
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

7-30-2020

Formal Language Constraints in Deep Reinforcement Learning for Formal Language Constraints in Deep Reinforcement Learning for

Self-Driving Vehicles Self-Driving Vehicles

Tyler Bienhoff
University of Nebraska - Lincoln, tbienhoff@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Bienhoff, Tyler, "Formal Language Constraints in Deep Reinforcement Learning for Self-Driving Vehicles"
(2020). Computer Science and Engineering: Theses, Dissertations, and Student Research. 197.
https://digitalcommons.unl.edu/computerscidiss/197

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/334983156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/197?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages

FORMAL LANGUAGE CONSTRAINTS IN DEEP REINFORCEMENT

LEARNING FOR SELF-DRIVING VEHICLES

by

Tyler Bienhoff

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Stephen Scott

Lincoln, Nebraska

August, 2020

FORMAL LANGUAGE CONSTRAINTS IN DEEP REINFORCEMENT

LEARNING FOR SELF-DRIVING VEHICLES

Tyler Bienhoff, M.S.

University of Nebraska, 2020

Adviser: Stephen Scott

In recent years, self-driving vehicles have become a holy grail technology that, once

fully developed, could radically change the daily behaviors of people and enhance

safety. The complexities of controlling a car in a constantly changing environment

are too immense to directly program how the vehicle should behave in each specific

scenario. Thus, a common technique when developing autonomous vehicles is to use

reinforcement learning, where vehicles can be trained in simulated and real-world

environments to make proper decisions in a wide variety of scenarios. Reinforcement

learning models, however, have uncertainties in how the vehicle acts, especially in

a previously unseen situation that can lead to dangerous situations with humans

onboard or nearby. To improve the safety of the agent, we propose formal language

constraints that augment a standard reinforcement learning agent while being trained

in a simulated self-driving environment. The constraints help the vehicle navigate

turns and other situations by penalizing the agent when an action is chosen that

could lead to a dangerous situation such as a collision. Empirically, we show that

the agent, with these constraints, has a slight performance improvement as well as a

significant decrease in collisions. Future work can expand upon the current constraints

and evaluate using different reinforcement learning algorithms with constraints for

training the self-driving agent.

iii

Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Background: Machine Learning and Safety Constraints 5

2.1 Supervised Learning . 6

2.1.1 Inputs and Outputs . 6

2.2 Artificial Neural Networks . 8

2.2.1 Gradient Descent & Backpropagation 9

2.2.2 Rectified Linear Unit . 13

2.3 Convolutional Neural Networks . 15

2.3.1 Convolutional Layer . 15

2.3.2 Pooling Layer . 17

2.3.3 Fully Connected Layer . 17

2.4 Reinforcement Learning . 18

2.4.1 Key Concepts . 19

2.4.2 Policy Optimization . 22

2.5 Safety Constraints . 23

2.5.1 Optimization Criterion . 23

iv

2.5.2 Exploration Process . 24

2.5.3 Formal Language Constraints 24

3 Related Work 28

4 Experimental Setup 31

4.1 CARLA Environment . 31

4.2 CARLA Task . 33

4.3 RL Agent . 34

4.4 Constraints . 37

4.4.1 Strict Turn Constraint . 39

4.4.2 Loose Turn Constraint . 40

4.4.3 Dithering Constraint . 42

5 Results & Discussion 45

5.1 Baseline Agent . 46

5.2 Strict Turn Constraint . 47

5.3 Loose Turn Constraint . 52

5.4 Dithering Constraint . 57

6 Conclusion & Future Work 64

Bibliography 66

v

List of Figures

2.1 A single neuron within a neural network. This neuron has three inputs

which are multiplied by the respective weights and added together with

the bias to compute the linear combination. This value passes through an

activation function that gives the output y. 9

2.2 A simple neural network with three inputs (x1, x2, x3), a single hidden

layer (h1, ..., h4), and a single output y. W1 and ~b1 are the weight matrix

and bias vector for the hidden layer. W2 and ~b2 are the weight matrix and

bias vector for the output layer. 10

2.3 The sigmoid activation function (blue) and its derivative (red). 14

2.4 The rectified linear activation function. 15

2.5 A 2× 2 kernel over a 3× 3 single channel image with stride 1. 16

2.6 A max-pooling example with a 2× 2 filter. 18

2.7 The formal language constraint framework. The translation layer creates

the token for the recognizer which provides reward shaping, state augmen-

tation, and restricts the available actions. Source: [23] 26

4.1 The architecture for the neural network that approximates the policy of

the RL agent. 36

4.2 The DFA for the Strict Turn constraint. 40

vi

4.3 The DFA for the Loose Turn constraint. Any transitions not shown go to

q(0). 42

5.1 Collision rate and its standard deviation after 1 million time steps when

using the Strict Turn constraint. A lower collision rate is better. 48

5.2 Collision rate and its standard deviation after 2 million time steps when

using the Strict Turn constraint. A lower collision rate is better. 50

5.3 Collision rate and its standard deviation after 1 million time steps when

using the Loose Turn constraint. 53

5.4 Collision rate and its standard deviation after 2 million time steps when

using the Loose Turn constraint. 55

5.5 Collision rate and its standard deviation after 1 million time steps when

using the Loose Turn constraint. 59

5.6 Collision rate and its standard deviation after 2 million time steps when

using the Loose Turn constraint. 61

vii

List of Tables

4.1 The translation function for the Strict Turn constraint. 40

4.2 The translation function for the Loose Turn constraint. 41

4.3 The transition table of the DFA for the Loose Turn constraint. 42

4.4 The translation function for the Dithering constraint. 43

4.5 The transition table of the DFA for the Dithering constraint. 44

5.1 The results of our baseline agent after 1 million and 2 million time steps

averaged over 10 seeds compared to the CARLA RL agent from [9], which

only reports the success rate. Higher success rates are better while lower

collision rates are better. 46

5.2 Test results when using the Strict Turn constraint without augmentation

after 1 million time steps. “Suc.” is the success rate, “Time.” is the timeout

rate, and “Col.” is the collision rate. 47

5.3 Test results when using the Strict Turn constraint with augmentation after

1 million time steps. 47

5.4 Test results when using the Strict Turn constraint without augmentation

after 2 million time steps. 49

5.5 Test results when using the Strict Turn constraint with augmentation after

2 million time steps. 49

viii

5.6 The difference in collision rates with and without state augmentation for

the Strict Turn constraint. A positive value means the collision rate is

lower when the agent used state augmentation compared to not using

state augmentation. 51

5.7 The difference in collision rates from tests run halfway through and after

fully training using the Strict Turn constraint. A positive value means

the collision rate decreases after fully trained compared to testing halfway

through training. 51

5.8 Test results when using the Loose Turn constraint without augmentation

after 1 million time steps. 52

5.9 Test results when using the Loose Turn constraint with augmentation after

1 million time steps. 52

5.10 Test results when using the Loose Turn constraint without augmentation

after 2 million time steps. 54

5.11 Test results when using the Loose Turn constraint with augmentation after

2 million time steps. 54

5.12 The difference in collision rates with and without state augmentation for

the Loose Turn constraint. A positive value means the collision rate is

lower when the agent used state augmentation compared to not using

state augmentation. 56

5.13 The difference in collision rates from tests run halfway through and after

fully training using the Loose Turn constraint. A positive value means

the collision rate decreases after fully trained compared to testing halfway

through training. 57

5.14 Test results when using the Dithering constraint without augmentation

after 1 million time steps. 58

ix

5.15 Test results when using the Dithering constraint with augmentation after

1 million time steps. 58

5.16 Test results when using the Dithering constraint without augmentation

after 2 million time steps. 60

5.17 Test results when using the Dithering constraint with augmentation after

2 million time steps. 60

5.18 The difference in collision rates with and without state augmentation for

the Dithering constraint. A positive value means the collision rate is lower

when the agent used state augmentation compared to not using state aug-

mentation. 62

5.19 The difference in collision rates from tests run halfway through and after

fully training using the Dithering constraint. A positive value means the

collision rate decreases after fully trained compared to testing halfway

through training. 62

1

Chapter 1

Introduction

The benefits of self-driving vehicles are enormous and could potentially change how

millions of people move around in their daily lives. The average American spends

310 hours driving every year [13]; with autonomous vehicles, this is additional time

each person could spend working or otherwise enriching their lives. When it comes to

safety, 93% of vehicle accidents are a result of “human errors and deficiencies” [32].

Hence, there is substantial room for reduction in accidents with an automated system

compared to a human driver since machines can have additional sensors, compute

decisions faster, and do not become fatigued or distracted when driving.

An autonomous vehicle (AV) is one that operates with some level of automation.

The Society of Automotive Engineers (SAE) defines six levels of automation for vehi-

cles from level 0 with no automation all the way to level 5 [16]. At level 5, the vehicle

is fully autonomous and can operate on all roadways in all circumstances. While

lower levels of automation are currently available (e.g., basic cruise control or Tesla

autopilot) and can substantially improve the safety of a vehicle when paired with a

human driver [3], we are focusing on level 5, fully autonomous systems that operate

without any human operator.

Researchers have been working on AVs for decades. In 1988, researchers at

Carnegie Mellon built ALVINN [22], an AV that used a simple neural network to steer

2

and navigate on a road. In the 2000s, the US Defense Advanced Research Projects

Agency (DARPA) launched the DARPA Grand Challenge to spur development to cre-

ate fully autonomous ground vehicles hosting several events over the years. In 2005, 5

of the 23 teams competing in the challenge finished the 212-kilometer off-road course

with fully autonomous vehicles [2]. In 2007, 6 of 11 teams completed a 96-kilometer

urban course obeying all traffic laws [4]. Despite these promising early results and

many of the participants working on AVs after these challenges, self-driving cars have

not yet arrived for the average consumer to use.

Nevertheless, major technology companies, startups, and car manufacturers con-

tinue to develop technology for AVs. Waymo, a sister company of Google, is one of

the leading companies whose test vehicles travel an average of 13,000 miles between

disengagements where a safety driver monitoring the vehicle must take control [5]. In

April 2017, Waymo launched a limited self-driving taxi service in Phoenix, Arizona

and even runs some vehicles without safety drivers or any other employees in the

vehicle [28, 25]. While the service is still running, it is limited to several hundred

preapproved participants and has not expanded beyond the small region in Phoenix.

Tesla is also developing and even selling self-driving technology to consumers for

thousands of dollars which they say will one day make their vehicles fully autonomous.

Currently, the software, called Autopilot, can operate near autonomously on high-

ways, maintaining the position in the lane, slowing down or speeding up based on

traffic, and even automatically changing lanes to pass slow vehicles and take highway

exchanges [1]. However, as the vehicle is not fully autonomous, the driver still has to

pay attention and be prepared at any time to take control of the vehicle. Further-

more, the car lacks the capability to drive in basic urban environments as it currently

does not respond to stop signs, traffic lights, or other road signs. Elon Musk, the

CEO of Tesla, claims that Teslas will be fully autonomous and able to drive without

3

a human operator by the end of 2020 [17]. However, the deadline for this claim is not

likely to be met with other companies and experts believing that AVs are still years

away from becoming widespread [6, 18].

As researchers and companies continue to develop AV technology, they must deal

with the extensive complexities of building a system that can sense, interpret, and

safely and efficiently act in an ever-changing environment. Machine learning and re-

inforcement learning models have emerged as leading techniques to build a system

that can train in simulated and real environments and teach itself how to properly be-

have when driving. The majority of the time, a well-trained model will make accurate

choices but can sometimes make poor decisions, especially due to the stochastic prop-

erties of most algorithms. Since most machine learning models behave as a “black

box,” it is often not known why a specific decision is made and how to prevent such

an action from occurring again in the future. A safe reinforcement learning algorithm

attempts to eliminate these bad outcomes from the model. Thus, allowing an agent to

freely learn how to solve the task while reducing the number of dangerous situations

the agent encounters. One technique to increase the safety of agents is to impose out-

side constraints on the actions an agent can make to prevent the agent from reaching

a dangerous state. The constraints can either limit the available actions to the agent

or reduce the reward received by the agent when taking the action.

The following are the contributions presented in this work:

• We add a formal constraint framework to a baseline reinforcement learning

agent in a simulated driving environment. Previous works have used constraint-

like behaviors to assist self-driving agents, and this framework was previously

introduced for reinforcement learning; however, we are the first to add a formal

framework to a self-driving environment.

4

• We develop three constraints to improve the performance and safety of the agent

in the environment: Strict Turn, Loose Turn, and Dithering constraints.

– The Strict Turn constraint helps the agent navigate turns in intersections

by penalizing the agent for steering in the wrong direction.

– The Loose Turn constraint follows a similar idea as the Strict Turn con-

straint but is less restrictive in raising violations.

– The Dithering constraint assists the agent when driving straight by raising

violations when the vehicle is steering back and forth or dithering in the

lane.

• The constraints are empirically evaluated in the simulated environment with

various hyperparameters. Overall, the constraints reduce the number of colli-

sions the agent is involved in while successfully completing the same amount

of episodes. The Dithering constraint provides a small, but consistent improve-

ment to the agent, while the Strict Turn constraint, in specific configurations,

provides the largest reduction in collisions. The results provide a promising ex-

ample of how the constraint framework can improve the performance and safety

of the agent.

The remainder of this thesis is organized into the following chapters. Chapter 2

provides background information on basic machine learning and reinforcement learn-

ing techniques as well as the formal language constraint framework. Chapter 3 dis-

cusses previous work related to this thesis. Chapter 4 explains the experimental setup

including the environment, task, and base agent along with the constraints tested in

this study. Results and related discussion of the tested constraints are provided in

Chapter 5. Finally, Chapter 6 provides a summary and suggestions for potential

related future work.

5

Chapter 2

Background: Machine Learning and Safety Constraints

Machine earning (ML) is a subfield of artificial intelligence within computer science.

The goal in machine learning is for a system to automatically learn to complete a task

from experiences without being explicitly programmed to complete the task. Machine

learning algorithms generalize previous information to make predictions for new data

that has not been seen before. In his 1997 book about ML [19], Mitchell gives the

following definition, “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at

tasks T, as measured by P improves with experience E.”

Deep learning is a subfield within machine learning that has emerged over the

past few years as advances in computing and big data have allowed ML models with

millions of parameters to solve increasingly difficult tasks. Earlier models typically

were much smaller since training larger networks was infeasible. Current state-of-the-

art deep learning models can surpass human-level capabilities in specific tasks such

as the ImageNet challenge where the goal is to classify millions of images into more

than 21,000 classes [8].

This chapter provides a brief overview of the machine learning algorithms used in

this paper. In Section 2.1, we introduce the supervised learning task within machine

learning. Section 2.2 introduces neural networks, which have emerged as a very

6

effective tool for solving a variety of supervised learning problems. Section 2.3 focuses

on convolutional neural networks, a popular variant of neural networks often used

for image processing. Section 2.4 introduces reinforcement learning and the actor-

critic algorithm. Finally, Section 2.5 describes formal constraints with respect to

reinforcement learning.

2.1 Supervised Learning

One common task within machine learning is supervised learning. Given some input-

output pairs as training examples, the goal in supervised learning is to learn a function

that maps the inputs to the outputs as accurately as possible. That is, we want to

find a function F , such that F (X) ≈ Y , where X represents the input set and Y

represents the corresponding outputs also known as labels. The learned function can

be used with unseen inputs to predict their corresponding labels. One example of

supervised learning is classification where the goal is to classify or separate inputs

into two or more categories. Hence, the function must learn to identify features in

the inputs that separate examples with different labels.

2.1.1 Inputs and Outputs

Inputs and outputs can vary greatly depending on the problem. Some possible input

types include images, text, and vectors of real or discrete values or any combination of

these. For some machine learning algorithms, inputs must be encoded into a vector

of real numbers. For example, an n × m RGB image can be represented with a

(3× n×m)-dimension vector of normalized real values with the red, green, and blue

values of every pixel each corresponding to some value in the vector.

To encode a categorical attribute as a vector of real numbers, a technique called

7

one-hot encoding is used. Each possible value of the attribute is added as a binary

variable. A value of “1” is given to the variable representing the current value of the

attribute, and the variables representing the other possible values are given a value

of “0.” For example, if one of the attributes is color with possible values of “red,”

“green,” and “blue,” three binary variables are created. If a given training example

has the color green, then the one-hot encoding would be [0, 1, 0] with these variables

corresponding to red, green, and blue, respectively.

Outputs are typically a real number or a vector of real numbers that can encode

the desired label. Continuing the previous example with an image as the input, the

goal might be to classify images depending on whether they contain a car, a truck,

or an airplane. Hence, the output could be a vector of three real values with each

value representing a category and how likely the image is to be in the category. The

softmax function [11], defined in Equation 2.1, normalizes the output values and

provides a probability distribution for which category the image belongs to based on

the ML model based on the output values.

softmax(xi) =
exi∑
j e

xj
(2.1)

The output value with the highest probability after applying the softmax function is

the model’s categorization of the image and also provides a confidence level of the

model in the prediction. An output vector of [0.40, 0.04, 0.06] would be converted

to the following probability distribution [80%, 8%, 12%] with the model choosing the

fist category to classify the input. Furthermore, the model has higher confidence

with this prediction compared to, for example, another probability distribution with

[50%, 30%, 20%] where the model still classifies the image in the first category but

with less confidence. This covers just one of the many input and output encoding

8

methods commonly used with machine learning algorithms.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a commonly used supervised learning algo-

rithm. They were originally inspired by biological neural networks found in human

and animal brains and involve connecting together thousands or millions of pro-

cessing nodes called neurons. Each neuron takes some inputs, performs a simple

computation, and produces an output that is usually passed as input to many other

neurons where more simple computations occur. The computation involves weight-

ing each input and computing the linear combination of these values. For example,

a neuron with n inputs (x1, x2, . . . , xn) and weights (w1, w2, . . . , wn) would compute

z = w1x1 +w2x2 + · · ·+wnxn+ b, where b is the bias term that is adding to the linear

combination. An activation function, such as the sign function or a step function, is

applied to the linear combination to generate the output y = g(z), where g is the

activation function. For example, if the sign function is used, the output will be 1 if

the linear combination z is positive, −1 if z is negative, and 0 if z is 0. Figure 2.1

illustrates a single neuron with three inputs.

The neurons are organized into layers with a typical neural network consisting of

a single input layer, one or more layers of neurons known as hidden layers, and a

single output layer. In a dense or fully connected ANN, all neurons directly receive

a weighted input from every neuron in the previous layer. The network transmits

signals from the input nodes through the hidden layers to the output nodes to process

information with the input layer representing a single training sample and the output

layer containing the predicted label. Figure 2.2 contains a simple neural network

with three inputs, a single hidden layer, and one output. W1 and W2 are the weight

9

Figure 2.1: A single neuron within a neural network. This neuron has three inputs
which are multiplied by the respective weights and added together with the bias to
compute the linear combination. This value passes through an activation function
that gives the output y.

matrices for the inputs to the hidden layer and output layer, respectively, whereas ~b1

and ~b2 and the bias vectors for the respective layers.

2.2.1 Gradient Descent & Backpropagation

Given a specific input, changing the values of the weight matrices and bias vectors

changes the value of the output. Hence, these are the parameters of interest that

must be optimized or “trained” for the neural network to make accurate predictions

for the given task. One method to find optimal weight and bias values is to do a brute

force parameter search. However, even using binary search techniques to speed this

up, the large number of parameters in a moderately sized neural network (often in

the millions) makes this search computationally infeasible. Hence, another technique

called stochastic gradient descent is commonly used to find the optimal parameters

for the neural network.

Stochastic gradient descent is an optimization algorithm with the goal of finding

the parameters (i.e., the weights and biases of the neural network) that minimize an

10

Figure 2.2: A simple neural network with three inputs (x1, x2, x3), a single hidden

layer (h1, ..., h4), and a single output y. W1 and ~b1 are the weight matrix and bias

vector for the hidden layer. W2 and ~b2 are the weight matrix and bias vector for the
output layer.

error provided by a loss function. There are a variety of loss functions with the goal

being to quantify how accurate the machine learning model is at labeling inputs to the

model. One common loss function is the sum of squared errors given in equation 2.2.

This is an appealing loss function as its gradient can be efficiently computed. W is

the set of weight matrices to optimize, D is the set of training examples, ~td is the

target output for training example d, and ~yd is the predicted output of the model

with weights W for training example d. The squared error between the target label

and predicted label is summed for each training instance to give the error value for

the given set of weights with the error function being lower when the predicted and

target outputs are closer together.

E(W) =
1

2

∑
d∈D

(~td − ~yd)
2 (2.2)

11

Gradient descent search is used to minimize this function. We will illustrate gradient

descent on a simple example before expanding to large neural networks with the full

backpropagation algorithm. Suppose we have a single linear neuron that computes a

weighted sum of its inputs without any activation function as shown in equation 2.3:

y = w1x1 + w2x2 + ...+ wnxn + b = ~w · ~x+ b (2.3)

With the simple, neuron the error function will be convex with a global minimum.

For gradient descent search, the weight vector is initialized with random values, then

repeatedly modified with small updates. Each update moves the weight vector in the

direction of the steepest descent in order to minimize the error function as quickly as

possible. This process continues until the global minimum value of the error function

is reached, and hence, we have the optimal weight values.

The direction of steepest descent is found by calculating the derivative of the error

function with respect to W and the weights are updated in the opposite direction of

the gradient:

wi ← wi −∆wi(t) (2.4)

where

∆wi(t) = η
∂E

∂wi
. (2.5)

Here wi is each component of the weight matrix and η is the learning rate which is a

positive constant that determines the step size in updating the gradient. The update

is negative to move in the direction that decreases E. We use ∆wi(t) to indicate the

update provided at each step. Given that the learning rate is small enough and the

error function is convex, it is guaranteed to converge to the global minimum using

this update rule.

12

To use gradient descent on a neuron with an activation function, the function

must be differentiable to find the update direction. Hence, the step function cannot

be used and must be replaced by a differentiable function such as the sigmoid function,

σ(x) = 1
1+e−x . The sigmoid function squashes its input which can be any real number

to a range 0 to 1 that is monotonically increasing.

To scale up to a network with multiple neurons and hidden layers, gradient de-

scent can be applied independently at each neuron to update the weights. However,

only output nodes have a target value directly provided by the target label of the

example that can be used in finding the gradient of the loss function. Nevertheless,

backpropagation uses the chain rule to find the gradient with respect to each weight

one layer at a time moving backward from the output layer through the hidden lay-

ers. The chain rule allows a calculation of how much each weight contributes to the

various outputs, and hence, how much each weight should be updated based on the

loss function for the current training example.

It is necessary to choose a loss function with a derivative that is efficient to calcu-

late as there be thousands or millions of updates for each neuron while training the

network. This is part of the reason why the sum of squared errors was chosen for the

loss function.

Due to the popularity of the neural networks and backpropagation, there are

many variations of gradient descent that can speed up the convergence of the weights

and training time. Two popular variants involve adding momentum and using root

mean square propagation (RMSProp) [30]. Adding momentum changes the weight

update rule to use an exponentially weighted average of the past gradients. Hence,

the gradient in equation 2.4 is replaced with the following value at iteration t:

∆wi(t)← β∆wi(t− 1) + (1− β)
∂E

∂wi
(t) (2.6)

13

Here, β is a constant between 0 and 1 called the momentum that determines how

much the past gradients affect the current update of the weight. Adding momentum

increases updates in the same direction between iterations and can dampen oscilla-

tions in weight updates.

RMSprop speeds up convergence by scaling the learning rate for a given weight

by an exponentially weighted average of the magnitudes of gradients for that weight.

The mean square is calculated for each weight i at iteration t:

mi(t)← βmi(t− 1) + (1− β)

(
∂E

∂wi
(t)

)2

(2.7)

Here mi(0) = 0 and β is a constant between 0 and 1. The current learning rate for

each weight is divided by the square root of the value from equation 2.7: ηi = η√
mi(t)

.

Similar to adding momentum, RMSprop tends to smooth oscillations and increases

the rate of convergence compared to basic gradient descent.

Adam [14] is another variant of gradient optimization method which combines

gradient descent with momentum and RMSprop. It uses first-order and second-order

momentum when updating weights. Adam is widely used in current deep learning

models as it has empirically been found to converge faster than other gradient algo-

rithms.

2.2.2 Rectified Linear Unit

One of the early difficulties with training large neural networks is a problem known

as vanishing gradient where the gradients of the loss function approach zero, making

the network slower to train. When using an activation function such as the sigmoid

function where a large input is squashed into a small output range, a large change in

the input will result in a small change in the output and a small gradient as shown

14

in Figure 2.3.

Figure 2.3: The sigmoid activation function (blue) and its derivative (red).

This problem becomes more prevalent as more and more layers are added to the

network since the chain rule multiplies the gradients of each layer together to compute

the updates of earlier layers. Hence, the update values decrease exponentially as they

are propagating back through the network. This makes training the network inefficient

as the weights in the initial layers of the network cannot be effectively tuned, but these

layers are crucial for extracting relevant features from the input.

Without an activation function, ANNs would simply be a linear regression model

and would not be able to learn models as simple as the XOR function. Thus, a non-

linear activation function is required for neural networks to learn complex models.

Hence, the rectified linear unit (ReLU) was developed as an activation function for

training deep neural networks where g(z) = max(0, z). The function replaces any

negative value with zero and simply passes on any positive value as shown in Fig-

ure 2.4. The nonlinearity of the function around z = 0 allows deep neural networks

to learn complex models without the gradient vanishing.

15

Figure 2.4: The rectified linear activation function.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as a popular variant of the

standard artificial neural network, with particular success in tasks involving image

processing. The neural networks discussed thus far only use fully connected layers

where every node in a layer receives an input from every node in the previous layer.

CNNs, on the other hand, use three different types of layers to construct the network:

convolutional layers, pooling layers, and fully connected layers.

2.3.1 Convolutional Layer

The convolutional layer is what differentiates a CNN from a standard neural network.

Instead of connecting all nodes from the previous layer to all nodes in the current

layer each with a unique weight, learnable filters are applied over the output values

from the previous layer. Each filter computes the dot product over a small receptive

field of the input and repeats this operation to cover the entire input.

Since CNNs are often designed for image processing, most convolutional layers are

applied to 2-dimensional data which will be the focus of this subsection. The kernel

16

size gives the dimensions of each filter which are square or rectangular in shape.

Figure 2.5 provides an example convolution of a 2×2 kernel over a 3×3 image. Each

output value is a dot product between a part of the input and the given filter.

Figure 2.5: A 2× 2 kernel over a 3× 3 single channel image with stride 1.

The image in Figure 2.5 has a single channel meaning each pixel is represented

by a single value. For example, this might be a grayscale image where the value

represents how dark each pixel is. A standard RGB image has three channels where

each pixel has a red, green, and blue value. Furthermore, each convolutional layer

typically has many filters that apply to all channels of its input and each produces a

separate output. Hence, the inputs and outputs of a convolutional layer will be three

dimensions: height× width× channels.

The stride is how much the kernel shifts for each computation. In Figure 2.5,

the stride is 1 since the filter shifts one value after each computation. When using a

larger kernel, a stride of greater than 1 can be used to avoid repeated computations

that may be very similar. As the stride increases, there are fewer computations and

the output decreases proportionally.

An activation function, such as ReLU, is typically applied after each convolutional

layer. This gives each layer a nonlinear characteristic so that complex models can be

learned.

17

Since each output is a weighted sum of a subarea of the input, this introduces

sparse connectivity into the network compared to a dense layer where an output can

receive input from every neuron in the previous layer. Additionally, since the same

filter is applied to different areas of the input, this introduces parameter sharing

where filters trained in one part of the input can extract features from other parts

of the input. These properties allow convolutional layers to use significantly fewer

parameters than comparable fully connected layers and are what set apart CNNs

from standard neural networks.

2.3.2 Pooling Layer

The pooling layer is the other unique layer utilized by CNNs. A pooling layer is

a form of down-sampling used to reduce the size of the current input, and hence,

reduce the number of parameters and computations in the network. Each channel

of the input is partitioned into non-overlapping rectangles and each sub-region has a

single output. The most common type of pooling is max-pooling where the maximum

value from each area is the output. A typical pooling layer will split the input into

2×2 subregions, reducing the height and width by half and keeping the same number

of channels. A max-pooling example is shown in Figure 2.6. Pooling layers are

commonly used between convolutional layers in a CNN.

2.3.3 Fully Connected Layer

The last few layers in a CNN are fully connected layers. The convolutional and

pooling layers extract the initial features of interest from the input, whereas these

final layers conduct the high-level reasoning and encode the output. An additional

benefit of using dense layers at the end of a CNN is the ability to combine image data

18

Figure 2.6: A max-pooling example with a 2× 2 filter.

processed by convolutional layers with other types of numeric inputs that cannot be

processed by 2D convolutions.

2.4 Reinforcement Learning

The previous sections have been focused on supervised learning where the goal is to

learn a general function to map a set of inputs to their respective outputs. Rein-

forcement learning (RL) is a separate paradigm within machine learning focused on

goal-directed learning based on trial and error. Instead of using a provided set of

input/output pairs to train the model, actions are taken that can lead to positive or

negative rewards; the objective is to accumulate as much reward as possible.

The premise behind reinforcement learning comes from how humans and animals

naturally learn. If I give my dog a treat every time he goes to the bathroom outside

and scold the dog whenever he chews on my shoe, then my dog will learn which

behaviors are good and which ones should be avoided. With RL the idea is to replicate

this learning model with computers.

19

2.4.1 Key Concepts

RL problems are set up with an environment and an agent that interacts within this

world. At each time step, the agent receives an observation of the current state of the

environment and takes some action. The environment changes based on the action

taken as well as possibly outside forces. The agent then receives some reward signal

from the environment and the observation for the next step and the cycle continues.

The goal of the agent is to maximize the cumulative reward known as return. RL

algorithms attempt to learn the best action for the agent to take at each state to

achieve this goal.

RL environments can be formalized as Markov Decision Processes (MDPs). MDPs

obey the Markov property where transitions between states only depend on the cur-

rent state and current action taken; previous actions and states have no effect. MDPs

are represented by a 4-tuple M = (S,A,R, P) where S is set of all states and A is the

set of all actions. R : S ×A× S → R is the reward function with rt = R(st, at, st+1).

Finally, P : S × A→ [0, 1] is the transition probability function, where P (s′ | s, a) is

the probability of transitioning to s′ given you are in state s and take action a.

A state st ∈ S is a complete description of the environment at some time whereas

an observation ot is a partial description of the state which is perceived by the agent.

The state space is the set of all possible states in the environment, and the action

space is the set of all actions the agent can take in the environment. The action space

can be discrete with only a finite number of options, or it can be continuous where

actions are real-valued vectors.

The policy is what the agent follows to decide what action to take given the

current state. The policy can be deterministic where the agent will always take the

same action given a certain state, or it can be stochastic where the agent will take an

20

action based on some probability distribution. Stochastic policies with parameters θ

are denoted by π:

at ∼ πθ(· | st). (2.8)

A sequence of states and actions of the agent is a trajectory τ ,

τ = (s0, a0, s1, a1, ...). (2.9)

The reward function R provides a reward value based on the current state-action

or simply the current state,

rt = R(st, at). (2.10)

To calculate the reward for a trajectory, we will use the infinite-horizon discounted

return allowing arbitrary length trajectories that converge. This sums up every reward

received but discounts future reward, as intuitively it is better to receive reward earlier

rather than later. The discount value γ is between 0 and 1:

R(τ) =
∞∑
t=0

γtrt. (2.11)

The RL goal is to find the policy for the agent to follow that maximizes expected

return. With a stochastic policy and environment transitions, the probability of a

trajectory τ given policy π is,

P (τ |π) = ρ0(s0)
T−1∏
t=0

P (st+1|st, at)π(at|st) (2.12)

where ρ0(s0) is the probability of starting in state s0 and P (st+1|st, at) is the proba-

bility of moving to state st+1 given the current state and action. The expected return

21

for the policy is:

J(π) =

∫
τ

P (τ |π)R(τ) = E
τ∼π

R(τ). (2.13)

Hence, the objective is to find the optimal policy, denoted π∗, which maximizes J(π).

It is often beneficial to quantify the value of being in a state. The value function

V π(s) provides the expected return from starting in a given state s and following

policy π,

V π(s) = E
τ∼π

[R(τ)|s0 = s] (2.14)

The optimal value function, V ∗(s), similarly gives the expected return if starting in

state s and following an optimal policy.

Likewise, the action-value functions, Qπ(s, a) and Q∗(s, a), give the expected re-

turn if starting in state s and take action a and subsequently follow policy π and the

optimal policy, respectively.

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (2.15)

While the Q function can provide an absolute value to taking an action in a

state, it can be useful to know how this value compares to other actions. Hence,

the advantage function quantifies how much better it is to take action a in state s

compared to selecting an action according to the policy:

Aπ(s, a) = Qπ(s, a)− V π(s). (2.16)

With simple RL problems, it is possible to enumerate all state-action pairs and, for

instance, store every Q value in a table. This allows for algorithms such as Q-learning

[33] where all Q values can be directly compared and the policy will simply choose

22

the action with the largest value at the current state. After each action, the Q value

is updated with the actual reward received and the value of the next state compared

to the predicted value. However, in complex problems with large state spaces, it

is infeasible to store and maintain every Q value. With the introduction of Deep

Q-Network (DQN) [21], it is now common to use neural networks to approximate

Q-values, the policy, and other functions for deep reinforcement learning.

2.4.2 Policy Optimization

As the popularity of RL has surged over the past few years, many algorithms have

been developed to efficiently train large models. This section will focus on policy

optimization methods that explicitly model and optimize a policy; that is, we will

use gradient ascent on the expected return, J to update the policy parameters. This

is different than Q-learning or action-value methods which learn the Q function from

which the policy is derived.

Advantage actor critic (A2C) [29] has emerged one of the more popular deep RL

algorithms. It is an actor-critic method where the actor determines the policy of the

agent while the critic asses actions by modeling the value function (i.e., predicts the

value of being in a given state). The policy and value functions are updated every

tmax steps using the following gradient for the parameters θ of the policy:

∇θ ln πθ(at|st)Aw(st, at). (2.17)

Here, Aw(st, at) is the advantage function that uses the critic value function with

parameters w:

A(st, at, w) = rt+1 + γVw(st+1)− Vw(st). (2.18)

While the policy and value function can have different parameters, typically they will

23

share the same neural network but with separate output layers.

This RL algorithm was originally introduced as asynchronous advantage actor-

critic (A3C) [20] with parallel actors running independently and updating a global

value function. However, researchers at OpenAI have empirically shown that A2C is

as good as the asynchronous version and is more cost-effective when training [34].

2.5 Safety Constraints

While the goal in RL is to maximize expected return, in some situations the safety

of the agent can be particularly important. For instance, when dealing with an

expensive robot it may better to sacrifice some reward in order to avoid damaging

the device. With a stochastic environment and agent introducing uncertainties, even

an optimal policy maximizing return may perform poorly in some cases. Hence, a

subfield known as Safe RL has been introduced with algorithms and techniques to

attempt to reduce these risks when training and/or evaluating models. There are two

overarching groups of Safe RL algorithms: modifying the optimization criterion and

changing the exploration process using external knowledge or a risk metric [10].

2.5.1 Optimization Criterion

As previously noted, maximizing expected return may result in a risky situation, so

the idea with these algorithms is to modify the optimization criterion to consider risk

when evaluating policies. One modification technique, worst case criterion, attempts

to mitigate the effects of variability in the policy by scoring policies on their worst-case

return. A second approach, risk-sensitive criterion, balances the return and risk where

the sensitively to risk can be controlled. This balance can be a linear combination

of return and risk where risk might be the variance of the return or the probability

24

of reaching an error state. Finally, constrained criterion maximizes expected return

while keeping utilities within certain bounds. Here constraints restrict which policies

are allowed while the objective remains to find the allowed policy with the best return.

2.5.2 Exploration Process

During the training process, RL algorithms must balance exploration to gather knowl-

edge of the task and exploitation to take advantage of current knowledge to gain the

best return. Randomized exploration strategies help the agent explore the environ-

ment but can lead to irrelevant and sometimes risky states for the agent. Hence,

these Safe RL strategies modify the exploration process to mitigate risky situations.

Some strategies provide external knowledge to the agent typically from a teacher.

Information from the teacher can be used to bootstrap the learning process to reduce

the need for random exploration or examples from the teacher can replace the random

exploration aspect of the learning algorithm. Alternatively, the teacher can provide

advice to the agent during training to maximize return while remaining in safe states.

Without external knowledge, the exploration process can be altered to take into ac-

count the safety value of an action where the safety value measures the randomness

associated with taking an action. The utility of taking an action becomes a weighted

sum between the safety value and the Q-value of the action to preference useful ac-

tions with smaller risks. For a thorough overview of these Safe RL techniques, consult

[10].

2.5.3 Formal Language Constraints

Instead of modifying the optimization or exploration of the agent, [24] adds con-

straints to a base environment during training. This allows any RL algorithm to

maximize performance in the base environment while learning to avoid safety con-

25

straint violations. These constraints, specified in formal language, work with any

MDP system and allow for complex constraints that are computationally efficient.

When selecting an action that would result in a violation, a hard constraint forces

the agent to select a different action, and a soft constraint reduces the reward the

agent receives at the current time step.

Formally, this framework modifies MDP M = (S,A,R, P) into a “Formal Lan-

guage Constrained MDP” (FLCMDP) M ′ = (M,C0, C1, ...) where each constraint

defines a set of trajectories that results in a constraint violation. Each constraint

consists of a tuple of functions C = (DC , TC , SAugC , RShapeC , AShapeC), which

modify the MDP into the constrained MDP. Here DC : QC×ΣC → QC is a recognizer

(e.g., DFA) that encodes the constraint with QC states over alphabet ΣC . Reaching

an accepting state means the constraint has been violated. TC : S × A → ΣC is a

translation function that converts the current state and action in the MDP into an

input token for the recognizer. SAugC : QC × S → S ′ augments the MDP state

with information about the state of the recognizer to provide an updated MDP state.

For soft constraints, RShapeC : QC × R → R performs reward shaping. For hard

constraints, AShapeC : QC×A→ A′ restricts the actions an agent can make to avoid

a constraint violation.

At each step t, the MDP passes the current state and action to the translation

layer TC which provides a token to the recognizer DC . The recognizer provides re-

ward shaping RShapeC for the current step to the MDP (if using a soft constraint)

and computes the allowed action set AShapeC for time step t + 1 (if using a hard

constraint). Additionally, the recognizer provides the state augmentation SAugC to

the MDP for the next step. This process is illustrated in Figure 2.7.

When using soft constraints, reward shaping is performed at training time when a

violation occurs. There are two methods for implementing reward shaping. In sparse

26

Figure 2.7: The formal language constraint framework. The translation layer creates
the token for the recognizer which provides reward shaping, state augmentation, and
restricts the available actions. Source: [23]

reward shaping, the environment reward signal is only modified when a constraint

is violated, otherwise the reward value is passed through to the agent. The other

technique is dense reward shaping which applies shaping at every time step. The

shaping value is determined by a potential function ΦC(qt) that determines how close

the current recognizer state qt ∈ QC is to a violation. One method of calculating

this value is by determining the proportion of visits to the current recognizer state

ultimately lead to a violation as follows:

ΦC(qt) = violsC(qt)/visitsC(qt). (2.19)

Here, violsC(qt) counts the number of times constraint C has been violated after

visiting qt, visitsC is the total number of times qt has been visited.

With this framework, the MDP state observations can be augmented with the

state of the recognizer. This provides the agent with additional information to help

it avoid constraint violations. There are different ways to encode the recognizer

information. One common variant uses a one-hot encoding of the DFA state at time

27

t as the state augmentation. The agent is not provided with direct knowledge of the

DFA but can infer information from the encoding to determining which states are

preferred and which ones should be avoided to reduce violations and reward shaping.

28

Chapter 3

Related Work

There has been a recent push to apply RL algorithms to solve a variety of problems

including developing AVs. However, it is important for self-driving to have a high

level of safety that is not always guaranteed with RL. Here, we look at some of the

prominent recent work developing RL algorithms for AVs and specifically papers that

introduce constraints or other methods to improve the safety of the agents.

In 2017, Dosovitskiy et al. [9] released the initial version of the CARLA simulator

for developing and testing self-driving vehicles with active development and feature

updates still happening every couple of months. The paper introduces a basic driving

task for agents to complete that has become a standard benchmark for other works

developing agents in the CARLA simulator. They provide three baseline agents for

completing this task. The first is a modular pipeline that has separate subsystems

for visual perception, planning, and control of the vehicle. The second approach uses

end-to-end imitation learning from a human driver in the environment. The final

method uses a simple RL A3C RL agent to complete the task.

Chen et al. [7] improve the imitation learning method by first creating an agent

with privileged information from the environment. Once trained, this agent acts as

a teacher to the final agent which does not receive privileged information. The first

agent is able to quickly learn how to act in the environment and is able to provide

29

the final agent with an endless supply of training examples to imitate. This two-stage

imitation learning method is able to train agents that perform significantly better on

the CARLA benchmark compared with baseline agents.

On the other hand, Liang et al. [15] present an RL agent to complete the CARLA

benchmark. The agent model is warmed up through imitation learning from human

demonstrations to limit random exploration at the beginning and fine-tuned via RL

to improve the generalization of the agent. Additionally, the authors significantly

modify the reward function, including a constant negative reward when the agent

chooses a poor steering action such as turning the wrong direction or turning too

sharply when the vehicle should be driving straight in the lane.

More recently, Toromanoff et al. [31] developed an RL agent for CARLA without

using any imitation learning or pretraining. Their reward module is made of three

components: desired speed, desired position, and desired rotation. The reward value

from each component depends both on the agent’s actions and the current state of the

environment. For example, to receive the maximum reward with the desired speed

component, the vehicle should match the ideal speed value determined by the current

state. The ideal speed decreases as the vehicle approaches a slow vehicle or a red

light and increases when there are no obstacles in front of the vehicle. Similarly, the

desired rotation of the vehicle and the associated reward value is different depending

on if the vehicle is driving straight in the lane or completing a turn. This dynamic

reward signal helps give the agent a significant performance improvement compared

to other RL agents in CARLA.

Prior to the release of CARLA, Shalev-Shwartz et al. [27] developed a safe RL

technique for AVs using hard constraints. They show that an RL agent cannot suf-

ficiently penalize rare events such as collisions without causing a reward variance

problem that reduces the performance of the agent in normal, accident-free trajecto-

30

ries. Hence, they argue for hard constraints that are provided outside of the learn-

ing framework and limit the allowable trajectories to ensure functional safety of the

agent. They test the hard constraints in a simple, multi-agent driving environment

and present very limited results.

Hu et al. [12] use hard constraints, which they refer to as a masking mechanism,

to prevent the agent from choosing unsafe actions. Specifically, they use masks to

limit the acceleration of the vehicle, prevent the agent from exceeding the speed limit,

and keep the agent a safe distance from the vehicle in front. The agents are tested

in traffic merging scenarios. Saxena et al. [26] use these same tests for their agents

but do not use the masking mechanism to restrict actions. However, they specifically

mention that their current model cannot guarantee collision-free driving, and in the

future, they want to add an overseer that determines if a chosen action is safe to

execute using hard and/or soft constraints.

31

Chapter 4

Experimental Setup

This chapter details the RL environment and experiments performed in this thesis.

Section 4.1 introduces CARLA, a simulator for autonomous driving research that is

used as the environment for all of the experiments. Section 4.2 describes the task in

CARLA for the agent to solve. Section 4.3 details the RL algorithm which trains the

agent including the training hyperparameters and the CNN that approximates the

policy for the agent. Finally, in Section 4.4 we detail three soft constraints which shape

the reward function to improve the final performance of the agent in the environment

4.1 CARLA Environment

CARLA 1 [9] is an open-source, high-fidelity simulator developed for training and

validating autonomous vehicles in a variety of settings. It is being developed as a

general-purpose environment to resemble real-life driving. There are several distinct

cities in CARLA including urban layouts, rural towns, and multi-lane freeways. Traf-

fic intersections include stop signs, traffic lights, roundabouts, and freeway on/off

ramps. Available vehicles include a range of cars, trucks, motorcycles, and bicycles

along with pedestrians walking along the sidewalk and crossing the street. The agent

1http://carla.org/

32

vehicle can be equipped with a variety of sensors including RGB cameras, LIDAR,

RADAR, and GPS. Sensors can be placed anywhere on the vehicle and each sensor

can be configured depending on the need (e.g., a long-range camera for detecting far

away objects in the current layer versus a wide-angle camera for detecting nearby ob-

stacles). Additionally, there are sensors for detecting collisions, and when the vehicle

leaves the current lane. CARLA provides different weather and lighting configura-

tions: the position of the sun, cloud cover, precipitation rate, and wind level among

other options can be changed to create different situations. Some preset weather

situations include heavy rain, sunset which adds camera flare, and even after rain

conditions with wet roads but no precipitation. Nighttime driving weather is avail-

able with street and car lights illuminating the roadways

CARLA uses a server-client model where the server maintains the world including

global settings such as the weather. Vehicles must use a client to connect to the

server and interact with the world. Multiple clients can connect to the server at

the same time, and each client can control multiple vehicles allowing for multi-agent

systems to be developed. The Traffic Manager is a client in charge of spawning and

controlling numerous vehicles to maintain traffic in the simulated city. Each of these

vehicles has an autopilot system that uses privileged information from the server to

perform a near-optimal driving policy. Hence, the Traffic Manager can help prepare

the environment for testing similar to a real road where other vehicles can have a

significant impact on the situation. An agent vehicle through a client can connect to

the environment; every time step each sensor on the agent’s vehicle receives data from

the world, and the agent must output driving commands including throttle, braking,

and steering values to control the vehicle. The throttle and brake commands are

real values between 0 and 1, which represent pressing the throttle and brake pedal,

respectively. The steering value is a real number between −1 and 1 representing

33

the steering wheel angle. This assortment of configurations makes CARLA an ideal

testbed for training and testing self-driving agents.

4.2 CARLA Task

For training and evaluating our agent, we will use the same driving experiment and

conditions as presented in the original CARLA paper [9]. The basic task is goal-

directed navigation where the agent is initialized at some point in the town and must

drive to a given destination. The agent is given directions to the destination by

receiving a command to turn left, turn right, or go straight through each intersection

as would be provided by a navigation system. There are six weather conditions divided

into two groups. The training weather set includes clear day, clear sunset, daytime

rain, and daytime after rain. The test weather set, not used during training, includes

cloudy daytime and soft rain at sunset. There are 100 different driving scenarios,

each with unique starting and endpoints within the city. The tasks have varying

difficulties with some having one or zero turns to reach the destination while others

require the vehicle to navigate multiple turns and intersections. The number of other

vehicles and pedestrians also varies depending on the task. Combining each driving

scenario with the 6 weather conditions means there are 600 unique configurations for

training and evaluating the agent.

If the agent reaches the destination within a certain amount of time, the episode

is considered a success. If the agent vehicle has a collision with an object such as

another vehicle, a pedestrian, a street sign, or a building, then the episode ends and

is classified as a collision. The time limit for the vehicle to reach the destination is

set to the time it takes to follow the optimal path to the destination at a speed of 10

km/h. If the agent does not have a collision but fails to reach the destination in the

34

allotted time limit, the episode is classified as a timeout.

4.3 RL Agent

This section describes our agent which is based on the RL agent from [9]. The vehicle

for our experiments is configured with a single forward-facing RGB camera. The

camera resolution is 800 × 600 and has a 100◦ field of view. Other inputs to the

agent are measurements of the state of the vehicle including the current velocity,

acceleration, and position in the world, along with a one-hot encoding of the high-

level navigation command: a TURN RIGHT , TURN LEFT , or GO STRAIGHT

command is given when approaching and driving through an intersection; otherwise,

the agent receives the LANE FOLLOW command. These inputs are concatenated

into a vector of 18 values, known as the measurement vector.

While the CARLA server expects real-valued commands for controlling the vehi-

cles throttle, braking, and steering, we use a discrete action set with a finite num-

ber of possible commands. We use 7 steering values and 7 throttle/braking values.

The available steering values are {−1,−0.5,−0.25, 0, 0.25, 0.5, 1}. Here, −1 corre-

sponds to a sharp left turn, −0.5 to a moderate left turn, and −0.25 to a slight

left turn while 1, 0.5, and 0.25 correspond to a sharp right, moderate right, and

slight right steering angles, respectively. We consider throttle and braking to be

mutually exclusive (as is typically the case when driving), so we use the follow-

ing tuples where throttle and braking are the first and second values, respectively:

[1, 0], [0.5, 0], [0.25, 0], [0, 0], [0, 0.25], [0, 0.5], [0, 1]. Values in the first half of the list

with a positive throttle imply the car is accelerating, and tuples with a positive brak-

ing value imply the car is slowing down. The middle value [0, 0] allows the vehicle to

coast; hence, this value is commanding how the vehicle should accelerate. Thus, our

35

agent must use the inputs to predict the optimal steering and acceleration values for

the vehicle.

We use the Advantage Actor-Critic (A2C) algorithm for training the agent. The

actor and critic functions share the same core network and parameters but with

separate output layers. The core network uses a CNN to initially process the input

image and a fully connected neural network to process the remaining inputs. The

outputs of these layers are concatenated and further processed by additional dense

layers. The architecture is illustrated in Figure 4.1 and described in more detail

below.

At each time step, the camera provides an 800 × 600 pixel image with three

channels, one for the red, green, and blue values. Before being fed to the CNN, the

image is downscaled to an 84× 84× 3 image. This substantially reduces the number

of parameters that must be trained in the neural network. The first convolutional

layer has 32 filters with a kernel size of 8 and a stride of 4. This reduces the image to

20× 20× 32. The second layer has 64 filters with a kernel size of 4 and a stride of 2,

bringing the output to 9×9×64. The third and final convolutional layer has 32 filters

with a kernel size of 3 and stride of 1 bringing the output to 7× 7× 32. This output

is flattened into a one-dimensional vector with 1568 values and processed through a

fully connected layer with 512 outputs. No pooling layers are used in this CNN.

The real value inputs in the measurement vector are processed through a 3-layer

dense neural network with 128, 256, and 512 neurons for the first, second, and third

layers, respectively. The 512 outputs from the CNN are concatenated with the 512

outputs from this network and fed through three additional fully connected layers.

The first layer has 1024 neurons while the second and third layers each have 512

nodes. ReLU activation is applied to each convolutional and fully connected layer.

For the policy, the actor function appends an additional dense layer to the core

36

Figure 4.1: The architecture for the neural network that approximates the policy of
the RL agent.

network with a softmax output, and the action is chosen randomly from this dis-

tribution. The critic function adds a linear layer with a single output for the value

function estimate of the state.

The neural network uses RMSProp as the optimizer with a learning rate of 0.0007.

We use 20-step rollouts for updating the actor and critic functions. Each model is

37

trained for 2 million environment steps and evaluated after 1 million times steps and

once fully trained.

A major difference between this agent and the RL agent from [9] is that we use

A2C trained out for 2 million steps while [9] uses A3C with 10 asynchronous, parallel

actor threads each trained for 1 million steps. We use A2C to significantly reduce the

hardware requirements necessary for training a single model. As shown in Section 5.1,

the agents have similar performance despite our agent having a single actor thread

and only 20% of the total training time compared to the other agent.

The reward function is a weighted sum of four terms:

rt = −(dt − dt−1) + 0.18(vt − vt−1)− 0.00002(ct − ct−1)− 2(lt − lt−1). (4.1)

Here d is the distance remaining to the goal in meters, v is the velocity of the vehicle,

c is the collision damage, and l is percentage of the vehicle outside of its lane. The

agent will receive positive reward as long as it progresses towards the destination while

staying within the lane. However, any collision will result in a significant negative

return for the episode.

4.4 Constraints

In this section, formal language constraints are proposed with the goal of improving

the safety of the baseline agent. The constraints use the framework described in

Section 2.5.

The recognizer of each constraint is implemented as a deterministic finite au-

tomaton (DFA). The translation function encodes the current state and action into a

simple token for the recognizer; each implementation is dependent on the correspond-

ing constraint and DFA. Every step the translation function provides a token to the

38

DFA. An accepting step in the DFA implies the constraint is violated at the current

step.

We use augmentations to modify the MDP state observations received from the

environment with information from the state of the constraint recognizer. This is

done by appending a one-hot encoding of the DFA state to the measurements vector

before it is processed by the actor and critic networks, hence allowing the agent to

learn if the constraint is likely to be violated in an upcoming step.

Each constraint is implemented as a soft constraint with sparse reward shaping.

Violations do not restrict the available actions but instead, reduce the reward received

to discourage actions that lead to violations. With sparse reward shaping, the reward

signal is only modified when a violation occurs; otherwise, the reward from the en-

vironment is directly given to the agent. We use a constant reward shaping signal

where the reward is reduced by a constant value of rC for each violation regardless of

the positive or negative reward from the environment:

r′t = rt − rC ∗ F (qt),

where r′t is the shaped reward given to the agent at step t and rt is the reward from

the environment. rC is the constant shaping value for constraint C and F (qt) is one

of the current DFA state qt is and accepting state and 0 otherwise. We test with

reward shaping values rc ∈ {0.1, 0.5, 1, 2, 10}.

This remainder of this section describes three safety constraints considered in this

work: Strict Turn, Loose Turn, and Dither.

39

4.4.1 Strict Turn Constraint

Analyzing the baseline agent during training, it is clear the model has a difficult time

navigating through intersections and specifically making turns. The vehicle will often

leave the roadway when turning, often leading to a collision. Hence, the focus of the

first constraint, known as Strict Turn, is to help the agent safely and successfully

navigate intersections without a collision.

The basic idea of the constraint is that if the agent is receiving the TURN LEFT

command for an upcoming or current intersection and chooses an action that steers

the vehicle to the right, then the constraint is violated. Similarly, if the navigation

command is TURN RIGHT and the agent selects an action to steer left, a violation

occurs as well. During the early stages of training when actions are seemingly random,

this constraint helps guide the agent into turning the correct direction. As training

progresses, the constraint helps fine-tune the turning sequence by penalizing the agent

for oversteering and having to take corrective actions. A violation occurs every time

step the agent is turning in the incorrect direction, hence the name Strict Turn.

The translation function outputs a 1 if the current navigation command is

TURN LEFT (TURN RIGHT) and the agent selects an action to steer to the right

(left). Otherwise, the translation function outputs a 0 including any time the agent

receives a GO STRAIGHT or FOLLOW LANE command, and when the agent

selects a command to turn in the correct direction or steer straight. The translation

function is provided in Table 4.1.

This constraint is very simple to implement as a DFA with only two states

[q(0), q(1)] and two input tokens in the alphabet Σ = {0, 1}. State q(0) is the starting

state and q(1) is the accepting state. Regardless of the current state, an input of 0

transitions to q(0) and an input of 1 transitions to q(1). The DFA for Strict Turn is

40

Table 4.1: The translation function for the Strict Turn constraint.

Navigation Command Steering Action
DFA

Token
TURN RIGHT Left (negative) Steering Actions 1
TURN RIGHT Right & Straight (nonnegative) Steering Actions 0
TURN LEFT Right (positive) Steering Actions 1
TURN LEFT Left & Straight (nonpositive) Steering Actions 0
GO STRAIGHT All Actions 0
FOLLOW LANE All Actions 0

depicted in Figure 4.2.

q(0)start q(1)

0

1

1

0

Figure 4.2: The DFA for the Strict Turn constraint.

4.4.2 Loose Turn Constraint

While the Strict Turn constraint discourages the agent from making poor decisions

when navigating intersections, it can be overeager in finding violations and penalizing

the agent. For instance, the same violation and reward shaping signal is triggered

whether the agent turns sharply in the wrong direction or makes a small correction

to stay in the lane as the agent enters or exits the intersection. Hence, the Loose

Turn constraint triggers a violation for a sharp turn in the wrong direction, but only

penalizes a slight turn if it happens for consecutive steps.

For this constraint, the DFA contains 5 states Q = {q(−2), q(−1), q(0), q(1), q(2)},

where q(0) is the initial state and q(−2) and q(2) are the accepting states. The alphabet

contains 5 tokens Σ = {−2,−1, 0, 1, 2}. The translation function produces a negative

token when the agent selects a left steering action but the navigation command is

41

TURN RIGHT . When a the navigation command is TURN LEFT but a right

steering action is selected, the translation function gives a positive token. A larger

(absolute) steering angle {−1, 1,−0.5, 0.5} results in a token of −2 or 2 while a

slight turning angle {−0.25, 0.25} outputs a −1 or 1. The full translation function is

provided in Table 4.2.

Table 4.2: The translation function for the Loose Turn constraint.

Navigation Command Steering Action DFA Token
TURN RIGHT −1 −2
TURN RIGHT −0.5 −2
TURN RIGHT −0.25 −1
TURN RIGHT Nonnegative Steering Actions 0
TURN LEFT 0.25 1
TURN LEFT 0.5 2
TURN LEFT 1 2
TURN LEFT Nonpositive Steering Actions 0
GO STRAIGHT All Actions 0
FOLLOW LANE All Actions 0

The DFA begins in q(0) and transitions to the state corresponding to the received

token. For example, token −1 would transition the DFA to state q(−1). A −2 or 2

from a significant incorrect turn triggers a violation. Further, if the DFA is in q(−1) or

q(1) and receives a nonzero reward of the same sign (e.g., in q(−1) and receives token

−1 or −2), then the DFA transitions to the q(−2) or q(2) accepting state. Any other

token (including all tokens in the accepting state) resets the DFA by transitioning

back to q(0).

After completing a turn, the agent will receive the FOLLOW LANE command

until it approaches the next intersection. Thus, it is not realistic to receive the

TURN RIGHT and TURN LEFT commands on consecutive steps; therefore, any

pair of consecutive tokens will not be of opposite signs (i.e., at least one token is 0

or they are both either positive or negative). Because of this, tokens for states of the

42

opposite sign are not explicitly expressed in the DFA. If for some reason this situation

occurred, the DFA would simply reset to q(0). The DFA for this constraint is provided

in Figure 4.3 and the full DFA transition function is provided in Table 4.3.

q(0)start

q(1)q(−1)

q(2)q(−2)

0

1

-1

2
-2

1,2

-1,-2

Figure 4.3: The DFA for the Loose Turn constraint. Any transitions not shown go
to q(0).

Table 4.3: The transition table of the DFA for the Loose Turn constraint.

−2 −1 0 1 2

q(−2) q(0) q(0) q(0) q(0) q(0)

q(−1) q(−2) q(−2) q(0) q(0) q(0)

q(0) q(−2) q(−1) q(0) q(1) q(2)

q(1) q(0) q(0) q(0) q(2) q(2)

q(2) q(0) q(0) q(0) q(0) q(0)

4.4.3 Dithering Constraint

While the previous two constraints help the agent navigate turns, the majority of the

episodes are spent driving straight within the lane. The action set allows the agent

to jerk the wheel left and right multiple times per second creating an unpleasant and

potentially dangerous situation. The goal of this constraint is to help guide the agent

within the lane and avoid jerky or dithering movements. Specifically, a violation

43

occurs if the steering command changes from one side to the other by four or more

points on consecutive commands. Furthermore, a string of consecutive commands

that switch sides (e.g., left, then right, then left steering commands) accumulate and

can also lead to a violation.

To implement this constraint, the translation function maps the 7 steering values

to tokens that are consecutive integers from −3 to 3, where −3 is the sharp left

steering angle. Larger integers correspond to steering angles which are further to the

right, so 0 is no turn and 3 is the sharp right steering angle. The absolute difference

between two tokens is the point spread of the actions where a spread of at least four

is a triggers a violation. For instance, if one action is sharp right (1 → 3) and a

second action is moderate left (−0.5→ −2), the point spread is |3− (−2)| = 5. The

translation function is provided in Table 4.4.

Table 4.4: The translation function for the Dithering constraint.

Steering Action DFA Token
−1 −3
−0.5 −2
−0.25 −1

0.0 0
0.25 1
0.5 2
1 3

The DFA for the recognizer of this constraint is implemented with 9 states Q =

{q(−4), q(−3), ..., q(4)} where q(0) is the initial state and q(−4) and q(4) are the accepting

states. The states correspond roughly to the steering angle of the previous command.

If the current state is q(0) or the state has the same sign as the input token, then the

DFA will transition to the state corresponding to the input signal. For example, if the

current state is q(2) and the input token is 1 since 2 and 1 are both positive the DFA

will transition to q(1). This situation happens when the steering angle is the same or

44

Table 4.5: The transition table of the DFA for the Dithering constraint.

−3 −2 −1 0 1 2 3

q(−4) q(−3) q(−2) q(−1) q(0) q(4) q(4) q(4)

q(−3) q(−3) q(−2) q(−1) q(0) q(4) q(4) q(4)

q(−2) q(−3) q(−2) q(4) q(0) q(3) q(4) q(4)

q(−1) q(−3) q(−2) q(−1) q(0) q(2) q(3) q(4)

q(0) q(−3) q(−2) q(−1) q(0) q(1) q(2) q(3)

q(1) q(−4) q(−3) q(−2) q(0) q(1) q(2) q(3)

q(2) q(−4) q(−4) q(−3) q(0) q(1) q(2) q(3)

q(3) q(−4) q(−4) q(−4) q(0) q(1) q(2) q(3)

q(4) q(−4) q(−4) q(−4) q(−0) q(1) q(2) q(3)

one is zero. On the other hand, if the state and token are of different signs, then the

next state is calculated by subtracting the current state from the input token and

bounding the difference by ±4. For instance, if the current state is q(−3) and the input

token is 2 with opposite signs, then the difference is −3− 2 = −5 which is bounded

at −4. Thus, the next state is q(−4), an accepting state. The full DFA transition list

is in Table 4.5.

45

Chapter 5

Results & Discussion

This chapter provides results for implementing the RL agents introduced in Chap-

ter 4 for the CARLA environment. We first provide results for an unconstrained

baseline agent, followed by experiments with each formal constraint evaluated sep-

arately. The models are trained for two million time steps and tested at the end

of training as well as halfway through training for additional comparisons. Each

constraint is trained with five reward shaping values and both with and without

constraint state augmentations. Each experiment is trained and tested using 10 ran-

dom seeds. Hence, there are 100 (5× 2× 10) (i.e., shaping values × with/without

state augmentation × seeds = 100) models trained and 200 checkpoints evaluated for

each constraint, as each of the models is evaluated at two different points.. Overall,

with three constraints and the baseline agent (10 seeds), we train 310 models and

provide results on 620 checkpoints.

The CARLA paper [9], from which our baseline agent is derived, only provides the

percentage of tasks successfully completed by the agent whereas we will compare the

success, timeout, and collision rates of our various models. While the main goal is to

successfully finish as many tasks as possible, it is also important to avoid collisions,

which are significantly worse than safely failing to reach the destination in the allotted

time. In the remainder of this chapter, we present the results from these experiments

46

and discuss the outcomes.

5.1 Baseline Agent

The agent described in Section 4.3 is used as our baseline agent. To ensure the

results are similar to previous works, we briefly compare our baseline results against

the results from the RL agent in [9], which we will call CARLA RL. Table 5.1 contains

the average success, timeout, and collision rate of our baseline agent after 1 million

and 2 million time steps compared to the success rate of the CARLA RL agent, which

is trained asynchronously for 10 million time steps. A higher success rate is better

while a lower collision rate is better. Doubling the training time slightly increases

the success rate but also increases the collision rate by the same amount; however,

the differences are too small (0.7) to draw conclusions about the improvement of the

agent. Nevertheless, the success rate of our agent is within half a percentage point

of the CARLA RL agent after both evaluations, so we will use these two checkpoints

when comparing against agents with constraints.

Table 5.1: The results of our baseline agent after 1 million and 2 million time steps
averaged over 10 seeds compared to the CARLA RL agent from [9], which only reports
the success rate. Higher success rates are better while lower collision rates are better.

Baseline Baseline
1 million 2 million CARLA RL [9]

Success 26.1 (±1.3) 26.8 (±0.3) 26.5
Timeout 17.1 (±1.8) 15.7 (±6.4) n/a
Collision 56.8 (±1.7) 57.5 (±6.4) n/a

47

5.2 Strict Turn Constraint

We first add the Strict Turn constraint to the baseline agent. Table 5.2 reports

the evaluation results of the agent after 1 million time steps without using state

augmentation, and Table 5.3 provides the results after 1 million steps with state

augmentation. Each value represents the percentage of episodes that end in a success,

timeout, or collision, along with the standard deviation for each value. Figure 5.1

gives a visual representation of the various collision rates. For this constraint, the

success rate for each shaping value never decreases compared to the baseline, but also

never increases by more than one point. Effectively, the success rate remains about

the same with little variation.

The collision rate, however, does substantially decrease, especially for reward

shape values of 1 and 2. A lower collision rate correlates to a larger timeout rate

meaning the agent is not completing more tasks but is at least avoiding costly colli-

Table 5.2: Test results when using the Strict Turn constraint without augmentation
after 1 million time steps. “Suc.” is the success rate, “Time.” is the timeout rate,
and “Col.” is the collision rate.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 27.0± 0.0 26.9± 0.3 27.0± 0.0 27.1± 0.3 26.4± 2.0
Time. 17.1± 1.8 12.4± 8.4 19.2± 13.1 21.1± 9.2 24.7± 11.3 19.1± 14.3
Col. 56.8± 1.7 60.6± 8.4 53.9± 13.2 51.9± 9.2 48.2± 11.1 54.5± 13.3

Table 5.3: Test results when using the Strict Turn constraint with augmentation after
1 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 27.0± 0.0 27.0± 0.0 26.9± 0.2 27.0± 0.0 26.8± 0.6
Time. 17.1± 1.8 18.5± 9.5 18.3± 14.9 27.1± 10.4 19.9± 10.1 17.8± 13.5
Col. 56.8± 1.7 54.5± 9.5 54.7± 14.9 46.0± 10.3 53.1± 10.1 55.4± 13.3

48

Figure 5.1: Collision rate and its standard deviation after 1 million time steps when
using the Strict Turn constraint. A lower collision rate is better.

sions. Hence, we will mostly look at the collision rates of the agents. With augmen-

tation and a reward shape value of 1, the collision rate decreases by over 10 points

which is a nearly 20% decrease in collisions. The more the shaping value differs from

this ideal value, the collision rate tends to increase towards the baseline collision rate.

The collision rate for the agent without augmentation and a shaping value of 0.1 is

the only value that is worse than the baseline rate. One explanation for this is the

constraint affects the learning process of the agent, but the shaping value is too small

to effectively guide the agent into taking safe actions.

The baseline agent has a small standard deviation of the collision rate compared

to the agents with constraints. This implies the baseline agent has more consistent re-

sults whereas the constrained agents can sometimes perform very well and sometimes

have significantly more collisions with the same constraint settings.

The evaluation results of the agent after 2 million time steps without using state

augmentation are reported in Table 5.4, and Table 5.5 provides the results after 2

million steps with state augmentation. A visual comparison of the collision rates

49

Table 5.4: Test results when using the Strict Turn constraint without augmentation
after 2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.9± 0.2 27.1± 0.3 26.6± 1.0 26.6± 1.4 25.5± 2.4
Time. 15.7± 6.4 19.4± 7.4 16.2± 7.2 20.8± 6.5 24.5± 6.6 30.1± 14.5
Col. 57.5± 6.4 53.7± 7.4 56.7± 7.3 52.6± 6.6 48.9± 5.7 44.4± 13.4

Table 5.5: Test results when using the Strict Turn constraint with augmentation after
2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.5± 1.6 26.7± 1.3 26.6± 0.8 26.9± 0.2 26.6± 1.2
Time. 15.7± 6.4 15.7± 7.8 19.7± 6.4 19.4± 7.7 20.8± 9.9 18.2± 7.7
Col. 57.5± 6.4 57.8± 7.3 53.6± 6.0 54.0± 7.1 52.3± 9.8 55.2± 7.9

is shown in Figure 5.2. The agents with augmentation show a similar pattern to

the previous results with the best collision rates having a shaping value near 2, and

the collision rate increasing for shaping values further away. Without augmentation,

however, the smallest collision rate is for the reward shaping value of 10, but this also

results in a 1 to 1.5 point decrease in the success rate. Additionally, the shaping value

of 0.5 has the highest collision rate even compared to the agents with a 0.1 shaping

signal, which seems to be an anomaly. However, this is likely a result of the agents

with 0.1 slightly overperforming and the agents with a 0.5 signal underperforming by

a few points compared to what is expected.

As with the earlier results, the standard deviations of the constrained agents are

large compared to the baseline agent. However, many of these values are close to half

the standard deviation after 1 million time steps, meaning the variance has decreased

with additional training. The agent with reward shape 10 maintains a larger variance,

especially without augmentation. This is likely a result of the large shaping value,

50

Figure 5.2: Collision rate and its standard deviation after 2 million time steps when
using the Strict Turn constraint. A lower collision rate is better.

which can either significantly help or hurt the agent while training depending on when

and how often violations occur.

We compare the collision rates of the agent with and without state augmentation

in Table 5.6. These values are calculated by subtracting the collision rates with

state augmentation in from the collision rates without state augmentation. Hence, a

positive value means the collision rate decreases for the given reward shaping value

when state augmentation is added to the agent. State augmentation improves the

agent for some values but decreases the performance of the agent for other values.

For example, with a shaping signal of 0.1, augmentation improves the agent for the

first half of training but leads to worse performance after fully trained. On the other

hand, with a reward shape value of 10, the performance is only slightly worse halfway

through but significantly worse after 2 million steps. There does not seem to be an

emerging pattern as to when state augmentation helps or hurts training.

Similarly, Table 5.7 compares collision rates of the agent after 1 million and 2

51

Table 5.6: The difference in collision rates with and without state augmentation for
the Strict Turn constraint. A positive value means the collision rate is lower when
the agent used state augmentation compared to not using state augmentation.

Reward Shape Value
Time Steps 0.1 0.5 1.0 2.0 10.0

1 million 6.1 −0.8 5.9 −4.9 −0.9
2 million −4.1 3.1 −1.4 −3.4 −10.8

million training steps. The table shows the difference between these values with a

positive number meaning collisions decreased after additional training. Half of the

values are near zero, implying that the additional training time does not significantly

change these models. Two values (no augmentation 0.1 and 10) show a large im-

provement. Two values show a small decline in performance (augmentation 0.1 and

no augmentation 0.5 while one value shows a significant decrease in performance (with

augmentation 1.0). This variety of results means that additional training can either

improve or diminish the performance of the agent.

Table 5.7: The difference in collision rates from tests run halfway through and after
fully training using the Strict Turn constraint. A positive value means the collision
rate decreases after fully trained compared to testing halfway through training.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Without Augmentation −0.7 6.9 −2.8 −0.7 −0.7 10.1
With Augmentation −0.7 −3.3 1.1 −8.0 0.8 0.2

Based on this data, the Strict Turn constraint provides an improvement to the

baseline agent when comparing results after 1 million and 2 million time steps. The

constraint, both with and without state augmentation, consistently reduces the col-

lision rate without affecting the success rate of the agent, especially with reward

shaping values of 1 and 2. These values provide a large enough shaping value to

assist the agent in avoiding violations while allowing the agent enough freedom to

52

successfully completed the given task. With this constraint, additional training time

does not necessarily lead to improved performance or fewer collisions.

5.3 Loose Turn Constraint

In this section, we look at the results for the agent with the Loose Turn constraint.

Table 5.8 contains the evaluation of the agent after 1 million steps without using

state augmentation. Looking at the results, the success rate increases slightly by

about one point each reward shape value except 10 where the success rate decreases

by 1.2 points. The collision rates vary considerably with a shaping value of 1 having

the worst collision rate with an almost 5 point increase in collisions over the baseline

agents. The agents with a shaping value of 0.5 show the most improvement by

3.3 points while the remaining shaping signals (0.1, 2, and 10) show little to no

improvement compared to the baseline.

Table 5.8: Test results when using the Loose Turn constraint without augmentation
after 1 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 26.8± 0.4 27.0± 0.0 27.1± 0.3 27.0± 0.1 24.9± 4.3
Time. 17.1± 1.8 17.4± 2.7 19.6± 8.3 11.5± 9.1 17.0± 7.8 18.4± 15.2
Col. 56.8± 1.7 55.8± 2.7 53.5± 8.3 61.4± 9.0 56.1± 7.8 56.7± 12.4

Table 5.9: Test results when using the Loose Turn constraint with augmentation after
1 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 26.3± 1.3 27.0± 0.0 24.5± 7.9 26.6± 1.0 26.2± 1.2
Time. 17.1± 1.8 17.1± 6.8 18.4± 7.9 21.7± 26.9 16.6± 13.2 21.1± 10.6
Col. 56.8± 1.7 56.6± 6.5 54.7± 7.9 53.8± 19.5 56.8± 13.1 52.7± 10.7

53

Figure 5.3: Collision rate and its standard deviation after 1 million time steps when
using the Loose Turn constraint.

Table 5.9 gives the results after 1 million steps with state augmentation. The

collision rates with and without state augmentation are also compared in Figure 5.3.

These results show an overall improvement over the results without augmentation.

The success rates are similar to or slightly above the baseline value with the exception

of shaping value 1 have a 1.6 point decrease in successes. The collision rates for

shaping values of 0.5, 1, and 10 show a slight improvement while the collision rates

for 0.1 and 2 are approximately the same as the baseline rate.

The models with a reward shape value of 1 seem to be an anomaly with widely

varying results. Without state augmentation, four of the seeds have collision rates

exceeding 70%, and averaging the seeds gives the highest collision rate of any test.

One of the seeds with state augmentation learned to basically take little or no actions

with 94% of episodes ending in timeouts, 2% ending in success, and the remaining 4%

resulting in a collision. This seed causes a large standard deviation and the reduces

success rate shown in the results. Removing this data point, the results become very

54

Table 5.10: Test results when using the Loose Turn constraint without augmentation
after 2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.6± 1.4 26.5± 1.1 26.3± 1.4 26.9± 0.2 25.6± 2.2
Time. 15.7± 6.4 16.7± 3.3 17.9± 8.5 21.6± 11.6 19.8± 5.2 22.3± 4.4
Col. 57.5± 6.4 56.8± 3.2 55.6± 7.7 52.1± 11.5 53.3± 5.1 52.1± 5.0

Table 5.11: Test results when using the Loose Turn constraint with augmentation
after 2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.7± 0.9 27.0± 0.2 26.7± 1.0 26.9± 0.4 26.1± 1.2
Time. 15.7± 6.4 18.3± 3.3 18.2± 7.8 15.9± 8.8 21.0± 4.9 23.5± 5.1
Col. 57.5± 6.4 55.0± 2.9 54.9± 7.7 57.4± 8.8 52.2± 4.6 50.5± 4.4

similar to results without state augmentation with a good success rate but a collision

rate exceeding the baseline value.

Overall, no pattern emerges for which shaping value presents the best results

at this point in training. The results are less consistent and show the Loose Turn

constraint providing little improvement over the baseline agent after 1 million training

steps.

Results after 2 million time steps without state augmentation are provided in

Table 5.10. The success rates are comparable to the baseline for each shaping value

except 10 where the success rate drops by more than one point. The collision rates

decrease as the shaping value increases. The collision rates for shaping values 0.1

and 0.5 only have a slight 1–2 point reduction while the collision rates for the larger

shaping values have a 4–5 point decrease. Hence, the best shaping value for this

configuration is 1 or 2 since they have the lowest collision rates while keeping a good

success rate.

55

Figure 5.4: Collision rate and its standard deviation after 2 million time steps when
using the Loose Turn constraint.

Table 5.11 contains the results with state augmentation after 2 million time steps.

Figure 5.4 contains a chart comparing the collision results with and without state

augmentation. Like the other results, the success rates are similar to the baseline

value with the exception of reward shape 10 having a slight, almost 1 point reduction.

For a shaping value of 1, the collision rate remains the same as the baseline whereas

0.1 and 0.5 have a small 2 point improvement. The larger shaping values 2 and 10

again have the best collision rates with a 5 and 7 point reduction in collisions over

the baseline results, respectively. Again, the shaping value of 2 emerges as the best

value with a low collision rate and a high success rate compared to the other models.

Similar to the Strict Turn constraint, the agents with the Loose Turn constraint

have significant variance in performance and specifically collision rate compared to

the baseline agent. This is regardless of training time and the inclusion or exclusion

of state augmentation.

Table 5.12 compares the collision rate of agents trained with and without state

augmentation. A positive value means adding state augmentation improved the agent

56

Table 5.12: The difference in collision rates with and without state augmentation for
the Loose Turn constraint. A positive value means the collision rate is lower when
the agent used state augmentation compared to not using state augmentation.

Reward Shape Value
Time Steps 0.1 0.5 1.0 2.0 10.0

1 million −0.8 −1.2 7.6 −0.7 4.0
2 million 1.8 0.7 −5.3 1.1 1.6

by decreasing the collision rate. Overall, there is not a significant difference in the

collision rates for most shaping values when state augmentation is added. Using a

reward shape value of 10, adding state augmentation shows a 4-point decrease in

collisions halfway through training but a smaller reduction after 2 million steps. The

results with a shaping value of 1 show the biggest change; state augmentation provides

a significant reduction in collision rate after 1 million time steps and a significant

increase once fully trained. From these results, there is no clear trend showing that

adding state augmentation improves or diminishes the performance of the agent.

We compare the collision rates after 1 million and 2 million training steps for

the Loose Turn constraint in Table 5.13. For the larger shaping values (2 and 10),

the additional training time leads to a decrease in the collision rate. For the smaller

shaping values (0.1 and 0.5), further training does not have a significant effect on

the collision rate, similar to the baseline agents. The shaping value of 1 has unique

results where the agents without augmentation show a large 9 point improvement

whereas the agents with augmentation have more collisions after additional training.

This is from the abnormal results with a shaping signal of 1 encountered with the

Loose Turn constraint.

While the Loose Turn constraint does not seem to improve the agent after 1

million time steps, the results show that the constraint can reduce the collision rate

after additional training. The shaping value of 2 emerges as the ideal value that

57

Table 5.13: The difference in collision rates from tests run halfway through and after
fully training using the Loose Turn constraint. A positive value means the collision
rate decreases after fully trained compared to testing halfway through training.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Without Augmentation −0.7 −1.0 −2.1 9.3 2.8 4.6
With Augmentation −0.7 1.6 −0.2 −3.6 4.6 2.2

reduces the reward enough for the agent to learn to avoid violations and collisions

without hindering the success rate of the agent which happens with a shaping signal

of 10. Due to the nature of the constraint, it is not violated as often as the Strict

Turn constraint, so it seems to need additional training time, out to 2 million time

steps, for the constraint to show a significant reduction in the collision rate over the

baseline agent.

5.4 Dithering Constraint

The final constraint tested is the Dithering constraint. Table 5.14 contains the results

of the agent after 1 million time steps without using state augmentation. For each

model, the success rate increases over the baseline agent by 0.5–1 point with the larger

increase resulting from larger shaping values. Compared to the baseline agent, the

collision rate increases slightly for a shaping value of 10, remains approximately the

same for three shaping values (0.1, 0.5, and 2), and decreases for a reward shape value

of 1. With previous constraints, a shaping value of 10 would typically result in one

of the lower collision rates but also decreases the success rate, whereas the opposite

is true for this comparison with those agents having a high collision and high success

rate. Here, a shaping signal of 1 emerges as the best choice with a 4.4 point decrease

in collisions and the highest success rate.

58

Table 5.14: Test results when using the Dithering constraint without augmentation
after 1 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 26.7± 0.9 26.6± 0.8 27.1± 0.2 27.0± 0.0 27.1± 0.3
Time. 17.1± 1.8 16.2± 2.0 17.1± 2.4 20.6± 11.2 16.5± 6.1 14.2± 5.3
Col. 56.8± 1.7 57.1± 1.9 56.3± 2.5 52.4± 11.2 56.5± 6.1 58.7± 5.1

Table 5.15: Test results when using the Dithering constraint with augmentation after
1 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.1± 1.3 26.8± 0.4 27.2± 0.4 27.0± 0.0 26.9± 0.2 26.8± 0.5
Time. 17.1± 1.8 18.4± 2.3 16.8± 5.5 18.5± 8.3 18.7± 4.6 18.4± 5.7
Col. 56.8± 1.7 54.8± 2.4 56.1± 5.5 54.6± 8.3 54.4± 4.6 54.8± 5.7

Table 5.15 presents the evaluation of the agent after 1 million time steps using state

augmentation. Across the board, there is a small but consistent improvement in the

constrained agents’ performance compared to the baseline models. The success rate

for each agent is approximately a one point improvement over the baseline success

rate. Further, each shaping value reduces the collision rate by 2–2.4 points with

the exception of shaping value 0.5 having only a slight reduction. Since we have

similar results for nearly all shaping values, the improvement is likely a result of the

additional information the agent receives from the state augmentation and not from

the reduction in the reward when violations occur. This claim is backed up from the

results without state augmentation where the agents show little improvement over

the baseline.

The variance of the results with this constraint is significantly less compared

with the previous results. This is especially true for the agents with smaller shaping

signals with the standard deviations being similar to the baseline values. A reward

59

Figure 5.5: Collision rate and its standard deviation after 1 million time steps when
using the Loose Turn constraint.

shape value of 1 has the largest variance in results both with and without state

augmentation. Figure 5.5 graphs the collision rate for each shaping value with and

without state augmentation for a visual comparison of the results.

The results of training the models for 2 million time steps without state augmen-

tation are presented in Table 5.16. The success rates are all effectively the same with

the results of the constrained agents differing by no more than 0.2 points from the

baseline value. The collision results are more interesting with a shaping value of 1

having a similar value to the baseline and the collision rate decreasing as the shaping

signal is increased or decreased. This is the opposite of most other results where a

shaping value of 1 is typically one of the better values and the performance decreasing

with larger or smaller values. However, the collision rates are very similar for these

shaping values (excluding 1), differing by at most half a point while having about a 3

point decrease from the baseline value. Hence, the reward shape value of 1 is more of

the outlier with the remaining values each showing consistent improvement over the

baseline agent.

60

Table 5.16: Test results when using the Dithering constraint without augmentation
after 2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.7± 0.8 26.8± 0.6 27.0± 0.1 26.7± 1.0 27.0± 0.1
Time. 15.7± 6.4 18.8± 6.5 18.4± 3.7 15.8± 5.2 18.7± 2.6 18.7± 2.6
Col. 57.5± 6.4 54.5± 6.6 54.8± 3.6 57.2± 5.2 54.7± 2.6 54.3± 2.6

Table 5.17: Test results when using the Dithering constraint with augmentation after
2 million time steps.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Suc. 26.8± 0.4 26.5± 1.3 26.7± 1.0 27.1± 0.5 26.7± 1.0 26.8± 0.5
Time. 15.7± 6.4 17.6± 5.4 18.2± 4.2 16.9± 5.7 20.0± 4.1 16.2± 6.2
Col. 57.5± 6.4 55.9± 5.0 55.1± 4.4 56.1± 5.7 53.3± 4.4 57.0± 6.1

Table 5.17 contains the results after 2 million time steps with state augmentation.

Similar to the previous results, the success rates are effectively the same with values

differing by at most 0.3 points from the baseline. The three smallest shaping values

(0.1, 0.5, and 1) each show a small 1.5–2 point reduction in collisions. A shaping

value of 2 has the largest decrease in collisions by over 4 points while a shaping value

of 10 has almost no improvement.

In contrast to previous constraints, the standard deviation of almost every model

is less than the standard deviation of the baseline after 2 million training steps,

especially for the shaping values in the middle. Hence, this constraint seems to make

the agent more consistent between runs whereas previous constraints would often

cause a large variance in performance with different seeds. Figure 5.6 displays the

collision rate and standard deviation for each shaping value with and without state

augmentation.

A comparison of the collision rates of the agents trained with and without state

61

Figure 5.6: Collision rate and its standard deviation after 2 million time steps when
using the Loose Turn constraint.

augmentation is provided in Table 5.18. After 1 million time steps, state augmentation

provides a 2–4 point decrease in collisions for three of the shaping values and provides

no significant change for shaping value 0.5. However, the collision rate worsens for

shaping value 1 by 2.2 points. This is because the collision rate for this shaping

value without augmentation is the best of all agents with the Dithering constraint,

whereas the value with augmentation is more consistent without other values. After

2 million training steps, there is less difference between the agents with and without

state augmentation with all but one differing by less than 1.5 points. The outlier is

shaping value 10 which has a 2.7 point increase in collisions when state augmentation

is added to the agent.

Table 5.19 contains a comparison of the collision rates after 1 and 2 million training

steps are completed. Without augmentation, the additional training time improves

every model except for shaping value 1, which is again an outlier. These agents

performed well halfway with the best results overall in this constraint, but after 2

million time steps, the agents have the highest collision rate of any fully trained

62

Table 5.18: The difference in collision rates with and without state augmentation for
the Dithering constraint. A positive value means the collision rate is lower when the
agent used state augmentation compared to not using state augmentation.

Reward Shape Value
Time Steps 0.1 0.5 1.0 2.0 10.0

1 million 2.3 0.2 −2.2 2.1 3.9
2 million −1.4 −0.3 1.1 1.4 −2.7

Table 5.19: The difference in collision rates from tests run halfway through and after
fully training using the Dithering constraint. A positive value means the collision
rate decreases after fully trained compared to testing halfway through training.

Reward Shape Value
Baseline 0.1 0.5 1.0 2.0 10.0

Without Augmentation −0.7 2.6 1.5 −4.8 1.8 4.4
With Augmentation −0.7 −1.1 1.0 −1.5 1.1 −2.2

results. With state augmentation, there is no significant improvement in the agents

with the additional training time. This is surprising but is likely a result of the

additional information provided to the agent with state augmentation causing the

improvement over the baseline agent. The constrained models are able to quickly

learn to reduce constraint violations and collisions with the state augmentation as

opposed to learning the rule from reward shaping, so additional training time does

not significantly improve the agents.

The Dithering constraint seems to provide a small but consistent performance

improvement to the agents, especially with state augmentation. Previous constraints

showed larger reductions in the collision rate but only with some shaping values

whereas other choices would result in little or no improvement in the agent. With few

exceptions, the Dithering constraint provided a 2–3 point reduction in collisions while

keeping or slightly improving the success rate of the agent. The best result is from

the agents with a reward shape value of 1, no state augmentation, and only 1 million

63

training steps, but adding augmentation provides a more consistent improvement in

the agent regardless of the shaping signal.

Empirically, we found the ideal reward shaping values to be around 1–2 which

corresponds to roughly 2–5% of the total return for a successful episode. This al-

lows constraint violations to have a noticeable effect on the final reward sum, while

multiple violations can occur without completely eliminating other positive rewards.

We recommend testing several values before settling on an ideal shaping value for a

constraint.

State augmentation does not provide a benefit to the Strict Turn collision as the

DFA is very simple with only two states: either the starting state or the accepting

state. Therefore, using augmentation does not really provide any additional benefit

to the agent over reward shaping. However, for the Dithering constraint, because

the DFA is more complex with 9 states, state augmentation provides the agent with

additional information that the agent can use to guide the current action choices.

64

Chapter 6

Conclusion & Future Work

In this study, we imposed formal language constraints on an RL agent to improve its

safety as it autonomously navigates a simulated driving environment. The constraints

can significantly reduce the number of collisions involving the agent vehicle. While

an autonomous car will not be allowed to drive on roads until nearly all dangerous

behaviors have been eliminated, the relatively simple constraints introduced in this

work can play a part in tuning RL algorithms toward safer actions.

Future work can explore new and more complicated constraints to facilitate the

learning and safety of the agent. Possible future constraints include penalizing the

agent for leaving the current lane, moving too close to another vehicle or pedestrian,

or for a traffic violation such as running a stop sign. Constraints can also be learned

based on violation feedback from the agent. Furthermore, new and/or old constraints

can be applied to the same agent to see if the combination of constraints can further

enhance the safety of the agent and reduce the number of collisions. This can be

especially beneficial when constraints apply to different parts of the driving task.

For example, employing a constraint focused on navigating turns within intersections

and a separate constraint for helping the agent to maintain its position in the lane.

Additional future work can look into different baseline agents to verify if constraints

are universal and can be applied to various RL algorithms, or if constraints must be

65

tuned specifically for each algorithm. It would also be interesting to compare how

well the safety constraints perform depending on the performance of the baseline

agent. That is, would a strong baseline agent negate the need for the constraints, or

would the constraints provide an additional performance benefit to the already high

functioning base agent.

66

Bibliography

[1] Autopilot. https://www.tesla.com/autopilot. Accessed: 2020-07-22.

[2] Darpa grand challenge 2005. https://archive.darpa.mil/

grandchallenge05/gcorg/index.html. Accessed: 2020-07-22.

[3] Tesla vehicle safety report. https://www.tesla.com/VehicleSafetyReport.

Accessed: 2020-07-22.

[4] Urban challenge. http://www.grandchallenge.org/. Accessed: 2020-07-22.

[5] Disengagement reports - california dmv. https://www.dmv.ca.

gov/portal/vehicle-industry-services/autonomous-vehicles/

disengagement-reports/, Jun 2020. Accessed: 2020-07-22.

[6] R. Brooks. Predictions scorecard, 2020 january 01. Rodney Brooks - Robots, AI,

and Other Stuff, Jan 2020.

[7] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In

L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual Conference on

Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,

Proceedings, volume 100 of Proceedings of Machine Learning Research, pages

66–75. PMLR, 2019.

https://www.tesla.com/autopilot
https://archive.darpa.mil/grandchallenge05/gcorg/index.html
https://archive.darpa.mil/grandchallenge05/gcorg/index.html
https://www.tesla.com/VehicleSafetyReport
http://www.grandchallenge.org/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/

67

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An

open urban driving simulator. In Proceedings of the 1st Annual Conference on

Robot Learning, pages 1–16, 2017.

[10] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement

learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[12] Y. Hu, A. Nakhaei, M. Tomizuka, and K. Fujimura. Interaction-aware decision

making with adaptive strategies under merging scenarios. In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS 2019, Macau,

SAR, China, November 3-8, 2019, pages 151–158. IEEE, 2019.

[13] W. Kim, V. Anorve, and B. C. Tefft. American driving survey, 2014 - 2017. AAA

Foundation for Traffic Safety, 2019.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In

Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

[15] X. Liang, T. Wang, L. Yang, and E. P. Xing. CIRL: controllable imitative

reinforcement learning for vision-based self-driving. In V. Ferrari, M. Hebert,

C. Sminchisescu, and Y. Weiss, editors, Computer Vision - ECCV 2018 - 15th

European Conference, Munich, Germany, September 8-14, 2018, Proceedings,

http://www.deeplearningbook.org

68

Part VII, volume 11211 of Lecture Notes in Computer Science, pages 604–620.

Springer, 2018.

[16] M. Lynberg. Automated vehicles for safety, Jun 2020.

[17] A. Marshall. Elon musk promises a really truly self-driving tesla in 2020. Wired,

Feb 2019.

[18] A. Marshall. Ford taps the brakes on the arrival of self-driving cars. Wired, Apr

2019.

[19] T. M. Mitchell. Machine learning. McGraw Hill series in computer science.

McGraw-Hill, 1997.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In

M. Balcan and K. Q. Weinberger, editors, Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages

1928–1937. JMLR.org, 2016.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013.

[22] D. Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In

D. S. Touretzky, editor, Advances in Neural Information Processing Systems

1, [NIPS Conference, Denver, Colorado, USA, 1988], pages 305–313. Morgan

Kaufmann, 1988.

69

[23] E. Quint, D. Xu, H. Dogan, Z. Hakguder, S. Scott, and M. B. Dwyer. Formal

language constraints for markov decision processes. In NeurIPS 2019 Workshop

on Safety and Robustness in Decision Making, 2019.

[24] E. Quint, D. Xu, S. Flint, T. Bienhoff, S. Scott, and M. B. Dwyer. Formal

language constraints for markov decision processes. In NeurIPS, Under Review.

[25] R. Randazzo. Waymo to start driverless ride sharing in phoenix area this year.

The Arizona Republic, Jan 2018.

[26] D. M. Saxena, S. Bae, A. Nakhaei, K. Fujimura, and M. Likhachev. Driving

in dense traffic with model-free reinforcement learning. CoRR, abs/1909.06710,

2019.

[27] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforce-

ment learning for autonomous driving. CoRR, abs/1610.03295, 2016.

[28] D. Streitfeld. Waymo to offer phoenix area access to self-driving cars. The New

York Times, Apr 2017.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A

Bradford Book, Cambridge, MA, USA, 2018.

[30] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

[31] M. Toromanoff, É. Wirbel, and F. Moutarde. End-to-end model-free re-

inforcement learning for urban driving using implicit affordances. CoRR,

abs/1911.10868, 2019.

70

[32] J. R. Treat, N. S. Tumbas, S. T. Mcdonald, D. Shinar, R. D. Hume, R. E. Mayer,

R. L. Stansifer, and N. J. Castellan. Tri-level study of the causes of traffic

accidents: Final report. volume i: Casual factor tabulations and assessments.

May 1979.

[33] C. J. C. H. Watkins and P. Dayan. Technical note q-learning. Mach. Learn.,

8:279–292, 1992.

[34] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba. Scalable trust-region

method for deep reinforcement learning using kronecker-factored approximation.

In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017,

4-9 December 2017, Long Beach, CA, USA, pages 5279–5288, 2017.

	Formal Language Constraints in Deep Reinforcement Learning for Self-Driving Vehicles
	

	List of Figures
	List of Tables
	Introduction
	Background: Machine Learning and Safety Constraints
	Supervised Learning
	Inputs and Outputs

	Artificial Neural Networks
	Gradient Descent & Backpropagation
	Rectified Linear Unit

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer

	Reinforcement Learning
	Key Concepts
	Policy Optimization

	Safety Constraints
	Optimization Criterion
	Exploration Process
	Formal Language Constraints

	Related Work
	Experimental Setup
	CARLA Environment
	CARLA Task
	RL Agent
	Constraints
	Strict Turn Constraint
	Loose Turn Constraint
	Dithering Constraint

	Results & Discussion
	Baseline Agent
	Strict Turn Constraint
	Loose Turn Constraint
	Dithering Constraint

	Conclusion & Future Work
	Bibliography

