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Abstract 
In the last decades, advancements in computational science have greatly expanded 
the use of artificial neural networks (ANNs) in hydrogeology, including applica-
tions on groundwater forecast, variable selection, extended lead-times, and regime-
specific analysis. However, ANN-model performance often omits the sensitivity to 
observational uncertainties in hydroclimate forcings. The goal of this paper is to 
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implement a data-driven modeling framework for assessing the sensitivity of ANN-
based groundwater forecasts to the uncertainties in observational inputs across 
space, time, and hydrological regimes. The objectives are two-folded. The first objec-
tive is to couple an ANN model with the PAWN sensitivity analysis (SA). The second 
objective is to evaluate the scale- and process-dependent sensitivities of groundwa-
ter forecasts to hydroclimate inputs, computing the sensitivity index in groundwater 
wells (1) across the whole time-series (for the global sensitivity analysis); (2) across 
the output sub-regions with conditions of water deficit and water surplus (for the 
‘regional’ sensitivity analysis); and (3) at each time step (for the time-varying sen-
sitivity analysis). The implementation of the ANN-PAWN occurs in 68 wells across 
the Northern High Plains aquifer, USA, with pre-time-step rainfall, evapotranspira-
tion, snowmelt, streamflow, and groundwater measurements as inputs. Results show 
that evapotranspiration and rainfall are the major sources of uncertainty, with the 
latter being particularly relevant in water surplus conditions and the former in wa-
ter deficit conditions. The time-varying sensitivity analysis leads to the identifica-
tion of localized sensitivities to other sources of uncertainty, as snowmelt in spring 
or river flow during the annual peak period at the groundwater level. 

Keywords: Groundwater forecasts, Artificial neural network, Uncertainty, Sensi-
tivity analysis 

1. Introduction 

In the past century, the growing access to pumping technologies and 
aquifer mapping has evidenced the role groundwater (GW) plays in 
securing food production and sustaining population growth (Konikow 
and Kendy, 2005). Agriculture consumes about 90% of the world’s 
green water, and about 40% of irrigated water comes from ground-
water withdrawals (Aeschbach-Hertig and Gleeson, 2012). The pres-
sure exerted on global groundwater storage has led to global aqui-
fers’ depletion at rates of about 283 km3y-1 (Pokhrel et al., 2012), a 
value that represents an increase of 120% for the one observed in the 
1960s (Wada et al., 2010). Contrary to common perceptions, GW de-
pletion is not limited to arid and semi-arid regions but also occurs in 
humid areas of the world. One of the best-documented cases is the 
High Plains aquifer (HPA) in the United States. The HPA, located in a 
temperate-subtropical area, has lost about 250 km3 of water in the 
past 60 years, corresponding to about 8% of the initial storage (Scan-
lon et al., 2012). Thus, effective water management is an unavoidable 
task, which could be achieved through a range of mechanisms, such 
as improved crop water use efficiency (Kukal and Irmak, 2017), irri-
gation scheduling (Kang et al., 2000) and reservoir operation optimi-
zation (Galelli and Soncini-Sessa, 2010). 
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In irrigated agriculture, water resources re-allocations are typi-
cally planned semi-seasonally or seasonally with the aim of optimiz-
ing water use efficiency, maintaining soil field capacity, and sustaining 
water systems (Amaranto et al., 2019). Hence, the successful imple-
mentation of seasonal water management strategies and irrigation 
scheduling relies on the ability to anticipate the future state of the GW 
system in response to various hydro-climatic and anthropogenic fac-
tors (Coppola et al., 2005). Data-driven models (DDMs) can be used 
for such forecasting purposes. DDMs are well-recognized techniques 
that extract the input–output relationship from data without requir-
ing the complete characterization of a system. Developments of com-
putational sciences have greatly expanded their application domain to 
hydrogeological systems, and DDMs have been used successfully for 
groundwater forecasts in many studies. One of the first applications 
of DDMs was implemented by Coulibaly et al. (2001), who tested and 
compared different ANN architectures for groundwater forecasting in 
Burkina Faso. A few years later, Daliakopoulos et al. (2005) investi-
gated the most suitable ANN architecture for predicting the GW level, 
finding that the most accurate model was a standard-feed forward 
neural network. More recent studies include Tapoglou et al. (2014), 
who simulated groundwater level variations across the Isar River us-
ing a combination of ANN and kriging (Bavaria, Germany). They found 
that this hybrid approach can be used successfully in aquifers, where 
the hydrogeological information is constrained. Mohanty et al. (2015) 
used ANN to simultaneously forecast the weekly groundwater level 
at multiple sites, up to a maximum of a month. They found a signif-
icant decrease in performance for an increase in lead time. Barzegar 
et al. (2017) compared the ability of wavelet group data handling and 
extreme learning machines to forecast GW level three months ahead, 
concluding that the best performances can be obtained by the latter. 
Guzman et al. (2017) and Wunsch et al. (2018) forecasted daily GW 
level variations in a well in the Mississippi River Valley aquifer and 
Germany by using nonlinear autoregressive neural networks (NARX). 
Their results showed the potential of NARX to predict GW levels ef-
fectively. Amaranto et al. (2018) compared the ability of five different 
DDMs to forecast seasonal (1- to 4- month) GW levels across hydrolog-
ical regimes. They found that the error of all the DDMs increased dur-
ing intra-seasonal water-deficits. Amaranto et al. (2019) implemented 
an artificial neural network-instance based learning framework called 
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Multi-Model Combination (MuMoC) to forecast GW levels in three 
hundred wells across the High Plains aquifer in response to irrigation 
demands and hydro-climatic inputs. The implementation of MuMoC 
led to finding that modeling performances were strongly affected by 
precipitation and evapotranspiration and that MuMoC outperformed 
and artificial neural network model in a single well, especially in ar-
eas where observations were abundant. 

Nonetheless, DDMs do not require a complete hydrogeological char-
acterization of the GW system, the performance of, for example, ANN 
models is sensitive to input measurements. Such discrepancies in the 
inputs can be attributed to operational errors, systematic bias, the 
geographical distance between weather stations and the monitoring 
wells, or the combination of the factors above. These observational 
uncertainties propagate through the model, leading to a decrease in 
predicting accuracy or a problematic interpretation of the results. The 
latter is more DDM-specific, given their intrinsic ‘black-box’ nature. 
In areas where GW is used for irrigation supply, and water allocation 
is scheduled ahead of time according to the projected water availabil-
ity, it is critical to understand the dominant drivers of the GW model’s 
dynamics. In other words, it is crucial to identify which variables need 
to be known with higher accuracy, and what effects the uncertain-
ties of those variables have on the model outputs and forecast errors. 

Thus, assessing the sensitivity of forecasting accuracy to observa-
tional uncertainty still represents a significant challenge for model-
ers and water managers, which can be addressed by global sensitiv-
ity analysis (GSA) techniques. 

Modeling results might also be sensitive to different observational 
uncertainties (i.e., for different inputs) in different hydrogeological 
conditions (Corzo and Solomatine, 2007). A separate sensitivity anal-
ysis per each regime (hereafter referred to as ‘regional’ sensitivity 
analysis) is recommended. Usually, global sensitivity analysis meth-
ods use performance metrics aggregated over the whole simulation 
time series, which might lead to a significant loss of information re-
garding local behavior that might be of great interest (Pianosi et al., 
2015). Aggregating and performing SA at each time step (time-vary-
ing sensitivity analysis, TvSA) is a viable option for recovering sig-
nificant sensitivity to input uncertainty at specific instants in time. 

The goal for this study is to implement a framework for assess-
ing a data-driven groundwater forecast (one month) sensitivity to 
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multiple observational uncertainties in hydroclimate inputs (rainfall, 
evapotranspiration, snowmelt, river flow, and groundwater measure-
ments) across space and time and for different hydrological regimes. 
The objectives are two folded. The first objective is to develop an ANN-
based full-fledged framework, including an input-variable lag selec-
tion, and then we couple it with the global SA method called PAWN 
(Pianosi and Wagener, 2015). The second objective is to evaluate the 
scale- and process-dependent sensitivities of groundwater forecasts to 
hydroclimate inputs, computing the sensitivity index in groundwater 
wells (1) across the whole time-series (for the global sensitivity anal-
ysis); (2) across the output sub-regions with conditions of water def-
icit and water surplus (for the ‘regional’ sensitivity analysis); and (3) 
at each time step (for the time-varying sensitivity analysis). 

The testbeds for the current experiment are 68 wells across the 
Northern High Plains aquifer. 

The authors carried deterministic analyses to characterize the spa-
tial distribution of the error in groundwater forecasts in a previous 
study (Amaranto et al., 2019), which is not further discussed in this 
manuscript. 

2. Methodology 

2.1. Methodological framework 

To achieve the objectives described above, we apply the methodolog-
ical framework outlined in Fig. 1 to each of the wells selected for the 
analysis. In the first step, the hydroclimatic data (rainfall, evapotrans-
piration, river discharge, snowmelt, and groundwater level data) are 
divided into training and test sets (data division). Here, we optimize 
the split between the training set and the test set to ensure that both 
sets fit approximately the same statistical distribution, using the train-
ing and test average and standard deviation as optimization criteria. 
Then, the training minimum and maximum are used to normalize the 
data between 0 and 1 (data transformation). To select the most rele-
vant lag times, we apply a model-based input variable selection (IVS) 
procedure (using Artificial Neural Networks as models) to the train-
ing set. 
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The training set is then further split into a proper training set and 
a cross-validation set. This procedure, referred here as cross-valida-
tion, is implemented to optimize the number of nodes in the ANN hid-
den layer, using the RMSE in the cross-validation set as criteria to be 
minimized. Unlike traditional applications of data-driven models, the 
test set is not just used to test the performance of the model but also 
to evaluate the sensitivity of the model’s accuracy to input uncertainty. 
To implement this approach, we characterize each of the sources of 
uncertainty, and then we perform several perturbations on each of the 
inputs’ time series (in the test set) accordingly. The perturbed input 
data are then iteratively sampled following a density-based sensitiv-
ity analysis scheme proposed by Pianosi and Wagener (2015), called 
PAWN. PAWN uses the difference between the conditional and the un-
conditional distributions of the output metric (RMSE in our case) to 
measure the sensitivity to different uncertain inputs. For each input 

Fig. 1. Methodological Framework employed in this study.  
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combination sample, the ANN model is run, and the RMSE on the test 
set is used to evaluate the model’s performance. Then, the difference 
between the unconditional and conditional distributions of the RMSE 
is used to compute the PAWN sensitivity indices in three conditions. 
First, to assess the overall effect of data uncertainties on model per-
formance, the PAWN indices are computed for the RMSE calculated 
over the whole time series in each of the 68 wells under analysis. Sec-
ond, to estimate the impact of data uncertainties in water deficit and 
surplus conditions, the PAWN indices are computed for the RMSE of 
the data-points below the 10% quantile of the water level hydrograph 
(deficit) and above the 90% quantile (surplus) (see Amaranto et al., 
2018, for a more detailed description). Finally, to assess how the rel-
ative influence of different variables changes over time, we compute 
the PAWN indices for the RMSE evaluated at each time step with a 
moving window centered around the time step itself. Since the num-
ber of output time series in this paper is one per well (68 in total), for 
simplicity, the time-varying SA analysis is limited to two representa-
tive groundwater level time series. 

Further details about each of the blocks in Fig. 1 are provided in 
the following sections. 

 
2.2. Data division and transformation 

To assure that data come from the same population (Bhattacharya 
et al., 2007), the theory of DDM requires the statistical distributions 
of the training and the test sets to be approximately the same. First, 
we implement an iterative process of random selection to achieve the 
statistical homogeneity between the training and test sets. Then, we 
compare their distributions and select the split providing the closest 
statistical distribution. One drawback of this procedure is the inabil-
ity to reproduce modeling results. In consequence, we chose to con-
strain the iterative randomization of the splits by limiting the search 
of the test set only to consecutive years, corresponding to 30% of the 
total number of time steps. For example, if we are supposed to have 
30 years of data, the first nine years of the data are selected as the test 
set and the remaining 21 years of data as the training set. The statis-
tical distributions of the two sets are compared using their mean and 
standard deviation, and the result is stored. In the second iteration, 
the test set is composed of the second-to-tenth year time-steps, and 
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so on. The maximum statistical similarity is ensured by choosing the 
split(s) s* that satisfies the following rule: 

s∗ = argmin √(μr (s) − 1)2 + (σr (s) − 1)2                                     (1) 
                                  

s

where μR and σR are the ratios between means and standard devia-
tions of the training and the testing set outputs (after normalization), 
respectively, and the optimal split(s) s* is selected by solving the Eq. 
(1) through an exhaustive search procedure. 

After selecting the optimum split, the minimum and the maximum 
of the training set are used to normalize the data in the interval [0–1]. 

2.3. Selection of lags for the input variables 

In building DDMs, a key step consists in the selection of relevant (and 
adequately lagged) input variables, a procedure commonly referred 
to as input variable selection (IVS). Often this is done by exhaustively 
testing all the possible combinations of properly lagged variables. 
However, due to the often-high number of candidates, the IVS proce-
dure frequently becomes an optimization problem aimed at minimiz-
ing the trade-off between being computationally efficient (i.e., testing 
the least possible number of combinations) and finding the best input 
candidate (i.e., testing them all). Several studies have tried to address 
this problem. Among them, a genetic algorithm and general regres-
sion neural network (GAGRNN) proposed by Bowden et al. (2005); a 
tree-based iterative search method developed by Galelli and Castel-
letti (2013); and a partial-mutual information-based algorithm (May 
et al., 2008; Elshorbagy et al., 2010a). A good variety of IVS methods 
is available in the literature (see, for example, Galelli et al., 2014, for 
a review). Considering our objective to evaluate the sensitivity of the 
groundwater forecasts to the uncertainties in the inputs, we include 
all the candidate input variables once in this study. Then, the problem 
is limited to selecting the proper lag for each input (rainfall, evapo-
transpiration, river discharge, and snowmelt). 

To select the optimal lag for each variable, we perform a con-
strained ANN-based exhaustive search (CES). The CES algorithm it-
eratively tests any possible lag combination among the variables, each 
of them taken at one specific lag at the time. In other words, consid-
ering the four inputs mentioned above, and four lags (from t to t–4) 
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per input, the CES generates 256 (44) potential input candidates. Each 
candidate includes rainfall, evapotranspiration, snowmelt, and stream-
flow (only referred to as flow from here on) once, in a lag going from t 
to t–4. For what concerns the fifth input (current groundwater level), 
we use only the last groundwater observation available (GWt ). This 
choice is based on the fact that, for this specific input, the lag 1 was 
the one maximizing the average mutual information with the mod-
el’s output (GWt+1 ). For each of the candidates, an ANN model is fit-
ted on the training set. The RMSE in the cross-validation set was se-
lected as optimization objective, to be minimized in the search of the 
best input subset. 

2.4. Artificial neural networks 

Multilayer perceptron (MLP, Haykin, 2004) neural networks are a ma-
chine learning technique that has been widely used in water-related 
studies (see, for example, Elshorbagy et al., 2010b; Abrahart et al., 
2012). An MLP consists in an input layer, a hidden layer, and an out-
put layer. The first has the sole purpose of distributing the inputs fur-
ther. The nodes in the hidden layer usually depend on the complexity 
of the system analyzed, but also on the number of input neurons. The 
number of nodes in the output layer is often one, or equal to the num-
ber of outputs. The connections between layers are associated with 
weights (w). A sigmoidal transfer function in the nodes of the hidden 
(and often of the output) layer(s) ensures the nonlinearity of the MLP. 

2.5. Characterization of the sources of uncertainty 

One of the objectives of this study is to assess the relative contribu-
tion of the uncertainties of the inputs on the accuracy of a data-driven 
model. Hence, the uncertainties in the observational inputs are divided 
into five categories: (1) the uncertainty in the rainfall observations, 
(2) the uncertainty in the evapotranspiration time series, (3) the un-
certainty in snowmelt observations, (4) the uncertainty in streamflow 
time-series, and (5) the uncertainty in groundwater level observa-
tions used to both feed the model (autoregressive input) and evaluate 
it (output). Data uncertainty here is treated similarly, as in Pianosi 
and Wagener (2015). In particular, rainfall uncertainty was charac-
terized, assuming that the measurement error is multiplicative, and 
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the extent of the error changes differently in every rainfall event. This 
procedure, called storm-dependent rainfall depth multiplier, was first 
proposed and adopted by Kavetski et al. (2003, 2006). We assume a 
maximum observational rainfall error of ± 40%. Therefore, the cor-
responding storm-dependent multipliers are extracted by a uniform 
distribution within the range [0.6, 1.4]. For evapotranspiration and 
snowmelt error, we assume a constant multiplier through the whole 
time series, drawing it from a uniform distribution over [0.7–1.3], 
i.e., assuming a maximum error of ± 30%. These error percentages 
were decided by computing the average monthly coefficient of varia-
tion with respect to the climatology (defined here as the monthly cy-
clostationary average). 

An additive error model was used to perturbing the flow data. 
Here, the errors are represented by a zero-mean autocorrelated 
heteroscedastic Gaussian process (HGp). The variance of the error 
model is considered linearly dependent on the flow (Schoups and 
Vrugt, 2010). The two parameters of this model are set to maintain 
the maximum error in flow observations at ± 20% in 99% of the 
cases. Groundwater observations time series were treated similarly, 
but the HGp was fitted to the groundwater variations, rather than to 
the measurements themselves, to ensure that the measurement er-
ror is proportional to the difference in hydraulic head change, and 
not to its absolute value. 

2.6. Evaluation scheme 

To evaluate the contribution of each input to the performance of the 
model, we use three different aggregation schemes of the forecasting 
errors. First, to identify the global contribution of the various inputs 
over time in each well in the study area, we compute the root mean 
squared error (RMSE) over the whole time series. Second, to assess 
the input importance in different hydrological conditions, we compute 
the RMSE over the region of the water levels above the upper (90%) 
and below the lower (10%) quantile of the water-level hydrograph. 
Finally, to assess the temporal evolution of the inputs relative influ-
ence, we compute the RMSE at each time step over a moving window 
centered on that time step: 
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                                                                                  t+w 

RMSEt = √   1   ∑ (gwk
sim  –  gwk

obs )2                                          (2) 
                                       

2w+1
 k=t–w

where w is the semi-length of the moving window, t is the time step on 
which the window is centered, and gwk

sim and gwk
obs are respectively 

the simulated and observed groundwater levels on day k. 

2.7. The PAWN sensitivity analysis 

To assess the relative contribution of each input to the accuracy of the 
forecasts, we use a distribution-based sensitivity analysis method pro-
posed by Pianosi and Wagener (2015) and called PAWN. The choice 
of this particular sensitivity method lies in its easy applicability to 
nonlinear models and its independence from the type of output dis-
tributions (for example, symmetric, multimodal, or highly skewed). 
Furthermore, it has shown to provide robust results for a relatively 
low sample size (Zadeh et al., 2017; Pianosi and Wagener, 2016). As 
other distribution-based methods, PAWN measures the sensitivity of 
the output y (the RMSE, in our case) to variations of an input xi (the 
timeseries of a particular hydrometeorological variable) by the dis-
tance between the unconditional distribution of y (obtained by vary-
ing all the inputs) and the conditional distribution obtained when all 
the inputs change but xi. Here, the conditional and unconditional dis-
tributions are approximated by their empirical distribution functions. 
The distance between distributions is measured by the Kolmogorov-
Smirnov statistic, computed as follows: 

KS(xi) = max |Fy(y) − F(y|xi)
(y|xi)|                     (3) 

                                                                               (y)

where Fy(y) is the empirical unconditional distribution of y, and Fy|xi 
(y|xi) is the empirical conditional distribution of y when the ith input 
is kept fixed at the nominal value xi. Since KS is dependent on such 
nominal value, the PAWN method considers KS statistics over a pre-
scribed number of nominal values and then extracts their maximum 
as follows: 

Si = max[KS(xi)]                                     (4) 
                                                                                       (xi)
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By definition, all the KS (xi) values, and consequently, the sensi-
tivity indices Si, vary in the range [0, 1]. The closer the unconditional 
distribution Fy(y) is to the conditional ones Fy|xi (y|xi), the smaller the 
KS(xi), values and therefore the smaller the sensitivity of y to xi, and 
vice versa. 

3. Experimental setup 

3.1. Artificial neural networks 

To maximize the forecast performance, it is important to optimize the 
number of nodes in the hidden layer of the MLP. Here, the number of 
neurons was selected individually in each of the 68 wells under anal-
ysis within the interval [5, 17]. The MLP were trained by using the re-
silient backpropagation algorithm, using the R package RSNNS (Berg-
meir and Benítez, 2012). 

3.2. Pawn 

As mentioned above, the PAWN index estimates the sensitivity of the 
model output to a given input by the difference between the uncondi-
tional and the conditional cumulative distribution functions (CDFs) of 
the output. The unconditional CDF is approximated here by the em-
pirical distribution of Nu output samples obtained by sampling the 
whole input feasibility space. Similarly, the conditional CDFs are ap-
proximated by the empirical distributions of Nc output evaluations per 
each input. These evaluations require iterative sampling all the inputs 
but xi, which is kept fixed to a nominal value. Since the index is de-
pendent on the nominal value at which xi is fixed, we repeat the eval-
uations using n different nominal values for xi. Consequently, being 
M the number of variables, the total number of model evaluations re-
quired to compute the PAWN indices for M-inputs is Nu + Nc × n × M. 
The values of Nu, Nc, and n are fixed (by trial and error) to 5000, 3000, 
and 20, respectively, leading to a total number of model evaluations 
equal to 305,000 per well, and an average confidence interval size 
(obtained with 50 bootstraps) around the sensitivity index of 0.02. 

The numerical implementation of the PAWN sampling and eval-
uation for our application is schematized in Fig. 2. To obtain the 
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unconditional distribution of y, we randomly sample each of the in-
put factors 5000 times. Each of these 5000 samples corresponds to a 
dataset containing one perturbed time series of rainfall, evapotrans-
piration, snowmelt, discharge, and current GW level. These input da-
tasets are fed iteratively into the ANN model, which will, therefore, 
produce 5000 time series of GW level forecasts. Then, by comparing 
GW forecasts and observations, we obtain 5000 realizations of the 
model performances (i.e., 5000 values of RMSE, or 5000 RMSE val-
ues at each time step in case of TvSA), which are used to approximate 
the unconditional distribution. 

Fig. 2. PAWN experimental setup (TS stands for time-series; ARGW TS is the Au-
toregressive term of groundwater level time-series).  
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The steps required for the numerical approximation of the condi-
tional distributions are represented in the bottom part of Fig. 2. For 
the sake of simplicity, Fig. 2 refers to only one of the inputs (in this 
case, rainfall), but the procedure for the other inputs remains the 
same. First, we randomly sample one conditional rainfall time series. 
Then, we generate 3000 random samples of the other time series, and 
we iteratively run the model (in this case, the rainfall time series is 
fixed while snowmelt, discharge, evapotranspiration, and GW level 
time series change at each of the 3000 iterations). The 3000 RMSE 
values associated with the model forecasts time series are then used 
to approximate the conditional distributions. Then, we apply Eq. (3) 
to compute the KS statistic, we rerun the experiment as many times as 
the number of conditioning values (20 in the current analysis), and we 
compute the PAWN index as in Eq. (4). To achieve the specific objec-
tives of this study, we compute the PAWN indices for the RMSE calcu-
lated over (1) the whole time series; (2) water scarcity and abundance 
conditions; and (3) at each time step using a window semi-length of 
three months (w = 3 months). Also, a six-month window is tested. 

The PAWN analysis is implemented using an R adaptation of the 
SAFE Toolbox (Pianosi et al., 2015). 

4. Material 

4.1. Case study and dataset 

The study area in the High Plains aquifer (HP, Fig. 3a) extends for 
about 450,000 km2 (the largest aquifer in the United States) over eight 
states (South Dakota, Nebraska, Colorado, Kansas, Oklahoma, Wyo-
ming, New Mexico, and Texas). Since the 1950s, the aquifer has been 
intensively exploited by irrigation, and now ranks first in the United 
States for groundwater withdrawal. In the last 30 years, water lev-
els in the HP have shown declines of more than 30 m. These declines 
caused a saturated thickness reduction in some areas (Kansas and 
Texas, in particular) of more than 50% (Scanlon et al., 2012). The to-
tal GW depletion in the HP in the past 70 years is about 8% of the to-
tal groundwater storage. 

The area under investigation is the Northern portion of the High 
Plains (Fig. 3b-e), which occupies about 37% (167,000 km2) of the 
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total aquifer area. It is crossed by the Platte River, which drains north-
east Colorado, southeast Wyoming, and central Nebraska before merg-
ing into the Missouri River (Eschner, 1983). Here, the aquifer is con-
stituted by unconsolidated Quaternary alluvial deposits and is mainly 
in unsaturated conditions, with total saturated thickness ranging from 
400 m in the central part to less than 50 m in the west (McGuire, 
2015). 

Irrigation (measured in terms of percentage of irrigated area, Ozdo-
gan and Gutman, 2008) is particularly developed in the eastern part 
and alongside the Platte River (Fig. 3b), with corn and soybeans be-
ing the most cultivated crops. The irrigation system is usually a cen-
ter pivot sprinkler. According to Wen and Chen (2006), the number of 
registered irrigation wells grew from 1200 in 1936 to about 100,000 
in 2007, serving about 85% of the state’s irrigation land. 

Rainfall (Fig. 3d) follows a west-to-east gradient with a minimum 
of about 27 mm/month near the border with Wyoming to a maxi-
mum of about 70 mm/month on the eastern side of the aquifer. The 
maximum net recharge-rate of the aquifer occurs in the east part of 

Fig. 3. (A): location of the High Plains aquifer and of the study area; (B) irrigation 
intensity (percentage of irrigated areas, Ozdogan and Gutman, 2008); (C) location of 
the wells under analysis and of river discharge monitoring stations; (D) Annual rain-
fall (Rodell et al., 2004); (E) Decrease in water table level in the period 1950–2016.  
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Nebraska (mainly rainfall-driven) and alongside the Platte River, and 
it is of about 22 mm/y (Houston et al., 2011). The contribution of the 
Platte River to aquifer recharge is also evident from Fig. 3e, where it 
is possible to observe how the area close to the river is the one char-
acterized by the highest rise in the GW level in the past 70 years. GW 
level increases are also frequent in the north-central part of the state, 
where low irrigation intensity and high saturated aquifer thickness 
might be considered the main drivers of the aquifer recharge. Wa-
ter level decrease is particularly severe in the southeast and in the 
southwest. 

Monthly estimation of rainfall (P, mm/month), evapotranspiration 
(mm/month), and snowmelt (mm/month) were obtained by the Global 
Land Data Assimilation System (GLDAS, Rodell et al., 2004) with a 
spatial resolution of 1/8-degree latitude × longitude (about 15× 15 
km). GW (in meters below land surface) and discharge (Q, m3/ d) in 
the HP aquifer data were provided by the USGS (2015). We filtered the 
complete USGS GW database to exclude stations with an observation 
period of fewer than ten years of data (120 observations) and missing 
data higher than 25% within the 1980–2018 period. After the imple-
mentation of the filter, 68 wells remained available for analysis (Fig. 
3c). Streamflow data were gathered from the stream gauges closest 
to the selected monitoring wells. 

5. Results and discussion 

5.1. Spatial global sensitivity to data uncertainty 

Fig. 4 shows the spatial distribution of the sensitivity index for each 
of the five variables assessed in this study. By looking at the chart 
and in Table 1, it is easy to notice the strong impact that rainfall and 
evapotranspiration uncertainties have on ANN performances. In con-
trast, the contribution of snowmelt is practically negligible. One pos-
sible explanation for this might lie in the fact that, while Fig. 4 shows 
aggregated results for the whole time series, snowmelt is a phenome-
non that usually occurs only a few months a year (in February, March, 
and April, see Amaranto et al., 2019 for additional elements). Its con-
tribution is limited to this time frame. Therefore, while its impact on 
the model’s performances in a time step might be relevant, its overall 
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contribution appears to be much lower. Also, the interaction of snow-
melt with the upper soil layers is well known, and it is unlikely that, 
in locations where the aquifer is deeper, this variable might have any 
influence on groundwater dynamics. 

Fig. 5 shows the variables producing the highest and the second-
highest value of the PAWN index in each of the wells analyzed. Analyz-
ing Fig. 4, Fig. 5, and Table 1, one can see that, overall, evapotranspira-
tion (μPAWN = 0.56), rainfall (μPAWN = 0.49), and river flow (μPAWN= 
0.3) are the three dominant variables governing model performances. 
In particular, evapotranspiration was the most relevant variable in 37 
wells (54% of the cases) and the second most relevant in another 19 
wells (27% of the total), followed by rainfall (the most pertinent input 
in 21 wells, 31% of the whole; and the second most relevant in 30, 40% 
of the total) and river flow (most relevant input in 9 wells, 13% of the 
total, second-most appropriate in 12 wells, 17% of the total). 

Fig. 4. Spatial distribution of the PAWN sensitivity index computed for each input 
variable ET = evapotranspiration; Snow = snowmelt, Rain = rainfall; Flow = stream-
flow and H = groundwater level measurement at previous time-step.  

Table 1 Mean, maximum, and minimum value of the PAWN index across the study area. 

 ET  Snow  Rain  Flow  H 

mean (PAWN)  0.56  0.12  0.49  0.30  0.08 
max (PAWN)  0.89  0.62  0.89  0.90  0.42 
min (PAWN)  0.07  0.03  0.06  0.04  0.04 



Amaranto et  al .  in  Journal  of  Hydrolo gy  587  (2020)      18

By comparing Fig. 5 and Fig. 3b, we see that evapotranspiration 
uncertainties seem to mainly affect the performance of the models in 
regions where irrigation intensity is higher (orange and red areas in 
Fig. 3b). The influence of flows can be more robust near rivers, but 
flow measurement stations were not always available near wells to 
effectively couple the discharge time series with the groundwater lev-
els. On the other hand, the influence of rainfall on groundwater level 
changes can be particularly relevant along the Platte River. 

5.2. Regional sensitivity analysis for water availability regimes 

Fig. 6 shows the input variables responsible for the highest uncer-
tainty in forecasts during water surplus (left panel) and water deficit 
(right panel) conditions. By looking at the figure on the left, one can 
notice the increased relevance of snowmelt, rainfall, and flow. This 
close relationship between surface water-based variables and ground-
water levels is probably because the upper quantile corresponds to 
the hydrograph section associated with the water level peak, usually 
occurring between February and April. During those months, snow-
melt occurs and recharges the aquifer. As a consequence, snowmelt 
becomes the most relevant input variable in water abundance condi-
tions in six of the wells under analysis, a situation in which the over-
all sensitivity analysis never occurred. March and April are also the 
months when maximum rainfall usually occurs and when forecast 

Fig. 5. Variable producing the highest (left panel) and second highest (right panel) 
sensitivity index in each of the 68 wells. The blue and red rectangles represent the 
wells selected for time varying SA. 
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sensitivity to precipitation uncertainty is the most relevant in 26 of 
the wells. Besides, the higher water level in the upper quantile favors 
river seepage (which is inversely proportional to the distance between 
river sediment and groundwater level), and consequently, sensitivity 
to flow data uncertainty increases, with flow being the most impor-
tant source of uncertainty in 16 wells. As expected, the left panel in 
Fig. 6 also shows how relevant is the decrease in evapotranspiration 
when there is a water surplus. For example, the relationship between 
evapotranspiration and crop water demand, and it is maximum during 
the crop-growing season, is more evident later on in the year, causing 
a significant intra-annual water-level depletion. 

At the same time, Fig. 6 shows how evapotranspiration is by far 
the primary source of forecast uncertainty in the lower quantile of the 
water level hydrograph. Overall, 44 out of the 68 wells (about 65% 
of the total wells assessed) had ET associated with the highest PAWN 
value. As stated above, ET is at its maximum during the crop grow-
ing season, when significant GW depletions also occur. In particular 
(and as we will see in the following sections), the peak in ET usually 
occurs in August, which is also the month corresponding to the yearly 
minimum in groundwater level and the maximum drawdown. Conse-
quently, uncertainty in evapotranspiration inputs can propagate from 
ET to the forecasts of groundwater levels. This propagation is more 
evident during months in the lower quantile, and when the forecast 
sensitivity to evapotranspiration becomes the most relevant among 
all inputs analyzed in this study. 

Fig. 6. Most important input factor in water surplus (left panel) and in water def-
icit (right panel) conditions.  
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5.3. Time-varying sensitivity to input data uncertainty 

Regarding the temporal variability of the PAWN index, Fig. 7 shows 
the time series (February 1991-October 2001) of the GW level (red 
line in the plot) and the PAWN index (grayscale rectangles) in one 
of the monitoring wells (MW1, red box in Fig. 5a). The location of 
MW1 is near the Lower Republican River, in the southern part of Ne-
braska (Fig. 3c). In MW1, the aquifer is relatively shallow (the aver-
age groundwater depth is 2 m), allowing surface water and ground-
water to interact. The initial portion of the time series shows a keen 
sensitivity of flow observational uncertainties on modeling error, with 
flow influence being particularly relevant during the rising limb of the 
water table level hydrograph. As can be seen in the figure, snowmelt 
has a periodical control, with peaks on the PAWN index regularly oc-
curring between February and April, when snowmelt occurs. This in-
fluence seems to confirm the previous finding that, despite the low 
overall sensitivity to snowmelt, there are instances in time when this 
variable at least marginally influences modeling performances. How-
ever, snowmelt influence dissipates in the second half of the time se-
ries (from 1997), when the pattern in groundwater levels also changes. 
Staring in 1997, groundwater depletion during the growing season 
appears to be much more acute (on average, five times greater than 
the depletion rates occurring between 1991 and 1996). This increased 

Fig. 7. Time-varying PAWN index in Monitoring Well 1 (the red line is a qualitative 
representation of the normalized GW level changes). 
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depletion might cause groundwater level changes occurring deeper 
from the surface in the spring, reducing the effect of snowmelt on the 
model error. At the same time, the model exhibits an increase in the 
sensitivity to evapotranspiration during the crop-growing season. The 
best possible explanation for this period is an increase in groundwa-
ter use for irrigation. In essence, crop irrigation requirements (and 
consequently evapotranspiration) govern the groundwater variability 
in the season when irrigation takes place. Hence, an increase in irri-
gation water use might lead to more considerable influence of evapo-
transpiration uncertainties on modeling performances. 

Fig. 8 shows the time-varying PAWN index for MW2 (in the blue 
box of Fig. 5a). As in MW1, snowmelt likely influences the strong sea-
sonality in the figure. However, unlike in the previous case, the influ-
ence of river flow on MW2 appears to be more seasonal rather than a 
continuous effect along with the time series. The deeper water level 
might explain this effect in MW2, which varies from a minimum of 
about 10 m in March and April to a maximum of about 19 m in August 
and September, in comparison to MW1′s shallow groundwater level. 
The only time when any interaction between the surface water and 
groundwater emerges is when the spring recharge might be responsi-
ble for bringing the water table level closer to the surface. Practically 
no interaction between the two occurs through the rest of the year. In 

Fig. 8. Time-varying PAWN index in Monitoring Well 2 (the red line is a qualitative 
representation of the normalized GW level changes). 
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the case of MW2, the performance of the model looks to be entirely 
driven by rainfall and evapotranspiration, with the latter showing 
an increasing influence in the second portion of the time series (be-
tween March 2000 and December 2005). As in the previous case, the 
increased influence of evapotranspiration coincides with much deeper 
water tables during the growing season. For instance, after the sum-
mer of 2000, the water level experienced a drastic depletion in the 
water table during summer, which decreased the autumn-spring re-
covery typically observed in the previous five years. Furthermore, the 
water level starts showing a low depletion trend during which the in-
fluence of rainfall decreases, and the influence of evapotranspiration 
consistently increases. 

5.3.1. Effect of changing the window size 
Fig. 9 illustrates an unclear increase in the window in MW2 for 

the sensitivity of groundwater changes to rainfall and evapotranspi-
ration when w = 6 months. The time series has two sections, one sec-
tion (1995–2000), predominantly rainfall-driven, and another section 
(2000–2005) evapotranspiration-driven. 

Also, Fig. 9 indicates that the effect of snowmelt and flow becomes 
practically negligible throughout the time series. This result might 
be explained by the fact that both variables have a significant impact 

Fig. 9. Time-varying PAWN in Monitoring Well 2 for window semi-length w = 6 
months (the red line is a qualitative representation of the normalized GW level 
changes).
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on modeling results only for limited and specific times. The effect of 
flow was relevant only around March-April, while the snowmelt ef-
fect was detectable only around February-March. These months also 
correspond to the only time of the year when snowmelt (2 mm/day) 
is comparable to rainfall (1.8 mm/day). By increasing the window 
length, the estimated sensitivity index for those months contrasts with 
the low sensitivity obtained in the months before February and after 
April. Thus, an apparent combination of conditions makes the con-
tribution of flow and snowmelt practically undetectable. At the same 
time, rainfall and evapotranspiration lead to a more regular sensitiv-
ity index (characterized by fewer variations between one-time step 
and the following). In essence, drastic changes in the PAWN index, 
such as the one occurring for evapotranspiration in March and April 
2007 (or the one for rainfall in March 2000), are attenuated and be-
come practically negligible. 

6. Conclusions 

In this study, we implemented a SA framework to better understand 
the sensitivity of ANN errors to input observational uncertainties in 
groundwater forecast. 

As a product of the coupling ANN-SA, we conclude the following: 
Overall, evapotranspiration (μPAWN = 0.56) and rainfall (μPAWN = 

0.49) were the most relevant inputs. In particular, evapotranspiration 
appeared to be particularly relevant in areas with higher irrigation 
intensity, whereas the rainfall effect was detectable, especially in the 
Platte River area. Modeling errors were not sensitive to the ground-
water level measurement error in any of the case studies. 

Results for flow were difficult to interpret since flow stations were 
unavailable for coupling with the time series at all 68 wells. However, 
the flow effect was higher in the geographic proximity to the Platte 
and Lower Republican rivers. 

The contribution of snowmelt to the changes in groundwater levels 
was practically negligible across the studied area (average PAWN index 
= 0.12). Two factors might drive this effect. The first factor is that snow-
melt occurs one to two months in any given year, and the second factor 
is that the performance of the model might be relevant in a single time 
step, but the effect is much lower throughout the whole time series. 
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Regional SA results showed that evapotranspiration is the most rel-
evant variable in water scarcity conditions (10% quantile of the water 
level hydrograph). It showed in fact to dominate the error dynamics 
in about 65% of the wells in the study area. In contrast, rainfall was 
the most important in water surplus (90% quantile); being the ma-
jor sources of uncertainty in 40% of the analyzed wells. Sensitivity 
to snowmelt and flow also showed an increase in the upper quantile. 

The time-varying SA was able to register information that other-
wise would have been lost by applying SA to the whole time series. For 
example, the analysis of the constrained window shows that the ef-
fect of snowmelt is significant at the beginning of spring, with peaks 
of sensitivity index up to 0.62. Also, evapotranspiration proved in-
fluential in seasons when the groundwater depletion was particu-
larly severe, while at other times, flow or rainfall was the most rele-
vant variables. 

Increasing the window size led to less variability in the results and, 
consequently, to a less qualitative interpretation. Additionally, it hides 
potentially relevant information, such as the effect of snowmelt and 
river seepage in the spring. 

In summary, the present study evidence how complex phenomena 
govern the ANN ability to predict GW availability in irrigated areas in 
the land surface and the subsurface and across different spatial, hy-
drological, and temporal scales. Accurate estimations of evapotrans-
piration are critical since it was identified as the primary source of 
uncertainty in the forecast of groundwater levels. Furthermore, re-
gional and time-varying sensitivity analyses –tailored for specific wa-
ter regimes – were able to identify the importance of other forcing in-
puts (e.g., rainfall in water surplus, and snowmelt at the beginning of 
the year), which could not be captured when those errors were aver-
aged over the entire time-series. These analyses are recommended in 
order to raise awareness of the multiple sources of uncertainty and 
their roles in governing specific hydrological conditions and during 
particular periods. 

7. Limitations and future recommendations 

This study is limited by the lack of real-world pumping data (which 
were not available for the case study area) and by the use of proxies, 
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such as evapotranspiration, to simulate crop water requirements. 
Using pumping data would have provided more information on how 
human intervention shapes model performance. Furthermore, the 
selection of the feasibility space for the perturbed input was empir-
ically established. When possible, this choice should be made based 
on information about the error (available, perhaps, from local insti-
tutions). The analyses of the TvSA indicate how a different window 
convey different information. A suggestion is to investigate various 
sizes, to capture the full range of sensitivities across time-scales. 
Also, SA results might be sensitive to the choice of the model. Here, 
we used artificial neural networks to forecast GW levels and GSA to 
estimate the effect of data uncertainty on the model’s performance. 
The choice of a different model (perhaps physically-based) might 
lead to different results. The use of a physically-based model (cou-
pled with an analysis not based on error metrics such as the pre-
sented here) might likewise provide insights on how the physical 
system (and not the model’s error) is sensitive to uncertainties in 
forcings and parameters. Therefore, further research on coupling 
physically- and data-driven models should might lead estimate the 
contributions of the multiple sources of uncertainty in sub-seasonal 
forecasts of groundwater levels.  

CRediT authorship contribution statement — Alessandro Amaranto: Conceptu-
alization, Methodology, Software, Validation, Formal analysis, Investigation, Data 
curation, Writing - original draft, Visualization. Francesca Pianosi: Methodology, 
Software, Formal analysis, Investigation, Writing - review & editing, Visualization. 
Dimitri Solomatine: Formal analysis, Investigation, Writing - review & editing. Ger-
ald Corzo: Formal analysis, Investigation, Writing - review & editing. Francisco Mu-
noz-Arriola: Conceptualization, Methodology, Formal analysis, Investigation, Re-
sources, Data curation, Writing - review & editing, Visualization, Supervision, Project 
administration, Funding acquisition. 

Competing Interests — The authors declare that they have no known competing 
financial interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments — The authors acknowledge the support provided by the Robert 
B. Daugherty Water for Food Global Institute at the University of Nebraska and the 
University of Nebraska-Lincoln Institute of Agriculture and Natural Resources–Ag-
ricultural Research Division. Some research ideas and components were also devel-
oped within the framework of the USDA National Institute of Food and Agriculture, 



Amaranto et  al .  in  Journal  of  Hydrolo gy  587  (2020)      26

Hatch project NEB- 21-166 Accession No.1009760 and NEB-21-176 Accession No. 
1015252, and grant no. 17-77-30006 of the Russian Science Foundation. Post-pro-
cessed input data and experiments results can be founded in ( https://github.com/
alessandroamaranto/HP_SA ). 

References 

Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Mount, N.J., See, L.M., 
Shamseldin, A.Y., Solomatine, D.P., Toth, E., Wilby, R.L., 2012. Two decades 
of anarchy? Emerging themes and outstanding challenges for neural network 
river forecasting. Prog. Phys. Geogr.: Earth Environ. 36 (4), 480–513. https://
doi.org/10.1177/0309133312444943  

Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating 
global problem of groundwater depletion. Nat. Geosci. 5 (12), 853–861. 

Amaranto, A., Munoz-Arriola, F., Corzo, G., Solomatine, D.P., Meyer, G.E., 2018. 
Semiseasonal groundwater forecast using multiple data-driven models in an 
irrigated cropland. J. Hydroinf. 20 (6), 1227–1246. https://doi.org/10.2166/
hydro.2018.002. 

Amaranto, A., Munoz-Arriola, F., Solomatine, D.P., Corzo, G., 2019. A spatially 
enhanced data-driven multi-model to improve semi-seasonal groundwater 
forecasts in the High Plains aquifer, USA. Water Resour. Res. 55 (7), 5941–5961. 
https://doi.org/10.1029/2018WR02430  

Barzegar, R., Fijani, E., Moghaddam, A.A., Tziritis, E., 2017. Forecasting of 
groundwater level fluctuations using ensemble hybrid multi-wavelet neural 
network-based models. Sci. Total Environ. 599-600, 20–31. https://doi.
org/10.1016/j.scitotenv.2017.04  

Bergmeir, C., Benítez, J., 2012. M: Neural networks in R using the Stuttgart Neural 
Network Simulator: RSNNS. J. Stat. Softw. 46 (7). 

Bhattacharya, B., Price, R.K., Solomatine, D., 2007. P: A machine learning 
approach to modeling sediment transport. J. Hydraul. Eng. 133 (4), 440–450. 
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440)  

Bowden, G.J., Maier, H.R., Dandy, G.C., 2005. Input determination for neural 
network models in water resources applications. Part 2. Case study: forecasting 
salinity in a river. J. Hydrol. 301 (1–4), 93–107. https://doi.org/10.1016/j.
jhydrol.2004.06.020  

Coppola, E.A., Rana, A.J., Poulton, M.M., Szidarovszky, F., Uhl, V.W., 2005. 
A neural network model for predicting aquifer water level elevations. 
Groundwater 43 (2), 231–241. https://doi.org/10.1111/j.1745-6584.2005.0003.x  

Corzo, G., Solomatine, D., 2007. Baseflow separation techniques for modular 
artificial neural network modelling in flow forecasting. Hydrol. Sci. J. 52 (3), 
491–507. https://doi.org/10.1623/hysj.52.3.49  

Coulibaly, Paulin, et al., 2001. Artificial neural network modeling of water 
table depth fluctuations. Water Resour. Res. 37 (4), 885–896. https://doi.
org/10.1029/2000WR900368  

https://github.com/alessandroamaranto/HP_SA
https://github.com/alessandroamaranto/HP_SA
https://doi.org/10.1177/0309133312444943
https://doi.org/10.1177/0309133312444943
https://doi.org/10.1029/2018WR02430
https://doi.org/10.1016/j.scitotenv.2017.04
https://doi.org/10.1016/j.scitotenv.2017.04
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440)
https://doi.org/10.1016/j.jhydrol.2004.06.020
https://doi.org/10.1016/j.jhydrol.2004.06.020
https://doi.org/10.1111/j.1745-6584.2005.0003.x
https://doi.org/10.1623/hysj.52.3.49
https://doi.org/10.1029/2000WR900368
https://doi.org/10.1029/2000WR900368


Amaranto et  al .  in  Journal  of  Hydrolo gy  587  (2020)      27

Daliakopoulos, Ioannis N., et al., 2005. Groundwater level forecasting using 
artificial neural networks. J. Hydrol. 309 (1–4), 229–240. https://doi.
org/10.1016/j.jhydrol.2004.12.001  

Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010a. Experimental 
investigation of the predictive capabilities of data driven modeling techniques 
in hydrology - Part 1: Concepts and methodology. Hydrol. Earth Syst. Sci. 14 
(10), 1931–1941. https://doi.org/10.5194/hess-14-1931-2010  

Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010b. Experimental 
investigation of the predictive capabilities of data driven modeling techniques 
in hydrology - Part 2: Application. Hydrol. Earth Syst. Sci. 14 (10), 1943–1961. 
https://doi.org/10.5194/hess-14-1943-2010  

Eschner, T., 1983. Hydrologic and Geomorphic Studies of the Platte River Basin 
(Professional Paper 1277). U.S. Government Printing Office, Washington, DC. 

Galelli, S., Castelletti, A., 2013. Tree-based iterative input variable selection for 
hydrological modeling. Water Resour. Res. 49 (7), 4295–4310. https://doi.
org/10.1002/wrcr.20339  

Galelli, S., Soncini-Sessa, R., 2010. Combining metamodelling and stochastic 
dynamic programming for the design of reservoir release policies. 
Environ. Modell. Software 25 (2), 209–222. https://doi.org/10.1016/j.
envsoft.2009.08.001  

Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., 
2014. An evaluation framework for input variable selection algorithms for 
environmental data-driven models. Environ. Modell. Software 62, 33–51. 
https://doi.org/10.1016/j.envsoft.2014.08.015  

Guzman, S.M., Paz, J.O., Tagert, M.L.M., 2017. The use of NARX neural networks 
to forecast daily groundwater levels. Water Resources Manage. 31 (5), 1591–
1603. https://doi.org/10.1007/s00500-015-1833-z  

Haykin, S., 2004. Neural Networks: A comprehensive foundation. Neural 
Networks 41. 

Houston, N.A., Gonzales-Bradford, S.L., Flynn, A.T., Qi, S.L., Peterson, S.M., 
Stanton, J.S., Sohl, T.L., Senay, G.B., 2013. Geodatabase compilation of 
hydrogeologic, remote sensing, and water-budget-component data for the 
High Plains aquifer, 2011 (Data Series 777). Reston, VA: U.S. Geological Survey. 
Retrieved from https://pubs.usgs.gov/ds/777/pdf/ds777.pdf  

Kang, S., Shi, W., Zhang, J., 2000. An improved water-use efficiency for maize 
grown under regulated deficit irrigation. Field Crops Res. 67 (3), 207–214. 
https://doi.org/10.1016/S0378-4290(00)00095-2  

Kavetski, D., Franks, S.W., Kuczera, G., 2003. Confronting input uncertainty in 
environmental modelling. Calibration of Watershed Models 6, 49–68. https://
doi.org/10.1029/WS006p0049  

Kavetski, D., Kuczera, G., Franks, S.W., 2006. Bayesian analysis of input 
uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 42 (3). 
https://doi.org/10.1029/2005WR004368  

Konikow, L.F., Kendy, E., 2005. Groundwater depletion: a global problem. 
Hydrogeol. J. 13 (1), 317–320. https://doi.org/10.1007/s10040-004-0411-8  

https://doi.org/10.1016/j.jhydrol.2004.12.001
https://doi.org/10.1016/j.jhydrol.2004.12.001
https://doi.org/10.5194/hess-14-1931-2010
https://doi.org/10.5194/hess-14-1943-2010
https://doi.org/10.1002/wrcr.20339
https://doi.org/10.1002/wrcr.20339
https://doi.org/10.1016/j.envsoft.2009.08.001
https://doi.org/10.1016/j.envsoft.2009.08.001
https://doi.org/10.1016/j.envsoft.2014.08.015
https://doi.org/10.1007/s00500-015-1833-z
https://pubs.usgs.gov/ds/777/pdf/ds777.pdf
https://doi.org/10.1016/S0378-4290(00)00095-2
https://doi.org/10.1029/WS006p0049
https://doi.org/10.1029/WS006p0049
https://doi.org/10.1029/2005WR004368
https://doi.org/10.1007/s10040-004-0411-8


Amaranto et  al .  in  Journal  of  Hydrolo gy  587  (2020)      28

Kukal, M.S., Irmak, S., 2017. Spatial and temporal changes in maize and soybean 
grain yield, precipitation use efficiency, and crop water productivity in the 
US Great Plains. Trans. ASABE 60 (4), 1189–1208. https://doi.org/10.13031/
trans.12072  

May, R.J., Maier, H.R., Dandy, G.C., Fernando, T.G., 2008. Non-linear variable 
selection for artificial neural networks using partial mutual information. 
Environ. Modell. Software 23 (10–11), 1312–1326. https://doi.org/10.1016/j.
envsoft.2008.03.007  

McGuire, V.L., 2017. Water-level and recoverable water in storage changes, High 
Plains aquifer, predevelopment to 2015 and 2013–15 (Scientific Investigations 
Report 2017-5040). Reston, VA: U.S. Geological Survey. Retrieved from http://
pubs.er.usgs.gov/publication/sir20175040  

Mohanty, S., Jha, M.K., Raul, S.K., Panda, R.K., Sudheer, K.P., 2015. Using artificial 
neural network approach for simultaneous forecasting of weekly groundwater 
levels at multiple sites. Water Resour. Manage. 29 (15), 5521–5532. https://doi.
org/10.1007/s11269-015-1132-6  

Ozdogan, M., Gutman, G., 2008. A new methodology to map irrigated areas 
using multitemporal MODIS and ancillary data: An application example in 
the continental US. Remote Sens. Environ. 112 (9), 3520–3537. https://doi.
org/10.1016/j.rse.2008.04.010  

Pianosi, F., Sarrazin, F., Wagener, T., 2015. A Matlab toolbox for global sensitivity 
analysis. Environ. Modell. Software 70, 80–85. https://doi.org/10.1016/j.
envsoft.2015.04.009  

Pianosi, F., Wagener, T., 2015. A simple and efficient method for global sensitivity 
analysis based on cumulative distribution functions. Environ. Modell. Software 
67, 1–11. https://doi.org/10.1016/j.envsoft.2015.01.004  

Pianosi, F., Wagener, T., 2016. Understanding the time-varying importance of 
different uncertainty sources in hydrological modelling using global sensitivity 
analysis. Hydrol. Process. 30 (22), 3991–4003. 

Pokhrel, Y.N., Hanasaki, N., Yeh, P.J., Yamada, T.J., Kanae, S., Oki, T., 2012. Model 
estimates of sea-level change due to anthropogenic impacts on terrestrial 
water storage. Nat. Geosci. 5 (6), 389–392. https://doi.org/10.1038/ngeo1476  

Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., 
Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, J., Walker, J.P., Lohmann, 
D., Toll, D., 2004. The global land data assimilation system. Bull. Am. Meteorol. 
Soc. 85 (3), 381–394. https://doi.org/10.1175/BAMS-85-3-381  

Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, 
V.L., McMahon, P.B., 2012. Groundwater depletion and sustainability of 
irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. 109 
(24), 9320–9325. https://doi.org/10.1073/pnas.1200311109  

Schoups, G., Vrugt, J.A., 2010. A formal likelihood function for parameter and 
predictive inference of hydrologic models with correlated, heteroscedastic, 
and non-Gaussian errors. Water Resour. Res. 46 (10). https://doi.
org/10.1029/2009WR008933  

https://doi.org/10.13031/trans.12072
https://doi.org/10.13031/trans.12072
https://doi.org/10.1016/j.envsoft.2008.03.007
https://doi.org/10.1016/j.envsoft.2008.03.007
http://pubs.er.usgs.gov/publication/sir20175040
http://pubs.er.usgs.gov/publication/sir20175040
https://doi.org/10.1007/s11269-015-1132-6
https://doi.org/10.1007/s11269-015-1132-6
https://doi.org/10.1016/j.rse.2008.04.010
https://doi.org/10.1016/j.rse.2008.04.010
https://doi.org/10.1016/j.envsoft.2015.04.009
https://doi.org/10.1016/j.envsoft.2015.04.009
https://doi.org/10.1016/j.envsoft.2015.01.004
https://doi.org/10.1038/ngeo1476
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1073/pnas.1200311109
https://doi.org/10.1029/2009WR008933
https://doi.org/10.1029/2009WR008933


Amaranto et  al .  in  Journal  of  Hydrolo gy  587  (2020)      29

Tapoglou, E., Karatzas, G.P., Trichakis, I.C., Varouchakis, E.A., 2014. A 
spatio-temporal hybrid neural network-Kriging model for groundwater 
level simulation. J. Hydrol. 519, 3193–3203. https://doi.org/10.1016/j.
jhydrol.2014.10.040  

USGS: National Water Information System: USGS Groundwater Data for the 
Nation. https://waterdata.usgs.gov/nwis/gw  (Accessed 14 August 2018), 2015. 

Wada, Y., van Beek, L.P., van Kempen, C.M., Reckman, J.W., Vasak, S., Bierkens, 
M.F., 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37 
(20). https://doi.org/10.1029/2010GL044571  

Wen, F., Chen, X., 2006. Evaluation of the impact of groundwater irrigation 
on streamflow in Nebraska. J. Hydrol. 327 (3–4), 603–617. https://doi.
org/10.1016/j.jhydrol.2005.12.016  

Wunsch, A., Liesch, T., Broda, S., 2018. Forecasting groundwater levels using 
nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol. 
https://doi.org/10.1016/j.jhydrol.2018.01.045  

Zadeh, Amir, et al., 2017. Tensor Fusion Network for Multimodal Sentiment 
Analysis. arXiv preprint arXiv:1707.07250. 

https://doi.org/10.1016/j.jhydrol.2014.10.040
https://doi.org/10.1016/j.jhydrol.2014.10.040
https://waterdata.usgs.gov/nwis/gw
https://doi.org/10.1029/2010GL044571
https://doi.org/10.1016/j.jhydrol.2005.12.016
https://doi.org/10.1016/j.jhydrol.2005.12.016
https://doi.org/10.1016/j.jhydrol.2018.01.045

	Sensitivity analysis of data-driven groundwater forecasts to hydroclimatic controls in irrigated croplands
	

	tmp.1597091953.pdf.El7jr

