to the spiral frame Fs can be defined as a rotation
sRo about the vertical axis of the object frame such that

sRo = R(ψ) (3.1)

where ψ denotes the vehicle yaw angle. Note, that by this definition α �= ψ, and is best
represented in the spiral frame. Additionally, by the definition above, the relationship
between the elevation angle in the spiral and object frames is given by

β′(t) = π − β(t) (3.2)
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Figure 3.2: World (w), object (o), spiral (s) and body (b) coordinate frames and elevation β′ and azimuth
α′ angles defined in the spiral frame.

where a dash denotes the elevation angle measured in the spiral frame. An aircraft can
then track a conical spiral by regulating β′ and α using visual observations. The relevant
coordinate frames and associated angular measurement are depicted in Fig 3.3.

The introduction of the spiral reference frame allows the derivation of a convenient rela-
tionship between the image features and conical angles. Specifically, consider a spherical
camera rigidly attached to an aircraft observing a point object, considered to be the
conical apex. In the camera frame, the apex is denoted by cp such that

cp(t) =

⎛
⎜⎜⎜⎝

X(t)

Y (t)

Z(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r(t)Sσ(t)Cγ(t)

r(t)Sσ(t)Sγ(t)

r(t)Cσ(t)

⎞
⎟⎟⎟⎠ = r(t)cp̃(t) (3.3)

where C = cos(·), S = sin(·), r(t) is the distance to the object and a tilde denotes a unit
vector. Recalling the origin of the body and spiral frames to be equal, then in the spiral
reference frame equation (3.3) becomes

sp(t) = sRb(t)bRc
cp(t) + stc (3.4)

r(t)sp̃(t) = r(t)sRb(t)bRc
cp̃(t) + stc (3.5)

where sRb(t) and bRc define rotation matrices from body to spiral and camera to body
frames respectively. The camera focal point and origin of the body frame are separated
by the vector btc, which has the same magnitude as stc. Dividing through by r(t) and
because r(t) � ‖stc‖

sp̃(t) = sRc(t)cp̃(t) + εs (3.6)

where sRc(t) = sRb(t)bRc and εs = stc/r(t) is a small positional offset. As the object
range is expected to be at least two orders of magnitude greater than stc, then ‖otc‖ ≈
‖ots‖ ≈ r(t) ∀ t such that stc ≈ 0 and εs ≈ 0 . A simple simulation example can show that
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Figure 3.3: World (w), spiral (s), body (b) and camera (c) coordinate frames. Note, the camera frame
displacement from the body frame has been exaggerated for clarity. It is typically an order of magnitude
less than the body displacement from the object.

σ ∼ N (0.05, 0.002) and γ ∼ N (2.9, 0.37) measured in degrees, while r ∼ N (0.007, 0.005)
over the entire imaging surface. As such, image noise will likely dominate any uncertainty,
and the assumption is justified (see Appendix B). Substituting for p using spherical
coordinates then ⎛

⎜⎜⎜⎝
Sβ′(t)Cα(t)

Sβ′(t)Sα(t)

Cβ′(t)

⎞
⎟⎟⎟⎠ = sRc

⎛
⎜⎜⎜⎝

Sσ(t)Cγ(t)

Sσ(t)Sγ(t)

Cσ(t)

⎞
⎟⎟⎟⎠ (3.7)

where

sRc(t) = R(θ) R(φ) (3.8)

sRc(t) =

⎛
⎜⎜⎜⎝

Cθ(t) Sθ(t)Sφ(t) Cφ(t)Sθ(t)

0 Cφ(t) −Sφ(t)

−Sθ(t) Cθ(t)Sφ(t) Cθ(t)Cφ(t)

⎞
⎟⎟⎟⎠ (3.9)

and θ(t) and φ(t) denote camera pitch and roll angles respectively. The conical angles can
then be derived by solving (3.7) using the measured spherical image features and aircraft
orientation. Depending on the aircraft dynamics, the reference spiral will typically be
followed with non-zero pitch and roll. This is certainly the case for fixed wing aircraft, in
which coordinated turns require non-zero yaw and roll angle, and climbing and descending
require non-zero pitch. A reference pitch θ∗ and roll φ∗ angle are required according to

sin θ∗ = − cosβ∗ cosα∗, sinφ∗ = − cosβ∗ sinα∗ (3.10)

In this case, the reference image features and reference conical angles would not be equal.
However, by using de-rotated images it is reasonable to assume θ(t) ≈ φ(t) ≈ 0 ∀t so
sRc = I3 and s∗ ≈ c∗. In this way, the problem is generalised for any aircraft type.
Reference image features that directly correspond to a particular conical spiral could first
be selected. The spiral can then be tracked by directly regulating these image features as
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the image kinematics are known (see §2.3.2). For the remaining sections in this chapter
de-rotated images are assumed to be available, so the conical angles and image features
are equal and can be used interchangeably.

3.2.3 Static Apex

For a static object, consider a spiral frame Fs attached to an aircraft moving with respect
to the object reference frame Fo. The object centre coincides with the origin of Fo and
does not rotate. The object reference frame can be viewed like a fixed world frame Fw,
whose origin is shifted according to the object position. The orientation of Fs is controlled
using a yaw angular velocity command u. The range r denotes the distance between the
origins of the two frames. The heading of the vehicle ψ is measured with respect to the
world frame and its speed is defined by v. An example of the geometry is shown in Fig 3.4
where Fs moves in the xy−plane of Fo such that β = π/2.
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Figure 3.4: Example spiral geometry for a static obstacle (apex)

The nonlinear system of ordinary differential equations describing the vehicle motion then
becomes

ṙ(t) = −v cosα(t) (3.11)

α̇(t) =
v sinα(t)

r(t)
− u(t) (3.12)

ψ̇(t) = u(t) (3.13)

Provided the sampling time Ts is sufficiently small, the system can be approximated in
discrete time as

rk+1 = rk − Tsv cosαk (3.14)

αk+1 = αk + Ts

(
v sinαk

rk
− uk

)
(3.15)

ψk+1 = ψk + Tsuk (3.16)

Consider the case where the azimuth angle α is constant ∀ k. Based on the equations
above, it can be deduced that for ‖ α ‖= π/2 the range is constant, whereas for ‖ α ‖> π/2
the range increases. For ‖ α ‖< π/2 the range decreases, with α = 0 denoting a degenerate
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Figure 3.5: Example trajectories of Fo in Fs for a static object with α = π/2 (−), α > π/2 (−) and
α < π/2 (−). Initial aircraft (◦) and object (+) positions in the world frame Fw are (0, 1) and (1, 1)
respectively. The aircraft moves with velocity v = 1m/s

case whereby motion is directly toward the object. Lateral separation can then be assured
for all ‖ α ‖≥ π/2, if the correct avoidance direction is selected. To this end, it is trivial
to see that correct avoidance direction and maximum lateral separation will occur (no
crossing), by selecting the sign of the reference spiral azimuth α∗ to be the same as that
of the azimuth angle upon initial acquisition α0. Specifically,

α∗ ≥ π/2, 0 ≤ α0 ≤ π/2 (3.17)

α∗ ≤ −π/2, −π/2 ≤ α0 < 0 (3.18)

Now consider the case where β �= π/2. The resulting trajectory will be a 3 dimensional
spiral that circumvents the surface of a cone whose opening angle is defined by β. For
β < π/2, the object will be above the aircraft. For β > π/2, the object will be below
the aircraft. As such, vertical separation from the object already exists or is inherently
assured in each case. Similar to horizontal separation, the maximum vertical separation
(no crossing) will occur by selecting the reference spiral elevation angle β∗ such that

β∗ > β0, π/2 ≤ β0 < π (3.19)

β∗ < β0, 0 < β0 < π/2 (3.20)

where β0 is the elevation angle upon initial object acquisition. Some example trajectories
are illustrated in Fig 3.5 for planar spirals about a static apex or object. Although the
choice of which spiral direction to adopt can be determined using geometric intuition, it
would also be possible to setup and solve an appropriate optimal control problem similar
to [220] to find the appropriate direction. For reference, a simplified bang-bang optimal
control version of the above problem is setup and presented in Appendix C.
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3.2.4 Dynamic Apex

For dynamic objects, the object reference frame Fo is now moving with a constant velocity
vt, inertial heading Φ ∈ (0, 2π) and relative heading ᾱ ∈ (0, 2π). Similar to the static
object case, the orientation of Fs can be controlled using a yaw angular velocity command
u, as the object does not maneuver. An example of the geometry is shown in Fig 3.6 where
Fs moves in the xy−plane of Fo such that β = π/2.
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Figure 3.6: Example spiral geometry for a dynamic obstacle (apex)

The nonlinear system of ordinary differential equations describing the motion is given by

ṙ(t) = −v cosα(t) + vt cos(ψ(t) + α(t) − Φ) (3.21)

α̇(t) =
v sinα(t) − vt sin(ψ(t) + α(t) − Φ)

r(t)
− u(t) (3.22)

ψ̇(t) = u(t) (3.23)

which in discrete time can be approximated as

rk+1 = rk + Ts(vt cos(ψk + αk − Φ) − v cosαk) (3.24)

αk+1 = αk + Ts

(
v sinαk − vt sin(ψk + αk − Φ)

rk
− uk

)
(3.25)

ψk+1 = ψk + Tsuk (3.26)

Consider the case where the azimuth angle α is constant ∀ k. Based on the equations
above, the resulting spiral trajectory for a dynamic object now depends not only on α,
but on the relative velocity and heading. As such, it is difficult to analyse the range
rate and uniquely define the set of resulting spirals in terms of converging, diverging or
circular as in the static case. In some cases, the spiral may initially diverge then converge
upon attempting to circumvent the moving object. Additionally, it may be such that
the intended reference spiral cannot be sustained given the relative dynamics, further
complicating the analysis.

Recalling that the focus is on determining if a spiral can be used as a viable avoidance
trajectory, then an alternate approach is to consider analysing the nature of the aircraft
motion as it attempts to follow a reference spiral. The word nature is used to denote
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(a) Safe relative headings (b) Unsafe relative headings

Figure 3.7: Example initial relative headings ᾱ for safe and unsafe spiral trajectories for a reference spiral
c = [π/2 − π/2]. The object (◦) and aircraft (•) initial position are shown along with multiple safe (−)
and unsafe (−) object trajectories

a qualitative description of the aircraft’s ability to track a spiral and, its tendency to
initially pass in front or behind the object.

Leveraging the results from the static case, consider attempting to follow a spiral such
that α∗ = −π/2 for an arbitrary relative velocity. Consider an initial relative object
heading ᾱ0 ∈ (0, 2π) such that the analysis is generalised for any initial aircraft ψ0 and
fixed object Φ heading. A simple inspection of the relative geometry suggests two types
of spiral trajectory. For π/2 ≤ ᾱ ≤ 3π/2, the aircraft will attempt to pass in front of
the object when ψ(t) ≥ ψ0 + π. Essentially, the aircraft has to completely turn around
before passing in front of the object such that at least half a spiral has been followed. For
ᾱ < π/2 or ᾱ > 3π/2, the aircraft will attempt to pass the object when ψ(t) < ψ0 + π.
This means that the aircraft will try to move in front of the object immediately, before
half a spiral has been followed. Depending on the relative velocity, this may move the
aircraft directly toward the object, resulting in collision. As such, although there is no
guarantee that the range will not decrease as in the static case, initial lateral avoidance
can be assured in some cases. Specifically,

α∗ = − π/2, π/2 ≤ ᾱ0 ≤ 3π/2 (3.27)

For all other relative headings, collision avoidance may still be possible by attempting to
follow a reference spiral where α∗ = −π/2. However, avoidance is not assured and the
initial relative geometry is such that a collision is more likely at a sooner instance. Some
example cases for safe and unsafe initial relative headings using α∗ = −π/2 are depicted
in Fig 3.7. Of note, a similar analysis can be conducted for α∗ = π/2 and β∗ = π/2.
In this case, the safe and unsafe relative headings would be different and the trajectories
would rotate about the object in the opposite direction.

The above analysis can be extended to any relative velocity. As evidence, consider an
object moving with constant velocity vt and constant heading Φ. An aircraft then at-
tempts to follow a reference spiral about the object, with α∗ = −π/2 and β∗ = π/2. The
aircraft is moving with velocity v = 1m/s and in the same plane as the object. Consider
two cases in which the object moves with vt > v and vt < v. For each velocity, the object
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Figure 3.8: Example spiral trajectories displayed in the object frame Fo for a reference spiral c = [π/2 −
π/2]. The object initial position in the world frame Fw is (1,1) and the aircraft is initially displaced by
1m (◦,◦,◦). The object position (+) is shown along with safe (−/−) and unsafe (−) aircraft trajectories.

adopts a heading Φ ∈ {0, π/4, π/2, 3π/4, π, 5π/2, 3π/2, 7π/4} and the aircraft is initially
re-positioned to ensure α = −π/2. The resulting aircraft trajectories are shown with
respect to the object frame Fo in Fig 3.8.

For vt < v the aircraft can track the reference conical angles, resulting in distorted spiral
trajectories. For π/2 ≤ ᾱ0 ≤ 3π/2 (black, grey), the aircraft initially moves away from
the object such that a safe avoidance maneuver is adopted. Indeed, it is not until the
aircraft attempts to overtake and pass in front of the object when ψ(t) > ψ0 + π, that
a potential collision may occur. For ᾱ0 < π/2 or ᾱ0 > 3π/2 (red) the aircraft initially
moves toward the object, such that an unsafe avoidance maneuver is adopted. For vt > v

the aircraft cannot track the reference conical angles for all object headings, and no spiral
trajectory is adopted. Essentially, the assumptions used to analyse the initial geometry
are violated so no longer apply for all time. However, for π/2 ≤ ᾱ0 ≤ 3π/2, attempting
to track the reference spiral causes the aircraft to initially move away from the object,
such that the correct avoidance direction is adopted. Again, for ᾱ0 < π/2 or ᾱ0 > 3π/2,
the aircraft initially moves toward the object, such that an unsafe avoidance direction
is adopted. Importantly, the analysis supports (3.27), but also suggests that the faster
object influences the encounter geometry (and subsequent collision outcome) more than
the slower object. The specific effects of velocity therefore require further analysis.

Extending the previous analysis, consider the effect of relative velocity in more detail.
Consider again setting the reference spiral defined by α∗ = −π/2 and β∗ = π/2, but vary-
ing the relative velocity such that v = 1m/s and vt ∈ {0.1 : 0.2 : 1.9}m/s. Some example
sets of safe and unsafe trajectories are illustrated in Fig 3.9 and Fig 3.10 respectively.

First, consider the subset of safe encounters consisting of relative headings such that ᾱ0 ∈
{3π/2, 5π/4, π, 3π/4, π/2}. In all cases, upon adoption of the conical spiral trajectory, the
aircraft always moves away from the object suggesting the spiral path is a viable collision
avoidance maneuver. Even if the spiral cannot be tracked, the resulting azimuth angle α

increases, as the aircraft cannot turn around fast enough to overtake the object. As such,
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(c) ᾱ = π (d) ᾱ = π/2

Figure 3.9: Example avoidance cases displayed in the object frame Fo for a reference spiral c = [π/2 −π/2].
The object initial position in the world frame Fw is (1,1) and the aircraft is initial displaced by 1m (◦,◦).
The object position (+) is shown along with aircraft trajectories for v < vt (−) and v > vt (−).

the vehicle moves to a safer location ensuring avoidance. For spirals than can be tracked,
it is not until the aircraft attempts to completely turn around to overtake and pass in
front of the object, that the encounter geometry is degraded. In all cases then, initial
avoidance can then be assured, but a resolution decision is required to stop the spiral or
divergent motion.

Second, consider the subset of unsafe encounters consisting of relative headings such that
ᾱ0 ∈ {0, π/4}. Now an attempt is made to track the same reference spiral for crossing
objects approaching from the opposite side than the safe encounters. In all cases, there
is no guarantee that the aircraft and object will not collide as the aircraft initially moves
toward the object, degrading the encounter geometry before improving it. The exception
is for ᾱ0 = π/4 when vt > v. The object is too fast for the aircraft to maintain the
reference spiral resulting in divergent behaviour. Importantly, the relative heading is still
considered unsafe for vt < v, as the geometry is initially degraded. The analysis suggests
that the reference spiral α = −π/2 is not a viable avoidance trajectory in these cases, and
a different reference spiral should have been adopted.
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Figure 3.10: Example collision cases displayed in the object frame Fo for a reference spiral c = [π/2 −π/2].
The object initial position in the world frame is (1,1) and the aircraft is initially displaced by 1m (◦). The
object position (+) is shown along with aircraft trajectories for v < vt (−) and v > vt (−).

Now consider the inclusion of the elevation angle β. Provided β �= π/2 means the object
is not at the same level as the vehicle. However, unlike the static case, the object and
aircraft may be ascending or descending at a constant rate. This means a similar situation
to that in the lateral plane exists in the vertical plane. As such, a similar analysis to that
used for lateral avoidance can then be conducted for vertical avoidance. The geometry
can be redefined in terms of a relative inclination or glide angle β̄, and the initial relative
inclination angle β̄0 can be analysed. Importantly, to ensure polarity is correctly managed,
the elevation angle needs to be shifted by π/2 in the analysis (see §3.2.2). In this case,
initial vertical avoidance can be assured in some cases. Specifically,

β∗ ∈ {0, π}, π ≤ β̄0 ≤ 2π (3.28)

This means vertical avoidance requires positioning the object directly above or below
the aircraft such that β ∈ {0, π}. However, a degenerate conical spiral results at these
elevation angles. Additionally, β is not defined in the safe avoidance range (π, 2π) and
instead, α is used to implicitly define an object behind the aircraft. Instead, consider
attempting to provide vertical separation by selecting

β∗ �= π/2, 0 ≤ β0 ≤ π (3.29)

Although vertical collision avoidance cannot be assured in this case, it allows feasible
non-degenerate reference conical angles to be tracked. As such, a spiral trajectory about
the object will still result. Importantly, assuming lateral avoidance is the primary concern
and can be assured, then β �= π/2 constitutes a viable avoidance spiral. In some cases,
the resulting spiral may provide additional vertical separation and increase miss distance.

The analysis above indicates that collision avoidance of constant velocity objects is possi-
ble by attempting to establish and track a spiral such that α∗ = ±π/2 and β∗ �= π/2. Even
if the reference spiral cannot be achieved, attempting to establish and maintain it can
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result in safe avoidance behaviour. This implies that spiral trajectories are a viable colli-
sion avoidance trajectory requiring the use of only angular position measurements. The
difficulty lies in determining the orientation of the reference spiral to track (α = ±π/2),
given the unknown intent of the object. Specifically, the unknown heading means the
initial relative heading ᾱ0 is unknown, so it is impossible to analytically determine the
optimal spiral to adopt. However, an avoidance decision is still required upon initial de-
tection to help determine which exact reference spiral to track. To this end, it is possible
to introduce aviation flight rules to address the ambiguity, and help determine the specific
conical spiral to adopt in an arbitrary encounter.

3.2.5 Remarks

� Spiral trajectories are presented as a viable avoidance trajectory in some cases, but
indeed are not the only possible avoidance solution. Simple moving left or right can
also result in an appropriate avoidance maneuver, but it does not provide the same
desirable qualities offered by attempting to follow a spiral. First, as image-based
control will be used to track the spiral, the conical angles can be directly identified from
a single image feature and therefore tracked accordingly. Using suitable avoidance
spirals allows the selection of specific reference image features to track instead of
regions. In this way, a specific (unambiguious) image aiming point can be used.
Second, the curved spiral trajectories attempt to move the aircraft back toward the
original heading after avoidance, instead of always diverging from the initial heading.
This can help alleviate unnecessary avoidance action in some cases and help resolve
the conflict.

� The trajectories used in the previous analysis of both static and dynamic objects are
provided as examples, and it is acknowledged that an infinite number of encounters
are possible. Defining the optimal control action to take in an arbitrary encounter is
not trivial, often requiring numerical methods to solve the resulting optimal control
problem [218]-[221]. Applying a similar approach to determine the optimal spiral
to follow is possible, but as the relative heading is generally unknown, the result
cannot be used directly for non-cooperative avoidance. This is the reason a qualitative
approach is taken, and used to simply highlight some benefits of using spirals for
vision-based control.

� The analysis provided for each specific spiral trajectories assumed that the aircraft
was initially established on the appropriate spiral, in order to determine if indeed
the resulting trajectory provided avoidance. However, the initial range, control con-
straints and relative velocity will impact the ability to first establish the spiral before
a collision. If an optimal control is used to establish the spiral, this may correspond to
the aircraft’s best performance in some cases. So provided the appropriate avoidance
direction is chosen, any resulting collision while establishing a spiral is not an artefact
of using such spirals, but a result of difficult geometry. It is likely any control scheme
will have difficulty in avoiding such conflict encounters.
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3.3 Avoidance Strategy

This thesis proposes that conical spirals can be used as a viable avoidance trajectory.
Specifically, the aircraft has to attempt to visually establish and track a conical spiral,
defined with respect to the collision object, to perform collision avoidance. Based on
the preceding analysis, the difficulty for avoidance lies in determining which spiral to
track, and thus which reference image features to select, given the ambiguity in object
motion. For resolution, the difficulty lies in determining when to stop the avoidance
behaviour. This section details how these problems can be addressed by leveraging only
visual observations and aviation right-of-way rules.

3.3.1 Avoidance Decision

It has been suggested that humans detect a collision by primarily considering the relative
angular rate with respect to the object. In the ideal case, a zero angular rate denotes
a collision object, and for all other rates a non-collision object. Applying this theory to
aircraft collision avoidance however, angular rate alone has proved insufficient to initially
distinguish between collision and non collision targets. This is likely due to uncertainty
on image feature measurements that may cause some non-collision objects to appear
stationary and vice versa (see §1.3.2). One way to better address the ambiguity, is to
asses the relative measure of convergence the object exhibits in the image, with due
consideration to the expected uncertainty (variance) on the angular observations.

Consider the image feature position s(σ, γ) and image feature rate ṡ(σ̇, γ̇). Consider a new
metric s̆ derived from the image observations that can be used to represent the relative
convergence, divergence or lack thereof such that

s̆ = di(s) ṡT (3.30)

A strongly diverging object moving away from the image centre will mean that s̆ � 0.
A strongly converging object moving toward the image centre will mean that s̆ � 0. A
relatively stationary object, that may exhibit some small arbitrary movement, will mean
that s̆ ≈ 0 where 0 is a vector of zeros. These cases can be summarised as

s̆ � 0 : Divergent, s̆ � 0 : Convergent, s̆ ≈ 0 : Stationary (3.31)

The aforementioned variables are shown on an example planar representation of a spher-
ical imaging surface in Fig. 3.11. A danger zone D, defined by any image position in the
region −π/2 < γ < π/2 and 0 < σ < π, is also introduced to denote the image region in
which an object is in front of the aircraft.
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Figure 3.11: Example planar representation of the spherical imaging surface, including an example object
(•), bounded uncertainty (· · · ) on the image feature position ξs and danger area D (�).

Consider also some uncertainty vectors ξs and ξṡ for the image feature observations, whose
elements consists of the variance ξ1 on the image feature angular positions and rates such
that ξs = (ξσ ξγ) and ξṡ = (ξσ̇ ξγ̇). The variables can be used to define uncertainty ellipses
about the image features with respect to position and velocity such that

sdi(ξs) sT = 0, ṡdi(ξṡ) ṡT = 0 (3.32)

In a similar fashion as above, consider an uncertainty threshold η such that

η = di(ξs) ξT
ṡ (3.33)

Now consider comparing the feature behaviour s̆ against a positive avoidance threshold η

at the initial confirmed detection instant td (or kd) according to

s̆(td) � η, η � 0 (3.34)

The comparison evaluates the objects image behaviour whilst considering the expected
measurement uncertainty. It helps qualitatively distinguish between the actual object
behaviour and that induced by noise. To explain, consider the nominal case with perfect
sensing and setting η = 0. Evaluating if s̆(td) = η determines if a stationary object is
in the centre of the image, or a dynamic object is indeed stationary in the image. These
are the conditions known to lead to collision. For imperfect sensing, setting η > 0 and
assessing if s̆(td) � η suggests the object is either relatively stationary in the image with
arbitrary motion bounded by η, or very close to the image centre. In this case, the object
may be considered as a more significant collision threat than if s̆(td) > η. If the threshold
is large such that η � 0, then almost all stationary, converging or diverging objects would
be considered a major collision threat using the same assessment.

1The symbol ξ is used instead of the standard σ2 to denote variance to avoid confusion with the
colatitude angle σ.
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If the avoidance threshold is then used to denote the confidence (of variance) in the visual
observations based on expected uncertainty, it represents a single parameter that can be
tuned based on the degree of conservativeness that is desired. If large, the implication
is that the camera is perhaps of lower quality of the ambient conditions are causing
difficulties in object detection and tracking. If small, the opposite might be implied.
Alternatively, the threshold value may be set based on the cameras measured performance
during calibration, or updated during flight.

Once the object motion has been qualitatively assessed using the avoidance threshold, a
means to map the observed object behaviour to a specific avoidance decision is required.
In particular, a reference avoidance spiral must be selected. The exact spiral can be
defined implicitly through a set of reference image feature positions where α∗ = ±π/2
and β∗ �= 0, as outlined previously. Recalling that defining the direction of the spiral (or
polarity of the reference image features), is impossible without knowledge of the object
heading. Another method is thus required.

Aviation flight rules, and in particular the right-of-way rules, provide a convenient baseline
solution to build such avoidance decisions or logic. By combining these rules with the
avoidance decision threshold η, discrete logic can be built for vertical and lateral avoidance
that can resolve the ambiguity in determining the direction of the reference conical spiral.
Specifically, the logic can be used to select an appropriate set of reference image features
s∗(σ∗, γ∗) to track for avoidance. The resulting logic for lateral avoidance is given in
algorithm 1, and a set of example cases depicted in Fig 3.12. The resulting logic for
vertical avoidance is given in algorithm 2, and a set of example cases depicted in Fig 3.13.
To help describe how the logic works, the lateral and vertical avoidance decisions for the
example cases given in each set of figures are described below. In all cases, the term right-
of-way, and its context in aviation, is taken from Australian Civil Aviation Regulations
(CAR), Section 162 and summarised in Appendix A [29].

Algorithm 1 Avoidance Decision Strategy - Azimuth
if γ ∈ D then � Danger Area

if γ̆ < ηγ then � Convergent, Centreline or Static Features

γ∗ = −π/2 � ∗∗Allow Crossing

Right-of-Way Rules, CAR 162(1-4)
else � Divergent Features

if γ < 0 then � Left Centreline

γ∗ = −π/2 � ∗∗No Crossing

else � Right Centreline

γ∗ = π/2 � ∗∗No Crossing

end if
end if � Static or Centerline Features

else � Outside Danger Area

γ∗ = γ � ∗∗No Movement

end if
∗∗ Aircraft Action



3.3. AVOIDANCE STRATEGY 71

 

 

 

 

 

Hazard Space  

Safe Space  

Safe Space  
  

  

  

 

 

 

 

 

 

Hazard Space  

Safe Space  

Safe Space  
  

  

  

 

 

(a) Case 1 (b) Case 2

 

 

 

 

 

Hazard Space  

Safe Space  

Safe Space  
  

  

 

 

 

 

 

 

 

Hazard Space  

Safe Space  

Safe Space  
  

  

 

 

(c) Case 3 (d) Case 4

Figure 3.12: Example collision avoidance cases. The image feature position (•) is shown along with γ̆
(−→) and the resulting avoidance decision or logic outcomes that set the reference azimuth angle α∗ (�).

The following descriptions apply to the each of the lateral avoidance cases in Fig 3.12.

� Case 1: For γ̆1 and γ̆2, the object appears behind the aircraft and is therefore not a
collision object regardless of its behaviour. This is because it is no longer the primary
responsibility of the aircraft. For γ̆3 > ηγ , the object is diverging in the right half
plane. It is likely a non-crossing, non-collision object (either static or dynamic). The
object is then allowed to pass to the right of the aircraft by setting γ∗ = π/2.

� Case 2: For γ̆4 ≤ ηγ and γ̆5 ≤ ηγ , the object is relatively stationary in the right half
plane. It is likely a crossing collision object (dynamic), and right-of-way must be given.
The object is then allowed to pass in front by setting γ∗ = −π/2. For γ̆6 ≤ ηγ , the
object may be static and directly in front of the aircraft, or dynamic and just prior to
collision. This constitutes a near-head on encounter, so the aircraft must turn right.
As such, the object is allowed to pass in front by setting γ∗ = −π/2.

� Case 3: For γ̆7 ≤ ηγ and γ̆8 ≤ ηγ , the object is relatively stationary in the left half
plane. It is likely a crossing collision object (dynamic), and right-of-way must be given.
In this case however, the aircraft has right-of-way which means the object is required
to pass behind. As such, the object is forced to pass behind by setting γ∗ = −π/2.

� Case 4: For γ̆9 > ηγ the object is converging in the left half plane. It is likely a crossing
non-collision object (dynamic). For and γ̆10 > ηγ , the object is diverging in the left
half plane. It is likely a non-crossing, non-collision object (either static or dynamic).
In both cases however, applying the right-of-way rules means the object is required to
pass behind the aircraft. As such, the object is forced (or allowed) to pass behind by
setting γ∗ = −π/22.

2Although induced collision are possible, the logic remains consistent with aviation practise.
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Algorithm 2 Avoidance Decision Strategy - Colatitude
Set σ = σ − π/2, σ∗

o = 35π/180
if Object Above Horizontal then

if σ̆ > ησ then � Divergent Features

σ∗ = π/2 + σ∗
o � ∗∗No Crossing

else if σ̆ < −ησ then � Convergent Features

σ∗ = π/2 − σ∗
o � ∗∗Allow Crossing

else � Static or Centerline Features

if Overtaking then � Overtaking

σ∗ = σ � ∗∗No Movement

CAR 162(4)
else Not Overtaking

σ∗ = π/2 − σ∗
o � ∗∗Allow Crossing

end if
end if

else Below Above Horizontal
Reciprocal Logic

end if

∗∗ Aircraft Action

(a) Case 5 (b) Case 6

Figure 3.13: Example collision avoidance cases. The image feature position (•) is shown along with σ̆
(−→) and resulting avoidance decisions or logic outcomes with respect to colatitude reference σ∗ (�)

The following descriptions apply to the each of the vertical avoidance cases in Fig 3.13.

� Case 5: For σ̆1 > ησ, the object is diverging in the top half plane. It is likely a non-
crossing, non-collision object (either static or dynamic). The object is then allowed
to pass above the aircraft by setting σ∗ = π/2 + σ0. For σ̆2 > ησ, a similar situation
occurs as for σ̆1, but the object is converging. As such, the object is then allowed to
cross in front of the aircraft by setting σ∗ = π/2 − σ0

� Case 6: For σ̆3 ≤ ησ and σ̆4 ≤ ησ, the objects are relatively stationary in the top half
plane. They are likely collision objects (dynamic). No right-of-way rules exist for the
vertical dimension, other than not to change altitude for an overtaking encounter. If
an overtaking encounter can be identified3, then σ∗ = σ(kd). In non-overtaking cases,
recent studies suggest that a mix of pilot reactions occur including both climb and
descend [158, 159]. As such, in this thesis, objects are forced to pass in front by setting
σ∗ = π/2 ± σ0 accordingly.

3Overtaking may be indicated by slow qualitative object growth as shown by σ̆3
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There are some important points to notice when applying the avoidance logic, including:

� Only a single threshold needs to be tuned for lateral and vertical avoidance, whilst
the underlying logic applying aviation right-of-way rules does not need to change.
The avoidance structure is then able to capture the expected avoidance behaviour in
manned aviation, with minimal design parameters.

� Lateral and vertical avoidance logic is separate. Lateral avoidance logic is unique for
the left and right half planes. The vertical avoidance logic is reciprocal for the bottom
and top planes. This means that a mixture of the above cases exist. An object may be
considered a significant collision object in the lateral plane, and so adopt the relevant
avoidance maneuver. In the vertical plane however, it may exhibit enough apparent
image motion to suggest that only precautionary avoidance is required.

� An avoidance action is always taken. Even if the object is qualitatively classified as
a non-collision object in both lateral and vertical planes such that (s̆ > η), precau-
tionary action is taken. For true non-collision objects, this can improve miss distance.
For incorrectly assessed collision objects, it may provide an element of robustness by
providing an avoidance action that alters the initial geometry. However, this does not
imply that collision avoidance can be assured.

� The avoidance rules may not result in geometrically optimal behaviour, or even ensure
collision avoidance. However, abiding by them ensures the behaviour of unmanned air-
craft in a collision encounter is more predictable from a pilots’ perspective. Using such
aviation flight rules further adds to the approaches alignment with human behaviour
in a See and Avoid conflict.

� Although not intentional, the lateral avoidance logic can account for the object also
taking action. Indeed, if the object employs the same avoidance logic, then the right of
way rules render the object motion complementary to that of the aircraft. For example,
if the object observes the aircraft on the right, the object gives way and the aircraft
has right of way. As such, γ∗ = −π/2 for both vehicles.

� The colatitude angle used in the avoidance logic needs to be shifted by π/2 such that the
vertical centreline corresponds to σ = 0. This is to ensure an appropriate assessment
of σ̆ can be made, similar to the lateral avoidance logic. The reference colatitude then
needs to account for this such that σ∗ = σ0 ± π/2 accordingly.

� Many reference colatitude angles could be chosen. The logic selects a colatitude ref-
erence offset from the horizontal image centreline by a fixed amount denoted by σo.
The idea is to vertically separate the aircraft to improve miss distance, but rely on
horizontal separation to assure collision avoidance. As such, it is unclear how to best
select a specific value for σo �= 0.
One way to approach the problem is to consider selecting a value based on improving
control performance. For example, selecting a value by considering the nonlinearity
of the corresponding reference image position, and the expectations on stability and
feasibility for any visual controller. In this way, there is better assurance the reference
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feature will be tracked from a control perspective. In turn, consistent collision avoid-
ance control can be better assured, thus improving safety. This is the approach taken
in this thesis, and leads to some novel visual control schemes detailed in Chapter 5.

3.3.2 Resolution Decision

For a completely automated system, the aircraft needs to be able to determine when
it is safe to leave the avoidance path and resume normal flight. Given the nature of
the avoidance spiral trajectories, a resolution decision or stopping criteria is required
to prevent the aircraft from continually spiralling around the object (0 ≤ vt < v) or
attempting to track an unachievable spiral (v ≤ vt). The reason a resolution decision is
required for each case is straight forward. If the aircraft continually spirals the object,
a new collision opportunity is presented at each rotation resulting in unsafe geometry.
Additionally, the aircraft moves further away from its initially intended trajectory. If the
aircraft cannot track the spiral, the aircraft will continually diverge, again moving away
from the original path. A simple and easy approach to the problem can be based on
monitoring the aircraft heading from the initial detection instance ψ(td) = ψ0. Once the
aircraft returns to its initial heading (for the first time) upon adoption of the avoidance
trajectory, any further motion will force the aircraft to turn back toward the object. As
such, a feasible resolution strategy can be expressed as

|ψ̄(t)| ≤ |ψ̄0|, t > td : Stop Avoidance (3.35)

where ψ̄ denotes the aircraft heading bounded in the region (−π, π). This ensures the
resolution strategy is valid for reference conical angles resulting in left or right spirals.

Assuming the spiral has been established and subsequently maintained such that α =
±π/2, the resolution strategy suggest the aircraft remains directly beside the object until
returning to its initially heading. The avoidance manuever is then ceased, and the aircraft
will be displaced from its original path and tracking the same heading. Assuming the
spiral cannot be maintained such that α = ±π/2, but the correct avoidance direction has
been selected, the resolution strategy behaves differently. Specifically, the aircraft may
not be directly beside the object when the aircraft returns to its initial heading as in the
previous case. However, the aircraft will again be displaced from its original path but
tracking the same heading. Some example cases that illustrate the concept are depicted
in Fig 3.14

+ +
(a) ψ0 = ±π (b) ψ0 = 5π/6

Figure 3.14: Example cases for resolution decision or logic. The original (−) and resolved (−) trajectories
are shown along with object position (+) and reference conical spiral (−). The avoidance stops at ts such
that ψ(ts) = ψ0 (���)
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Figure 3.15: Example resolution cases for a static object, displayed in the object frame Fo for a reference
spiral c = [π/2 − π/2]. The object position (+) in the world frame is (1,1) and the aircraft is initially
displaced by 1m (◦). The aircraft state (−/−−/−) and corresponding resolution instance (�/�/•/) are
given for ψ0 ∈ {3π/2, 5π/3, 11π/6} respectively.

Considering the analysis in the previous section, and maintaining consistency, it is im-
portant to consider the proposed resolution strategy in light of both static and dynamic
objects. Some example cases for static and dynamic objects are depicted in Fig 3.15 and
Fig 3.16 respectively. In each case, the plots assume that the correct reference conical
spiral α∗ = ±π/2 has been determined but still needs to be established.

First, consider the case for static objects. The avoidance manuever is always stopped
after the point of minimum separation (range). This point also corresponds to the point
at which the spiral is established in the static case. The exact amount of time after this
point depends on the amount of manoeuvring the aircraft has to do to initially establish
the spiral. This is because the same amount of time is then required to re-establish
the aircraft’s initial heading once on the spiral. Therefore, the bigger the difference
between the reference azimuth and relative heading, the further away the resolution time
is from the point of minimum separation. Put simply, the more maneuvering the aircraft
has to perform to establish the spiral, the more time the aircraft spends tracking it
before resolution. In the best case, if the initial relative aircraft heading is equal to the
reference azimuth, the spiral is established and the stopping time and point of minimum
separation coincide. In the worst case, if the initial relative aircraft heading creates a
head-on encounter a maximum resolution time is observed. Importantly, in all cases,
the avoidance is stopped before the aircraft attempts to spiral back towards the object,
resulting in successful resolution.

Second, consider the case for dynamic objects. The avoidance manuever is always stopped
before the point of minimum separation (range). The exact amount of time before this
point also depends on the amount of manoeuvring the aircraft has to do to initially
establish the spiral, but in a reciprocal manner to that of the static case. Specifically, the
less maneuvering that the aircraft has to do to establish the spiral, the closer the resolution
is to the minimum separation distance. This is because the amount of manuevering the
aircraft has to do is now related to the closing velocity. The larger the closing velocity, the
less the aircraft maneuvers to establish the spiral and then return to its initial heading.
This is because the object motion now reinforces the aircraft’s attempt to establish the
spiral. Once established, the aircraft then has to turn quickly to maintain the spiral. This



76 CHAPTER 3. SPIRAL AVOIDANCE

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

X (m)

Y
 (m

)
Example Spiral Resolution

0 1 2 3 4 5 6 7 8 9 10
100

120

140

160

180

200

220

Time (s)

H
ea

di
ng

 (d
eg

)

Example Spiral Resolution

0 2 4 6 8 10 12 14 16 18 20
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Time (s)

R
an

ge
 (m

)

Example Spiral Resolution

(a) Aircraft Position vt < v (b) Aircraft Heading vt < v (c) Range vt < v

−25 −20 −15 −10 −5 0 5 10
−12

−10

−8

−6

−4

−2

0

2

4

X (m)

Y
 (m

)

Example Spiral Resolution

0 2 4 6 8 10 12 14 16 18 20
100

150

200

250

300

350

Time (s)

H
ea

di
ng

 (d
eg

)
Example Spiral Resolution

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (s)

R
an

ge
 (m

)

Example Spiral Resolution

(d) Aircraft Position vt > v (e) Aircraft Heading vt > v (f) Range vt > v
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Figure 3.16: Example resolution cases for a dynamic objects displayed in the object frame Fo for a
reference spiral c = [π/2 − π/2]. The object initial position in the world frame is (1,1) and the aircraft
is initial displaced by 1m (◦,◦). The aircraft state (−/−−/−) and corresponding resolution instance
(�/�/•/) are given for ψ0 ∈ {3π/2, 5π/3, 11π/6} respectively. (a)-(f) r0 = 2 (g)-(i) r0 ∈ {2, 4, 8, 16}

decreases the time spent tracking the spiral before the initial heading is re-established.
Therefore, for a given relative velocity, the bigger the difference between the reference
azimuth and relative heading, the closer the resolution time is to the point of minimum
separation. The effect is seen in Fig 3.16(a)-(c) for vt < v, where the closing velocity
increases as the relative heading approaches a head on (ψ0 = 3π/2) encounter. The result
is further amplified in Fig 3.16(d)-(f) where vt > v, and the resolution instance in all cases
tends toward the time of minimum separation. To further highlight the result, Fig 3.16(g)-
(i) shows the resolution outcomes for multiple velocities and initial range values ro with
ψ0 = 3π/2. Again, in all cases, the avoidance is stopped before the aircraft attempts to
spiral back towards the object, resulting in successful resolution.

There are some important points to notice when applying the resolution criteria, including:

� The resolution criteria is only defined with respect to lateral avoidance. As an attempt
at vertical separation may also be included in the collision avoidance strategy, vertical
avoidance is also ceased upon satisfying the resolution criteria. Note however, it is also
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possible to define a vertical resolution strategy in some cases. For example, vertical
resolution could be inferred by monitoring the orientation of the vertical control. When
the polarity switches, the maximum vertical separation is achieved, as any subsequent
control will force the aircraft back toward the object. This is because 0 < β < π which
forces the aircraft to move back toward the object the closer it becomes.

� The resolution concept presented here is not explicitly coupled to the control strategy
used to regulate spiral motion. It is a simple conformance based decision. This means
there may exist cases in which the conical angles have not been established, but the
resolution criteria is met. As such, the avoidance behaviour may cease prior to estab-
lishing a safe spiral or at an inappropriate instant. This is particularly true at the
point of initial detection. Wind effects may briefly displace the aircraft beyond the
initially heading ψ0, triggering the resolution. In this case, no action is taken and the
collision avoidance may fail.
In this thesis the basic resolution concept presented here is maintained but treated in
a novel way depending on the vision-based controller. Specifically, for classical image-
based control presented in chapter 4, the exact resolution strategy presented here is
employed and analysed practically. For predictive image-based control presented in
chapter 5, a novel method to couple the visual control with the resolution decision is
derived to help prevent resolving the collision prematurely.
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3.3.3 General Avoidance Strategy

Combining the avoidance and resolution strategies, the automated collision avoidance
approach can now be defined in a series of sequential steps as summarised below:

1. Apply a set of appropriate image processing techniques to detect a potential collision
object. The projection of the object onto the imaging surface is then approximated
by a single point feature s consisting of a colatitude σ and azimuth angle γ such that
s(σ, γ). De-rotate the images using the aircraft attitude (and camera parameters) such
that the image features approximate the true conical angles c(β, α) (see §3.2.2).

2. At the confirmed detection instance td, asses the image feature motion parameter s̆(td)
against the avoidance threshold parameter η, to determine the appropriate placement
of the reference image features s∗(σ∗, γ∗) for visual control. The reference image fea-
tures are determined using the avoidance logic based on conical spiral motion and
aviation rule of the air (see §3.3.1). Set the heading resolution parameters according
to the current heading such that ψ̄∗ = ψ̄(td) = ψ̄0 where ψ̄(·) denotes the aircraft
heading shifted in the region (−π, π) (see §3.3.2 ).

3. Apply image-based control (visual servoing) to reposition the aircraft such that the
actual image features converge toward the reference image features. Specifically, define
the image feature error e(t) and input control vector u(t) for t ≥ td such that

lim
t→∞ e(t) = 0 (3.36)

subject to (s.t)

ṡ(t) = f(s(t), u(t)) (3.37)

u(t) ∈ U ⊂ R
2, ∀t ≥ td (3.38)

s(t) ∈ S2, ∀t ≥ td (3.39)

where U defines the aircraft control constraint domain, f(·) is a model of the combined
image kinematics and aircraft dynamics and S2 defines the set of points on a 2-sphere.
The latter can be thought of as 2 dimensional manifold in Euclidean space represent-
ing the spherical imaging surface. Two approaches to solving the image-based visual
control problem are presented in this work, including novel classical and predictive
control schemes (see §4 and §5 respectively)

4. At the confirmed resolution instance ts, stop the image-based control and resume
normal flight control. This may mean the aircraft maintains the heading and altitude
at ts or attempts to resume the original flight path defined at t < td. The resolution
instance is determined by monitoring the aircraft heading ψ̄(t) with respect to ψ̄∗ and
determining an appropriate time to stop the spiral avoidance trajectory (see §3.3.2,
§4.4.1 and §5.5.2).



Chapter 4

Classic Visual Control

4.1 Outline

This chapter presents a new practical spherical image-based control strategy for avoidance
control that extends existing classical image-based visual servoing concepts.

First, classical image-based control approaches are reviewed in the context of See and
Avoid. Specific attention is paid to practical schemes that account for limited visual
information and controllable degrees of freedom whilst considering aircraft applications.
Second, novel partitioned spherical image-based visual control (S-IBVS) schemes are de-
rived and simulated results are presented. Third, a practical image-based control scheme
is implemented using a small Parrot - ARDrone in a scaled indoor collision avoidance
environment in a proof-of-concept approach. A simple resolution strategy is also pre-
sented and validated empirically. The control schemes are then analysed, highlighting
their advantages and drawbacks.

4.2 Fundamentals & Prior Work

The use of visual acquired information to control a robot to perform a specific task is
referred to as visual servoing. Broadly speaking, there are two classes of visual servoing
labelled Position-based Visual Servoing (PBVS) and Image-based Visual servoing (IBVS).

Position-based approaches require an estimate of the object pose (position and orienta-
tion) in order to derive feedback control in the task space. The approach can be com-
putational demanding, sensitive to noise and highly dependant on camera calibration.
Additionally, multiple image feature points of the same known object are often required
to obtain quality pose estimates [292]. Collectively, these features violate the See and
Avoid problem constraints (see §1.3). As such, position-based visual servoing does not
provide a suitable control approach for See and Avoid systems.

Image-based visual servoing (IBVS) approaches do not require an estimate of the object
pose, as feedback control is derived directly from the image features themselves. The
approach provides a reactive computationally efficient control solution with inherent ro-
bustness to range (depth) uncertainty, noise and camera calibration errors. Additionally,
the object of interest does not need to be known exactly and a single feature point can
be used for at least partial control [293]. Each of these features are inherent in the See
and Avoid environment, with the control approach bearing strong resemblance to how a

79
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pilot may use visual cues to navigate and react to collisions. As such, image-based visual
servoing provides a more natural control approach for See and Avoid systems.

In the classical approach, image-based visual servoing involves regulating a set of image
features s(t) toward a set of reference values s∗(t) using the image feature error e(t)
directly. Often, a fixed set of reference image features are chosen, and an exponential
decrease in the image feature error e(t) = s(t) − s∗ is desired such that

e(t) = e−λt, ė(t) = −λe(t) = ṡ(t) (4.1)

where λ > 0. For a static object, the optic flow equation can then be re-written using the
image feature error such that

ė(t) = Ls ẋ(t) (4.2)

where ẋ(t) denotes the spatial velocity of the camera (and thus robot) consisting of
translation and rotation components, and Ls is the image Jacobian relating the camera
velocity to image feature velocity (see §2.3.2). By inverting the above equation, a general
velocity controller can be obtained such that

u(t) = −λL̂+
s e(t) (4.3)

where u(t) is the control vector and λ can now be viewed as a constant positive gain term.
The Moore-Penrose pseudo inverse of the image Jacobian L̂+

s is an approximation to the
true inverse of the image Jacobian. The word approximate is used because the true image
Jacobian (and thus its inverse) remains unknown due to camera calibration errors, noisy
image measurements and in some cases an unknown object range (depth) value. If the
object is moving, then the control law above often requires additional terms and stability
issues may arise depending on the object motion [293]. In most cases, locally asymptotic
stability is often ensured using Lyapunov stability criterion.

By inspection, it is clear that the control largely depends on the structure (elements) of
the image Jacobian and the approximation of its inverse L̂+

s , as λ serves to simply amplify
the resulting control. The image Jacobian (and its inverse) itself depends on the range
(depth) value used in the approximation, the number of image features as well as type of
image features and coordinate frame (and camera model) in which they are expressed.

The type of image features used for image-based control largely depends on the charac-
teristics of the observed object. In some cases, multiple features types may be feasible,
with different feature types providing varying degrees of coupling between the resulting
controls. Lines [297, 298], moments [299] and the projection of spherical targets [300]-
[302] have been used as image features to try to decouple motion, but such schemes will
not work in See and Avoid encounters. Indeed, given the object characteristics, only point
features are suitable. Point features can however be represented in a number of differ-
ent coordinate frames including Cartesian [296], polar [303, 304] and spherical [305, 306].
Each of these representations can also offer different advantages with respect to decou-
pling the resulting control in different degrees of freedom (DOF). Polar coordinates have
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been exploited to improve the servoing performance with respect to the camera retreat
problem inherent using Cartesian coordinates. The improvement in the servoing task
comes at the expense of imperfect de-coupling between the x and y axis translation and
rotation. By using a combinations of polar and Cartesian image feature representations, a
hybrid scheme has shown to provide performance similar to the polar form with worsened
cross coupling in the x and y axis motions [304].

Using a spherical image features representation offers similar benefits to that of the polar
representation, with decoupled motion in the z translational and angular velocity. The use
of spherical coordinates is thus an appropriate image feature representation for a classical
visual servoing scheme for spiral tracking. The forward x velocity is constant and the
y velocity is assumed to be zero. The x and y rotational velocities are also assumed to
be zero, given the control is based on de-rotated images (and features). This alleviates
any issues regarding coupled motion in the x and y axis. The decoupled z axis velocity
then allows each image feature component to directly regulate the vertical and lateral
motion of the aircraft, and thus track a spiral. Representing image features in spherical
coordinates is of course a natural choice for spherical cameras, but they can also be used
with perspective and wide angle cameras to approximate a spherical section (see §2.3).
Combined with the type of image features, the number of available image features deter-
mines the controllable degrees of freedom. Many generic image-based control approaches
assume that all camera degrees of freedom can be independently controlled, such that
rotation and translation can be regulated about each camera axis. This is a valid as-
sumption for many systems such as robotic arms, and requires at least four image feature
points to obtain an overdetermined system for which a unique control solution exists. For
other systems, such as aerial vehicles, each degree of freedom cannot be controlled inde-
pendently and the system is often under actuated. For example, horizontal translation
may be controlled by regulating pitch and roll angular rates (attitude). Therefore, par-
titioned control schemes are common whereby only some degrees of freedom are visually
controlled. The specific degrees of freedom depend on the number (and type) of image
features used in the visual control scheme.

Given the diversity of possible image features, a large number of unique image-based
control schemes have since been derived for aircraft. Some notable examples include
translational and hover control of multirotors [307]-[310] and visually guiding aircraft to
land [311]-[313]. Although novel, the object of interest is often assumed to be a planar
object or 3D structure with multiple distinct features. As such, these approaches cannot
be adapted directly for the See and Avoid problem. This is because the fundamental
difference in the See and Avoid problem is the existence of a single point feature, allowing
image-based control of only two degrees of freedom. Considering the use of spiral trajec-
tories for See and Avoid, then both vertical and lateral motion are required which confines
which degrees of freedom should be controlled. This limitation can also help guide the
structure of any partitioned control strategy.
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To this end, variations of the classic image-based control structure have been used to
derive 2D [314, 315] and 3D [237, 240] controllers for spiral tracking and collision avoidance
control. Preliminary flight test results are reported in some cases, the majority of which
focus on a scaled version of the See and Avoid problem. These works were based on similar
collision avoidance methods that do not explicitly consider the image Jacobian [241]-[243],
but leverage only bearing observations. More recently, the work has moved away from
range independence, and focused on optimal control approaches for the simultaneous
avoidance and estimation of range (or time to collision) [244]-[246]. Although novel, the
approach may only be successful if the object intent is known and range recovered. Again,
this moves away from the realistic See and Avoid environment.

The reference range value used in the servoing scheme impacts the resulting control, as
the image Jacobian is directly dependant on the object range r. As this is often unknown,
a common assumption is to consider a fixed reference value r∗ within the Jacobian (and
its inverse) [293]. The range term then acts in a similar way to the gain parameter λ

in the control law, scaling the control output accordingly. The motivation is that as
the actual camera pose approaches the desired pose, the control becomes increasingly
accurate. However, stability issues can arise, resulting in recent studies on the general
robustness of image-based control to r∗. The results suggest that if the geometry is
unknown, care must be taken in the selection of r∗ to ensure stable control [316]. As the
analysis was conducted under a specific type and number of image features (planar), it is
unclear what the exact implications are for a control strategy using single point features
and a subset of controls.

To this end, it is important to consider how the choice of r∗ affects the resulting control
from a collision avoidance perspective. In particular, how the resulting control affects the
tracking of an avoidance spiral and the implications for design. Given the aforementioned
robustness properties, and assuming a fixed gain value is chosen, it may be such that
the selection r∗ is not critical for safe avoidance. Instead, consistently over or under
estimating the parameter may reinforce or aid the avoidance behaviour.

The analysis above suggests that classical image-based control, and specifically parti-
tioned control frameworks, offer a viable control structure for spiral tracking and collision
avoidance. Some benefits include reactive control, inherent robustness (to added noise
and parameter uncertainty) and a simple flexible control structure. These features render
the partitioned image-based control approach amenable to the See and Avoid problem
environment, however it has not yet been investigated.

The remaining sections of this chapter detail the derivation, simulation, implementation
and analysis of a set of image-based controllers using classical image-based approaches,
that are suitable for See and Avoid. Specifically, two novel spherical image-based con-
trollers are presented. The first is designed under simplifying assumptions. The second
is designed under the same assumptions, but augmented to better compensate for their
undesirable effects. The controllers are then used to design a preliminary practical closed
loop vision-based collision avoidance system for static objects.
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4.3 Spherical Image-based Visual Servoing

To derive a partitioned image-based visual controller using only a single point, consider
first the relationship between the camera velocity and image feature error

ė (t) = L∗
sẋ (t) +

∂e(t)
∂t

(4.4)

where ẋ (t) is the camera translational and angular velocity, ṡ (t) is the image feature
velocity and L∗

s is the spherical image Jacobian using a reference range value r∗ (see
§2.3.2). As the object intent is generally unknown, the last term is included to account
for optic flow induced by the object motion. As only a single feature point consisting of
two angular measurements is observed, only two degrees of freedom can be controlled.
Typically the Jacobian is partitioned into translational and rotational parts, but arbitrary
partitioning is possible [248]. As such (4.4) can be expressed as

ė = L∗
xyẋxy(t) + L∗

zẋz(t) +
∂e(t)

∂t
(4.5)

where L∗
xy is the Jacobian made up from the rotational and translational components

about the x and y axis, L∗
z is the Jacobian made up from the rotational and translational

components about the z axis and the vectors ẋxy and ẋz are given by

ẋxy = (vx vy ωx ωy)T ẋz = (vz ωz)T (4.6)

where the independent variable t has been omitted. Assuming a constant desired image
feature set s∗, the image feature error can be defined as

e(t) = s(t) � s∗ (4.7)

where � denotes a modulo-2π subtraction required to bound the error such that e(t) ∈
{−π, π}. Assuming an exponential decrease in the feature error, then substituting (4.7)
into (4.5) and rearranging

ẋz(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t) +
∂e(t)

∂t

)
(4.8)

where λ is a positive gain value and L̂−1
z is the approximate inverse image Jacobian

corresponding to the z axis velocity components using r∗. Assuming the velocity about
the z axis can be controlled directly, then

u3(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t) +
∂e(t)

∂t

)
(4.9)

where u3(t) denotes the reference vertical velocity and yaw rate controls for a low-level
attitude controller (see §2.2.3). If the object velocity was known, then the induced optic
flow could be directly accounted for in the control law using the partial derivative term.
As it is generally unknown however, some simplifying assumptions are required.
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Consider that the induced optic flow from object motion is only dependent on the object
translational velocity. This is a valid assumption considering only a point feature is
observed. As such

∂e(t)
∂t

∝ 1
r(t)

(4.10)

Assuming that the relative displacement is expected to be much greater than the magni-
tude of the relative velocity, then the term will provide only a small contribution to the
optic flow. As such, consider first making the assumption that the term can be ignored.
This means the control should provide zero offset for static objects and an unpredictable
non-zero offset for moving objects. In this case, the control law can then be simplified
such that

u3(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t)
)

(4.11)

To track a spiral, the aircraft is assumed to move with a fixed forward velocity vx and
zero lateral velocity vy. Additionally, the image features can be obtained from de-rotated
images such that the roll φ and pitch θ angles will not change significantly. This means
their corresponding contribution to the control law can also be ignored. The resulting
control law can then be expressed as

u3(t) =

⎛
⎝− cos σ(t) cos γ(t)

sin σ(t)
sin γ(t)

r∗ sin σ(t)

⎞
⎠ vx +

⎛
⎝ −λr∗

sin σ(t) 0

0 λ

⎞
⎠ e(t) (4.12)

which can be expanded and expressed as

vz(t) = −λ
r∗eσ(t)
sin σ(t)

− cosσ(t) cos γ(t)
sin σ(t)

vx(t) (4.13)

ωz(t) = λeγ(t) +
sin γ(t)

r∗ sin σ(t)
vx(t) (4.14)

where r∗ denotes a fixed range value and eσ and eγ are the colatitude and azimuth feature
errors respectively. The control is decoupled as the vertical velocity depends on the colat-
itude error, whilst the yaw velocity depends on azimuth error. The aircraft can therefore
independently change its lateral and vertical displacement to track a spiral trajectory,
using only a single point feature. Additionally, vx can be treated like a parameter and
fixed in the control law given that the platform velocity is constant.

�Remark For rotary wing aircraft, the input controls can be mapped directly to a yaw
rate command and transformed into a collective (or thrust) command. For fixed wing
aircraft, the input controls can transformed into a roll and pitch command. As such,
the controller is applicable to both aircraft types. In any case, the direct application
of the controller assumes image feature errors defined with respect to de-rotated images
to ensure the roll and pitch attitude are zero. Of note, the above controller can be re-
formulated using different degrees of freedom, namely yaw and pitch velocity [315]. This
control law however is not as extensible to rotary wing platforms and does not retain the
same control decoupling.
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4.3.1 Static Objects

Consider an aircraft attempting to visually track a conical spiral about a static object.
The object is approximated as a point feature in the image, and assumed to represent a
fixed conical apex. Consider applying the spherical image-based control law

u3(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t)
)

(4.15)

u∗
3(t) = max[a,min(b, u3(t))] (4.16)

where u∗
3 denotes the saturated reference control vector for the attitude controllers and

a and b are constant vectors denoting the upper and lower amplitude saturation limits
respectively. The control limits can be chosen based on aircraft performance and control
constants. Given the simplifying assumptions used to derive the controller, it is important
to verify an appropriate spiral track for collision avoidance can be maintained. To this
end, a set of simulation studies are used to visualise the controller performance. The
analysis is conducted with respect to reference feature placement s∗, added noise and the
reference range parameter r∗ used in the control. Simulation parameters are given in
Appendix E.2 and the results are detailed in the following sections.

Reference Image Features

Consider varying the reference image features s∗ such that the reference spirals include
convergent, divergent and circular motion. The reference range used in the control is set
to the actual range value such that r∗ = r(t). This ensures only the effects of varying the
reference image features are observed. The objective is then to verify that the controller
can provide suitable spiral tracking performance under ideal conditions and parameters.

Using a fixed reference colatitude, the reference azimuth γ∗ is varied, and the resulting
platform and image feature trajectories are depicted in Fig 4.1. Using a fixed reference
azimuth, the reference colatitude σ∗ is varied, and the resulting platform and image
features trajectories are depicted in Fig 4.2. The feature error, velocity control and
feature trajectory for an example case is shown in Fig 4.3

In all cases, the platform is able to track the image features and maintain the expected
spiral. For divergent spirals and circular motion, the image features can be tracked for
all time. For convergent spirals, the reference image features can be tracked until such
time that the control limits are reached. This is expected as convergent spirals eventually
require an infinite number of rotations about the object at successively smaller radii. This
is not a concern for two reasons. First, convergent spirals would not be selected as an
avoidance maneuver if possible. Second, if a convergent spiral is required due to camera
limitations, the spiral can be initially tracked, which forces the aircraft away from the
object. Eventually, the control constraints would prevent the aircraft from tracking a
spiral of decreasing radius. This means the controller is able to initially guide the aircraft
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Figure 4.1: Aircraft and image feature trajectories in the world frame Fw for a static object with σ∗ =
−125π/180 and variable reference azimuth (�) such that γ∗ = −70π/180 (−), γ∗ = −π/2 (−) and γ∗ =
−110π/180 (−). Initial aircraft (◦) and object (+) positions are (1, 0.1, −1) and (5.5, 0, −1) respectively.
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Figure 4.2: Aircraft and image feature trajectories in the world frame Fw for a static object with γ∗ = −π/2
and variable reference colatitude (�) such that σ∗ = 100π/180 (−), σ∗ = 125π/180 (−) and σ∗ =
150π/180 (−). Initial aircraft (◦) and object (+) positions are (1, 0.1, −1) and (5.5, 0, −1) respectively.
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Figure 4.3: Image feature trajectories and control for a static object with γ∗ = −π/2 and σ∗ = 125π/180
(�). Initial aircraft and object positions are (1, 0.1, −1) and (5.5, 0, −1) respectively.

along an appropriate avoidance trajectory1. This in an important observation from a
practical perspective.

Considering an example case using the intended reference azimuth angle for collision
avoidance γ = ±π/2, the image feature motion is straight forward, the control is smooth
and the feature error exponentially decreases. The results are as expected, and verify
that the controller is suitable for spiral tracking and collision avoidance of static objects
in the nominal or ideal case.

1The chosen reference image features represent the types of spiral that can be tracked for a static object.
For negative azimuth angles, a similar set of trajectories result but rotating in the opposite direction. For
colatitude angles below the horizontal, the reference conical spiral is simply inverted (see §3.2.3).
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Robustness

Consider adding uncertainty to the system, such that the robustness properties of the
controller can be analysed. The reference image features s∗ are fixed, and set to the
intended reference angles for collision avoidance. The reference azimuth angle γ = ±π/2
is selected for circular motion, and an arbitrary colatitude angle is used such that σ∗ �=
π/2. Uncertainty is then added to the system in the form of additive noise, imperfect
actuation and variable reference range parameter r∗. The objective is then to verify that
the controller can provide suitable spiral tracking performance under realistic conditions
and uncertain or unknown system parameters.

First, consider adding image feature uncertainty and imperfect actuation to the system
in the form of additive white Gaussian noise q(t) ∼ N (0, 0.192). The variance on the
image feature position and velocity controls are equivalent, and approximately 2 degrees.
Importantly, the variance on the image feature estimates is realistic and comparable to
that expected using recent aerial object tracking systems (see §1.3.1). The reference range
used in the control is set to the actual range value such that r∗ = r(t). This ensures only
the affects of added noise are observed.
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Figure 4.4: Aircraft and image feature trajectories in the object frame Fo for a static object with γ∗ =
−π/2 and σ∗ = 125π/180 (�). Four separate encounters are shown (−/−/−/−). Initial aircraft position
(◦) is varied such that 2 < r0 < 8. The object (+) position in the world frame is (5.5, 0, −1).

A set of example encounters were simulated using varied initial conditions and depicted
in Fig 4.4. The initial displacement r0 was varied such that 2 < r0 < 8. The heading
ψ0 was varied such that the initial image features s0 appeared in the regions defined by
σ0 ∈ (π/2, π) and γ0 ∈ (−π, 0). This is because alternate reference image features would
be used for the other image regions. In all cases, the platform is able to establish and
maintain the expected spiral track, shown by the convergence of each trajectory to a
planar spiral. The image feature image feature motion is straight forward, residing in a
small neighbourhood about the reference image feature position. The results verify that
the controller is suitable for spiral tracking and collision avoidance of static objects in the
presence of image feature noise and imperfect actuation.
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Second, consider varying the reference range parameter used in the controller such that a
constant r∗ �= r(t) is used, and all remaining encounter parameters are fixed. This aspect
is important from a See and Avoid perspective, as range is assumed to be unknown
throughout the encounter. A reference value is still required for control but, only a coarse
estimate would be available based on the expected initial object detection distances (see
§1.3.1). To this end, consider two cases in which the reference value is considerably
overestimated and underestimated respectively.

For the underestimated case the reference range value is such that r∗ � r(t) through-
out the encounter. Consider the structure of the control given in (4.13) and (4.14). In
this case, the vertical control will under compensate for the colatitude error by directly
decreasing the amplification of the error term. The control is then unchanged as the con-
tribution from the forward velocity does not depend on r∗. The yaw rate control is also
reduced as the contribution from the forward velocity is increased. This is because any
image feature motion induced by forward velocity that naturally tends toward the refer-
ence image feature position is overestimated (larger). The contribution from the azimuth
error term remains unchanged, and therefore has less influence on the control. The result
is then a weaker yaw rate control. Collectively, less aggressive control would result and
the reference spiral will be approached slowly. Considering the nature of spiral motion, a
small unpredictable offset in the reference image features may also remain, and therefore
the reference spiral may not be tracked. The attenuated control will likely undershoot
the reference image features and force a slightly convergent spiral. The analysis suggests
that underestimating r∗ may be problematic for collision avoidance, forcing the aircraft
toward the object.

For the overestimated case the reference range value is such that r∗ � r(t) throughout
the encounter. Again consider the structure of the control given in (4.13) and (4.14). In
this case, the vertical velocity control will over compensate for the colatitude error by
directly increasing the amplification of the error term. The control is then unchanged as
the contribution from the forward velocity does not depend on r∗. The yaw rate control
is also amplified as the contribution from the forward velocity is reduced. This is because
any image feature motion induced by forward velocity that naturally tends toward the
reference image feature position is underestimated (smaller). The contribution from the
azimuth error term remains unchanged, and therefore has greater influence on the control.
The result is then a stronger yaw rate control. Collectively, more aggressive control would
result and the reference spiral will be approached faster. Again, considering the nature
of spiral motion, a small unpredictable offset in the reference image features may still
remain, and therefore the reference spiral may not be tracked (similar to r∗ � r(t)).
However, the amplified control will likely overshoot the reference image features and
force a slightly divergent spiral. The analysis suggests that overestimating r∗ can still
provide adequate motion for collision avoidance. There is then evidence to suggest that
an accurate range value is not required for collision avoidance. In fact, given the expected
maximum detection distances, a reference range value twice as large still results in stable
and effective collision avoidance control.
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Despite the collision avoidance benefits when overestimating r∗ in the control, the exact
reference spiral may not be obtainable in sufficient time or indeed at all. From a safety
perspective, better assurance the actual reference spiral can be tracked is required. To
address this, the offset in image feature error anticipated when r∗ �= r(t) can be considered
as a small variable steady state error. This is a common problem in many real control
systems, and can be addressed using classical linear control techniques. As such, consider
introducing a small integral control term on the image feature error such that (4.13) and
(4.14) become

v∗
z(t) = −cosσ(t) cos γ(t)

sin σ(t)
vx(t) − λ

r∗eσ(t)
sin σ(t)

+ λi

∫ w

eσ(t) dt (4.17)

ω∗
z(t) =

sin γ(t)
r∗ sin σ(t)

vx(t) + λeγ(t) + λi

∫ w

eγ(t) dt (4.18)

where λi denotes a fixed integral gain term such that 0 < λi � λ. The notation
∫ w is used

to express that the integration can be restricted to a finite time history or performed for
all time provided anti-windup action is included. The augmented spherical image-based
control law can then be expressed

u3(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t)
)
+ λi

∫ w

e(t) dt (4.19)

To verify the augmented controller and the previous range parameter analysis, a set
of example encounters were simulated using the original and augmented controller and
depicted in Fig 4.5. An over and under estimated range parameter was used for the original
controller such that r(t)/2 ≤ r∗ ≤ 2r(t). Only the over estimated range parameters were
used in augmented controller with λi = 0.01. The initial conditions in all cases remain
unchanged, and represent a head on encounter in which the object appears 4.5m ahead
of the aircraft. This ensures only the effects of highly uncertain system parameters and
the augmented controller are observed.

The results confirm the analysis presented in the previous section, and reinforce the use of
an overestimated range parameter in the visual controller for collision avoidance. In this
case the aircraft trajectory rapidly diverges from the object and more direct image feature
motion is observed. The augmented controller is also shown to actively compensate for
the range uncertainty, ensuring the reference spiral can be tracked. The control is smooth
and the image feature error shows better convergence.

As further evidence to support the use of the augmented controller, image feature noise
and imperfect actuation is added to the simulation and the results depicted in Fig 4.6.
Again, expected aircraft behaviour is obtained and the addition of the integral term has
helped maintain the image features within a small neighbourhood of the reference values.
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Figure 4.5: Example aircraft behaviour in the object frame Fo for a static object with γ∗ = −π/2 and
σ∗ = 125π/180 (�). Initial aircraft and object positions in Fw are (1, 0.1, −1) and (5, 0, −1) respectively.
Using the original controller r∗ = 2 (−−) and r∗ = 7 (−) is used. Using the augmented controller only
r∗ = 7 (−) is used.
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Figure 4.6: Example aircraft behaviour in the object frame Fo for a static object with γ∗ = −π/2 and
σ∗ = 125π/180 (�). Initial aircraft and object positions in Fw are (1, 0.1, −1) and (5, 0, −1) respectively.
Additive noise q(t) and the augmented controller with r∗ = 7 (−) is used.
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4.3.2 Dynamic Objects

Consider an aircraft attempting to visually track a conical spiral about a dynamic constant
velocity object. The object is approximated as a point feature in the image, and assumed
to represent a moving conical apex. Consider applying the augmented spherical image-
based control law

u3(t) = L̂−1
z

(
−λe(t) − L∗

xyẋxy(t)
)
+ λi

∫ w

e(t) dt (4.20)

u∗
3(t) = max[a,min(b, u3(t))] (4.21)

where u∗
3 denotes the saturated reference control vector for the attitude controllers and

a and b are constant vectors denoting the upper and lower amplitude saturation limits
respectively. As before, the control limits can be chosen based on aircraft performance
and control constants.

Although a static object was assumed in the derivation of the controller, it is extensible
to the dynamic object case. To explain, reconsider the initial assumptions ignoring the
projected image feature velocity from the object motion. The object motion is unknown so
it is difficult, if not impossible, to provide direct compensation. However, as the induced
feature motion is expected to be relatively small, and considering the properties of spiral
motion, a small variable image feature offset will likely result. The same integral control
used to help compensate for the inaccurate reference range value may then suffice to help
account for the unknown image feature motion.

To verify this hypothesis, a set of example encounters were simulated using the original
and augmented controller and depicted in Fig 4.7. A worst case head-on encounter is
considered, where the object moves with equal forward velocity to that of the aircraft but
different heading. Based on the previous analysis, r∗ = 7 and the integral gain is such
that λi = 0.01. The remaining simulation parameters are the same as those used for the
static case. This ensures only the effects of considering a dynamic object are observed.

The results confirm the extensibility of the augmented controller to the dynamic ob-
ject case. As with the static case, the more aggressive augmented control enables the
aircraft to approach the reference spiral quicker than the original controller. The aug-
mented controller then actively compensates for the uncertain object motion, forcing the
rapid convergence of the image feature error, and ensuring the reference spiral is tracked.
Additionally, the resulting trajectory provides added benefits from a collision avoidance
perspective. Specifically, a greater minimum lateral and vertical displacement (range) can
be obtained.

As further evidence to support the use of the augmented controller, a crossing encounter
is now included in addition to added image feature noise and imperfect actuation. The
results are depicted in Fig 4.8. Again, expected aircraft behaviour is obtained and the
addition of the integral term has helped compensate for the image feature motion induced
by the non-zero object velocity. The control remains stable and the image feature error
remains close to the reference value.
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Figure 4.7: Example aircraft behaviour in the object frame Fo for a head-on dynamic object using the
original (−) and augmented (−) controller with γ∗ = −π/2 and σ∗ = 125π/180 (�). Initial aircraft and
object positions in Fw are (1, 0.1, −1) and (5, 0, −1) respectively. The object moves with forward velocity
v = 0.1m/s and r∗ = 7.
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Figure 4.8: Example aircraft behaviour in the object frame Fo for a head-on (−) and crossing (−) object
with γ∗ = −π/2 and σ∗ = 125π/180 (�). Initial aircraft and object positions in Fw are (1, 0.1, −1) and
(5, 0, −1) respectively. The object moves with forward velocity v = 0.1m/s and r∗ = 7.
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4.4 Collision Avoidance

The spherical image-based visual control laws derived in the preceding sections represent a
suitable set of controllers for tracking a reference spiral. As such, they can be used directly
in a closed-loop collision avoidance system when coupled with an appropriate avoidance
and resolution decision strategy. This section details the implementation of such a collision
avoidance system on a small aerial platform in a proof of concept approach.

First, modified avoidance and resolution decision strategies based on previously estab-
lished concepts are presented (see §3). This is required to ensure the collision avoidance
system is amenable to practical platform constraints and limitations. Second, results from
real flight tests in a scaled collision avoidance environment are presented and analysed for
a static object. They are the first recorded flight tests using such a spherical image-based
visual servoing control scheme.

4.4.1 Avoidance & Resolution Decision

Consider a quadrotor system in which a perspective camera is used to approximate a
spherical section. The camera is rigidly attached to the platform with its optical axis
aligned to the platform x axis. Given the restricted field of view, the ideal reference
image features s∗(125π/180, ±π/2) cannot be used. Instead, reference values need to
chosen that such that |γ∗| < π/2, resulting in a convergent spiral path. This is not ideal
from a collision avoidance perspective. However, provided the right spiral direction is
chosen, the aircraft will initially move in favour of collision avoidance. The reference
image features can then be selected such that

|γ∗| > |γ(td)| ∧ sgn γ∗ = sgn γ(td) (4.22)

|σ∗ − π/2| < |σ(td) − π/2| ∧ sgn(σ∗ − π/2) = sgn(σ(td) − π/2) (4.23)

where γ(td) and σ(td) are the initial azimuth and colatitude angles upon initial object
detection instance td. Importantly, if the reference image features are chosen in this way,
a resolution decision is mandatory to stop the controller from forcing the aircraft back
toward the object in both vertical and lateral planes. To this end, the initial heading upon
detection can be used directly to stop lateral avoidance (see §3). Additionally, the sign
reversal of the z velocity command can be used to stop vertical avoidance. The refined
resolution decision strategy for the lateral and vertical control can then be defined as

ω∗
z(t) =

⎧⎪⎨
⎪⎩
0, |ψ̄(t)| < |ψ̄(td)|
ω∗

z(t), else
, v∗

z(t) =

⎧⎪⎨
⎪⎩
0, sgn v∗

z(t) �= sgn v∗
z(td)

v∗
z(t), else

(4.24)

where ψ̄ denotes the aircraft heading bounded in the region (−π, π). To help verify the
refined resolution strategy, some example simulated encounters for a static and head-on
dynamic object case when ψ(td) = 0 are shown in Fig 4.9 and Fig 4.10 respectively. In
each case, successful resolution is demonstrated.
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Figure 4.9: Example aircraft vertical (�) and lateral (♦) resolution instances for a static object with
γ∗ = −π/2 and σ∗ = 125π/180 (�). Initial aircraft and object positions in Fw are (1, 0.1, −1) and
(5, 0, −1) respectively, and shown in the object frame Fo. The aircraft moves with velocity v = 0.1m/s
and r∗ = 7.
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Figure 4.10: Example aircraft vertical (�) and lateral (♦) resolution instances for a dynamic object with
γ∗ = −π/2 and σ∗ = 125π/180 (�). Initial aircraft and object positions in Fw are (1, 0.1, −1) and
(5, 0, −1) respectively, and shown in the object frame Fo. The aircraft and object move with forward
velocity v = 0.1m/s and r∗ = 7.



4.4. COLLISION AVOIDANCE 95

4.4.2 Implementation - Experimental System 1

Control Architecture

A small commercially available Parrot - AR Drone quadrotor was used to implement
the spherical image-based visual controller and refined avoidance and resolution strategy.
The vertical velocity and yaw rate were controlled directly using the S-IBVS scheme or a
simple set of PID controllers via u∗

3. The PID controllers are used to maintain constant
heading and altitude when the collision has been resolved. Another set of PID controllers
were used to control forward and lateral velocity via u∗

1 and u∗
2 respectively. To this end,

the velocities were measured using a T40 Vicon, whilst the roll, pitch and yaw angles
and associated rates were measured from both the Vicon and onboard IMU’s. Reference
roll and pitch angles were then derived via the velocity PID’s and used by the on-board
attitude controller to regulate forward and lateral velocity (see §2.2.3). The visual and
non-visual controllers were implemented in C/C++ using the MAVwork framework (C++
API) in a custom ground station command and control module [287], and transmitted
wirelessly to the quadrotor. The control architecture is depicted in figure 4.11.

+ 
- S-IBVS

, 
PID

Camera

Resolution
+   

-

+  
-

, 

 

PID 
ViconQuad/IMU,

Figure 4.11: ARDrone quadrotor control architecture. The onboard (�) and ground station components
(�) are shown along with wired (−) and wireless connections (−−).

Vision System

An onboard forward facing camera was used to collect images of a cone shaped fluorescent
coloured collision object of height 40cm and radius 20cm. The camera was operating at
10Hz with a resolution 320 × 240pix and focal length of 206.6pix. Images were sent to
the ground station and processed to obtain a point feature representation of the cone. To
this end, a simple image processing algorithm using the OpenCV library [73] was used for
robust detection and tracking. Specifically, a combination of RGB normalization, color
segmentation and blob detection was used to consistently track the collision object. An
outline of the image processing algorithm is given by algorithm 3.

Of note, the detection and tracking algorithm is susceptible to missed detections and false
alarms (tracking the wrong object) depending on the background environment and object
characteristics. The detection algorithm, including blob area and color thresholds, were
tuned empirically to improve tracking performance in an arbitrary background. This was
done to ensure the visual controller was being assessed and not the image processing
details.
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Algorithm 3 Image Processing Algorithm - Color Blob Detection

� Split each image I into red R, green G and blue B channels

� Normalise each channel and convert to greyscale images R′, G′ and B′

R′
x,y =

rx,y · 255
rx,y + gx,v + bx,v

, G′
x,y =

gx,y · 255
rx,y + gx,y + bx,y

, B′
x,y =

bx,y · 255
rx,y + gx,y + bx,y

,

� Threshold each greyscale image using user defined thresholds τR, τG and τB to obtain
a set of binary images R, G and B.

Rx,y =

⎧⎨
⎩

Rm, R′
x,y > τR

0, else
, Gx,y =

⎧⎨
⎩

Gm, G′
x,y > τG

0, else
, Bx,y =

⎧⎨
⎩

Bm, B′
x,y > τB

0, else

� Merge each channel and find all non-white blobs C within a user specified area A

Amin < A < Amax

� Assuming a single blob is detected, find its centre CXc,Yc using the minimum Xm, Ym

and maximum XM , YM dimensions of the blob

Xc = (Xm + XM /)2, Yc = (Ym + YM /)2

� Find the spherical image feature representation s(σ, γ) of the blob centre using the
image centre Ixc,yc and focal length f

σ = π/2 − arctan(Yc − yc)/f, γ = arctan(Xc − xc)/f

Results & Analysis

Consider an instance similar to the previous simulation results. The quadrotor was allowed
to fly toward a static object with forward velocity vx = 0.25m/s and relative heading
ψ̄ ≈ 0 deg, corresponding to a head-on encounter. When r ≈ 4.5m, the visual control was
activated, denoting the initial detection instance td and setting ψ̄∗. An avoidance decision
was made, moving the image features to a desired position s(±10π/180+π/2, ±25π/180)
depending on the initial object image position. The choice of reference image features
is an artefact of the practical limitations including the camera field of view constraints.
As such, a large number of flight trials were undertaken using the spherical image based
controller, with and without the integral term, using variable reference range value r∗

and ignoring the optic flow from the forward velocity. The objective was not to tune the
controller for ideal behaviour for the said encounter, but to verify the simulation results
presented previously (were possible), and demonstrate spherical image-based control for
collision avoidance.

In order to help demonstrate the robustness of the approach, results for a challenging
case are presented here. The object is first detected to the right and below the de-rotated
image centre. The controller without integral action is used with r∗ = 2, λ = 0.5 and
the optic flow from forward velocity is ignored. This is a difficult case, as the controller
can no longer compensate for the poor range estimate or induced optic flow produced by
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Figure 4.12: Example real aircraft trajectories and image features for a static object with γ∗ = 25π/180
and σ∗ = 100π/180 (�), including lateral (♦) and vertical (�) resolution instances. Initial aircraft and
object positions in Fw are approximately(0, 0.25, −1) and (5.5, 0, −1) respectively. The aircraft moves
with velocity v = 0.25m/s with r∗ = 2.

the forward velocity. However, as the reference image features cannot be selected such
that γ∗ = ±π/2, the controller is more suitable than that including the integral term.
To explain, an example set of results depicting the quadrotor position, orientation, input
control and image feature motion is presented in Fig 4.12 and analysed below.

Despite the smooth vertical velocity control and general decrease in image feature error,
the colatitude image feature error shows small discontinuities through small inconsistent
increases. This can be attributed to small fluctuation in vertical height and imperfect
image de-rotation (errors). Additionally, the variable image processing rate can adversely
affect the control in a similar manner. In some cases, the image processing frequency
drops to as little as 2Hz, forcing each control to be sustained for longer periods. Having
not accounted for optic flow from forward velocity, the weaker z velocity commands have
reduced the vertical separation.

The azimuth feature error decreases smoothly as the image features move toward the
reference value. Recalling that because the azimuth angle is not dependant on the image
de-rotation, the same discontinuities as for the colatitude feature error are not observed.
The azimuth angle then moves past the desired position before attempting to settle with
a positive offset error. This occurs as the optic flow from forward velocity has been
neglected, forcing the controller to issue stronger ωz commands. The effect is indeed
analogous to overestimating r∗, justifying the controller selection. From a collision avoid-
ance standpoint this is not a problem as the positive offset results in an attempt to follow
a spiral of increased radius, and thus allows for an increased lateral separation at a faster
rate. Using the augmented image-based controller with integral term in this case is not
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Figure 4.13: Image feature trajectories resulting from each of the possible avoidance decision outcomes.
Initial (◦), final (∗) and reference (�) image feature locations are shown.

advantageous. This is because the desired azimuth |γ∗| < π/2, so a tighter spiral would
be tracked at reduced lateral separation. Important to note, that if the reference azimuth
could have been selected such that γ∗ = ±π/2, then the augmented controller would have
been chosen and the optic flow from forward velocity included.

A successful resolution decision in the lateral and vertical planes is also shown, as the
quadrotor ceases the avoidance behaviours at appropriate times. The image feature tra-
jectory is allowed to move away from the reference value, as the quadrotor maintains its
heading and altitude after the corresponding stopping time ts. The quadrotor is allowed
to return to its initial heading upon detection ψ̄(td), helping to reduce the deviation from
the intended flight plan before object detection.

A successful avoidance decision for the lateral and vertical planes is also shown, as the
reference image features are selected correctly. As further evidence of the avoidance func-
tionality, the image feature trajectories from four separate near head-on encounters are
shown in Fig 4.13. The avoidance criterion is successfully evaluated in each case, and the
reference image feature chosen appropriately based on the initial image feature position.
In the examples shown, each of the four possible outcomes are depicted, consisting of
reference image features in each corner of the image.

Remark 1 Initially the assumption of zero roll and pitch velocity was removed and they
were included in the control. It was found that the control law was quite sensitive to
inaccurate velocity measurements, causing the quad to issue more aggressive and rapidly
fluctuating z velocity commands. Removing the optic flow measured from pitch and roll,
and adopting the control law derived in this chapter alleviated this problem. Alternatively,
an appropriate filter could have been used to smooth the velocity variables, but at the
risk of introducing additional system delay.
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Figure 4.14: Example flight trial using spherical image-based visual control for collision avoidance of a
small orange fluorescent cone (◦) initially positioned in front of the platform. The controller regulates
the image feature motion to the reference position , avoiding the object by spiralling to the left. The
encounter evolves from t = 0s (upper left) to t < 20s (lower right).
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4.5 Summary

This chapter introduced a set of novel spherical image based visual controllers for spiral
tracking and collision avoidance, using principles from classic image-based visual servo-
ing. Control strategies were derived that attempt to account for unknown object motion
and thus range. The results were used to improve the control design through appropri-
ate parameter selection, resulting in a conservative spiral tracking approach. A simple
avoidance and resolution decision strategy was then included for collision avoidance. A
practical implementation for static objects was demonstrated using a small quadrotor.
Minor modifications to the avoidance and resolution decision strategies were included to
account for practical constraints. The key attributes, benefits and drawbacks of using the
spherical image-based visual control framework for collision avoidance include:

� The avoidance controller provides a flexible reactive control solution to spiral tracking
and collision avoidance. The approach is computationally tractable, robust to range
parameter uncertainty, easy to implement and amenable to multiple platform types
(fixed and rotary wing). The effects of underestimating and overestimating range were
also validated, providing insight into some design considerations. In particular, it was
shown that an accurate range value is not necessarily required for effective collision
avoidance, given the expected maximum detection distance. This helps to circumvent
the difficult range estimation problem.

� Although a rough selection of the controller gain terms leads to satisfactory perfor-
mance, some tuning is still required. As such, it may be difficult to obtain a general
controller for an arbitrary aircraft and encounter scale. As such, stability can only
be guaranteed in the single case. Additionally, the platform constraints cannot be
explicitly included in the controller design, and instead rely on either tuning the gain
appropriately or saturating the input. Given the success of recent optimal control ap-
proaches, merging similar concepts with visual control could alleviate such issues, with
the possibility of improved controller performance and spiral tracking (control effort
and stability).

� A simple image processing algorithm was used to detect an inconspicuous collision
object. The algorithm was capable of robust object detection and tracking in a range
of environments, but not completely free of false alarms (incorrect object tracking) and
missed detections. The low frequency of such events did not cause significant issues
for the controller. Often false alarms and missed detections were only temporary
(< 3 frames), such that the avoidance control could easily be recovered. Although
improvements can be made, it is noted that object detection and tracking is not the
focus of this work.

� The reference colatitude angle σ∗ has not yet been justified. Indeed, any reference such
that σ∗ �= π/2 can be used. A means to better select the reference colatitude angle
is required. This may be derived from a collision avoidance perspective, or a control
perspective in which better assurance the image feature can be maintained is provided
(see §5.4.5).
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� The avoidance decision approach has not been fully analysed. Only a few cases are
presented in both the simulated and practical environment using only a single thresh-
old value (see §3). To fully analyse the avoidance decision, a large number of trials
would be required under realistic conditions to provide a probabilistic performance
assessment. This would be best accomplished using Monte-Carlo methods in a high
fidelity simulation environment.

� The resolution decision approach has not been fully analysed. Only a few cases are pre-
sented in both the simulated and practical environment. Indeed, only a simple strategy
that is not explicitly coupled to the visual control has since been presented. Consid-
ering the lateral resolution, a number of flight trials demonstrated the sensitivity of
the resolution decision to environmental conditions, causing the avoidance to stop pre-
maturely. Small variations in heading near the time of initial detection can cause the
avoidance to stop before establishing a spiral, and indeed prevent sufficient separation.
If the resolution decision could be coupled to the visual control such that resolution
could only occur once established (or nearly established) on the spiral, a more robust
resolution strategy would result. Additionally, a threshold based approach, similar to
the avoidance decision, would conform to existing aviation collision avoidance system
designs (see §5.5.2). The derivation of an appropriate threshold and subsequent per-
formance analysis can then be accomplished using existing probabilistic performance
analysis techniques (see §6).



Chapter 5

Visual Predictive Control

5.1 Outline

This chapter presents new spherical visual predictive control strategies for avoidance
control. The control approaches extend existing visual predictive control concepts both
theoretically and experimentally, resulting in novel contributions for general visual control
applications.

First, optimal visual control approaches are reviewed in the context of See and Avoid. Spe-
cific attention is paid to image-based schemes with supporting practical implementations.
Second, two novel Spherical Visual Predictive Control (S-VPC) schemes are derived. The
first is based on existing Visual Predictive Control (VPC) schemes, while the second in-
troduces new stability-based design concepts to derive a Quasi-Infinite Horizon Visual
Predictive Control (QIH-VPC) approach. Third, a practical predictive control scheme is
implemented using a small AscTec - Hummingbird in a scaled indoor collision avoidance
environment in a proof-of-concept type approach. An improved resolution strategy is also
presented and validated empirically. The control schemes are then analysed, highlighting
their advantages and drawbacks.

5.2 Fundamentals & Prior Work

Despite the flexibility and simplicity of many classical image-based visual control schemes,
they are not without their common drawbacks. Typically, classical approaches require
tuning a gain term to simultaneously satisfy problem constraints and ensure sufficiently
fast convergence. The gain term is often empirically derived, and can lead to sub-optimal
behaviour that only guarantees stability in this single case. Additionally, the classical
control structure cannot explicitly consider vehicle dynamics and actuator limitations in
the control design. Such controller attributes were present in the partitioned spherical
image-based controller derived in the previous chapter.

Optimal control based approaches have emerged to help address some of these issues.
Control is derived by minimizing an objective function J over an infinite time horizon
such that

u�(·) = argmin
U

J(. . . , . . . ) (5.1)

102
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where u�(·) denotes the applied optimal control sequence and U denotes the set of possible
controls (sequences), defined over the corresponding horizon. The objective function how-
ever is quite general and could contain not only image feature error, but a combination
of image features, control effort, time and other application specific criteria. This allows
flexibility in the control specifications whilst explicitly considering problem constraints.
Included in the set of optimal control based approaches are tactical control designs such
as path planning [321, 322], and various linear matrix inequalities [323, 324] formulations
using linear differential inclusions (LDI) or otherwise. Although global in nature they re-
quire a unique solution to exist, which is not always guaranteed. They are often designed
with robustness in mind and by considering worst case scenarios, result in overly conser-
vative control schemes with larger computational overhead. This is particularly relevant
when the online computation of a minimax problem is required [324]. Many existing
approaches also assume a position-based visual control framework or require additional
information such as object position. Such approaches have not been extended to spiral
tracking, but are likely to be unsuitable considering the requirement for multiple image
features from the same object.

Nonlinear model predictive or receding horizon control (NMPC) describes a particular
class of optimal control based approaches, solved over a finite time or prediction horizon
Tp instead [325]. As opposed to a global solution, NMPC allows the control law to be
re-calculated periodically, incorporating a feedback mechanism into the system to help
compensate for external disturbances. Generally, accurate process models are required for
improved control. As good approximations for both image and robot kinematic models
can often be derived a priori, the NMPC framework is well suited to visual control. In
this case, the term visual predictive control (VPC) is commonly used and the optimal
control problem to be solved becomes

u�(·) = argmin
U

J(e(t), . . . ) |t+Tp

t (5.2)

Solving a finite horizon as opposed to an infinite horizon optimal control problem reduces
the computational overhead. Significantly complex or large systems can then be solved
provided the horizon time is reasonable. In VPC, the state vector may consist only of
image features or a combination of vehicle states and image features. The nonlinear
optimization problem is then solved over the resulting state space such that control,
state and visibility constraints are managed accordingly. The system dynamics are often
linearised, and a common objective function consisting of a weighted sum of quadratic
terms in state and control is used. As with classical visual control, both position-based
and image-based visual predictive control schemes can be derived.

For image-based schemes, object pose is not reconstructed and differences in various
schemes often revolve around image feature representation, constraint inclusion and the
objective function structure [326]-[328]. Recent theoretical studies on unconstrained [329]
and constrained [330] predictive schemes have suggested the prediction horizon can further
reduce the undesired coupling effects. Additionally, the increased prediction horizon can
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result in straight forward camera motion, and more direct image feature trajectories in the
presence of noise, range uncertainty and large camera displacements. In the special case
using a quadratic objective function and prediction horizon of one sample, the control
resulting from (5.2) is equal to that derived for the classical control scheme (4.3), as
L̂+

s approximates a least squares solution to the inverse image kinematics [337]. In any
case, the additional benefit is evident in the explicit management of control limits, state
constraints and visibility issues in a single optimisation. Of note, the visual predictive
control framework has not been practically applied to aircraft control for any application.

As with classical image-based control, stability of visual predictive control is a major
concern. It is then important to relate the stability attributes of general nonlinear model
predictive control strategies to visual control. To this end, ensuring closed-loop stability
for nonlinear model predictive control is difficult, but can be addressed in a number of
ways. In most cases stability can be achieved by assuming the general form of the objective
function and selecting suitable design parameters. These include the prediction horizon
Tp, control horizon Tc and objective function weighting matrices [331]. The approach is
typically used for practical applications and although it has proved to be effective for VPC
[332]-[335], defining the parameters often requires experience. They are chosen to provide
a trade-off between computational complexity and stability. Typically the prediction and
control horizon are equal and tuning is predominantly on the prediction horizon length.
If too short, stability issues may arise. If too long the computational expense increases
significantly and the control horizon can be used to reduce complexity. To this end,
move blocking approaches are commonly used. By considering a single constant control
over multiple steps within the prediction horizon, the complexity of the optimization
problem is considerably reduced. This has been studied in [336] and applied to VPC in
[337]. Unfortunately, stability can no longer be guaranteed, constraint satisfaction may
be difficult and the resulting constant control may be sub-optimal or infeasible. Tuning
guidelines exist [338, 339], but due to the variability in system dynamics, no formal rules
have been established for general NMPC or VPC. For visual control, the nonlinearity
of the image dynamics results in considerable differences in system behaviour for each
operating point, further complicating parameter selection. A loss of performance may
then result as a compromise for ensured stability.

Alternatively, design methods exist that guarantee nominal closed-loop stability, without
explicitly tuning system parameters. By altering the control structure, they rely only on
the existence of a feasible solution at the initial time. Feasibility at each subsequent time
is then guaranteed resulting in stable behaviour. In a first approach, a terminal equality
constraint can be added [340, 341] such that (5.2) becomes

u�(·) = argmin
U

J(e(t), . . . ) |t+Tp

t s.t e(t + Tp) = 0 (5.3)

The reference state must be reached within a finite prediction horizon, which often leads
to a restricted region of operation. So feasibility, and thus stability, becomes an issue for
small prediction horizons. To ensure a satisfactory region of operation, a large prediction
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horizon is required which brings increased computational burden. Additionally, exact
numerical satisfaction of the terminal equality requires an infinite number of calculations.
Approximations must be made for tractability, which can compromise stability results.
One example is the addition of a terminal penalty term to the cost function to approximate
the zero terminal constraint. The idea is to penalise deviation from the reference state
at the end of the prediction horizon, to help force hypothetical zero terminal region
constraint. Approaches based on this concept have been successfully applied to recent
VPC schemes for robot manipulators [342, 343]. Again, this visual predictive control
framework has not been practically applied to aircraft control for any application.

A second approach is to apply a terminal penalty term and terminal region to the control
structure, forcing the final state to lie in a bounded region about the reference value at
the end of the horizon [344, 345]. Within this region, convergence is then guaranteed.
Transforming (5.2) into this framework then

u�(·) = argmin
U

J(e(t), . . . , e(t + Tp)) |t+Tp

t s.t e(t + Tp) ∈ Ως (5.4)

where e(Tp) denotes a terminal penalty term and Ως defines the terminal region. By
including the terminal region constraint, the approach is less restrictive than the first.
The requirement to satisfy a zero terminal constraint in finite time is removed, decreasing
the potential for feasibility issues when using small prediction horizons.

The terminal region has some other convenient properties. The existence, shape and
magnitude of the terminal region can also be used to discriminate between particularly
nonlinear regions of the state space and help estimate the domain of attraction (region
of operation). A large terminal region indicates the system dynamics are relatively linear
about the associated reference state, resulting in a greater region of convergence. The
reverse is true for small terminal regions. If applied to image-based control then, the
terminal region could represent a particular image region, and its attributes would then
be with respect to particular reference image features and image dynamics. The terminal
region could then be used to help select better reference image features from a control
perspective. Additionally, if servoing to a specific region of the image was required, better
reference features within the region could then be selected, offering an alternate region-
reaching control approach.

The terminal penalty term is used to penalise deviation from the reference states at the
end of the horizon, similar to previously mentioned predictive schemes. However, the
penalty term is now explicitly dependent (coupled) to a specific terminal region, and
serves to virtually extend the horizon to infinity by approximating an upper bound on
the objective function. As a result, the approach is commonly referred to as quasi-infinite
horizon nonlinear model predictive control (QIH-NMPC).

Importantly, the terminal penalty term and terminal region for QIH-NMPC depend on
multiple system specific factors, and cannot be chosen freely. They are in general difficult
to determine, but can be approximated offline. This improves the design process by al-
lowing analysis of some system attributes before controller implementation. Additionally,
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by moving the majority of the computational burden offline, the online optimization can
be solved sufficiently fast with standard computing power and modern solvers (optimisa-
tion algorithms) [347]. Of note, stability based design techniques using the quasi-infinite
horizon approach have not been applied to visual predictive control of any form in any
application.

Other stability-based designs exist for nonlinear model predictive control, but they are
typically overly complex (Feedback Linearisation NMPC), have higher computational
burden through increases degrees of freedom (Dual-Mode NMPC) or require additional
tuning parameters that are difficult to determine (contractive NMPC) [325, 331]. As such,
their extension to visual predictive control is difficult, and likely to be unsuccessful for
real applications such as spiral tracking and collision avoidance.

The analysis above suggests that visual predictive control, including the quasi-infinite
horizon framework, can offer some significant benefits over classical image-based control
approaches. These benefits include improved robustness (added noise and parameter un-
certainty), explicit constraint handling (including state, control and visibility constraints),
improved reference image feature selection and nominal stability guarantees. Each of these
features are particularly important for spiral tracking and aircraft collision avoidance. The
visual predictive control approach therefore lends itself naturally to the See and Avoid
problem environment, however it has not yet been investigated.

The remaining sections of this chapter detail the derivation, simulation, implementa-
tion and analysis of improved image-based controllers using predictive image-based ap-
proaches, that are suitable to See and Avoid. Specifically, two novel spherical visual
predictive controllers are presented. The first is designed using quasi-infinite horizon ap-
proaches and validated in simulation. The second is designed from a practical perspective
and validated empirically. The controllers are then used to design an improved practical
closed loop vision-based collision avoidance system for static and dynamic objects.
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5.3 Spherical Visual Predictive Control

Control Structure
Visual predictive control is based on well established nonlinear model predictive control
[325]. It requires a reference state vector, a process model, an objective function and
a solver for the resulting optimization problem. At each sampling instance, an optimal
control sequence of camera velocities u�(·) is found that minimizes the objective function
J under a set of nonlinear visibility, state and control constraints. The objective function
is calculated over a finite prediction horizon Tp using a process model f(·) that may
include a combination of image kinematics and vehicle dynamics. The first of the control
sequence is applied before the process is repeated each time a new measurement arrives.
Essentially, a constrained, finite horizon, nonlinear optimal control problem is solved at
each sampling instance.

Typically the objective function takes the general form, consisting of a weighted sum of
quadratic terms in state and control. The specific weights are typically fixed and defined
by the matrices Q and R for state and control respectively, such that

J(e(t), u(t)) =
t+Tp∫
t

e(τ)2
Q + u(τ)2

R dτ (5.5)

However, it is possible to manipulate the objective function structure online. Terms may
be added, removed or altered, reflecting their relative importance to the intended appli-
cation. Any objective function weighting matrices may be constant or time varying over
the prediction horizon or successive optimizations. Recently, a progressively incremented
positive definite state penalty matrix Q(τ) is used to penalise states more heavily toward
the end of the horizon [337]. No penalty on control was used, and is essentially han-
dled by the control constraints. This visual predictive control problem can be defined in
continuous time as a single online optimisation such that

u�(·) = argmin
U

J(e(t)) (5.6)

where

J(e(t)) =
t+Tp∫
t

e(τ)2
Q(τ) dτ (5.7)

s.t

˙̄s = f(s̄, ū), s̄(t) = s0 (5.8a)

ē = s̄(τ) − s∗ (5.8b)

Q(τ) = 2Q(τ − T ) (5.8c)

ū(τ) = ρ, τ ∈ [t, t + Tp] (5.8d)

ρ ∈ U (5.8e)
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where T defines the sampling time and internal variables used in prediction are distin-
guished using a bar. This is because the internal variables will not in general be equal to
their actual future values. To this end, the trajectory of the predicted image features s̄(·)
results from adopting the control sequence ū(·), according to the process model f(s̄, ū)
and starting at the true initial image features s0. The predicted image feature error ē is
determined by the smallest difference between the reference and actual image features.

Applying the control structure to spherical image features, the image feature error then
corresponds to a modulo 2π subtraction denoted by � such that the ē ∈ (−π, π). Ap-
plying the control structure to spiral tracking using a single point (and a spherical image
features), the process model f(s̄, ū) represents the image kinematics defined by the optic
flow equation (5.9). Applying the framework to aircraft spiral tracking, the process model
must then include a combination of image kinematics and vehicle dynamics. To keep the
approach general, consider first a process model consisting only of the image kinematics
for a static object. Recalling the image kinematics define the relationship between image
feature velocity ṡ(t) and camera translational and angular velocity components ẋ(t)

ṡ(t) = f(s(t), u(t)) = Ls(s(t), r(t)) ẋ(t) (5.9)

where Ls is the full spherical image Jacobian and ẋ(t) ∈ R
6. We can then express

ẋ(t) in terms of the controlled velocities u(t) and the remaining velocities v(t) such that
ẋ(t) = [u(t) v(t)] where u ∈ R

m, v ∈ R
n and m+n = 6. Recalling, an aircraft can track a

spiral trajectory with a fixed forward velocity vx and variable vertical velocity vz and yaw
rate1 ωz. All three velocities cannot be directly controlled using visual feedback, as only
a single point is being observed. As such, setting u = u3 = [vz ωz] and v = [vx vy ωx ωy],
the image kinematics can be re-written as

ṡ(t) = Lz(s(t), r(t))u3(t) + Lxy(s(t), r(t))v(t) (5.10)

where

Lz(s(t), r(t)) =

⎛
⎝ sin σ(t)

r(t) 0

0 −1

⎞
⎠ (5.11)

Lxy(s(t), r(t)) =

⎛
⎝− cos σ(t) cos γ(t)

r(t)
− cos σ(t) sin γ(t)

r(t) sin γ(t) − cos γ(t)
sin γ(t)

r(t) sin σ(t)
− cos γ(t)

r(t) sin σ(t)
cos γ(t) cos σ(t)

sin σ(t)
sin γ(t) cos σ(t)

sin σ(t)

⎞
⎠ (5.12)

and Lz and Lxy represent partitions of the spherical image Jacobian such that Ls =
(Lz Lxy). This is the same partitioning used in the classical image-based control approach,
and ensures decoupled control in the vertical xz and lateral xy planes in the camera frame
(§4.3). As in the case for classical image-based control, the forward velocity can then be

1These may be used directly or transformed into angular displacement commands, such as commonly
done for fixed wing aircraft.
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regulated by an external controller, and a fixed reference range value can be assumed such
that (5.10) reduces to

ṡ(t) = L∗
z(s(t))u3(t) + L∗

xy(s(t))v(t) (5.13)

where L∗
z and L∗

xy denote approximations of the partitioned image Jacobian taken for
r(t) = r∗. Again, assuming the forward velocity vx remains relatively constant and the
image features are taken from de-rotated images, then v(t) can be considered constant
as vy(t) ≈ ωx(t) ≈ ωy(t) ≈ 0. The velocity v(t) may then be passed as a predetermined
vector parameter v. Re-writing (5.13) in standard ODE form, the local process model
can then be defined as

ṡ(t) =f(s(t), u3(t)) (5.14)

f(s(t), u3(t)) =L∗
z(s(t))u3(t) + L∗

xy(s(t))v (5.15)

There are four important attributes of the aforementioned visual predictive control struc-
ture. First, the process model does not take into account that the object may be moving.
However, recalling that the induced optic flow from the object motion ∂s

∂t ∝ 1
r , the model

mismatch will be small. One of the benefits of using the model predictive control structure
is the inherent robustness to such model mismatch or parameter uncertainty. Therefore,
this property can be directly leveraged to simplify the control design for both static and
dynamic objects2. Second, move blocking is used as a single constant control ρ makes
up the control sequence for the entire prediction horizon. Although computationally ef-
ficient, move blocking results in potentially sub-optimal solutions, having not considered
the full richness of control actions over the prediction horizon [336]. Third, although local
stability is ensured, it is difficult to infer the domain of attraction for a given reference or
consider any global stability properties. Large prediction horizons increase the computa-
tional complexity, whilst small horizons will inherit similar stability properties as classical
image-based approaches. Fourth, no visibility constraints have been imposed such that
the image features are not restricted to a particular image region. They can however be
added in a similar manner to the control constraints defined by (5.8e). The same can be
said for the state constraints, and can be important if specific vehicle dynamics were to
be included in the process model defined by (5.8a).

Remark The predictive control scheme presented in this section shall be referred to as
classical visual predictive control (C-VPC), and will be used for comparative purposes.
When required, the objective function will be augmented with a weighted quadratic term
in control u(τ)2

R where R � 0 to ensure a fair comparison can be made such that

J(e(t), u(t)) =
t+Tp∫
t

e(τ)2
Q(τ) + u3(τ)2

R dτ (5.16)

2If the range is small, there is the possibility of significant steady state error or offset, to which an
additional integral controller could be added as in the classical image-based approach.
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Control Solution
Solving the online optimization problem (5.6) requires the solution of a constrained non-
linear finite horizon optimal control problem. The computational complexity lies in the
solution of the minimization problem and depends, in part, on the structure of the objec-
tive function and process dynamics. For a quadratic cost function structure, the solution
to the minimisation problem is often found using numerical methods including gradient
decent, interior point (barrier) methods and variants of Sequential Quadratic Program-
ming (SQP) [348]-[350] including Active-Set strategies [351]-[354]. The latter approach,
as the name suggests, attempts to successively solve a series of Quadratic Programmes
(QP) in an ordered manner. The problem is first broken down into a number of man-
ageable quadratic programs, and then solved in a hierarchical fashion. The field is well
studied and many solution methods, or solvers, have been proposed. For this work, an
important requirement for the solver is to enable real-time operation and manage the vi-
sual predictive control structure given the inclusion of both image kinematics and aircraft
dynamics.

Fortunately, solvers using the Active-Set strategy have recently become commercially
available in software packages such as MATLAB’s Control Systems Toolbox [70]. Such
tools are useful for development and simulation, but extensions to real platforms are
limited. As a result, freely available solvers using Active-Set strategy have recently be-
come available, such as the ACADO Toolkit [347]. The package includes a MATLAB
interface for development and automatic code generation capability to realise optimised
re-configurable code for embedded applications. The solver can also meet the requirements
for real-time operation of complex systems, given appropriate selection of controller and
solver parameters. A variant of the quadratic program solver qpOASES is used in the
ACADO package, and is capable of managing infeasible initial states, searching for al-
ternate solutions when required [355, 356]. Additionally, the solver can also be tuned to
behave like the active set routine in MATLAB, with the added benefit of faster compu-
tational time. In this way, the appropriate solver can then be selected to best match the
problem structure. To this end, this work leverages both MATLAB and ACADO to solve
various visual predictive control problems (in simulation and implementation), exploiting
their benefits for a given control structure whilst ensuring fair performance comparisons
can be made. Of note, developing a new nonlinear optimal control problem solver or
routine is out of scope of this work.
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5.4 Quasi-Infinite Horizon Visual Predictive Control

Transforming the visual predictive control problem into the quasi-infinite horizon non-
linear control framework requires the offline calculation of some additional parameters.
First, the control problem is setup whereby the image kinematics are shifted and linearised
about the reference point. Second, a stabilising locally linear controller is used to derive
a terminal penalty matrix P to augment the objective function. Third, a terminal region
Ως about the operating point is calculated and added as an extra nonlinear constraint.
The terminal region is calculated in a similar manner to that outlined in [345], but pre-
sented in a new and simple framework that can be directly and easily implemented using
common software tools. The online optimization problem defined in (5.6)-(5.8) can then
be reformulated with the inclusion of these additional controller parameters.

5.4.1 Problem Setup

Considering the spiral tracking application, the reference image features s∗, range r∗ and
forward velocity v∗

x are first selected. The control constraint domain U ⊂ R
2 must then

be defined, and is typically a function of the vehicle limitations such as turn or climb rate.
Assuming a constant forward velocity, the reference controls u∗

3 can then be calculated
using circular motion equations or otherwise. If u∗

3 /∈ U then the reference spiral is
infeasible and new reference image features, range or forward velocity must be selected
until the control constraints are satisfied. This is not a drawback of the controller, but
results from the vehicle’s physical constraints and chosen application.

The image kinematics representing the process model f(s(t), u3(t)) must be shifted about
the reference operating point such that f(0, 0) = 0. Re-writing equation (5.15) for the
shifted model

f(s(t), u3(t)) = Lz(s(t) + s∗)(u3(t) + u∗
3)

+ Lxy(s(t) + s∗)v (5.17)

where the associated control constraint domain must also be shifted such that U ={
umin

3 ≤ (u3(t) + u∗
3) ≤ umax

3
}
. Recalling that v can be approximated as a constant main-

tained by external controllers, this system can then be linearized about s(t) = 0 and
u3(t) = 0. Using small disturbance theory, the resulting state-space representation for
the process model is

ṡ(t) = As(t) + Bs(t)[u3(t) v]T (5.18)

where As(t) = ∂f(s, u3)/∂s and Bs(t) = ∂f(s, u3)/∂u3. The reference control and image
features for this system are now zero vectors as a result of the shifted process model.
Equations (5.17) and (5.18) have been derived with consideration to the necessary condi-
tions required for general QIH-NMPC control design as stated in Appendix E.4.
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5.4.2 Terminal Penalty Term

The terminal penalty matrix P is used to apply a quadratic terminal cost s̄(t + Tp)2
P

within the objective function. The term is used to penalise deviation from the reference
state at the end of the prediction horizon, and provide an upper bound on the objective
function ∀t > Tp where a fictitious locally linear state feedback controller is assumed.
This linear controller is derived for the shifted process model defined by (5.18) and used
directly to calculate P.

First, a static gain matrix Kv must be defined about the reference value for a linear
state feedback controller such that u3(t) = Kvs(t). The choice of controller is somewhat
arbitrary, however by solving a linear quadratic regulator (LQR) type problem, an optimal
linear controller may be found. The associated Riccati equation

AT S + SA − (SB)R−1(BT S) + Q = 0 (5.19)

is first solved for S, where the state and control weighting matrices are defined by Q and
R respectively. Then Kv = −R−1(BT S) is found such that asymptotic stability of the
closed loop system (Ak = A+BKv) is guaranteed in a region about the reference values.
Note the sign reversals that are required due to the use of an LQR and the definition for
u(t). As σ∗ /∈ {0, π}, the linearised system is both controllable and observable such that
the pair A, B is stabilisable. The existence of a suitable LQR controller is thus ensured
provided Q 	 0, R � 0.

Second, the maximum real eigenvalue of the closed loop system λmax(Ak) is found by
solving the Lyapunov equation for P given by

(Ak + κI)T P + P(Ak + κI) = −(Q + KT
v RKv) (5.20)

The constant κ is chosen such that 0 ≤ κ < −λmax(Ak) to ensure (5.20) admits a unique
positive definite solution. To ensure a larger terminal region whilst retaining good control
performance, the poles of the closed loop system are shifted such that κ = −0.9λmax(Ak).
It was shown in [331] and verified for visual control that κ should be chosen near, but
not equal to −λmax(Ak). If κ � −λmax(Ak) a smaller terminal region would result. If
κ = −λmax(Ak), then the terminal penalty matrix will be large and may degrade control
performance. Note that other values for κ are suitable, but the limits on κ for acceptable
performance for visual predictive control are yet to be determined.
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5.4.3 Terminal Region

The terminal region Ως is an ellipse on the spherical imaging surface defined such that
sT Ps ≤ ς where ς ≥ 0. The method for calculating the terminal terminal region is
based on the methodology of [331, 345] and extended to provide an explicit formula-
tion amenable to direct implementation in MATLAB. To find the terminal region Ως

a series of optimization problems are solved off-line, defined by algorithm 4 and using
equations (5.21)-(5.25). Each optimization problem can be solved using the global op-
timization function MultiSearch. It requires nomination of a local solver and associated
solver method. To this end, the fmincon function with sequential quadratic programming
(SQP) solver can be used.

The terminal region is invariant under the locally linear controller, which itself is fictitious
in the sense it is never implemented and only used to derive these controller parameters.
Feasibility of the open loop optimal control problem at the initial time implies the image
features will lie within the terminal region at the end of the prediction horizon, ensuring
closed-loop asymptotic stability. An example is shown in Fig 5.1 where an arbitrary
terminal region Ως and feasible region M are drawn over the spherical surface S2. Strictly
speaking, Ως �= M but it is reasonable to assume that the larger the terminal region, the
larger the domain of attraction such that Ως ⊆ M . Importantly, a larger terminal region
will generally result in a larger terminal penalty matrix. The penalty matrix must not be
too large such that control performance is degraded. This is an important trade-off when
selecting the prediction horizon. A smaller prediction horizon may be used for a larger
terminal region to decrease computational overhead without degrading performance.

 

 

 

 

 

 

Figure 5.1: Example feasible initial image feature s0 moving from the feasible region M to the terminal
region Ως over the prediction horizon Tp.
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Algorithm 4 Terminal Region Ως Calculation
Set j = 1

PROBLEM A
Solve (5.21) subject to (5.24)
set ςj = sπPsπ

PROBLEM B
Set sς = sπ

while sς > 0 do
Solve (5.21) s.t (5.24)-(5.25)
Solve (5.22) s.t (5.23)-(5.25)
Set j = j + 1
set ςj = 2

3 ςj−1

end while
Set ς = sςj−1Psςj−1

sπ = argmax
s

‖s‖ (5.21)

sς = argmin
s

{
κ · sT Ps − sT P�(s)

}
(5.22)

�(s) = f(s, u3) − Ass (5.23)

0 ≤ Kvs − umin
3 (5.24a)

0 ≤ umax
3 − Kvs (5.24b)

0 ≤ ςj − sT Ps (5.25)

Remark Finding the true maximal terminal region is difficult, but the approach outlined
in this thesis can be considered a suitable approximation having verified the results of
[345] with the above algorithm. Note also that solving the first optimization in problem
B is generally not required, but its solution is used as an initial value to speed up the
second optimization in problem B. Additionally, when using fmincon in MATLAB, (5.21)
must be transformed to a minimization problem.
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5.4.4 Online Implementation

The online quasi-infinite visual predictive control (QIH-VPC) optimisation problem can
now be defined as

u�
3(·) = argmin

U

J(s(t), ū3(·)) (5.26)

where

J(s(t), ū3(·)) = s̄(t + Tp)2
P +

t+Tp∫
t

s̄(τ)2
Q + ū3(τ)2

R dτ (5.27)

s.t

˙̄s = f(s̄, ū3), s̄(t) = s0 (5.28a)

ū3(τ) ∈ U, τ ∈ [t, t + Tp] (5.28b)

s̄(t + Tp) ∈ Ως (5.28c)

where Q � 0, R � 0 and Tp = Tc to avoid move blocking. The terminal penalty matrix
P � 0 is calculated as outlined above (see §5.4.2). As the framework considers a shifted
process model, s can be used instead of e in J . Notice also, that because a spherical
camera model is used, visibility constraints do not need to be explicitly considered in the
control design. Importantly, this allows a simpler derivation of the quasi-infinite horizon
visual predictive control approach.

5.4.5 Circular Motion

Given the expectation that the avoidance decision regarding reference azimuth angle forces
circular motion, the QIH-VPC control structure should be considered for this special case
of spiral motion (see §3.3.1). For circular motion, the platform remains equidistant from
the object which means that the range parameter is fixed, and minimal model-mismatch
results. As such, using simple circular motion equations, u∗

3 = [0 ω∗] where v∗
x defines

the nominal forward velocity such that v∗
x = ω∗r∗

2 and r2 = r∗ cos(σ∗ − π/2) defines the
radius of the circle on the lateral xy-plane. By definition, the reference colatitude cannot
be placed at the polar caps of the spherical surface, so σ∗ /∈ {0, π}. Therefore, the required
conditions to formulate the QIH-NMPC structure are satisfied (see §E.4).
Under the above considerations, an analysis is conducted with respect to reference image
feature selection, robustness (noise and parameter uncertainty) and control effort. Addi-
tionally, a performance comparison to the classical visual predictive approach is provided.
Simulations were conducted using the parameters defined in table E.4 and constraints de-
fined in table E.6 unless stated otherwise.
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Reference Image Features

The terminal region behaviour with variable reference colatitude angle σ∗ is first com-
pared. Assuming circular motion, the reference azimuth angle is such that γ∗ = π/2 and
the reference range value is fixed such that r∗ = 2 . The results are depicted in Fig 5.2,
where results for σ∗ < π/2 are omitted due to the observed symmetry about σ∗ = π/2.

Fig 5.2(a) shows the terminal region centred about σ∗ = 5π/6. The black ellipse bounds
the terminal region according to the control constraints. This essentially corresponds
to solving only problem A in algorithm 4. The smaller area enclosed by the red ellipse
shows the actual terminal region, considering the system non-linearity at the reference
colatitude angle. This essentially corresponds to solving problem B in algorithm 4. The
red ellipse is also included in Fig.5.2(b) for comparative purposes.

Fig 5.2(b) shows the terminal regions centred about σ∗ ∈ {π/2, 2π/3, 5π/6} depicted in
red. For π/2 ≤ σ∗ < 130π/180, the terminal region is dictated by the control constraints.
If we increase the control constraint domain for a given σ∗, a larger terminal region will
result. In the polar regions however, the terminal region is no longer defined primarily due
to control constraints. Because of the increased nonlinearity of the system, a number of
iterations are required to find the terminal region for which the fictitious linear controller
guarantees convergence.

Fig 5.2(c) further depicts the terminal region variation with σ∗ using the terminal region
constant ς, which can be considered a proxy for the terminal region area. The terminal
region constant increases until σ∗ ≈ 128π/180 due to the increased domain for the locally
linear controller, before rapidly decreasing as we approach the polar regions. This is
because the terminal region provides a quantitatively representation of the degree of
system nonlinearity for a given reference. The result is important as it suggests selecting
σ∗ near 125π/180 may ensure a larger domain of attraction and thus larger feasible set for
s0. As verification, a set of simulations for σ∗ = 125π/180 and varied s0 is shown in Fig.
5.2(d). In each simulation the initial range is fixed, and the resulting camera trajectory
rapidly converges to the circular path along a conical spiral trajectory. As evidence, the
associated camera trajectory, track error and control inputs are shown in Fig 5.3. In
the context of collision avoidance, the smooth control inputs force the aircraft to safely
maneuver below and around the object.

Given the above analysis, the terminal region could then be used to select suitable ref-
erence image feature values for spiral tracking, before implementation. Consider an ap-
plication such as collision avoidance. Using the rules of the air, and with respect to the
avoidance strategy presented earlier (see §3.3.1), it is only required that σ∗ �= π/2. Select-
ing σ∗ = 125π/180 could ensure a larger set of feasible initial states and therefore provide
better assurance that the reference features, and hence avoidance, will be achieved. The
terminal region can then guide the selection of reference image features based on expected
control performance.
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Figure 5.2: Terminal region variation (−) for variable σ∗ (•) (a) Terminal region contraction for σ∗ =
140π/180 (b) Terminal region differences for σ∗ ∈ {π/2, 2π/3, 5π/6} (c) Terminal region constant ς for
σ∗ ∈ (π/2, 5π/6) (d) Image feature trajectories for σ∗ = 125π/180, r0 = 2 and varied s0.
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Figure 5.3: Example QIH-VPC simulation for σ∗ = 125π/180 including platform trajectory, track error
and control. The track error is defined as the minimum 2-norm of the difference between any point on
the reference circle (−) and the current position.

Remark The exact camera and image feature trajectory will of course depend on the
choice of state and control weighting matrices, but it can be safely assumed that these
are constant predefined matrices chosen based on some desired vehicle performance.
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Figure 5.4: Feasibility analysis for σ∗ = 125π/180 and simulation time of 30s. Feasible (•) and infeasible
(•) s0 are shown for variable prediction horizons Tp.

Although analytically determining the feasible region may be possible in the nominal case,
the difference between the actual system and model suggest it would be best to sample s0

over S2 and simulate. The resulting state at the end of the first iteration, and whether it
lies in the terminal region, can be used to determine feasibility. Such results are depicted
in Fig 5.4 for short and long horizons by sampling s0 at 20π/180 intervals over S2 and
simulating. The sampled set is defined as Ŝ2. Note the slightly larger feasible initial state
space, and thus stable region of convergence, for the longer horizon. It was noted in [293]
that it is difficult to determine the region of convergence for classical image-based visual
servoing. These results provide some valuable insight into this important issue.

Robustness

The quantitative robustness properties in the context of unknown time varying range
parameter and bounded uncertainty on image feature measurements and actuators are
investigated. This is important to consider since the approach is designed for the ideal
case. Even for circular motion, r(t) �= r∗ unless already established on the circular
path. Additionally, sensor uncertainty and imperfect actuation will be present in a real
system. Based on previous results, the reference colatitude angle is selected such that
σ∗ = 125π/180. The results are depicted in Fig 5.5 when r∗ is varied, and in Fig 5.6
when r0 is varied and additive noise is included. Results for σ∗ �= 125π/180 are omitted
as similar terminal region behaviour and control performance were observed.

Fig 5.5(a) depicts the terminal region variation for r∗ ∈ {2, 4, 8, 16}. The variation in
the terminal region constant, and thus terminal region area, is shown in Fig 5.5(b) for
r∗ = (0.5, 125). The existence and shape of the terminal regions are important, suggesting
a controller designed with a smaller r∗ may be suitable when r(t) > r∗. This is shown by
the successively smaller terminal regions as r∗ decreases. However, the elements of the
terminal penalty matrix increase as the reference range parameter decreases. This may
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Figure 5.5: Terminal region variation (−) with parameter uncertainty for σ∗ = 125π/180 (•) (a) Terminal
region variation with r∗. The terminal regions from the smallest to the largest correspond to r∗ ∈
{2, 4, 8, 16} respectively (b) Terminal region constant variation for r∗ ∈ [0.5, 125]

reduce performance through aggressive control action, but is not a major issue given the
control limits will still be maintained.

Fig 5.6(a) depicts some example image feature trajectories for variable r0, using a fixed
reference range value r∗ = 2. In some cases, the initial object range is up to twice
that used in the process model. The QIH-VPC controller is shown to handle this large
parameter uncertainty, and converge to the circular trajectory. The result suggests that
the control structure can alleviate the explicit dependence on over (or under) estimating
the reference range parameters in the controller, as in the classical control case.

Fig 5.6(b) depicts some example image feature trajectories when the initial range is varied,
and uncertainty on image feature measurements and imperfect actuation is included.
Uncertainty in the form of white noise q(t) ∼ N (0, 0.022) is added to the image feature
measurements and actuator commands. The noise model has the same characteristics as
that used for the analysis of the classical image-based controllers derived previously (see
§4). In all cases, the image features converge to the desired location, and remain within
a small neighbourhood of the corresponding reference value. The results suggest that
the desired spiral can be tracked reasonably well. Of note, initial results suggest that
added noise can be better managed than in the classical image-based approach, similar
to general visual predictive control [337].

Fig 5.7 extends the above results regarding variable initial range to include a feasibility
analysis. Some example feasibility statistics for r0 = [1.5, 4] sampled at 0.5 intervals for
all s0 ∈ Ŝ2 are shown. The approximate percentage of feasible initial features for each
initial range is shown. Interestingly, the results are comparable for each initial range,
suggesting that the initial range has minimal impact on the feasible, and thus stable,
initial image feature set. For spiral motion, this suggests similar tracking performance
can be obtained under vastly different initial states.
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Collectively, the analysis suggests that although the approach is not designed for ro-
bustness, uncertainty and model mismatch are managed well, and performance is not
significantly degraded. The control structure demonstrates similar desirable attributes
to that of the general model predictive control structure. Specifically, due to the control
structure optimising over a finite time, model-mismatch and additive noise (including fea-
ture measurements and actuator output) are not propagated through the process model
for all time. The image feature trajectory does not diverge significantly, as the controller
has an opportunity to re-optimise and better adjust the control output at each iteration.
Although, similar robustness characteristics are exhibited by classical image-based visual
servoing, the reference range and gain term must be tuned to ensure both stable and de-
sirable spiral tracking behaviour (see §4). The predictive control structure thus provides
some significant benefits over the classical approach to ensure adequate spiral tracking,
and thus collision avoidance, using a real system.
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Remark One way to guarantee robust stability, without explicitly considering uncertainty
in the control design, is to shrink the terminal region along with an appropriately calcu-
lated prediction horizon [344]. Other control design such as H∞ control and Linear Matrix
Inequalities (LMI) explicitly consider a bounded uncertainty on the unknown model pa-
rameters but require the solution of a computationally expensive minimax problem online.
This makes such approaches difficult to implement in practice. In visual servoing, only
recently has this been considered [324], still with unsatisfactory computation expense for
implementation.

Performance Comparison

A quantitative performance comparison is made between the QIH-VPC and the C-VPC
control structure for tracking circular motion. Importantly, the classical VPC scheme
must now include a control penalty term ū(τ)2

R in the corresponding objective function
for a fair comparison. As such, the objective function defined in (5.16) is used, and the
remaining elements of the control structure are retained. Based on previous results, the
reference colatitude angle and range are selected such that σ∗ = 125π/180 and r∗ = 2 re-
spectively. Comparative results regarding the tracking behaviour and control performance
and depicted in Fig 5.8 and Fig 5.9 respectively.

Fig 5.8 depicts an example set of results for an initial range r0 = 2 and image feature
location s0(π/2, 0). A realistic case is assumed such that additive noise q(t) on image
feature measurements and control output is also included. First, the QIH-VPC provides
comparable performance to the C-VPC scheme. Similar image feature trajectories are
observed with a marginal reduction in track error for the QIH-VPC scheme. The track
error is defined as the minimum 2-norm of the difference between any point on the ref-
erence circle and the current position. Second, similar robustness qualities are displayed
for both predictive schemes, managing model mismatch and added uncertainty. Impor-
tantly, similar results were obtained for different initial conditions and comparable noise
attributes.
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Figure 5.8: Comparison of circular motion tracking using C-VPC (−) and QIH-VPC (−). Platform
trajectory, track error and image feature trajectory with s∗(125π/180, π/2), r∗ = 2 and r0 = 2 are shown.
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Fig 5.9 depicts the relative total required control effort for both schemes, analysed with
respect to variable initial state. A long prediction horizon Tp = 15 (samples) is used for
a total simulation time of 30s. The magnitude of the total control effort for each s0 ∈ Ŝ2

for the QIH-VPC and C-VPC schemes is first calculated, then the ratio of the two is
depicted using a two dimensional (2D) surface plot. A reduction in control effort for
the QIH-VPC scheme results in a ratio less than unity, shown using the blue end of the
color spectrum. Interestingly, the average control effort ratio is 0.9716 (≈ 3% reduction),
showing a general reduction in control effort for the QIH-VPC scheme. This translates
into the ability to efficiently navigate through all regions of the state space, including
particularly non-linear spherical sections such as the polar regions.
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Figure 5.9: Comparison of total control effort for s∗(125π/180, π/2), Tp = 15 and simulation time 30s.
The ratio of control effort for QIH-VPC over C-VPC is shown. A value less than unity depicts reduced
control effort using QIH-VPC at the corresponding s0. The average ratio is 0.9716.

Of note, the computational effort is of less impact, as it remains small and suitable
for near real-time implementation for both schemes. Using MATLAB 2011b and the
ACADO Toolkit running on an Intel Core 2 Duo CPU T8100 at 2.10GHz with 2GBytes
RAM, the average computational time for the online optimisation (5.26) is under 42ms.
Using MATLAB’s Active-Set constrained optimisation solver, the computation time is
significantly greater, in some cases up to 0.5s.
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5.4.6 Spiral Motion

Given that the avoidance decision regarding reference azimuth angle may not be fixed,
the QIH-VPC control structure should be considered for non-circular spiral motion for
completeness (see §3.3.1). For spiral motion, the deviation from a circular path results in
increasing model-mismatch due to the highly variable range parameter. Thus for divergent
or convergent spiral motion, the reference control is no longer constant as ω∗

z(t) = f(r(t))
such that u∗ = f(t), which violates the conditions required to formulate the QIH-NMPC
structure (see §E.4). One way to manage this is of course to include range as a state, but
its derivative (and thus variation) cannot be predicted until the spiral is established. As
such, a stable locally linear feedback controller cannot be found for non-circular motion.
This results in the terminal region approximating a point; a terminal equality constraint.
This is known to lead to stability, but is restrictive in the sense that it forces s(Tp) = s∗.
In this case, a terminal penalty term does not make sense and feasibility issues can arise.
For this control approach, modifications to the control structure include

J(s(t), ū(·)) =
t+Tp∫
t

s̄(τ)2
Q + ū(τ)2

R dτ, s̄(t + Tp) = 0 (5.29)

Alternatively, a non-zero terminal penalty term could be used without a terminal region,
provided an appropriate prediction horizon is selected to aid stability [325]. This is
similar to the classical VPC approach in the stability sense, however the end states are
not progressively weighted and move blocking is not employed. For this control approach,
modifications to the control structure include

J(s(t), ū(·)) = s̄(t + Tp)2
P +

t+Tp∫
t

s̄(τ)2
Q + ū(τ)2

R dτ, s̄(t + Tp) ∈ S2 (5.30)

The terminal weighting matrix used in (5.30) can be calculated according to Section
5.4.2, but this assumes the reference control is constant for all time. One option is to
then use the reference control input at some nominal reference range value. The result
is a terminal weighting matrix derived from a linear controller with a very restrictive
domain. This can lead to significantly large terminal weighting matrix element values,
which can result in overly aggressive control. To avoid such control issues, the terminal
weighting matrix can be selected to be twice that of the state weighting matrix. Using
this approach, a performance comparison of the two alternate visual predictive control
structures using (5.29) and (5.30) and the classical visual predictive approach (5.6)-(5.8)
is provided. Simulations were conducted using the parameters defined in table E.4 and
constraints defined in table E.6 unless stated otherwise.
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Figure 5.10: Comparison of spiral motion tracking using C-VPC (−), terminal penalty term VPC (−)
and terminal equality constraint VPC (−). Platform trajectory, track error and image feature trajectory
with s∗(125π/180, 120π/180), r∗ = 2 and r0 = 2 are shown.

Performance Comparison

Similar to the preceding section, a quantitative performance comparison is made between
predictive controllers using a terminal equality constraint, terminal penalty term without
terminal constraint and the classical VPC scheme. To remain consistent with the preced-
ing analysis, the reference image features and nominal reference range value are selected
such that s∗(125π/180, 120π/180) and r∗ = 2 respectively.

Fig 5.10 depicts an example set of results for an initial range r0 = 2 and image feature
location s0(π/2, 0). A realistic case is assumed such that additive noise q(t) on image
feature measurements and control output is also included. The difference between the
VPC controller using a terminal equality constraint and terminal penalty term without
constraint are minimal, with the later offering potentially more flexibility in the feasible
set for s0. Additionally, the performance of both VPC controllers is comparable to that
of the C-VPC scheme. To this end, the VPC scheme with terminal penalty term shows
slightly faster convergence, requiring less time to reach the surface of the reference cone
and reduced track error. The track error in this case is now defined as the minimum 2-
norm of the difference between any point on the reference cone and the current position.

Of note, it is reasonable to suggest that the C-VPC scheme could be tuned to behave the
same as the predictive control scheme with penalty term, by altering the time varying
state weighting matrix. However, using the predictive control scheme with penalty term
avoids move blocking to ensure the full richness of controls can be adopted. Additionally,
the predictive controller can of course manage circular motion presented in the previous
section. It might be useful to adopt a predictive control scheme with a penalty term (and
no terminal constraints) for spiral tracking and collision avoidance, given the requirement
to manage unknown dynamic objects and potentially variable reference azimuth angles.

Remark Divergent spirals may be followed for all time provided the object remains visible.
For convergent spirals, a limit cycle will be reached depending on the control constraints.
This means the object will be continually circled at a fixed radius, albeit small if the
control constraints are liberal.
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5.5 Collision Avoidance

The spherical visual predictive control laws derived in the preceding sections represent an
improved set of controllers for tracking a reference spiral. They can be used directly in a
closed-loop collision avoidance system when coupled with an appropriate avoidance and
resolution decision strategy. This section details the implementation of such a collision
avoidance system on a small aerial platform in a proof of concept approach.

First, a practical and flexible avoidance controller including the aerial platform dynamics
is presented. Second, improved avoidance and resolution decision strategies based on
previously established concepts are presented (see §3). This is required to explicitly
couple the control and resolution strategies, and ensure the collision avoidance system is
amenable to practical platform constraints and limitations. Third, results from real flight
tests in a scaled collision avoidance environment are presented and analysed. They are
the first recorded flight tests using spherical visual predictive control of any form.

5.5.1 Avoidance Control

System Dynamics
To experimentally apply the visual predictive control framework, the aircraft dynamics
must be augmented with the image dynamics to derive the process model. This ensures an
accurate model of the integrated visual system can be used for prediction in the control
strategy. Using the point mass model and black box identification for a small AscTec
Hummingbird quadrotor presented earlier (see §2.2), a simplified set of decoupled linear
equations were found to represent the quadrotor dynamics. A subset of the complete
dynamic equations relevant to the visual control, and defined in the body frame, are
given by

v̇x = −FT θ∗/m (5.31)

v̇y = −FT φ∗/m (5.32)

v̇z = −g + F ∗
T /m (5.33)

ψ̇ = ωz (5.34)

ω̇z = −aψ̇ωz + aψ̇ω∗
z (5.35)

where the controls F ∗
T , ω∗

z , θ∗ and φ∗ define the reference thrust, yaw rate, pitch and roll
commands for the low-level attitude controllers. The empirically derived yaw damping
constant aψ̇, mass m and acceleration due to gravity g are given in Appendix E. Now
consider the simplified optic flow equations for colatitude and azimuth angles given by

σ̇ =
− cosσ cos γ

r∗ vx +
sin σ

r∗ vz (5.36)

γ̇ =
sin γ

r∗ sin σ
vx − ωz (5.37)
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The image kinematics can then be combined with the partitioned quadrotor dynamics.
Augmenting (5.33) - (5.35) with (5.36 - 5.37), the resulting nonlinear process model can
then be defined as

ż = f(z, u3) (5.38)

ż(t) = AP(t) + BP(t)[u3(t)v]T (5.39)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̇z

ψ̇

ω̇z

σ̇

γ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−g

ωz

−aψ̇ωz

vz sin σ/r∗

−ωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/m 0

0 0 0

0 aψ̇ 0

0 0 − cosσ cos γ/r∗

0 0 sin γ/r∗ sin σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

F ∗
T

ω∗
z

vx

⎞
⎟⎟⎟⎠ (5.40)

where z defines a combined state vector of image features and vehicle states, and the
subscript P is used to avoid confusion from the general model of the vertical quadrotor
dynamics derived earlier (see §2.2.3). The control vector u3 now includes the reference
thrust command F ∗

T instead of the reference vertical velocity v∗
z , as in the classical image

based control approach (see §4). The model could of course be adapted to use a reference
vertical velocity v∗

z instead, if required by the low-level controllers.

There are three important observations regarding the process model. First, the camera
and body velocities are considered to be equal, such that the origin of both frames coincide
and the x axis are aligned. This is not the case for the real system, and the image
features will inherit a small offset not accounted for in the process model. However, the
approximation can be considered suitable assuming a small fixed camera displacement
(see §3.2.2 and §B), and given that the VPC structure can manage small model-mismatch
well. Second, as with the classical image-based control approach, vx can be passed as a
parameter and controlled independently of the visual controller. Third, it would appear a
redundant state ψ, representing the platform heading, is included in the model. However,
the state is retained in order to derive a novel resolution decision strategy presented in
later sections.

Control Structure & Solution
The specific control structure used for the practical system must be aligned to the practi-
cal constraints, not only with respect to the platform state, control and camera visibility
constraints, but the available software tools. The control structure should also be flexi-
ble enough to allow the inclusion of additional collision avoidance functionality, such as
resolution decision strategies.

Consider the visual predictive controllers derived in the preceding section, including QIH-
VPC and VPC strategies using only a terminal penalty term or a zero terminal constraint.
It was shown that the QIH-VPC approach can be used to ensure stability and select
better reference image features for circular motion. However, the approach is not directly
extensible to general spiral (non-circular) motion without further modifications (see §5.6).
For general spiral motion, there does not exist, even for a shifted system, a zero control
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that ensures f(z, u) = 0. To further complicate the matter, the yaw angle cannot be fixed
for all time when tracking a spiral, so a monotonically decreasing objective function cannot
be assured. Additionally, the ACADO Toolkit version3 used to solve the minimisation
problem does not currently support nonlinear constraints for embedded applications [356].
The VPC strategy with terminal penalty term showed slightly improved performance over
C-VPC, and allows greater flexibility in the choice of reference image features over the
QIH-VPC approach. Importantly, it also allows the inclusion of additional states (such
as yaw ψ) and associated constraints, which will become important to derive a novel
resolution decision strategy (see §5.5.2). The approach can also be implemented using
the ACADO Toolkit for real applications. Of note, none of the aforementioned strategies
have been successfully implemented on an aerial vehicle of any type.

Given the above considerations, the VPC strategy with terminal penalty term is chosen for
implementation. Having defined the process model (5.40), the control structure including
the objective function Js, state constraint domain Z and control constraint domain U can
now be defined. The control problem to be solved at each sampling time is given by

u�
3(·) = argmin

U

Js(z(t), ū3(·)) (5.41)

where

Js(z(t), ū3(·)) = z̄(t + Tp)2
P +

t+Tp∫
t

z̄(τ)2
Q + ū3(τ)2

R dτ (5.42)

s.t

˙̄z = f(z̄, ū3), z̄(t) = z0 (5.43a)

ū3(τ) ∈ U, τ ∈ [t, t + Tp] (5.43b)

z̄(τ) ∈ Z, τ ∈ [t, t + Tp] (5.43c)

The associated constraint domains are defined by simple box constraints such that

U ∈ R
2 | umin ≤ u(t) ≤ umax (5.44)

Z ∈ R
5 | zmin ≤ z(t) ≤ zmax (5.45)

The visibility constraints defined within Z are somewhat handled with the application
of a spherical camera, so could be used to avoid the polar caps and ensure the spheri-
cal image Jacobian is always well defined. As such, the domain limits of the spherical
image features can be used as the upper smax and lower smin constraints. Combining
these limits with maximum and minimum yaw and vertical rates for the platform, the
remaining components of zmax and zmin can be obtained. The state constraints then
ensure controls are issued such that the quadrotor state lies inside a desirable region. The

3An updated ACADO Toolkit version is now available with increased functionality (Version 1.2.1beta,
January 17, 2014).
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control constraints bound the quadrotor thrust and yaw rate commands to an admissible
(or desirable) region based on the control authority of the platform.

The weighting matrices are defined such that P � 0, Q � 0 and R � 0. In some case the
matrices can be optimally tuned online with external software such as that presented in
[357], but the approach has not been applied to visual predictive control for systems with
fast dynamics. Instead, the parameters are chosen with consideration to the intended
application. For collision avoidance, and given the reactive nature of the See and Avoid
task, the primary concern is establishing and subsequently following the reference spiral
as soon as possible. The control weighting matrix R can be selected to be relatively small,
having included corresponding control constraints in the optimisation. Specifically, the
elements of the control weighting matrix R can be selected to be at least an order of
magnitude smaller that those within the state weighting matrices Q and P. The terminal
penalty matrix P can be selected such that P 	 Q, in an attempt to align the cost
function to that expected using the QIH-VPC design. The choice makes sense, as placing
an equal or larger penalty on the state at the end of the prediction horizon will help to
force rapid convergence to the reference spiral.

Similar to the C-VPC strategy, local asymptomatic stability can be achieved through
appropriate selection of the prediction horizon [325, 339, 341]. The prediction horizon
Tp needs to be large enough to avoid potential stability issues, and small enough to help
reduce computational expense.

Remark As the state z includes the image feature vector s, care has to be taken to
appropriately bound the image feature error when calculating the objective function.
When using the ACADO Toolkit, it is easier to use the bounded initial feature error
e0 = s0 � s∗.

5.5.2 Avoidance & Resolution Decision

Consider again that a perspective camera is used to approximate a spherical section. The
camera is rigidly attached to the platform with its optical axis offset from the platform x

axis by a fixed angle ψc = −135π/180. Despite the restricted field of view, the ideal refer-
ence image features s∗(125π/180, ±π/2) and those corresponding to a subset of divergent
spirals can be used, as they reside within the visible region. The reference image features
can then be selected according to the avoidance decision strategy based on aviation rules
of the air (see §3.3.1). Therefore, provided the right spiral direction is chosen, the aircraft
will initially move in favour of collision avoidance.

Unlike the classical image-based control approach, if the reference image features are
chosen in this way, a resolution decision is not necessarily mandatory to ensure safe
avoidance. The controller will force the aircraft around or away from the object in both
vertical and lateral planes (see §3). However, in order to design a useful automated system,
a resolution decision will be needed to stop the spiral behaviour. The same strategy as
used for the image-based controller could be used, but would obviously inherit the same
problems. In particular, the visual control is not coupled to the resolution decision, so
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there is the possibility that the avoidance behaviour ceases prior to establishing a safe
spiral, close to the initial detection instance (see §4.5). If the same resolution concept
using the aircraft heading is to be used however, a modified approach is required to
address this issue.

Interestingly, the visual predictive control structure provides a natural framework in which
to provide the required coupling between the visual control and resolution decision. By
including the yaw angle in the process model, the image features and heading can be
indirectly coupled such that a trade-off exists in the objective function. Depending on
the relative magnitude of the elements of the state weighting matrices, the controller will
implicitly prefer a spiral trajectory (defined by the image features), or the initial aircraft
heading upon detection. The objective function value could then be considered as a
proxy to indicate how well both collision avoidance and resolution criteria are satisfied.
As such, the minimum objective function value can then be used directly as a basis for a
new resolution decision strategy.

To explain, consider first a visual predictive controller using the objective function Js

defined previously, in which only the elements of the state weighting matrices that corre-
spond to the image features (colatitude and azimuth) are non-zero. The elements are also
equally weighted and denoted by Qs. The control and terminal weighting matrices can
then be scaled with respect to Qs using the constant scaling factors λR ≥ 0 and λP ≥ 0
respectively such that

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0
... . . . ...

...

0 · · · Qs 0

0 · · · 0 Qs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0
... . . . ...

...

0 · · · λP Qs 0

0 · · · 0 λP Qs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, R =

⎛
⎝λRQs 0

0 λRQs

⎞
⎠ (5.46)

As expected, the reference spiral is tracked in all cases as the control structure closely
resembles that used when only the image kinematics were considered in the process model.
The minimum of the objective function occurs when the spiral is established, then remains
at the minimum if the spiral is maintained. Of course, the objective function value cannot
provide any information regarding the relative location of the platform on the spiral,
having not induced the yaw state. In this case, it would then be difficult to use the
objective function to indicate an appropriate time to stop the spiral.

Now consider including a non-zero weighting on the yaw state such that any deviation
from the yaw angle at the initial time of object detection incurs a penalty. This can
be expressed in the state weighting matrices directly by including the relevant terms, or
using an augmented objective function Jψ such that

Jψ = Js + λψ

∫ t+Tp

t
(ψ(τ) � ψ∗)Qs dτ (5.47)

where λψ ≥ 0 is a positive yaw scaling factor and ψ∗ = ψ(td) is the platform heading upon
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(a) xy-plane (b) xz-plane (c) Range

(d) Feature Error (e) Orientation (f) Objective Function

Figure 5.11: Example trajectories, objective function, feature error and orientation using Jψ in the con-
troller for σ∗ = 125/π/180 and γ∗ ∈ (70π/180, 120π/180) at 10 degree intervals. The auxiliary weighting
factors are such that λψ = 0.01, λP = 2 and λR = 1 × 10−9. The time corresponding to the objective
function minimums (•) are shown for simulation times t ≤ 40s.

the time of initial object detection td. The objective function is now directly dependant
on the platform heading and image features, and defined with respect to image features
weighting Qs. The minimum of the objective function would then be obtained when
established on the spiral, and the platform has retuned to its initial heading. Therefore,
the objective function could be used directly to indicate an appropriate time to stop the
avoidance behaviour.

Fig 5.11 depicts a set of example simulations to demonstrate this concept. The augmented
objective function is used in the control scheme with Qs = 1, λψ = 0.01, λR = 1 × 10−9

and λP = 2, while only the reference azimuth angle is varied. First, the objective function
minimum occurs before the platform spirals back toward the static object, denoting an
appropriate time to cease avoidance behaviour. Second, having selected a small yaw
scaling factor, the general shape of the reference spiral is maintained. However, the
exact reference spiral will never be achieved even in the ideal case. This is because the
inclusion of the platform heading in the objective function now induces conflicting goals
in the minimisation problem. Specifically, maintaining the initial heading or tracking the
reference spiral. Fortunately, by formulating the objective function with respect to Qs,
the tradeoff in competing objectives can be managed using the single scaling factor λψ.
For λψ = 0, motion is on the reference spiral such that Js = Jψ. For λψ �= 0, motion
is no longer on the true reference spiral as the trajectory becomes inclined and forces a
tilted spiral. As λψ increases further, the resulting trajectories become more inclined,
separation is reduced and the minimum objective function value occurs at an earlier
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Figure 5.12: Example simulations using Jψ in the visual predictive controller and varying λψ from 1 (−),
0.5 (−), 0.1 (−) to 0.0 (−). The corresponding minimum objective function values (•/•/•/•) are also
shown for s(135π/180, π/2) and s0(π/2, 0).

instant. Fig 5.12 depicts a set of example simulations to demonstrate the effects. The
augmented objective function is used in the control scheme with Qs = 1, λR = 1 × 10−9,
λP = 2 and λψ ∈ {0, 0.1, 0.5}. The reference image features and initial conditions are the
same for all cases.

This situation is not ideal for a collision avoidance strategy that relies on tracking specific
spirals to ensure avoidance. To address this issue, and realise the benefits of using the
heading in the process model and objective function, a simple solution is proposed. The
image feature based objective function J�

s can be used in the controller, whilst J�
ψ can

be calculated outside the controller and used to indicate when to stop the avoidance
behaviour. The resolution decision then maintains the explicit coupling to the image
features, and the controller does not force the platform to deviate from the reference spiral
path. For the nominal case, the minimum value for the augmented objective function J�

ψ

will be zero when both criteria are met. This will not be possible in practise, due to
added uncertainty and the possibility that the spiral may not be completely established
for dynamic objects. A small threshold ε needs to be applied to J�

ψ to indicate when to
cease the avoidance behaviour.

Determining an appropriate decision threshold ε is not trivial. Consider using the aug-
mented objective function in which the scale (magnitude) of the weighting matrices is
varied, but the relative magnitude of the state weighting matrix elements remains the
same. Naturally, as the scale of the weighting matrices increases, the absolute value of
the objective function will increase. However, there should be no effect on the time at
which the objective function is a minimum, only the initial rate at which it converges to
that point. This suggests that, in the absence of noise, the threshold value can be kept
near zero regardless of the the scale of the weighting matrices. Consider now the inclu-
sion of added measurement noise and imperfect actuation. Their affects will be amplified
in the process model, causing larger variations in the objective function value. In this
case, even if the resolution decision threshold is small, there is an increased risk that the
threshold may be met at an inappropriate instance. As evidence, Fig 5.13 demonstrates
the effect of varied weighting matrix scales and additive noise. The augmented objective
function is used in the control scheme with Qs = 1, λR = 1× 10−9, λP = 2 and λψ = 0.1.
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Figure 5.13: Example objective function for simulations using varied weighting matrix scale and feature
noise characteristics ξs = 2π/180 (solid) and ξs = 5π/180 (faded). The weighting matrix scale is increased
by a factor 1 (−), 2 (−) and 4 (−) for s(135π/180, π/2) and s0(π/2, 0)

The reference image features and initial conditions are the same for all cases. The results
suggest that an initial resolution decision threshold ε < 2 may provide suitable perfor-
mance, whilst allowing for flexibility in the specific scale of the weighting matrices. It
is worth mentioning that for a given system, the weighting matrices will in general be
fixed, which means the decision thresholds could be optimised for the expected encounter
environment.

The complete resolution decision strategy can now be defined. Recalling, ts denotes the
time after initial detection td that the resolution decision has been applied and avoidance
behaviour ceases. For td ≤ t ≤ ts, the visual predictive controller provides the control
input u�

3 to the low-level controllers. For t < td and t > ts, control input is derived from
a set of PID controllers uPID

3 that can be used to maintain the heading and altitude at
the corresponding time. The resolution decision strategy can then be defined such that

u∗
3(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uPID
3 (t), ∀ J∗

ψ, 0 ≤ t < td

u�
3(t), J∗

ψ > ε, td ≤ t < ts

uPID
3 (t), ∀ J∗

ψ, ts ≤ t < ∞

(5.48)

Designing the resolution decision strategy in this way has some additional benefits. The
approach is simplistic and relies on tuning a single threshold ε that is mutually exclusive
from that used in the avoidance decision η. Similarly, both thresholds are also independent
of any thresholds used for object detection. As such, each collision avoidance system
component can be tuned independently. To this end, probabilistic analysis techniques
used in aviation collision avoidance systems can be used to simultaneously optimise each
threshold and proving a comprehensive performance evaluation.
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5.5.3 Implementation - Experimental System 2

Control Architecture

A small custom built Ascending Technologies - Hummingbird quadrotor was used to im-
plement the spherical visual predictive controller and improved avoidance and resolution
strategy. The thrust and yaw rate were controlled directly using the VPC scheme or a
simple set of PID controllers via u∗

3. The PID controllers are used to maintain constant
heading and altitude when the collision has been resolved. An arrangement of LQRI
controllers was used to control forward and lateral velocity via u∗

1 and u∗
2 respectively.

To this end, the quadrotor position was measured using a Vicon motion capture system,
whilst the roll, pitch and yaw angles and associated rates were measured from both the
Vicon and onboard IMU’s. The positional state information was then used to estimate
the vertical, forward and lateral platform velocity using a set of Kalman filters, replacing
a typical GPS/INS system found on outdoor platforms. Reference roll and pitch angles
were then derived via the velocity LQRI controllers, and used by the on-board attitude
controller to regulate forward and lateral velocity (see §2.2.3). The linearised state-space
models for the x, y and z axis dynamics were derived about hover, so a set of feed forward
terms using the current roll and pitch angles is required to adjust the control commands
and minimize any coupling effects. A comprehensive list of the controller, filter and state
space model parameters are given in Appendix E.3.

The visual and non-visual controllers were implemented using a ROS framework in a cus-
tom ground station command and control module [269], and transmitted to the quadrotor.
Importantly, the visual predictive controller was developed and refined used C/C++ such
that it could be used directly in MATLAB/SIMULINK, defined within a ROS node or
re-built using MATLAB’S code generation toolbox. The control architecture is depicted
in figure 5.14.

+ VPC

LQRI 

Vicon

Camera

Quad/IMU

+

EKF

PID 

,

,

EKF

-

-

Figure 5.14: Hummingbird quadrotor control architecture. The onboard (�) and ground station compo-
nents (�) are shown along with wired (−) and wireless connections (−−).
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Vision System

An onboard camera was used to collect images of a cylindrical shaped object collision
object of height 50cm and radius 20cm. The camera was offset from the quadrotor x axis
such that ψc = −135π/180 and operating at approximately 10Hz. The camera resolution
was 752 × 480pix, with focal lengths of 623.2pix and 625.2pix in x and y respectively.
Images were sent to the ground station and processed to obtain a point feature repre-
sentation of the cylinder. To this end, a simple image processing algorithm using the
OpenCV library [73] was implemented in ROS (using python script), and used for ro-
bust detection and tracking. Specifically, a machine-learning based approach using Haar
feature-based cascade classifiers was used to consistently track a fixed image of a human
face attached to the collision object [358]. An outline of the face detection algorithm is
given by algorithm 5.
Algorithm 5 Image Processing Algorithm - Face Detection

� Load the ROS image IR, convert to OpenCV image I and then to a binary image I ′

I ′
x,y =

⎧⎨
⎩
255, Ix,y ≥ 255

0, else

� Create a smaller image I∗ by scaling I ′ by a factor of 2 using bilinear interpolation

� Normalizes the brightness and increases the contrast of I∗. Find the histogram of
the image H, normalise the histogram and apply its integral H′ as a transform (look-up
table) to I∗.

I�
x,y = H′ I∗

x,y , H′
i =

∑
0≤j<i

H(j)

� Apply Haar object detection using the classifier cascade for face detection, returning
each face as a region C�(·)

C�(X �, Y�, w�, h�)

(X �, Y�) = Upper Left Corner, w� = Width, h� = Height

� Assuming a single face is detected, find the region centre CXc,Yc in the original image

Xc = 2 (X � + (w�/2)) , Yc = 2 (Y� + (h�/2))

� Find the spherical image feature representation s(σ, γ) of the region centre using the
image centre Ixc,yc and focal lengths fx and fy

σ = π/2 − arctan(Yc − yc)/fy, γ = arctan(Xc − xc)/fx

Of note, the detection and tracking algorithm is susceptible to missed detections and false
alarms (tracking the wrong object), depending on the background environment and rela-
tive viewing angle. The detection algorithm was pre-trained using the built in OpenCV
classifier for frontal faces [73], to ensure satisfactory tracking performance in an arbi-
trary background. Additionally, the algorithm remains computational inexpense through
the successive application of a smaller number of Haar features (lines, edges and four-
rectangles) to detect a facial region. The algorithm was chosen to ensure the visual
controller was being assessed and not the image processing details.
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Results & Analysis

To validate the visual predictive control approach for spiral tracking and collision avoid-
ance, two sets of results are presented. The first set of experimental results are used
to analyse the visual predictive control approach for general spiral tracking of a static
object. The second set of experimental results are used to analyse the visual predictive
control with the added resolution decision strategy for collision avoidance of both static
and dynamics objects. The objective of the experiments was not to tune the controller(s)
for ideal behaviour for the said encounter(s), but to verify the simulation results pre-
sented previously (where possible), and demonstrate the benefits of using spherical visual
predictive control for collision avoidance.

a) Spiral Tracking
Consider an instance similar to the previous simulation framework for spiral tracking.
In this case, the visual predictive control scheme uses the combined process model, but
does not include the augmented cost function or resolution decision. The optimisation
problem defined by (5.41) is solved online, and only a single objective function is used
(or calculated). The quadrotor was allowed to fly about the static object with forward
velocity vx = 0.2m/s and r∗ = 2. The object initially appears level with the platform and
displaced to its right such that s0(π/2, −140π/180) and r0 ≈ 1.5m.

The visual control was activated immediately, moving the image features to a desired
position s∗(80π/180, 120π/180), corresponding to a divergent reference spiral. The choice
of reference colatitude is an artefact of the practical camera field of view constraints,
and based on the preceding analysis, would have chosen such that σ∗ = 125π/180 in a
real See and Avoid system. The choice of reference azimuth is to ensure a large initial
angular displacement from the reference values, whilst allowing a divergent spiral to be
followed. A large number of flight trials were undertaken using a real object and a virtual
object. For the real object, the camera (and image precessing) remains in the closed
loop control. For a virtual object, the camera is excluded, and the image features are
calculated by assuming a known object position and included additive measurement noise
q(t) ∼ N (0, 0.022). This helps to distinguish between controller performance issues and
those not addressed in the thesis, such as model predictive control of delayed systems.

Fig. 5.15 depicts the quadrotor position, orientation, input control and image feature
motion for an example set of results using a real object. In this case, induced delay
from the image processing (face detection) is as much as 100ms. The reference spiral
is tracked well in the vertical plane, as the colatitude error rapidly converges to zero.
The added noise, induced delay and range parameter uncertainty (model mismatch) have
not significantly effected the controllers ability to track the reference colatitude angle.
The reference spiral is not tracked as well in the lateral plane, due to oscillations in yaw
angle which result in consistent deviations about the reference azimuth angle. These
oscillations are caused by large yaw velocity controls that not only switch polarity, but
often reside at the upper control limit. This can be primarily attributed to the induced
image processing delay. Each control command issued tends to be fixed for longer periods
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of time than required, resulting in persistent overshoot of the reference image features.
The control then attempts to overcompensate on subsequent iterations. One way to
indirectly compensate for the delay and reduce the overshoot, is to reduce the yaw velocity
limits through a more restrictive control constraint domain. Alternatively, the prediction
horizon could be increased, but at the expense of increased computational complexity.
Importantly, the image delay does not cause instability, keeping the quadrotor in a stable
flight configuration.

Fig. 5.16 depicts the quadrotor position, orientation, input control and image feature
motion for an example set of results using a virtual object. In this case, having removed the
camera from the closed loop control, there is no longer any induced delay from the image
processing. The reference image features are tracked well in both the vertical plane and
lateral planes, indicated by the rapid convergence of the image feature error. The platform
motion then approximates the desired divergent conical spiral trajectory, as the control
remains well conditioned. The yaw velocity control no longer switches polarity, forcing the
smooth establishment of the reference spiral. The effect is also seen by the gradual change
in yaw angle. The observation also helps justify the aforementioned statements regarding
the effects of image delay. Again, having compensated for unmodelled disturbances and
range parameter uncertainty (model mismatch), the predictive controller ensures a stable
flight configuration is maintained.

Collectively, the results suggest that even for a relatively slow frame rate (10Hz), the visual
predictive control scheme does not fail, just results in slightly degraded spiral tracking
performance. If the delay could be compensated for, using a smith predictor or other
recent estimation techniques for visual control [359], the results would then approach
those observed for the virtual object. From a collision avoidance perspective, and in a
real See and Avoid encounter, it is likely that such a filter and a faster frame rate will
be required, given the additional image processing required for aircraft detection and
tracking. The development of such extensions is beyond the scope of this work.
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Figure 5.15: Example quadrotor behaviour in the world frame Fw for a static object with γ∗ = −120π/180
and σ∗ = 80π/180 (�). Initial aircraft and object (+) positions in Fw are (−1.5, −0.1, −0.5) and
(0, 0, −0.5) respectively. A real object is used (including image processing) in the closed loop control.
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Figure 5.16: Example quadrotor behaviour in the world frame Fw for a static object with γ∗ = −120π/180
and σ∗ = 80π/180 (�). Initial aircraft and object (+) positions in Fw are (−1.5, −0.1, −0.5) and
(0, 0, −0.5) respectively. A virtual object is used in the closed loop control, including added image feature
noise q(t) ∼ N (0, 0.022).
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b) Collision Avoidance
Consider an instance similar to the spiral tracking example above, but extending the
framework for collision avoidance. Again, the visual predictive control scheme uses the
combined process model, but now includes the augmented cost function Jψ in the control
framework. The optimisation problem defined by (5.41) is solved online, and the alternate
objective function (5.47) is calculated offline and used in the resolution decision strategy.
The quadrotor was allowed to fly toward the object with forward velocity vx = 0.2m/s,
r∗ = 2 and time to collision between 10 and 20 seconds. The object initially appears
level with the platform and directly ahead such that s(π/2, 0) and r0 ≈ 2.0m. Clearly, by
scaling these dimensions by a factor of 100, a realistic See and Avoid encounter results.

The visual control was activated immediately, moving the image features to a desired po-
sition, corresponding to a circular s∗(70π/180, π/2) or divergent s∗(80π/180, 110π/180)
reference spiral. The choice of reference colatitude is now due to practical constraints
regarding fight area, and would have been chosen such that σ∗ = 125π/180 in a real See
and Avoid system. The choice of reference azimuth is now consistent with the general
avoidance strategy outlined previously (see §3.3.1). A large number of flight trials were
undertaken using a virtual object for various resolution decision thresholds, and both
static and dynamic objects. A virtual object is required in this case in order to better
replicate collision encounters, given the fixed camera orientation and field of view lim-
itations. Specifically, head-on and crossing encounters originating at any initial image
feature position can be modelled.

Fig. 5.17 depicts the avoidance behaviour and augmented objective function for two sets
of six separate static encounters. In each case, a divergent reference spiral is required
such that s∗(80π/180, 110π/180) and the weighting matrix values are such that Qs = 1,
λR = 0.01 and λP = 1 to force a moderate response. Therefore, the objective value
should be greater than that in simulation due to the non-zero control penalty. Different
resolution decision thresholds ε1 and ε2 are used for each set of encounters.

In (a)-(c), a conservative resolution decision threshold is chosen such that ε1 = 0.8. In each
case, the platform quickly converges to the reference spiral, before ceasing the avoidance
behaviour and leaving the spiral path prior to returning to the initial heading upon
detection. This can be seen directly in the platform trajectories where ψ(ts) < ψ(td), or
inferred by the increasing objective function value. In (d)-(f), a liberal resolution decision
threshold is chosen such that ε2 = 0.6. Similarly, the platform quickly converges to the
reference spiral, but now ceasing the avoidance behaviour and leaves the spiral path very
near to the initial heading upon detection. Again, this can be seen directly in the platform
trajectories where ψ(ts) ≈ ψ(td), or inferred by the delayed increase in objective function.

Fig 5.18 depicts the avoidance behaviour and augmented objective function for a set of
static and dynamic object encounters. In each case, a circular reference spiral is required
such that s∗(70π/180, π/2) to align with the general avoidance decision strategy. The
terminal weighting matrix values are now twice as large as those used with ε1 and ε2 such
that λP = 2, to force a faster response. Based on the previous results, and considering
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the increased terminal penalty term, a more conservative resolution decision threshold
ε3 = 1.9 is chosen.

In (a)-(c), a set of seven static object encounters are shown. The platform quickly con-
verges to the reference spiral, and considering that the conservative nature of the threshold
ε3 > 2ε2, the avoidance behaviour ceases at an earlier instant for the majority of cases.
This can be seen directly in the platform trajectories where x(ts) > 0.5m. For the re-
maining cases however, the avoidance behaviour is no longer stopped in some cases, and
the spiral path is continued. This can be seen directly in the platform trajectories and the
objective function value such that J�

ψ > ε3. For clarity, the marker denoting ts is placed
at the end of the encounter. In such cases, and provided γ∗ ≥ 90◦, continuing the flight
would force the platform to spiral the object continuously until J�

ψ ≤ ε3. Otherwise, for
‖γ∗‖ < π/2, a collision may result if the platform dynamics and constraint domain allow
large velocities. In (d)-(f), a set of ten dynamic (constant velocity) object encounters are
shown. Five different object trajectories are simulated using the virtual object. They
include planar head-on an crossing encounters, with the remaining also including fixed
climb or descent rates. Each encounter is simulated at two separate object velocities vt

such that ‖v‖ > ‖vt‖, resulting in ten collision encounters. Although not included in
the process model, this is essentially corresponds to adding a small disturbance to the
translational velocities used in the image kinematics. In each case, the platform attempts
to track the reference image features and establish the appropriate spiral. In all but
two cases, the avoidance behaviour ceases at an appropriate time due to the use of the
augmented objective function. After which, the objective value rapidly increases as the
relative motion forces faster divergence from the reference image features. Importantly,
having not accounted for the object motion in the dynamic model, the reference image
features can be tracked. This observation further highlights the approach’s robustness
to model mismatch, without requiring accurate range parameter estimates in the process
model or additional integral control.

Combining the results, three important observations can be made. First, the results
provide empirical evidence to support such a threshold based visual predictive control ap-
proach to collision avoidance and resolution. Most encounters are appropriately resolved
and no collisions occur, even for liberal resolution decision thresholds and varied weighting
matrices. Second, the resolution decision threshold represents a degree of freedom that
can be designed according to safety considerations. For example, a system that requires
strict safety margins to be maintained may warrant a conservative threshold. A system
that is less concerned with false alarms may use a liberal threshold, relying on the fact that
there may be another opportunity (pending relative velocity and heading) to satisfy the
resolution criteria. Third, given the diversity of potential object behaviours, it is difficult
to ensure that the resolution decision threshold will always be met. However, assuming
fixed weighting matrices for given airframe4, the threshold can be further optimised for
the expected encounter environment.

4The weighting matrices may depend on some desired aircraft performance specifications or limitations.
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(a) xy-plane (b) xz-plane (c) Objective Function

(d) xy-plane (e) xz-plane (f) Objective Function

Figure 5.17: Example real aircraft trajectories and objective function for collision avoidance of static
objects using a conservative (a)-(c) and liberal (d)-(f) resolution decision threshold epsilon. Initial aircraft
and object (+) positions in Fw are (−1.5, −0.1, −0.5) and (0, 0, −0.5) respectively, with r∗ = 2 and
s∗(80π/180, 110π/180) (�). A virtual object with added image feature noise q(t) ∼ N (0, 0.022) is used.
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Figure 5.18: Example real aircraft trajectories and objective function for collision avoidance of static
(a)-(c) and dynamics (d)-(f) objects using a more conservative decision threshold epsilon3 = 1.9. Inital
aircraft and object (+) positions in Fw are (−1.5, −0.1, −0.5) and (0, 0, −0.5) respectively, with r∗ = 2
and s∗(70π/180, π/2) (�). There are five different object trajectories (−), including head-on and crossing
with the remaining including climb or descent. Each are simulated at two separate vt values, resulting in
10 collision scenarios. A virtual object with added image feature noise q(t) ∼ N (0, 0.022) is used.
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Figure 5.19: Example flight trial using spherical visual predictive control for collision avoidance of a virtual
object positioned at the white cylinder. The controller regulates the image feature motion (insert) to the
reference position s∗(80π/180, π/2)(�), avoiding the object by spiralling to the left. The image features
then diverges (◦) as the quadrotor returns to its initial altitude and heading. The tether provides power
to the platform and restricts motion in the confined environment. The encounter evolves from t = 0s
(upper left) to t < 20s (lower right)
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5.6 Summary

This chapter introduced a set of novel spherical visual predictive controllers for spiral
tracking and collision avoidance, using principles from nonlinear model predictive control.
Visual predictive control strategies using terminal equality constraints, terminal penalty
terms and a quasi-infinite horizon framework were derived and compared to existing
predictive approaches. The results were used to design a practical visual predictive control
framework for spiral tracking. The structure of the controller was then exploited to
include a novel threshold based resolution strategy for collision avoidance. A practical
implementation for static and dynamic objects was demonstrated using a small quadrotor.
Only minor modifications to the avoidance decision strategy were required to account for
practical constraints. The key attributes, benefits and drawbacks of using the visual
predictive control framework for collision avoidance include:

General Visual Predictive Control

� The general nonlinear model predictive control structure lends itself naturally to the
vision-based collision avoidance problem, providing an excellent framework in which to
uniquely manage the difficult problem attributes. Specifically, the framework is capable
of explicitly managing platform and camera constraints, modest image processing delay
and added uncertainty through imperfect actuation and image feature noise. This
in turn allows consideration of both static and dynamic objects, without explicitly
considering the projected object motion in the process model. This relaxes the section
of the reference range parameter used in the controller compared to the classical image-
based approach. Of note, this is only possible for objects that are considered to be
relatively far away as in the See and Avoid environment.

� The predictive controllers can be implemented in a computationally efficient (and
tractable) manner using modern solvers, without the need for move blocking. Even
for the quasi-infinite horizon framework, any computational complexity is managed
offline, and the online minimisation problem can be solved sufficiently fast. This is an
important consideration for general image-based control, given its sensitivity to system
latency through image processing delays, and the desire for optimal performance [288].

Quasi-Infinite Horizon Visual Predictive Control

� This work represents the first application of the quasi-infinite nonlinear model pre-
dictive control design to visual control of any form. The direct application of the
stability-based control framework to image-based visual control is not straight for-
ward, or indeed applicable to any system. Coupling a spherical camera and single
point features allows such a stability based-design technique to be applied. The cal-
culation of the terminal penalty matrix and terminal image region can be challenging,
but a simplified methodology that can be directly implemented using modern tools has
been provided. The approach provides a detailed outline of how to implement and solve
each of the optimisation problems in a manner consistent to MATLAB requirements.
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� The resulting control frameworks for circular (with terminal region constraint) and
spiral (terminal equality constraint) motion provide comparable spiral tracking perfor-
mance with respect to recently proposed predictive control schemes. For the circular
motion case, reduced track error and a 3% reduction in control effort averaged over
the entire state space is observed. Of note, comparisons between various predictive
schemes are often made with respect to the classical image-based approach only and
not competing predictive schemes.

� The inclusion of the terminal region constraint provides some unique advantages re-
garding the design of reference image features, stability and feasibility. The size of the
terminal region gives a quantitative representation of the degree of system nonlinearity
at specific reference image features, so could be used to help determine the domain
of attraction for both predictive and classical image-based visual servoing schemes.
Considering feasibility implies stability for quasi-infinite horizon approaches, stable
reference image features may then be selected a priori. When applied to the general
case of circular motion and collision avoidance, the reference colatitude angle σ∗ as-
sociated with a larger terminal region can then be selected a priori, such that there
is better assurance that the true conical spiral can be tracked. Of note, and using a
similar argument, the terminal region could be used to help design suitable reference
image features for region-reaching image-based visual servoing5

� Although nominal closed-loop stability can be assured for circular motion, the same
stability guarantees cannot be assumed for a real system. For aircraft spiral tracking
and collision avoidance, model mismatch and added uncertainty result in deviation
from the nominal or ideal behaviour. However, by designing for the nominal case
and using an appropriate prediction horizon, local asymptomatic stability can still be
achieved as in standard model predictive control approaches.

Practical Visual Predictive Control

� This work represents the first practical implementation of visual predictive control of
any form for control of aerial vehicles. Using a terminal penalty term and no terminal
constraints, the feasibility of the resulting control structure is demonstrated for sys-
tems with fast dynamics. Stable behaviour can be assured using moderate prediction
horizons, whilst enforcing platform constraints. Improvements are still required to bet-
ter manage image processing delay, either though improved processing algorithms, or
the inclusion of additional filters. Of note, a number of simulated and some practical
visual predictive control implementations have been proposed, but are typically for
robot manipulators and using simplifying assumptions such as multiple feature points.

5For example, a divergent spiral or one that exists entirely above or below the apex may be required.
Therefore, the reference image features are not unique, but instead exist in a particular region of the image.
Recent region-reaching controllers [318] will fail when using a single point feature, due to singularities at
the region boundary, so selection of specific image features may still be required. Selecting reference
image feature in the desired image area associated with a large terminal region reduces the likelihood of
feasibility issues.



144 CHAPTER 5. VISUAL PREDICTIVE CONTROL

� Although the control framework was applied to qaudrotor control, the approach is
general and can be extended to multiple platform types (fixed and rotary wing) and
camera models (perspective, wide angle etc.). The appropriate system dynamics and
image kinematics can be combined in the process model in a similar manner (see
§5.5.1), and the same resolution strategy can be employed.

� The novel threshold based resolution decision strategy using two separate objective
functions provides an improved solution, coupling the visual control and aircraft head-
ing. Multiple flight trials demonstrated the effectiveness of the strategy for both static
and dynamic objects. Unlike the initial approach to resolution (see §4.4.1), avoidance
was never stopped prematurely and failure to meet the particular resolution decision
threshold ε does not imply collision. Alternatively, the derivative of the objective func-
tion could have be used, but tended to be noisy in the real system. A low pass filter
could be applied, but this means additional tuning parameters and possible added
delay. In either case, achieving the resolution decision threshold cannot be assured
given the diversity of object motion, however tuning a single parameter reduces the
development work required.

� As the decision points of the collision avoidance system have been collapsed into two
mutually exclusive decision thresholds (for resolution ε and avoidance η), the complete
system naturally lends itself to probabilistic performance analysis techniques used in
aviation (see §1.3.2). Not only do these techniques offer a more comprehensive evalua-
tion of the system performance than assessing particular case studies, they also allow
the simultaneous tuning of system thresholds. As such, they can be used to determine
optimal thresholds ε� and η� using Monte-Carlo type simulations or otherwise (see §6).
Of note, this represents the first time a automated vision-based See and Avoid system
has been formulated with realistic and explicit regard to existing aviation practise,
procedures and certification standards.



Chapter 6

Performance Evaluation

6.1 Outline

This chapter presents a preliminary probabilistic performance evaluation strategy to as-
sess the complete vision-based See and Avoid system. The evaluation technique extends
existing approaches used in aviation, resulting in a general framework in which to asses
and tune the avoidance and resolution decision strategies.

First, the possible collision avoidance outcomes are highlighted for the proposed auto-
mated See and Avoid system. Traditional collision avoidance outcomes are augmented,
by considering the inclusion of automated avoidance, control and resolution decisions.
Second, extensions to existing probabilistic collision avoidance performance evaluation
strategies used in manned aviation are derived. Specifically, it is shown how system oper-
ating curves can be used to capture, visualise and optimise the effects of threshold (and
parameter) selection on system performance for vision-based avoidance. Third, a series
of Monte-Carlo simulations are presented in order to demonstrate the effectiveness of
the complete system, using such system operating curves. Of note, this is the first time
a vision-based collision avoidance system has been cast into a framework amenable to
such probabilistic analysis techniques, and subsequently analysed. This is an important
consideration when certifying operational systems.

6.2 Collision Avoidance Outcomes

To asses the performance of an arbitrary collision avoidance system, it is important to
uniquely define the possible system outcomes. The outcomes themselves are related to
the end state, or relative state, of the involved aircraft. The specific outcome of a random
encounter is not only a function of the relative geometry, but the complex interactions
between system parameters. Such parameters include, but are not limited to, sensor
uncertainty and the decision points or logic used in the collision avoidance system. It
is then intractable to enumerate each separate outcome, and instead it makes sense to
categorise the resulting collision state according to a discrete set of outcome types.

Considering a coarse definition for the collision avoidance outcome categories, a simple
binary classification could be used in which the result is either collision or no collision.
However, considering that a collision avoidance system is being used, this does not provide
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sufficient detail that relates to the functionality of the collision avoidance system. There-
fore, additional categories are required that acknowledge the inclusion of the collision
avoidance system.

Consider first that the collision avoidance system can be modelled as an alerting system.
This means that an avoidance decision or alert is automatically issued, but the control
and subsequent resolution decision is assumed by either a pilot or other operator. In this
case, the possible outcomes can now be linked directly to an avoidance system. Generally
speaking, the possible outcomes include

UA (FA) : Unnecessary Alert (False Alarm)

CA (CD) : Correct Avoidance (Correct Detection)

MA (MD) : Missed Avoidance (Missed Detection)

IC : Induced Collision

A UA results when an avoidance action is taken and the collision is avoided, but no action
was required given the nominal aircraft trajectories. A IC results when an avoidance
action is taken and a collision is created (induced), that would not have occurred given
the nominal aircraft trajectories. A CA results when an avoidance action is required
and the collision was successfully avoided. A MA results when an avoidance action was
required but the collision was unsuccessfully avoided.

Importantly, each outcome category assumes that avoidance implies resolution so there
is no automatic resolution decision to be made. Arguably, if a pilot was in the loop this
may be the case and the assumption is valid. As such, the outcomes are commonly used
for TCAS like systems that provide avoidance advisories. For a fully automated system
though, it should be recognised that just because an avoidance action was taken, this
does not mean that the avoidance behaviour was stopped or resolved. This is certainly
the case for the collision avoidance approach presented in this work, and is likely the case
for other similar vision-based systems. Therefore, this assumption cannot be overlooked
for a completely automated See and Avoid, and an additional set of outcomes is then
required to classify the possible end states.

Consider a See and Avoid system that now includes an automated avoidance and resolution
decision. When an avoidance action is taken, then there is the possibility that the action
is stopped or continued (attempted) for all time. Operator intervention may then be
required to manually terminate the avoidance behaviour. Consider also that all objects are
considered potential collisions based on the short duration of the expected encounter and
initial detection distance. In this case an action is always taken, but will vary depending on
the avoidance decision. The notion of taking decisive action upon detection, is supported
by recent lines of thought in military applications regarding adaptive action [362, 363].
Taking initial action may help obtain a greater understanding of the situation, such that
the avoidance response can be better adapted. In a simple approach, consider two types of
action. The first could be considered action that is intended to avoid a perceived collision.
The second is intended to increase separation between aircraft in a precautionary manner.
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Figure 6.1: Automated collision avoidance outcomes

The precautionary action may also facilitate the acquisition of additional information to
help improve future control decisions. For these systems, the possible outcomes include

PACR : Precautionary Avoidance & Correct Resolution

PAIR : Precautionary Avoidance & Incorrect Resolution

CACR : Correct Avoidance & Correct Resolution

CAIR : Correct Avoidance & Incorrect Resolution

MA : Missed Avoidance

IC : Induced Collision

A PACR results when precautionary action is taken and then successfully resolved. A
PAIR results when precautionary action is taken but is incorrectly (or unsuccessfully)
resolved. For both cases, avoidance was not required to maintain separation. A CACR
results when collision avoidance action is taken and then successfully resolved. A CAIR
results when collision action is taken but is incorrectly resolved. A MA and IC take
the same meaning as before, and as they denote collision cases, augmenting them with a
resolution outcome does not make sense. Of note, unnecessary actions would no longer
constitute a possible outcome set under the assumption action is always taken. Instead,
unnecessary action could be replaced with incorrect action. Incorrect action means that
precautionary avoidance was taken in a true collision encounter and vice versa. An ex-
ample of the proposed collision avoidance outcome categories for an automated See and
Avoid system are depicted in Fig 6.1.
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6.3 System Operating Curves

Given the set of possible outcomes, it is then possible to define a set of metrics that provide
a quantitative representation of the system performance. Taking a statistical approach,
the metrics can be based on the observed counts of each outcome type for a larger number
of arbitrary encounters. The metrics are typically defined in terms of a probability of
positive and negative outcomes. A set of outcomes may be combined (summed) to define
each metric. For example, the probability of a collision may be the sum of the induced
collisions and missed avoidances. Depending on how these metrics are combined and
subsequently visualised, they may also be used to represent the variation in performance
with system parameters. Recalling, the outcome of an arbitrary encounter depends on the
system parameters, including any thresholds, and so influences the performance metrics.

In signal detection theory, the idea is to identify a target signal amongst noise. The system
metrics consist of a probability of correct detection P (CD) and false alarm P (FA). For a
given set of system parameters, detection thresholds and noise characteristics, the metrics
are evaluated and plotted as a single point on a Receiver Operating Curve (ROC). The
system parameters are then altered and the metrics are re-evaluated to obtain a set of
points, resulting in a curve [360]. The curves have been leveraged directly to evaluate
automated vision-based aircraft detection performance and trade-offs, given the problem
is almost identical [95, 96].

The decision components in collision avoidance and alerting systems bears strong similar-
ity to the object or signal detection problem. As such, receiver operating curves have since
been recognised as an effective way to evaluate collision avoidance and alerting system
performance [168, 189, 361]. In this domain, the term System Operating Curve (SOC) is
used, and the metrics are derived by considering a combination of various outcome types.
The sum of desirable outcomes is used to estimate the probability of successful avoid-
ance P (SA) and unsuccessful avoidance P (UA). Again, each set of system parameters
map to a particular point along the curve. Altering the avoidance (or alerting) decision
threshold τ moves the operating point along the curve. Therefore, the curve can be used
to directly evaluate system performance and visualise the tradeoff between the desirable
and undesirable system outcomes. Additionally, they can be used to evaluate the system
sensitivity to different encounter types or uncertainty characteristics. The use of System
Operating Curves and Receiver Operating Curves in evaluating the performance of col-
lision avoidance system components are depicted in Fig 6.2, with example curves shown
in Fig 6.3.

For vision-based See and Avoid systems, it then makes sense to leverage System Operating
Curves to optimise system parameters and demonstrate performance in a manner consist
with aviation practise. The added benefit is that the detection and avoidance components
can be analyses using the same principles, and easily combined to derive the overall system
performance. Interestingly, most autonomous collision avoidance systems are not analysed
and evaluated in this way. Instead, performance is typically analysed with respect to
stability and feasibility having assumed the correct avoidance decision has been made.
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Figure 6.2: System Operating Curves for See and Avoid Systems
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Figure 6.3: Example Receiver Operating Curves (ROC) and System Operating Curves (SOC) used for
performance evaluation in Signal Detection and Alerting Systems.

Often simplifying assumptions are made to ensure the decision is suitable. For example,
the nominal case is considered, object intent is known, or a cooperative encounter in which
both aircraft take action is assumed. Such assumptions are unrealistic for many See and
Avoid encounters and certainly when considering a vision-based system.

Given the structure of the collision avoidance system presented in this work, System
Operating curves and the traditional performance metrics cannot be applied directly.
Starting from first principles, the appropriate performance metrics need to be defined.
First, determine the probability that an encounter E exists (collision or non-collision)
given the current state x. Then, the probability that the object is detected D, given an
encounter exists, can be defined such that

P (CD) = P (D|E)PNA(E|x) (6.1)

P (CD)′ = P (D′|E)PNA(E|x) (6.2)

where PNA denotes a probability along the nominal trajectory, where no action is taken,
and P (CD)′ = P (MD) denotes a missed detection. Assuming perfect detection, then
P (D|E) = 1 and P (CD)′ = 0. The probability that an encounter actually occurs is
difficult to determine considering that unmanned aircraft are a new airspace user, and no
traffic models exist. By extrapolating radar data, and considering a number of assump-
tions, an integrated air traffic model can be approximated [64, 65]. Such models could
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be used to approximate PNA(E|x) but pertain to a particular air space system and are
not freely available. Alternatively, quoted figures from historical data may be used in the
interim to estimate this value [19].

Second, determine the probability of specific outcome types given the collision avoidance
system is included, and based on how it is operating. This enables the performance
metrics to be directly linked to the key system parameters, the avoidance η and resolution
ε decision thresholds. Using the collision avoidance outcomes defined for the proposed
See and Avoid system, the performance metrics can be stated as the probability of each
outcome types such that

P (CACR) = P ′
mcP (CD)PNA(C|E)PCA(C ′R|η∗, ε∗) (6.3)

P (CAIR) = P ′
mcP (CD)PNA(C|E)PCA(C ′R′|η∗, ε∗) (6.4)

P (PACR) = P ′
mcP (CD)PNA(C ′|E)PP A(C ′R|η∗, ε∗) (6.5)

P (PAIR) = P ′
mcP (CD)PNA(C ′|E)PP A(C ′R′|η∗, ε∗) (6.6)

P (MA) = PmcPNA(C|E) + P ′
mcP (CD)PNA(C|E)PCA(C|η∗, ε∗) (6.7)

P (IC) = P ′
mcP (CD)PNA(C ′|E)PP A(C|η∗, ε∗) (6.8)

where PCA denotes a probability along the avoidance trajectory and PP A denotes a proba-
bility using precautionary action. The notation C and R denote a collision and resolution
event respectively, such that R′ implies unsuccessful resolution and C ′ denotes successful
avoidance. The probability of a system malfunction Pmc is also included such that a mal-
function denotes no action is taken. Clearly, the system metrics demonstrate the complex
interactions between the system parameters and the encounter geometry. For this work,
the concern is the performance and optimisation of the avoidance and resolution decision
thresholds. As such, assuming the system does not malfunction and the detection system
is capable of detecting all objects reliable, then P(CD) ≈ 1 and Pmc = 0. To further
simplify the metrics, PNA(C|E) < 1 can be considered a constant scaling factor that will
reduce each probability considering that the chance of an encounter of any sort (collision
or non-collision) is rare. Indeed, it is this term that contributes to very low collision
probabilities for some systems1. Simplifying the performance metrics in this way, then

P (CACR) = PCA(C ′R|η∗, ε∗), P (CAIR) = PCA(C ′R′|η∗, ε∗) (6.9)

P (PACR) = PP A(C ′R|η∗, ε∗), P (PAIR) = PP A(C ′R′|η∗, ε∗) (6.10)

P (MA) = PCA(C|η∗, ε∗), P (IC) = PP A(C|η∗, ε∗) (6.11)

1The probability of an encounter is assumed to be unity, and the probability of a collision or non-
collision can be considered to be equally likely. Realistically, these probabilities would depend on the
location, airspace and time the aircraft is operating.
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Combining the performance metrics such that System Operating Curves can be used is
a matter of summing the positive and negative outcomes. The probability of desirable
P (+) and undesirable system behaviour P (−) can then be expressed as

P (+) = P (CACR) + P (CAIR) + P (PACR) (6.12)

P (−) = P (MA) + P (IC) (6.13)

Note the inclusion of P(CAIR) in the desirable performance outcome, as the primary
concern is to avoid, given the See and Avoid environment. Note also that P(PAIR)
has been excluded for the undesirable metric. This is indeed a negative outcome, but
to keep focus on the the system ability to avoid a collision, the induced collision is of
more importance. Of course, the metric can be included if required. Provided each of the
metrics is available, or can be derived, a modified System Operating Curve can then be
constructed. The term modified is used to distinguish the different axis values compared
to traditional System Operating Curve.

Using the above framework, a modified Operating Curve could then be constructed for
each of the decision thresholds and optimised accordingly. Holding the avoidance thresh-
old fixed and varying the resolution decision threshold enables the system performance
to be analysed with respect to the resolution strategy, and vice versa. Importantly, this
is possible because the two points, and thresholds, are mutually exclusive and decoupled
(see §3.3.1 and §5.5.2). The impact of altering each decision threshold can then be vi-
sualised such that the design of the thresholds can be optimised. In each case, the ideal
operating point is the upper left hand corner of the plot. At this point, the decision
threshold is such that no collisions occur and the encounter is always resolved, for both
precautionary and avoidance actions. Due to system uncertainty, this point cannot be
achieved. Instead, the best possible achievable performance can be expected in a region
about the ideal operating point. Importantly, as sensors improve the entire curve will be
affected, shifting closer to the ideal operating point. As such, the curve can still be used
to evaluate the relative effect of the decision thresholds on overall performance. The use
of the modified System Operating Curves in evaluating the performance of See and Avoid
system components is depicted in Fig 6.4 with an example curve shown in Fig 6.5.
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Figure 6.4: System Operating Curves for See and Avoid Systems
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Figure 6.5: Modified System Operating Curve

The performance metrics are not always straight forward to derive. Typically, they must
be approximated from counts of the observed collision outcomes when subject to a wide
range of diverse encounter scenarios. Due to cost and safety aspects, this is currently only
possible through simulation (typically Monte-Carlo) as the number of encounter scenarios
needed would make flight trials infeasible. As such, this is the approach taken in this work
to assess the system performance and optimise the decision thresholds. Of note, this is
the first time a See and Avoid system has been derived and evaluated in this manner, and
represents an important step toward certification. The simulation details and results are
outlined in the following sections.

Remark As an alternate to System Operating curves, Detection Error Tradeoff (DET)
can also be used to visualise the same system performance.
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6.4 Monte-Carlo Trials

6.4.1 Simulation Environment

A simulation framework was developed to model a scaled down See and Avoid environ-
ment. To remain consistent with the practical implementation in the previous chapter,
and ensure a realistic system model, the same small AscTec Hummingbird quadrotor plat-
form is used in simulation. A dynamic model of the platform, including time delays is used
to model the platform motion (see §2.2). A set of Kalman filters were used to estimate
the platform velocity, and a set of Linear Quadratic Regulators (LQRI) controllers were
used to control forward and lateral velocity. A set of PID controllers were used to regulate
the vertical rate and yaw rate to zero if the resolution decision is activated. Otherwise
the platform continues the avoidance behaviour. The visual predictive controller used
to guide spiral motion and collision avoidance is based on the simulated and practical
results obtaining in the previous chapter (see §5.5). Importantly, the process model used
in the simulation environment includes experimentally derived delay terms [269], unlike
the process model used in the visual predictive controller. The weighting matrix elements
Qs, λR and λP were kept small and remained fixed for all simulations. The prediction
horizon Tp = 10 allows a solution to the minimisation problem to be found sufficiently
fast, without compromising stability and control performance. Lastly, the sampling pe-
riod for object detection and image processing Ti was assumed to be longer than that for
the predictive controller Tv.

A target trajectory generator was created to generate either a collision encounter or
non-collision encounter. The collision encounters were generated by selecting a random
collision time and velocity, to then calculate the initial object position. A non-collision
encounter was derived by first calculating a collision encounter as before, then adding
a random non-zero translational velocity to the object. In this way, no collision is pos-
sible under the nominal trajectories. All encounters were bounded by a maximum and
minimum time to closest approach tcpa, initial range r0 and object velocity vt.

The simulation model includes environmental disturbances from turbulence wg(t) and
ambient wind wa(t), added image feature noise q(t) and imperfect actuation qc(t) as
sources of uncertainty. Each source is modelled using a Gaussian distribution of one or
more variables. The variability in image feature (azimuth and colatitude) measurements
is assumed to be equal, so q(t) is added to each measurement. Imperfect actuation is
modelled by additive noise on the control inputs, which results in small thrust offsets and
angular displacements in roll, pitch and yaw rate. Turbulence is modelled by additive
noise on the platform orientation. Ambient wind is modelled by additive noise on the
translational velocities of each platform. Of note, the mean ambient wind is considered
zero. This is a valid assumption as the ambient wind is usually known such that the
platform heading is offset to maintain desired ground track. What cannot be accounted
for is variability in the wind speed and direction, therefore the variance of the ambient
wind is non-zero. A complete list of the simulation parameters is given in Appendix E.
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Figure 6.6: Example collision avoidance performance analysis methodology for vision-based collision avoid-
ance systems.

The simulation environment was implemented using MATLAB Simulink and the ACADO
Toolkit. A series of Monte-Carlo type simulations for a large number of collision and
non-collision encounters were conducted, in order to asses the utility of the vision-based
collision avoidance systems. Specifically, the focus is on the effectiveness of the avoidance
and resolution decision strategies. There are two aims of the simulation trials. First, to
determine the viability of using such an approach to automated See and Avoid. Consid-
ering the controller has been validated both in simulation and empirically, the idea is to
quantify the effectiveness of the avoidance and resolution strategies. Second, to deter-
mine the value of using the proposed performance evaluation framework as a generalised
means to asses performance, and visualise the design tradeoffs. In this case, the tradeoffs
consist of analysing and interpreting the relative effects of the avoidance and resolution
thresholds on collision avoidance performance.

To achieve these goals, an iterative simulation process is used. The avoidance or resolution
decision threshold is fixed whilst the other is varied for a series of 1000 collision and 1000
non-collision encounters. The process is then repeated, switching the decision threshold
that is varied whilst the other is fixed. The process is aligned to existing methods in
which to analyse performance of threshold based systems (see §5.5), and is depicted in
Fig 1.3.2. The results of the analyses are detailed in the following sections of this chapter.
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6.4.2 Avoidance System

The complete collision avoidance system is first analysed from qualitative perspective. A
subset of the collision and non-collision encounters are examined to ensure that each of
the system components are functioning as expected, irrespective of the specific thresholds
used for avoidance and resolution. First, the resolution decision is analysed to ensure the
avoidance behaviour can be stopped. Second, control performance is analysed to ensure
feasible aircraft trajectories are applied. Third, the avoidance decision is analysed in light
of the rules of the air in which they are based upon.

An example set of 15 collision and non-collision encounters are shown in Fig 6.7. The
the object and quadrotor trajectories are shown, along with the instance in which the
resolution decision was activated. This is shown by the green square superimposed over
the quadrotor trajectory. If the resolution decision was not activated, the green square
appears at the end of the quadrotor trajectory. To this end, only a few scenarios remain
unresolved for both collision and non-collision encounters.
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Figure 6.7: Subset of 15 quadrotor trajectories (−) subject to collision objects (−) and non-collision
objects (−). The initial quadrotor position (◦) in Fw is (−2, 0, −10) whilst the initial object position
(◦/◦) is varied. The resolution instance is also shown (�).

The quadrotor trajectories appear to be stable and avoidance decision are made, but
the plots are too unclear to provide a more comprehensive analysis. To better asses
the avoidance decision and control behaviour, consider removing the object trajectories
and focusing on the quadrotor behaviour. Additionally, consider further examining three
examples taken from the same 15 encounters. These addition plots are depicted in in
Fig 6.8(a)-(c) and Fig 6.8(d)-(f) for the collision and non-collision sets respectively.

First, consider the example collision encounters. Fig 6.8(a) shows the smooth and sta-
ble quadrotor trajectories resulting from the avoidance decision. The specific avoidance
decision depends on the projected feature motion and avoidance decision thresholds η.
Fig 6.8(b)-(c) shows the trajectories of each aircraft for different avoidance decisions. For
the blue encounter, the object appears on the right and is allowed to cross, essentially
giving way to the object. For the black encounter, the object has approached from the
left and the vehicle has allowed the object to pass behind it. For the red encounter, an
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Figure 6.8: Example avoidance behaviour and quadrotor trajectories for a subset of collision and non-
collision encounters. The initial quadrotor position in Fw is (−2, 0, −10). The color coded quadrotor
(thick) and corresponding object (thin) trajectories are for 3 example encounters. The resolution instance
(�) minimum separation are also shown.

almost head-on scenario occurs and the vehicle avoids the object on the right. In all cases
the appropriate avoidance decision was adopted based on the guidelines outlined by avi-
ation rules of the air . A successful resolution decision was made in all but one case, but
every collision was still avoided. As such, all three encounters can be classified as CACR
outcomes. The single unresolved encounter can be classified as a CAIR outcome, and
there are no MA outcomes.

Second, consider the example non-collision encounters. Fig 6.8(d) shows the smooth
and stable quadrotor trajectories, this time resulting from the precautionary avoidance.
Fig 6.8(e)-(f) shows the trajectories of each aircraft for different precautionary avoidance
decisions. For the blue encounter, the object appears on the right, but is not allowed to
cross. Essentially the object is not considered a collision threat, so the quadrotor does
not give way to the object. For the black encounter, the object has appeared on the left
in a non-collision near head on encounter. The avoidance decision has recognised that
the object is not a collision threat, but takes precautionary action to increase separation.
For the red encounter, the object approaches from the left and is then allowed to cross
behind the quadrotor. Again, the avoidance decision has tried to increase separation by
moving to the right, having recognised the object as non threatening. Again, in all cases
the appropriate avoidance decision was adopted. A successful resolution decision occurs
relatively early in each encounter (bar one), causing decreased deviation from the original
flight path. The reason the quadrotor trajectory appears to diverge, is only because of
the non-collision avoidance control forcing a zero altitude and heading rate. As such, all
three encounters can be classified as PACR outcomes. The single unresolved encounter
can be classified as a PAIR outcome, and there are no IC outcomes.
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6.4.3 Avoidance Decision

The practical implementations in earlier chapters required a simplified avoidance decision
to account for the limitations in implementing the entire automated system. The previ-
ous section used the original avoidance strategy, but only a small subset of the avoidance
decision outcomes for a single avoidance decision threshold were analysed. Although the
results are promising, it is unlikely that an appropriate avoidance decision will be adopted
for an arbitrary encounter, given the diversity of object trajectories, image features un-
certainty, ambient conditions and imperfect actuation. A full analysis of the avoidance
decision strategy is then required. The analysis needs to be conducted by keeping all the
simulation parameters, predictive control and resolution decision parameters fixed. The
encounters and avoidance decision parameters or thresholds are then varied.

Recalling that the avoidance decision is based on comparing a measurement of image
feature convergence or divergence s̆, to a fixed avoidance threshold η where

s̆ = di(s) ṡT , η = di(ξs) ξT
ṡ (6.14)

To simplify the analysis, consider that the uncertainty on the image feature position ξs

and velocity ξṡ measurements is equal in both colatitude σ and azimuth γ. In this way,
the avoidance threshold η for each image feature can be set to the same value. Consider
first setting the avoidance threshold equal to the product of the variance on the image
feature position and velocity as above. The threshold can then be scaled to be larger or
smaller than this reference value using a scaling factor λη such that

η = λη(di(ξs) ξT
ṡ ) (6.15)

where λη ∈ {1/8, 1/4, 1/2, 1, 2, 4, 8}. For each threshold, 1000 random collision and non-
collision encounters are generated, resulting in 2000 encounters per threshold. The res-
olution decision was fixed such that ε = 0.15, and a collision boundary rc was set such
that a collision is declared if r(t) ≤ 0.25m. Scaling the collision boundary up results in a
relatively conservative region, given the typical size of small unmanned aircraft. The re-
sulting modified System Operating Curve is shown in Fig 6.9. The first shows the relative
location of each threshold using the full axis. The second focuses on the region interest.
Using the curve, two important observations can be made.

First, it shows that the avoidance decision strategy is generally effective at avoiding col-
lision, irrespective of the avoidance threshold. This is shown by the the collection of
operating points located toward the ideal operating point. Collision avoidance is ap-
proximately 90% effective, with a relatively low rate of induced collisions and missed
avoidances.

Second, it highlights that it is indeed difficult to uniquely distinguish between a collision
and non-collision object under realistic flight conditions. This is depicted by the small
variations in operating point location, that lack a unique and distinguishable pattern with
respect to decision threshold variations. For example, a scale factor of 4 shows improved
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Figure 6.9: Example modified System Operating Curve (SOC) for variable avoidance decision threshold
λη ∈ (0.125, 8). The resolution threshold and collision boundary are such that ε = 0.15 and rc = 0.25m
respectively.

performance, but a scale factor of 8 shows degraded performance compared to a scale
factor 2. Interestingly, the result compliments the experimental results obtained in [130]
without the need for flight tests. However, having always acted, and using a different
decision variable s̆, the approach is more effective than using bearing rate alone.

The above results were verified for different resolution thresholds and simulation param-
eters, ensuring the observed effects can indeed be attributed to the avoidance decision
strategy. As such, although the avoidance strategy is effective, it is still unclear exactly
how to the select η. It may be such that further simulations are required to ensure the
encounter sample size is sufficient enough to appropriately represent the true system be-
haviour. In this way, an optimal avoidance decision threshold η� might be obtained. This
is yet to be determined.

Remark It may be possible to define a region Ωη̄ about an arbitrary nominal operating
point η̄ corresponding to λη = 1, such that the system performance will remain in that
region for all avoidance decision thresholds η ∈ (η̄/8, 8η̄). This may be coarsely approx-
imated by first finding the maximum 2-norm (Euclidean) distance dη between the point
where λη = 1 and all points corresponding to η ∈ (η/8, 8η). A circular (or elliptical)
region of radius dη can then be defined about the nominal operating point. Of note, it
is reiterated that this is only an approximation based on preliminary results, such there
may exist some η ∈ (η̄/8, 8η̄) that lie outside Ωη̄.



6.4. MONTE-CARLO TRIALS 159

6.4.4 Resolution Decision

The practical implementations in earlier chapters allowed the full resolution strategy to be
implemented. This was also the case in the previous section, but similar to the avoidance
decision, only a small subset of the resolution decision outcomes for a single resolution
threshold were analysed. Again, it is unlikely that an appropriate resolution decision
will be adopted for an arbitrary encounter, given the diversity of system parameters and
added uncertainty. Indeed, some examples in which no resolution decision was made
have already been presented. A full analysis of the avoidance resolution strategy is then
required. In this case the analysis needs to be conducted by keeping all the simulation
parameters, predictive control and avoidance decision parameters fixed. The encounters
and resolution decision parameters or thresholds are then varied.

Recalling that the resolution decision is based on comparing the value of an augmented
objective function Jψ, to a fixed resolution threshold ε where

Jψ = Js + λψ

∫ t+Tp

t
(ψ(τ) � ψ∗)Qs dτ, ε > 0 (6.16)

The resolution threshold ε can be chosen somewhat arbitrary. However, the previous
chapter suggests that the value should be kept relatively small and scaled according to
the weighting matrix elements Qs, λR and λP (see §5.5.2). Given the weighting ma-
trix elements are fixed for all simulations, consider ε ∈ {0.02, 0.05, 0.07, 0.09, 0.15, 0.30}.
For each threshold, 1000 random collision and non-collision encounters are generated,
resulting in 2000 encounters per threshold. The avoidance decision was fixed such that
η = λη(di(ξs) ξT

ṡ ) where λη = 1. Again, a collision boundary rc was set such that a
collision is declared if r(t) ≤ 0.25m. The resulting modified System Operating Curve is
shown in Fig 6.10. The same curve is shown in two different scales. The first shows the
relative location of each threshold using the full axis. The second focuses on the region
interest. Again, two important observations can be made.

First, it shows that the resolution decision strategy is generally effective at resolving
avoidance and precautionary avoidance behaviour, irrespective of the resolution threshold.
Specifically, the resolution decision helps to avoid inducing future collisions, indicated by
the set of operating points located toward the ideal operating point between 65%-95%.

Second, system performance is significantly influenced by the placement of the resolution
threshold compared to the avoidance decision curve presented earlier. This is depicted
by the variation in operating point location that gives the plot the same characteristic
shape as typically receiver operating curves. The operating points move toward the
ideal operating point as the threshold increases, before diverging when the threshold is
increased past 0.15. To this end, the plot is actually visualising the tradeoff between
maintaining the reference spiral or ceasing avoidance behaviour. For small thresholds, a
greater number of collisions are probable as the platform is reluctant to leave the spiral
having never reached the resolution threshold. This causes the aircraft to continually
attempt to spiral the object, which can be problematic for some cases. As the threshold
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Figure 6.10: Example modified System Operating Curve (SOC) for variable resolution decision threshold
ε ∈ (0.02, 0.30). The avoidance threshold and collision boundary are such that λη = 1 and rc = 0.25m
respectively.

increases, more encounters are resolved so fewer encounters offer the opportunity to induce
future collisions. As the threshold is increased further, it becomes very conservative. As
such, there is an increased potential for the avoidance action to be stopped at an earlier
instance. This is because it is considerably easier to meet the resolution threshold. As a
consequence, the aircraft may not have maneuvered enough to avoid a collision or near
miss. This means that the amount of correct resolutions will increase, but at the expense
or increased risk of collision. This can be seen as the curve starts to move away from the
ideal operating point.

The above results were verified for different avoidance thresholds and simulation param-
eters, ensuring the observed effects can indeed be attributed to the resolution decision
strategy. This implies that the modified system operating curve can then be used to
optimise the resolution decision threshold to obtain ε�. To this end, optimisation is with
respect to the designer preferences. If collision was of utmost importance, then a lower
then a larger, conservative threshold would be preferred over a lower value.

6.4.5 System Performance Example

Combining the above results, a series of system operating curves can be easily derived
for different collision boundaries rc ∈ {0, 0.125, 0.25, 0.5} to help visualise the complete
system performance and variability. The operating point for each resolution threshold
ε ∈ {0.02, 0.05, 0.07, 0.09, 0.15, 0.30} can first be plotted. A curve can then be constructed
by connecting each operating point, in order to visualise an approximate curve for all
other resolution thresholds 0.02 < ε < 0.30. An approximate region of operating points
Ωη corresponding to the bounded set of avoidance thresholds where λη ∈ (1/8, 8) can then
be superimposed at each operating point. Taking this approximate approach, the results
are depicted in Fig 6.11.
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Figure 6.11: Example modified System Operating Curve (SOC) for variable resolution ε ∈ (0.02, 0.30) (×)
and avoidance λη ∈ (0.125, 8) decision threshold. The set of avoidance thresholds is approximated using
the region Ωη̄ (◦). Three curves are shown for a collision boundary rc of 0.125 (−), 0.25 (−) and 0.5 (−).

As expected, a smaller collision boundary shows improved system performance provided
all other parameters remain the same. However, the results are open to interpretation
given the aircraft sizes need to be considered and the arbitrary selection of the collision
boundary. For example, the results suggest that for rc = 0.125 the system is 95% effective
at avoiding collisions. This could mean that a collision is only just avoided (with no
additional separation) for two small aircraft with an approximate radius ≤ 0.0625, and
an actual collision boundary of zero. Conversely, for rc = 0.5 the system is only 85%
effective at avoiding collisions. This could mean that each collision is now avoided with
non-zero separation if considered the same two small aircraft. Of course, the result could
also be interpreted as collision avoidance of lager aircraft with zero separation. The results
then provide an indication of the relative system performance with respect to aircraft size
and separation standards.

When using system operating curves, it is also important to consider the notion of a
feasible avoidance trajectory. In some instances, it may be such that given the control
constraints, collision boundary, aircraft size and initial geometry, a collision is unavoid-
able. In these cases, no decision or control strategy can provide collision avoidance.
Removing such encounters from the data set and then recalculating the operating curve
would move each operating point slightly closer to the ideal operating point. However,
if the number of occurrences is small compared to the total number of encounters, the
shift will be barely visible. Although such cases are possible under the simulation pa-
rameters used to construct the system operating curves above, no such encounters were
observed. This was verified by checking each case resulting in collision, and re-simulating
the encounter using the control input limits (maximum and minimum) until the point
of collision. If the maximum of the minimum range value for each of the two avoidance
directions (left and right) remains less than the collision boundary, it is infeasible to avoid
the encounter. Some example results are shown in Fig 6.12 for ε = 0.15 and λη = 1.
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Figure 6.12: Example illustration of feasible and infeasible collision encounters. Object trajectories (−) and
initial positions (◦) are shown until the original collision time. The possible lateral avoidance trajectories
are shown using rate 1 (−), rate 2 (−) and rate 3 (−) coordinated turns. Trajectories for both left (solid)
and right (dashed) decisions are also shown.

Fig 6.12(a) shows a set of nine re-simulated collision encounters along with the possible
avoidance trajectories that correspond to a maximum turn rate of 1 (3◦/s), 2 (6◦/s) and
3 (9◦/s). Both avoidance decisions are shown such that six aircraft trajectories result.
It can be seen that only one object trajectory may represent an infeasible avoidance
encounter. This encounter is then isolated and depicted in Fig 6.12 along with the same
six possible avoidance trajectories. Importantly, the encounter is only infeasible if the
control is limited to a rate 1 turn, the avoidance decision is fixed to a left hand turn and
rc = 0.5. In this case, the corresponding minimum separation is less than 0.5m so the
collision is unavoidable regardless of the controller. If a right hand turn is used instead,
the encounter then becomes feasible. As the avoidance decision strategy allows for right
and left hand turns, the encounter then remains in the feasible set, and is included in
the results used to derived the system operating curves above. Of note, if an infeasible
encounter had occurred and was retained, the resulting system operating curve is not
incorrect. Instead, the curve then corresponds to a conservative representation of system
performance, given infeasible encounters are actually possibly in a realistic See and Avoid
environment.

As a final point, the proposed performance evaluation strategy can also be used to help
identify the attributes of particular encounters which cause difficultly for the See and
Avoid system. More precisely, the encounters that result in a collision can be analysed
in more detail to help identify the set of collision geometries which cause the system to
fail. This is done by re-simulating each collision encounter (missed avoidance and induced
collision) up until the time of minimum separation, and inspecting the resulting set of
object trajectories. Taking this approach, some example results are shown in Fig 6.13
for ε = 0.15, λη = 1 and rc ∈ {0.125, 0.5} for 2000 encounters. The results clearly show
that the avoidance strategy handles head-on type encounters very well, as only a single
collision results from such geometry. Crossing encounters are more difficult to manage,
with object trajectories originating near ±90 degrees causing the most difficulty. This can
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Figure 6.13: Example illustration of all collision trajectories for an encounters set of 2000. Object initial
position (◦/◦) and trajectory for missed avoidance (−) and induced collision (−) are shown until the
original collision time. The aircraft initial position (◦) without avoidance trajectory is also shown.

be inferred by considering that only the object trajectories originating very near to ±90
degrees are retained as the collision boundary decreases. Similar results are also obtained
for different avoidance and resolution thresholds.

Remark In support of the preceding analysis, the resulting counts of each encounter
outcome for some example sets of 2000 encounters with are given in table 6.1 and 6.2.

Encounter Type rc MA/IC CACR/PACR CAIR/PAIR Total

Collision 0.125 33 874 93 1000
Non-Collision 0.125 1 877 121 1000
Collision 0.5 154 755 91 1000
Non-Collision 0.5 1 877 121 1000

Table 6.1: Example Monte-Carlo simulation outcomes for λη = 1 and ε = 0.15 for two different conflict
boundaries rc ∈ {0.125, 0.5}.

Encounter Type rc MA/IC CACR/PACR CAIR/PAIR Total

Collision 0.125 47 904 49 1000
Non-Collision 0.125 0 954 46 1000
Collision 0.5 204 747 49 1000
Non-Collision 0.5 0 954 46 1000

Table 6.2: Example Monte-Carlo simulation outcomes for λη = 1 and ε = 0.30 for two different conflict
boundaries rc ∈ {0.125, 0.5}.
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6.5 Summary

This chapter introduced a probabilistic analysis methodology for quantitatively evaluat-
ing the performance of reactive, vision-based collision avoidance systems. An additional
set of collision avoidance outcomes were introduced to account for the reactive and com-
pletely autonomous nature of the proposed system. Leveraging System Operating Curves,
the performance and design tradeoffs of the threshold-based avoidance and resolution de-
cision strategies can then be visualised. A preliminary performance evaluation was then
conducted using the avoidance decision strategy presented in Chapter 3, and the control
and resolution decision strategy presented in Chapter 5. The key findings, benefits and
drawbacks of using the evaluation framework and collision avoidance system include:

Performance Evaluation Framework

� The framework is flexible and extensible in the sense that it can be applied on a subsys-
tem level, consistent with See and Avoid system partitioning, or combined to evaluate
the closed loop system performance. For example, it can be used to evaluate avoidance
and resolution decision strategies together or independently. Additionally, the general
principles behind the framework can be extended to other automated systems (or sub-
systems) for avoidance and resolution. This is possible even if the decision thresholds
or variables do not use the same sensor measurements.

� The framework is well aligned with existing evaluation techniques for object detection
using Receiver Operating Curves. The framework therefore complements and extends
the available tools for See and Avoid system performance evaluation.

� The framework provides a means to interpret, visualise and optimise the tradeoffs
associated with the avoidance and resolution decision threshold placement. For a
vision-based avoidance decision, the approach provides a novel mapping from the image
space to the overall system performance attributes. As a consequence, and given
the method in which the avoidance decisions are based, it could be extended to help
evaluate the effectiveness of aviation right of way rules. This is possible if all system
uncertainty is removed and the avoidance decision threshold is set to zero.

� Although the framework is intended to optimise system thresholds and parameters,
it can also be used to analyse the sensitivity of the system to sensor (image feature)
uncertainty, or unique encounter geometries. Each will influence the collision avoidance
system performance, and alter the perceived utility of the system. To this end, it is
acknowledged that the results presented in this work are preliminary, using a consistent
and fixed set of auxiliary parameters and noise models. A real set of encounters would
be required to guarantee the presented results are representative of the true system
performance.
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Actual System Performance

� The results suggest that the general approach to See and Avoid can be effective, even
if the decision and resolution thresholds are not optimised. In most cases, the system
is between 80-95% effective at avoiding collisions with a less than 10% chance of a
negative outcome (collision). Of note, this is the first time a See and Avoid system has
been analysed using such probabilistic approaches, consistent with aviation practise.
This is an important step toward certification of such systems.

� System Operating Curves are leveraged in the design of the performance evaluation
framework, and can be extended to include System Performance (SP) Curves [194].
Risk Ratio is represented as a function of specific relative velocities, system thresholds
or other parameters. For the system presented here, and regardless of the threshold
values, the risk ratio is consistently less than 0.5. This indicates a significant overall
improvement in safety when using the collision avoidance system.

� The resolution threshold has significantly more influence on the overall system perfor-
mance compared to the avoidance threshold. The result compliments the perception
that it is difficult to discriminate between collision and non-collision objects using only
visual observations, without range or intent information. Importantly, it does not
mean that an effective avoidance strategy cannot be derived. The results presented
here are indeed to the contrary, and suggest that always taking decisive action can be
beneficial. The notion is also supported by trends in adaptive campaigning for military
applications [362, 363].

� The avoidance and resolution decisions are not perfect, and a balance must be struck
regarding the conservativeness of the associated threshold values. Interestingly, re-
gardless of the threshold values, the system is shown to manage head-on encounters
very well, with performance degrading as the object approaches from ±90 degrees.
The result has implications for See and Avoid system design concerning sensor choice
and placement in the context of providing improved situational awareness.

� System performance is derived with respect to three collision boundaries. The results
then provide an example of system performance, as it is dependent not only on initial
encounter geometry, but the platform size, control limits (platform limitations) and
choice of collision boundary. Of note, the notion of feasible avoidance should also be
considered. In some cases, a conflict can be considered unavoidable due to difficult
initial geometry and a short encounter duration. Such encounters could be removed
before deriving the system operating curve. Of course, it is possible that such difficult
encounters can actual occur, so including the results corresponds to a realistic and
conservative representation of system performance.

� The performance metrics used to derive the system operating curves neglect the neg-
ative outcome concerning precautionary avoidance that remains unresolved. It was
demonstrated that under optimised thresholds, encounters resulting in precautionary
avoidance that remain unresolved were significantly less frequent (i.e. 46/1000) than
precautionary avoidance that is resolved. Including the metrics in the negative out-
comes will shift each curve to the right, whilst retaining similar avoidance performance.



Chapter 7

Conclusions

7.1 Research Summary

In order to realise the full commercial potential of unmanned aircraft, they must be
granted access to civilian airspace. This means unmanned aircraft must demonstrate a
range of safety critical tasks to a level that is deemed at least equivalent to that of manned
aircraft. These include task such as forced landing, visual approach and more importantly,
See and Avoid. This refers to a form of decentralized short term collision avoidance in
which the pilot must visually detect and avoid any unplanned hazard, be it static or
dynamic. Developing effective autonomous See and Avoid capability is considered as a
major step toward unmanned aircraft integration into the national airspace.

The focus of this work was then an investigation into vision-based collision avoidance
methods for practical aircraft See and Avoid applications. Assuming object detection and
given the problem constraints, the research was directed toward successfully automat-
ing the decision and control components of a completely vision-based system, that does
not leverage range or intent information. First, a novel avoidance decision strategy was
proposed based on aviation rules of the air, properties of conical spiral motion and the
expected uncertainty on image feature estimates. Second, a new spherical partitioned
image-based control approach was presented and then extended using principles from
nonlinear model predictive control. Further extensions included the first application of
stability based design approaches using quasi-infinite horizon nonlinear model predictive
control. Third, a simple set of resolution strategies were proposed, coupling the platform
orientation and visual controllers to ensure the avoidance behaviour can be autonomously
stopped. Lastly, the tradeoffs in design parameter selection and overall system perfor-
mance was simultaneously visualised and assessed using a probabilistic approach. The
evaluation technique was based on novel extension to existing approaches used in aviation
to asses collision avoidance system performance.

Viewing the research elements in a collective manner, and considering the See and Avoid
problem is currently unresolved, this work complements global efforts directed at solving
this complex problem. A number of additional contributions were also made in the in-
vestigation, development and implementation of each of the system components. In some
cases, the significant contributions pertain explicitly to the See and Avoid problem, whilst
in other cases the advances constitute a more general scientific contribution.
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7.2 Addressing Research Questions

This thesis posed a series of initial questions to help guide the research program. This
section details how the results of the research investigation and associated contributions
directly address each of these research questions (see §1.2.2 and §1.2.4).

Question 1 How can the state obtained from computer vision alone be used directly in
decision and control for collision avoidance and resolution of both static and dynamic
objects?

Considering the avoidance function, it was found that it is very difficult to estimate relative
state (position, velocity, range etc.) for an arbitrary collision encounter using visual
sensors in the Sense and Avoid environment. Highly accurate relative angular positions
can however be obtained directly, at initial detection distances that leave between 10-
15 seconds available for avoidance action (see §1.3). The useful state information is thus
limited, which restricts many existing approaches used in aviation and robotics. However,
by considering human navigation models, the notion of replicating pilot performance and
the desire for predictable behaviour, a novel and effective avoidance decision strategy
was derived (see §3). The approach relies on assessing visual cues (object divergence
or convergence) to actively re-positioning the object on the image surface. The specific
reference position is determined by considering the properties of spiral motion in light
of existing aviation right-of-way rules (see §3.2). Importantly, the approach relies on
tuning a single image-based decision threshold, that can be derived by considering the
level of expected uncertainty on image feature measurements (see §3.3). As such, it can
be extended to other camera systems, avoidance control solutions and platform types. Of
note, the decision structure bears strong resemblance to existing aviation alerting system
such as TCAS, yet does not rely on cooperative technology (sensors) or range estimation.

Considering the resolution function, it was found that many existing systems do not
explicitly employ discrete resolution decisions. Instead, the notion of taking avoidance
action is used to imply that the collision can also be resolved. This is a valid assumption
for systems in which a human is in the loop or tactical design approaches such as path
planning (see §1.3). The same cannot be said for a reactive vision-based system, so an
explicit resolution decision strategy was required. The result was the development of a
threshold-based resolution decision, that uses an augmented objective function to couple
the platform heading and visual controller (see §5.5.2). Although achieving the threshold
value cannot be guaranteed, tuning a single parameter reduces the development work
required, as in the case for the avoidance decision strategy. Additionally, the approach
remained decoupled from the avoidance decision, allowing the optimisation of the decision
thresholds.

Using a series on Monte-Carlo simulations the approach to avoidance and resolution was
shown to be over 90% effective at avoiding collision, with less than 10% of encounters
resulting in negative outcomes (see §6.4.2 and §6.4.3). This is true for both liberal and
conservative decision thresholds, suggesting the framework offers a potentially generic
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approach to making avoidance and resolution decisions. The research outcomes are col-
lectively described by Contribution 4, advancing technological solutions to the See and
Avoid problem.

Question 2 How can visual-based control be used to safely re-position the unmanned
aircraft (avoidance manuever) once an avoidance decision has been made?

Considering the avoidance control, it was found that despite the large number of pro-
posed vision-based approaches, no existing approach was able to manage the See and
Avoid problem constraints. Indeed, many approaches using See and Avoid as the tar-
get application often fall short of expectations, having not realistically considered the
operational environment (see §1.3,§4.2 and §5.2). This may be in terms of available im-
age features, range estimation, encounter scale or camera modelling. Research was then
primarily directed toward the derivation and practical application of effective spherical
image-based controllers, using only a single point feature for feedback control. Two gen-
eral control approaches were used, including a classical partitioned image-based visual
servoing scheme and a visual predictive control framework.

The classical approach provided a refined derivation and implementation of a partitioned
spherical image-based control scheme, extending general image-based control concepts
(see §4.3). The research constitutes the first successful practical implementation of spher-
ical image-based control on an aerial platform. It is found that a simple controller was
capable of satisfactory spiral tracking for collision avoidance, with modest tuning require-
ments. Adding a weighted integral term allowed the extension of the controller to dynamic
objects, without explicitly considering the object motion in the control design. From a
theoretical perspective, the effect of over and under estimating the reference range param-
eter required for the controller was also verified. Results suggested that if the parameter
cannot be obtained, an overestimated value should be used for a conservative approach.
In this case, the platform converges to the spiral quicker than if an underestimated value
had been used. Indeed, the result might seem counter intuitive to many, as it is often
assumed more aggressive control could be invoked by assuming a closer object. The result
also suggests that accurate range estimation is not required for effective collision avoid-
ance. The research outcome is described by Contribution 1, complementing both See
and Avoid system development and general image-based control research.

The predictive approach provided a novel derivation and implementation of spherical vi-
sual predictive control, further extending general image-based control concepts (see §5.3).
The research constitutes not only the first successful practical implementation of S-VPC,
but the only existing practical implementation of image-based visual predictive control
of any form for aerial platform (see §5.5). It was found that the predictive framework of-
fered improved spiral tracking and collision avoidance control for both static and dynamic
objects, compared to the classical image-based approach. Visibility, platform and state
constraints can be considered explicitly in the control design, whilst remaining computa-
tionally tractable. Local stability can be assured and the framework showed satisfactory
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robustness to added uncertainty, image processing delay and model mismatch. The re-
search outcome is described by Contribution 2, complementing both See and Avoid
system development and general image-based control research.

The visual predictive approach was then extended through the application of stability-
based design concepts original derived for general model predictive control (see §5.4).
The research constitutes the first application of Quasi-Infinite Horizon Nonlinear Model
Predictive Control (QIH-NMPC) to visual predictive control (QIH-VPC) of any form.
Apart from the inherent nominal stability guarantees, it was found that the control de-
sign implicitly enables better selection of reference image features for spiral tracking and
collision avoidance, and decreases the control effort by 3% compared to visual predic-
tive control. Although designed for the nominal (ideal) system, the new approach to
visual control demonstrated satisfactory robustness to added uncertainty, image process-
ing delay and model mismatch. Importantly, the calculation of the controller parameters
(terminal region and terminal penalty term) was also presented in a manner amenable to
fast and simple using modern computing tools (MATLAB). It could then be used for an
arbitrary visual control application, provide the necessary conditions are met. The re-
search outcome is described by Contribution 3, extending general image-based control
research.

Question 3 What are the performance limitations of the proposed collision avoidance
and resolution system, and what impact does this have on using such a concept as a
general framework for designing automated vision-based systems?

Considering performance assessment, it was found that autonomous vision-based collision
avoidance systems are typically analysed with respect to stability and feasibility, having
assumed the correct avoidance decision has been made (§1.3). This is often accomplished
using a set of simplifying assumption, such as known object intent or relative state, but
is unrealistic for typical See and Avoid encounters. Given the system variability (sen-
sor uncertainty, encounter geometries etc.), and considering the inclusion of two decision
thresholds, probabilistic evaluation techniques are better suited to analyse the proposed
system. System Operating Curves have been used to asses aircraft alerting system perfor-
mance, so it then makes sense to extend such analysis tools to accommodate vision-based
See and Avoid systems.

A novel probabilistic evaluation technique was then derived that explicitly consider the
unique collision outcomes, and associated performance metrics, for a completely auto-
mated collision avoidance system (see §6.2 and §6.3). It was found that using the eval-
uation framework, the tradeoff in system performance and threshold parameter section
could be visualised. This feature was used to interpret the effect of parameter place-
ment on overall system performance, and subsequently optimise the decision thresholds.
Although the predictive controller was used in each case, the framework could be used
to visualise performance tradeoffs with respect to other control approaches, instead of
decision threshold placement.
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Using a set of Monte-Carlo trials, initial results suggest the resolution threshold has more
effect on the system performance. The avoidance decision is less sensitive to the associated
threshold placement, complimenting recent suggestions that it is difficult to discriminate
between collision and non-collision object using only visual information. However, the
avoidance strategy remained effective and suggested that always taking decisive action can
be beneficial. Indeed, preliminary figures suggest that a tuned system is over 90% effective
at avoiding collisions, producing a negative outcome for less than 10% of encounters.
Considering a risk ratio of less than 0.5 is maintained in all cases, significant safety
improvement when using the collision avoidance system can be guaranteed. The research
outcomes are collectively described by Contribution 5, advancing technological solutions
to the See and Avoid problem.

Having addressed each of the research questions, this work has presented

How a practical and effective automated vision-based decision and control strategy
for collision avoidance and resolution can be derived, using only the available state
information from monocular computer vision observations, that remains consistent
with existing aviation practise and procedure in See and Avoid encounters.

7.3 Other Contributions

Although not detailed in this thesis, a simple image-based approach to spiral tracking
and collision avoidance control was also derived for small fixed wing unnamed aircraft.
The control structure allowed for lateral or vertical separation depending on the designers
choice. The control commands were transformed to reference pitch and roll angles, having
decoupled the image kinematics. Similar avoidance behaviour to that of the quadrotor
model used in this work was observed, and helped to verify the flexibility of the approach
to multiple platforms and large scale encounters. The results can be found in the authors
publication list.
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7.4 Considerations & Further Work

There are a few items that should be considered when applying or extending the proposed
vision-based See and Avoid system framework. These include:

Practical Implications

� The avoidance and resolution decision strategies used in this thesis represent an effec-
tive avoidance approach, but not a perfect system. Having only considered simulation
results, it is yet to be determined if the stated performance is indeed reflective of the
system performance in a real environment. It is also hypothesised that further simula-
tion studies using nominal (no uncertainty) conditions, could be used to quantitatively
assess the effectiveness of existing aviation rules of the air.

� To provide a more comprehensive system analysis, it would be useful to determine the
distribution of the initial image feature behaviour (position and velocity) associated
with the set of collision encounters that cause difficultly for the avoidance decision
strategy. To this end, the probabilistic analysis technique presented in this work could
be further exploited, and the avoidance decision strategy refined.

� The See and Avoid system was implemented in a scaled environment using a quadrotor
platform, in a proof-of-concept approach. Although novel and suitable for a prelimi-
nary analysis, complete validation of the utility of the approach would require a full
scale implementation on other platforms. This could be done using optionally piloted
aircraft, circumventing regulatory issues in the absence of flight approvals.

� Existing aircraft detection and tracking approaches would need to be modified to ensure
the object can be tracked during the avoidance control, with minimal processing delay.

Quasi-Infinite Horizon Visual Predictive Control

� For circular motion, determining the nominal range value at which the terminal region
shrinks to a point would provide insights into the global domain of operation. Con-
sidering the implications for spiral tracking and collision avoidance, it may then be
possible to provide some added safety guarantees for at least a subset of encounters.

� For spiral motion, a nonlinear controller could be used to derive the terminal region and
penalty matrix. The controller could derived using classical image-based approaches,
similar to that derived in this work. It is expected a terminal region and not a terminal
equality constraint may then result for such spirals. Of course, the nonlinear controller
could also be used for circular motion, generalising the controller for an arbitrary spiral
and offering a more flexibility framework.

� Care should be taken when applying the control framework to ensure the necessary
conditions in which to derive suitable controller can be satisfied. To this end, it would
be possible to extend the control approach beyond spiral tracking and to the common
4-point coplanar servoing problem if desired. A large number of visual control ap-
proaches are compared with respect to this problem, so the endeavour may yield some
informative results. The same can be said for other camera models and image feature
types.



Appendix A

Aviation Flight Rules

Excerpt from Civil Aviation Safety Authority (CASA) Civil Aviation Regulations (CAR)
1998 [29] regarding Rules-of-Air and Right-of-Way

161 Right of way

(a) CAR 161 (1) - An aircraft that is required by the rules in this Division to keep out of
the way of another aircraft shall avoid passing over or under the other, or crossing
ahead of it, unless passing well clear.

(b) CAR 161 (2) - The pilot in command of an aircraft that has the right of way must
maintain its heading and speed, but nothing in the rules in this Division shall relieve
the pilot in command of an aircraft from the responsibility of taking such action as
will best avert collision

162 Rules for prevention of collision

(a) CAR 162 (1) - When 2 aircraft are on converging headings at approximately the
same height, the aircraft that has the other on its right shall give way (with additional
caveats for airships, gliders and balloons

(b) CAR 162 (2) - When two aircraft are approaching head-on or approximately so and
there is danger of collision, each shall alter its heading to the right

(c) CAR 162 (3) - An aircraft that is being overtaken has the right-of-way and the over-
taking aircraft, whether climbing, descending, or in horizontal flight, shall keep out
of the way of the other aircraft by altering its heading to the right, and no subse-
quent change in the relative positions of the two aircraft shall absolve the overtaking
aircraft from this obligation until it is entirely past and clear.

(d) CAR 162 (4) - An overtaking aircraft shall not pass the aircraft that it is overtaking
by diving or climbing

163 Operating near other aircraft

(a) CAR 163 (1) - The pilot in command of an aircraft must not fly the aircraft so close
to another aircraft as to create a collision hazard.
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Coordinate Systems and Transformations

B.1 Local Geodetic Frame, Earth Fixed or World Frame

The world coordinate frame Fw is a fixed reference coordinate system with origin at a
given point of the Earth ellipsoid. For a North-East-Down (NED) representation, the x-
axis points North and the y-axis points East. The z-axis is normal to the Earth’s surface
pointing downwards and assumed to be aligned with the gravity vector.

B.2 Body Fixed Frame

The Body Fixed Frame coordinate frame Fb is a reference coordinate system with origin
at the centre of the mass of the body/vehicle to which it is associated with. The x-axis is
aligned with the longitudinal axis of the vehicle, pointing forwards. The z-axis is aligned
with the normal axis of the vehicle, pointing downwards. The y-axis completes the right-
handed system. Although rotary and fixed wing aircraft differ significantly, the x-axis can
be used to denote the nominal direction of travel or forward velocity. A variable rotation
and transform will exist between the body and world frame as the vehicle rotates and
translates (moves).

B.3 Camera Fixed Frame

The Camera Fixed Frame coordinate frame Fc is a reference coordinate system attached
to a camera. For a perfectly calibrated camera, the origin of the frame coincides with
the camera focal point. The orientation of the camera frame is somewhat arbitrary and
may depend on the camera type (or lens). For the spherical camera used in this work,
the x-axis is the optical axis. The z-axis points downwards and is tangential to the
imaging surface at the optical axis. The y-axis completes the right-handed system. A
fixed rotation and transform will exist between the camera and body frame to which it is
attached (eye-in-hand system).

Angular measurements taken with respect to a camera frame Fc (colatitude and azimuth)
and body Fb (bearing and elevation) can be considered equivalent, if the observations are
of an object positioned at least two orders of magnitude greater than the relative displace-
ment between the body and camera frame origins. Consider a body fixed frame origin Fo

b

positioned at the point (0, 0, 0). Consider now a camera frame origin Fo
c normally dis-

tributed about the body frame origin such that Fo
c ∼ N (0, 0.05). The camera inherits the
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same orientation as the body frame and observes an object O at a distance of 10m. The
camera and body frames are then successively rotated by 5 deg increments in clockwise
direction in both pitch θ and yaw ψ. The results from a Monte-Carlo simulation used to
estimate the distribution of the root-mean-square error of the angular measurements and
range are given below.

B.4 Rotation Matrices

A rotation matrix describes the relationship between the orientation of one coordinate
frame to another. The rotation can be parametrised using Euler angles φ, θ and ψ or
constructed using quaternions. Using Euler angles, three successive rotations Rz(ψ), Ry(θ)
and Rx(φ) from an arbitrary frame Fa to another frame Fb are performed. The rotation
sequence is dented as a Z-Y-X sequence, due to the order of intrinsic rotations and the
associated rotation angles are commonly known as yaw, pitch and roll respectively. The
vector xa defined in Fa can be defined in Fb such that

xb = aRb(φ, θ, ψ)xa (B.1)

xb = Rx(φ)Ry(θ)Rz(ψ)xa (B.2)



B.5. TRANSFORMATION MATRICES 175

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

50

60

70

80
Relative Range Error − RMS PDF

N
o.

 S
am

pl
es

Range (m)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0

50

100

150

200

250

300
Relative Range Error − RMS Histogram

N
o.

 S
am

pl
es

Range (m)

(a) Probability Distribution (b) Histogram

Figure B.3: Expected error in range under the assumption that r �
∥∥btc

∥∥
where

Rx(φ) =

⎛
⎜⎝
1 0 0

0 cosφ sinφ

0 − sinφ cosφ

⎞
⎟⎠ , Ry(θ) =

⎛
⎜⎝
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎞
⎟⎠ , Rz(ψ) =

⎛
⎜⎝
cosψ sinψ 0

− sinψ cosψ 0

0 0 1

⎞
⎟⎠ (B.3)

and

aRb(φ, θ, ψ) =

⎛
⎜⎝
cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

−sinθ sinφ cos θ cosφ cos θ

⎞
⎟⎠ (B.4)

Similarly, by taking the matrix inverse, the vector xb defined in Fb can be defined in Fa

such that

xa = aRb(φ, θ, ψ)−1xb (B.5)

B.5 Transformation Matrices

A transformation matrix describes the relationship between the position of the origin of
one coordinate frame to another. The transformation can be parametrised using simple
vector addition/difference atb or formulated into a diagonal matrix aTb made up of this
vector. Usually, to completely represent a vector in an arbitrary frame Fb and initial
stated with respect to another arbitrary frame Fa both rotation and transformation is
required such that

xb = aRb(φ, θ, ψ)xa + aTb (B.6)

where aTb = (Tx Ty Tz)T in Cartesian notation.
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Spirals

C.1 Optimal Spirals

This Appendix describes the setup of an optimal bang-bang control problem for the
avoidance of static objects in two dimensions based on [220]. The aircraft is considered to
move at a fixed velocity in the xy-plane, and permitted to turn left or right via a change
in heading (angular velocity). Only two possible control actions are considered such that
a single control action u is limited to the control constraint domain U ∈ {−1, 1}. These
actions can be considered as a proxy for left and right avoidance manuevers, and not
necessarily the only possible choices.

First, consider the aircraft state x(t) defined by

x(t) = [r(t) α(t) ψ(t)]T

where r(t) is the range to the object, ψ(t) is the aircraft heading and α(t) is the relative
angular displacement to the object. The equations of motion for a static object encounter
with an aircraft moving with constant velocity v are given by ẋ(t) = f(x(t), u(t) where

ṙ(t) = −v cos(α(t)) (C.1)

α̇(t) = v sin(α(t))/r − u(t) (C.2)

ψ̇(t) = −u(t) (C.3)

Second, consider an arbitrary encounter where r(0) � 0 and T > 0 defines a maneuver
or terminal time considered to be the time of closest approach. The objective of the
optimal control problem is to then maximize the miss distance, or ensure r(T ) is a large
as possible, using only the available controls defined by U. To this end, consider a cost
function J to be maximized such that

J(x(t), u(t), t) = r(T ) (C.4)

J�(x(t), u(t), t) = max
u∈U

(r(T )) (C.5)
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The problem is a Mayer problem with free terminal end points, as T is unknown a priori.
To solve the optimal control problem (C.5), consider the conditions for optimality and
define the Hamiltonian

H(λ(t), x(t), u(t), t) = λT · f(x(t), u(t), t) + L(x(t), u(t)) (C.6)

H(λ(t), x(t), u(t), t) = −λrv cos(α) + λα(v sin(α)/r − u) − λψu (C.7)

where λ = [λrλαλψ] defines the Lagrangian multipliers (adjoint variables) and L(x(t), u(t)) =
0 due to the structure of the cost function. The Lagrangian multipliers satisfy the equa-
tions

λ̇ = −∇H (C.8)

λ̇ = −
(

∂H

∂r
,

∂H

∂α
,

∂H

∂ψ

)
(C.9)

λ̇ =

⎛
⎜⎜⎜⎝

λαv cos(α)/r2

−λrv sin(α) − λαv cos(α)/r

0

⎞
⎟⎟⎟⎠ (C.10)

with boundary conditions

λ(T ) = ∇J |t=T =
(

∂J

∂r

∂J

∂α

∂J

∂ψ

)
|t=T = [1 0 0]T (C.11)

The transversatility condition is given by

J̇ |t=T =
∂J

∂t
|t=T +∇J · ẋ |t=T = 0 (C.12)

J̇ |t=T = [1 0 0] · [ṙ α̇ ψ̇]T |t=T = 0 (C.13)

J̇ |t=T = ṙ|t=T = 0 (C.14)

(C.15)

which implies that

ṙ(T ) = 0 (C.16)

−v cos(α(T )) = 0 (C.17)

cos(α(T )) = 0 (C.18)

Therefore, if the optimal control u� that maximizes the minimum miss distance is followed,
the terminal range condition means α(T ) = ±π/2. This suggests that the optimal spiral
to establish for collision avoidance is in fact a left or right circle about the object.
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Continuing the analysis further, the optimal control in the vicinity of the terminal time
can be found using Pontryagins maximum (minimum) principle. For the optimal control
u� to be a solution to the Mayer problem (C.5) subject to (C.1)-(C.3), it is necessary that
there exists a non-zero continuous function λ(t) that satisfies (C.10)-(C.11) so that for
every t ∈ [0, T ]

H(λ(t), x(t), u�(t), t) = max
U

(H(λ(t), x(t), u(t), t)) (C.19)

H(λ(t), x(t), u�(t), t) = max
u∈[−1,1]

(−λrv cos(α) + λα(v sin(α)/r − u) − λψu) (C.20)

H(λ(t), x(t), u�(t), t) = max
u∈[−1,1]

(u(−λα − λψ)) (C.21)

− λrv cos(α) + λαv sin(α)/r (C.22)

The non-singular control that maximises the Hamiltonian is therfore given by

u = − sign(λα + λψ) (C.23)

Introducing the retrograde or backward time τ = T − t, and considering that the La-
grangian multipliers vary continuously and are subject to the terminal condition λ(T ) =
[1 0 0]T , there exists δ > 0 in the vicinity of the terminal time for τ ∈ (0, δ) such that

sign(λα(τ) + λψ(τ)) = sign(̊λα(0) + λ̊ψ(0)) (C.24)

where the retrograde time is given by the open circles. Writing the control in terms of
the Lagrangian multipliers

u(τ) = − sign(̊λα(0) + λ̊ψ(0)) (C.25)

u(τ) = − sign(̊λα(0)) (C.26)

u(τ) = − sign(λrv sinα(0)) (C.27)

u(τ) = − sign(sinα(0)) (C.28)

Finally, substituting the optimal values for α(T ) and recalling that α(0) in retrograde
time corresponds to α(T ) in normal time

u�(τ) = −1 α(T ) = π/2 (C.29)

u�(τ) = 1 α(T ) = −π/2 (C.30)
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As the control is applied for 0 ≤ t ≤ T , the above result associates the required control
direction with the corresponding optimal spiral direction (inferred by α(T )). If the object
persists to the right of the aircraft, the aircraft must be turning to the left and vice
versa. As switching the control for t ∈ [0, T ] is not permissible, the object must have
been initially positioned to the right of the aircraft as well. This can be inferred using
geometric intuition.

Remarks

� The magnitude of the control value is considered to be less important than its sign
(direction) in the above analysis, and could be altered to a different scale with the
same result.

� The above analysis can be pursued further to obtain the set of initial ranges and
angular displacements for specific control constraints.

� Applying the same approach to determine optimal conical spiral angles for dynamic
objects is not possible if the object intent (heading) is unknown. If the object heading
and speed is known, numerical methods can be used to solve the problem however
[221]. Given the See and Avoid problem constraints, the analysed is not pursued.
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Publications

D.1 Journals

IEEE Trans. Robotics, vol. 30, no. 6, pp. 1441-1454, 2014

Visual Predictive Control of Spiral Trajectories,
A. Mcfadyen, P. Corke and L. Mejias

This paper deals with constrained image-based visual servoing (IBVS) of circular and con-
ical spiral motion about an unknown object approximating a single image point feature.
Effective visual control of such trajectories has many applications for small unmanned
aerial vehicles including surveillance and inspection, forced landing (homing) and col-
lision avoidance. A spherical camera model is used to derive a novel visual predictive
controller (VPC) using stability-based design methods for general nonlinear model pre-
dictive control. In particular, a quasi-infinite horizon visual predictive control (QIH-VPC)
scheme is derived. A terminal region, used as a constraint in the controller structure, can
be used to guide appropriate reference image features for spiral tracking with respect to
nominal stability and feasibility. Robustness properties are also discussed with respect to
parameter uncertainty and additive noise. A comparison to competing visual predictive
control schemes is made and some experimental results using a small quad rotor platform
are given.
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D.2 Conference Papers

Proc. IEEE/RSJ Int. Conf. Robotics and Intelligent Systems (IROS’13), pp. 50-56, Nov. 2013

Aircraft collision avoidance using spherical visual predictive control and
single point features

A. Mcfadyen L. Mejias P. Corke and C. Pradalier

This paper presents practical vision-based collision avoidance for objects approximating
a single point feature. Using a spherical camera model, a visual predictive control scheme
guides the aircraft around the object along a conical spiral trajectory. Visibility, state
and control constraints are considered explicitly in the controller design by combining
image and vehicle dynamics in the process model, and solving the nonlinear optimization
problem over the resulting state space. Importantly, range is not required. Instead, the
principles of conical spiral motion are used to design an objective function that simulta-
neously guides the aircraft along the avoidance trajectory, whilst providing an indication
of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing
a potential solution to the See and Avoid problem for unmanned aircraft and is demon-
strated through a series of experimental results using a small quadrotor platform.

Proc. IEEE/RSJ Int. Conf. Robotics and Intelligent Systems (IROS’12), pp. 1199-1205, Oct. 2012

Rotorcraft collision avoidance using spherical image-based visual servoing
and single point features
A. Mcfadyen P. Corke and L. Mejias

This paper presents a reactive collision avoidance method for small unmanned rotorcraft
using spherical image-based visual servoing. Only a single point feature is used to guide
the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera
model ensures the target always remains visible. A decision strategy to stop the avoidance
control is derived based on the properties of spiral like motion, and the effect of accurate
range measurements on the control scheme is discussed. We show that using a poor range
estimate does not significantly degrade the collision avoidance performance, thus relax-
ing the need for accurate range measurements. We present simulated and experimental
results using a small quad rotor to validate the approach.
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Proc. Int. Conf. Unmanned Aircraft Systems (ICUAS’14), pp. 715-725, May 2014

Decision strategies for automated visual collision avoidance
A. Mcfadyen A. Durand-Petiteville and L. Mejias

This paper provides a preliminary analysis of an autonomous uncooperative collision
avoidance strategy for unmanned aircraft using image-based visual control. Assuming
target detection, the approach consists of three parts. First, a novel decision strategy is
used to determine appropriate reference image features to track for safe avoidance. This
is achieved by considering the current rules of the air (regulations), the properties of spi-
ral motion and the expected visual tracking errors. Second, a spherical visual predictive
control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about
the object. Lastly, a stopping decision based on thresholding a cost function is used to
determine when to stop the avoidance behaviour. The approach does not require esti-
mation of range or time to collision, and instead relies on tuning two mutually exclusive
decision thresholds to ensure satisfactory performance.

Proc. 28th Int. Congress of the Aeronautical Sciences (ICAS’12), Sep. 2012

Visual servoing approach to collision avoidance for aircraft
A. Mcfadyen, L. Mejias and P. Corke

This paper presents a reactive Sense and Avoid approach using spherical image-based
visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved
without requiring an estimate of range. Simulated results for static and dynamic targets
are provided using a realistic model of a small fixed wing unmanned aircraft.

D.3 Technical Reports

Scoping Study for Remotely Piloted Aircraft Systems Integration into Civil
Airspace

A. Mcfadyen, R. Clothier, D. Campbell and G. William

Technical Report: Copyright c© Thales Australia Ltd. and Queensland University of Technology, Melbourne, 2014

CRC5055 Evaluating Unmanned Aircraft Systems for Deployment in Plant
Biosecurity

A. Mcfadyen, F. Gonzalez, D. Campbell and D. Eagling

Technical Report: Copyright c© Cooperative Research Centre for Plant Biosecurity, Canberra, 2014



Appendix E

Parameters

E.1 Variables & Constants

Variable Description
p Image feature point measured in camera frame
s Spherical image feature vector consisting of σ and γ angles
s̆ Image feature convergence/divergence vector
e Spherical image feature error vector consisting of eσ and eγ

eσ Colatitude image feature error
eγ Azimuth image feature error
σ Colatitude angle as observed from a spherical camera
γ Azimuth angle as observed from spherical camera
σ̆ Image feature convergence with respect to colatitude angle.
γ̆ Image feature convergence with respect to azimuth angle.
Ls Full spherical image Jacobian/Interaction matrix
Lz Spherical image Jacobian/Interaction matrix for z axis components

Lxy
Spherical image Jacobian/Interaction matrix for x and y axis
components

c Conical angle vector consisting of β and α angles
β Elevation angle as observed from a body frame
α Bearing angle as observed from body frame
u1 Control vector for x velocity control using LQR/PID control
u2 Control vector for y velocity control using LQR/PID control
u3 Control vector for z axis using visual control
u Full control vector consisting of all inputs, u1, u2 and u3
u Arbitrary single control
a Lower control limits for u3
b Upper control limits for u3

x1, xx State vectors for x velocity control
x2, xy State vectors for y velocity control
x3, xz State vectors for z axis using visual controllers

x Full state vector consisting of all states, x1, x2 and x3
A,B,C,D Linearised system state space matrices for LQR/PID control

As,Bs System state space matrices for visual predictive control
Un Quadrotor motor command for motor n

Υ Quadrotor low-level control vector
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vt Object speed
Φ Object inertial heading
ᾱ Object relative bearing
β̄ Object relative elevation
ψ̄ Platform/Camera relative heading
r Relative aircraft to object range

rm Quadrotor motor thrust force displacement
rp Quadrotor motor propeller radius
vx Platform/Camera forward velocity
vy Platform/Camera lateral velocity
vz Platform/Camera vertical velocity
ωx Platform/Camera roll rate
ωy Platform/Camera pitch rate
ωz Platform/Camera yaw rate
φ Platform/Camera roll angle rate
θ Platform/Camera pitch angle
ψ Platform/Camera yaw angle
F Translational force
FT Thrust force
FD Drag force
J Inertia matrix

Jnm Inertia matrix components about axis n and m

J
Objective function value with only image feature states included for
visual predictive control.

Js
Objective function value with only image feature states weighted for
visual predictive control

Jψ
Augmented objective function value with image feature and yaw states
for visual predictive control

τ Torque / independent time derivative variable
aφ Roll dynamic constant (1st order approximation)
aθ Pitch dynamic constant (1st order approximation)
aψ Yaw rate dynamic constant (1st order approximation)
δtφ Roll dynamic time delay
δtθ Pitch dynamic time delay
δtψ Yaw rate dynamic time delay
δtFT

Roll dynamic time delay
t Time
td Collision avoidance detection and avoidance instance.
ts Collision avoidance resolution instance.
Ti Image processing sampling time
Ts Simulation sampling time
Tp Prediction horizon for visual predictive controllers
Tc Control horizon for visual predictive controllers
Tp Prediction horizon for visual predictive controllers
Tv Controller sampling time
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λ Partitioned spherical visual controller gain
λi Partitioned spherical visual controller integral gain
λψ Augmented objective function weighting for visual predictive control
λR Control scale factor for visual predictive control
λP Terminal state scale factor for visual predictive control
λη Avoidance decision threshold scaling factor

Qs
State weighting matrix element for the image feature states for visual
predictive control

Q State weighting matrix for visual predictive control / LQR controller
and Kalman filter weighting matrix

R Control weighting matrix for visual predictive control / LQR controller
and Kalman filter weighting matrix

P Terminal state weighting matrix for visual predictive control
kp Proportional control gain
ki Integral control gain
kd Derivative control gain
K Linear Quadratic Regulator / Kalman filter gain
Ke Linear Quadratic Regulator Integral gain
Kv Linear controller gain (LQR type) for QIH-VPC control design
KF Kalman filter gain matrix
η Avoidance decision threshold
ε Avoidance decision threshold

κ
Scaling factor for closed loop poles of the linear feedback controller used
in the derivation of the terminal penalty matrix for QIH-VPC

ς Terminal region constant for QIH-VPC
Ως Terminal region for QIH-VPC (image region)
Ωη Approximate avoidance decision performance region
Ωn Quadrotor motor speed for motor n

M Approximate domain of attraction associated (image region)
ξs,ξṡ Variance on s and ṡ measurements
ξσ,ξγ Variance on σ and γ measurements
ξσ̇,ξγ̇ Variance on σ̇ and γ̇ measurements

q Additive noise to image feature measurements
qc Additive noise to controls/actuators
wg Additive noise to platform orientation (attitude) to model turbulence
wa Additive noise to platform translational velocity to model ambient wind
k,n Indices
aRb Rotation matrix from frame b to frame a
aTb Transformation matrix from frame b to frame a
atb Relative vector from from frame b to frame a

m Quadrotor mass
g Gravitational constant
F Coordinate frame
Table E.1: Complete list of variables and constants including notation and description
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E.2 System Parameters - Classic Visual Control

Parameter Value Parameter Value
τR 155 Rm 255
τG 70 Gm 255
τB 43 Bm 255

Amin 45pix Amax 2500pix
λ 0.2 vx 0.1
a (−0.5, −0.35) b (0.5, 0.35)
Ts 0.1 - -

Table E.2: Common system, visual controller and object detection (blob detection) parameters for custom
Parrot ARDrone

Controller kp ki kd

vx 0.25 0.25 0.01
vy 0.25 0.25 0.01

Table E.3: Proportional-Integral-Derivative (PID) controller parameters for forward vx and lateral vy

velocity control of custom Parrot ARDrone [287]

E.3 System Parameters - Visual Predictive Control

Parameter Simulated - Circular Motion Simulated - Spiral Motion
m (kg) 0.67 0.67

Tp 15 15
Ts (s) 0.10 0.10
r∗ (m) 2.00 2.00

v∗
x (ms−1) 0.10 0.10

v∗
z (ms−1) 0.00 -

ω∗
z (degs−1) 2.87 -

κ 0.2635 -
ς 9.3937 -
Q 0.5I2 I2
R I2 02

P
(
17.4134 2.1785
2.1785 1.4304

)
2I2

Kv

(−0.7057 0.0079
−0.0192 0.7078

)
-

q(t) (rad) N (0, 0.022) N (0, 0.022)
Table E.4: Visual predictive controller parameters for simulated implementations
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Parameter Experimental - Spiral Experimental - Collision
m (kg) 0.67 0.67

Tp 10 10
Ts (s) 0.04 0.04
r∗ (m) 2.00 2.00

v∗
x (ms−1) 0.20 0.20

Qs 1.00 1.00
λψ 0.10 0.10
λR 1 × 10−8 1 × 10−8

λP 2.00 2.00
ε - {0.6, 0.8, 1.8, 1.9}

q(t) (rad) - N (0, 0.022)
Table E.5: Visual predictive controller parameters for experimental implementations

Parameter Nominal (*) Min Max
vz (ms−1) 0.00 -0.50 0.50

ωz (degs−1) 2.87 -10.00 10.00
Table E.6: Visual predictive control constraints for simulated implementation

Parameter Nominal (*) Min Max
vz (ms−1) 0.00 -0.50 0.50

ωz (degs−1) 2.87 -10.00 10.00
Table E.7: Visual predictive control constraints for experimental implementation

Controller K Ke

vx

(
−0.5021 0.0157 0.0087

)
0.3331

vy

(
0.6314 0.0287 0.0143

)
-0.4729

Table E.8: Linear Quadratic Regulator (LQR) with integral action (LQRI) controller gains for forward
vx and lateral vy velocity control of custom Ascending Technologies (AscTec) Hummingbird[269]

Parameter Value Parameter Value
aθ -10.1041 δtθ 0.0602
aφ 10.5129 δtφ 0.0529
aψ -5.8997 δtφ 0.1107
- - δtFT

0.0410
Table E.9: Linearised x and y axis system dynamic constants custom Ascending Technologies (AscTec)
Hummingbird
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State A B C D⎛
⎜⎜⎝

ẋ

θ

θ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 −0.1054 −0.0011
0 0.3018 0.0107
0 −5.2759 0.9434

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−0.0036
0.0566
0.6560

⎞
⎟⎟⎠

(
1 0 0
0 1 0

) (
0
0

)

⎛
⎜⎜⎝

ẏ

φ

φ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0.1097 0.0012
0 0.3365 0.0112
0 −4.6866 0.9504

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0.0032
0.0496
7.4097

⎞
⎟⎟⎠

(
1 0 0
0 1 0

) (
0
0

)

(
ψ

ψ̇

) (
1 0.0107
0 0.8993

) (
9.22 × 10−4

0.1007

) (
1 0
0 1

) (
0
0

)

Table E.10: Linearised x and y axis state space system matrices. The systems are used for the Kalman
filters and Linear Quadratic Regulator with integral action (LQRI) controllers for forward vx and lateral
vy velocity control of the custom Ascending Technologies (AscTec) Hummingbird

State Q R⎛
⎜⎜⎝

ẋ

θ

θ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.0011 −0.0063 −0.0275
−0.0063 0.0805 0.8369
−0.0275 0.8369 174.9295

⎞
⎟⎟⎠

(
0.0056 0

0 5.556 × 10−4

)

⎛
⎜⎜⎝

ẏ

φ

φ̇

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0.0012 0.0068 0.0334
0.0068 0.0856 0.8920
0.0334 0.8920 175.3554

⎞
⎟⎟⎠

(
0.0056 0

0 5.556 × 10−4

)

(
ψ

ψ̇

) (
0.0002 1.4582 × 10−5

1.4581 × 10−5 0.0016

) (
5.5556 × 10−4 0

0 0.0056

)

Table E.11: Kalman filter parameters for forward vx, lateral vy and yaw ψ velocity estimation of the
custom Ascending Technologies (AscTec) Hummingbird

E.4 QIH-NMPC Conditions

The QIH-NMPC framework requires the following conditions to hold for the process model
f(x(t), u(t)) and associated states x(t) and controls u(t)

A1 That f(x(t), u(t)) is twice continuously differentiable and f(0, 0) = 0. For a general
non-zero reference the process model must be shifted such that f(x∗, u∗) = 0.

A2 U ⊂ R
m, 0 ∈ U and contained in the interior of U.

A3 f(x(t), u(t)) has a unique solution for any initial state x0 and piecewise continuous
u(·) ∈ U
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E.5 System Parameters - Monte-Carlo Simulations

Parameter Nominal (*) Min Max
Ts (s) 1/40 - -
Tv (s) 1/40 - -
Ti (s) 1/10 - -
t (s) 60 - -

rc (m) {0.125, 0.25, 0.5} - -
Tp 10 - -

r∗ (m) 2.00 - -
Qs 0.01 - -
λψ 0.10 - -
λR 1 × 10−8 - -
λP 2.00 - -
ε (0.02, 0.30) - -
η (0.125, 8) - -

xo (m) (-2,0,-10) - -
vx (ms−1) 0.20 - -
vy (ms−1) 0.00 - -
vz (ms−1) 0.00 -0.50 0.50

ωx (degs−1) 0.00 - -
ωy (degs−1) 0.00 - -
ωz (degs−1) 2.87 -10.00 10.00

ro (m) - 5 50
vt (ms−1) - -0.50 0.50

tcpa (s) - 5 55
q(t) (deg) N (0, 2) - -

qc(t) (deg/degs−1/N) N4(04, cov(1, 1, 0.012, 0.5)) - -
wa(t) (m) N3(03, cov(0.02, 0.02, 0.00) - -

wg(t) (deg) N (03, I3) - -
Table E.12: Monte-Carlo simulation parameters for analysing avoidance and resolution decision perfor-
mance
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E.6 Collision Avoidance System Metrics

P(MA) Probability of missed detection
P(IC) Probability of induced collision

P(CACR) Probability of correct avoidance
(no collision) and correct
resolution (return to path)

P(CAIR) Probability of correct avoidance
(no collision) and incorrect
resolution (no return to path)

P(PACR) Probability of precautionary avoidance
(improved miss distance) and correct
resolution (return to path)

P(PAIR) Probability of precautionary avoidance
(improved miss distance) and incorrect
resolution (no return to path)

P(+) = P(CACR) + P(CAIR) Probability that the system, including
P(PACR) avoidance and precautionary avoidance,

results in success from a
(Probability Positive Result) collision avoidance perspective
P(-) = P(MA) + P(IC) Probability that the system, including

avoidance and precautionary avoidance,
(Probability Negative Result) results in failure from a

collision avoidance perspective

Table E.13: Performance metrics used to derive modified System Operating Curves (SOC)



References

[1] International Civil Aviation Organisation (ICAO), “Cir 328 AN/190 Unmanned
Aircraft Systems (UAS),” Tech. Report, Montreal, Canada, 2011

[2] A. Watts, V Ambrosia and E. Hinkley “Unmanned aircraft systems in remote sens-
ing and scientific research: classification and considerations of use,” Remote Sensing,
vol. 4, pp. 1671-1692, June 2012

[3] C. Korpela, M. Orsag, T. Danko, B. Kobe, C. McNeil, R. Pisch and P. Oh, “Flight
stability in aerial redundant manipulators,” IEEE Int. Conf. Robotics and Automa-
tion (ICRA’12), pp. 3529-3530, May 2012

[4] M. Orsag, C. Korpela, S. Bogdan and P. Oh, “Hybrid adaptive control for aerial
manipulation,” Journal of Intelligent & Robotic Systems, vol. 73, no. 1-4, pp. 693-
707, Jan. 2014

[5] C. Zhang and J. Kovacs, “The application of small unmanned aerial systems for
precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693-712,
Dec. 2012

[6] A. Mcfadyen, F. Gonzalez, D. Campbell and D. Eagling, “Evaluating unmanned
aircraft systems for deployment in plant biosecurity,” Tech. Report, Canberra, Aus-
tralia, 2014

[7] B. Faicala, F. Costaa, G. Pessinb, J. Ueyamaa, H. Freitasa, A. Colomboa, P. Finia,
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