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Walleye (Sander vitreus) are a common top predator in 
aquatic ecosystems across the Northern Great Plains (Hoag-
strom and Berry 2010). Many recreational fisheries through-
out this region are managed for walleye and stocking pro-
grams are common (Berry and Young 2004, Lucchesi 2008). 
Walleye reach piscivory by age-1 or earlier (Hartman and 
Margraf 1992, Mittelbach and Persson 1998), but walleye 
also can consume macroinvertebrates and zooplankton even 
as adults (Slipke and Duffy 1997, Chipps and Graeb 2011, 
VanDeHey 2011). However, walleye growth and condition is 
reduced when prey fish densities are low and walleye feed on 
invertebrates (Hartman and Margraf 1992, Ward et al. 2007, 
Graeb et al. 2008, Ward et al. 2008, VanDeHey 2011). There-
fore, invertebrates may not be the most energetically efficient 
prey for walleye (Jones et al. 1994).

Gizzard shad (Dorosoma cepedianum) often are an impor-
tant prey species for walleye where the two species are sym-
patric (Hartman and Margraf 1992, Michaletz 1997, Porath 
2006, VanDeValk et al. 2008, Wuellner et al. 2010). Growth 
and recruitment of age-0 walleye has been closely related to 
gizzard shad abundance in western Lake Erie (Madenjian et 
al. 1996), and age-0 walleye have selected shad over other 
prey species (Forney 1974, Knight et al. 1984, Hartman and 
Margraf 1992, Einfalt and Wahl 1997). Juvenile walleye 
growth in ponds and enclosures increased when fed a diet of 
larval gizzard shad relative to zooplankton (Stahl and Stein 
1994, Michaletz 1997). Additionally, gizzard shad comprised 
most of the adult walleye diets throughout the growing sea-
son in multiple South Dakota reservoirs (Davis 2004, Ward et 
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al. 2007, Wuellner et al. 2010, Fincel 2011). Similarly, wall-
eye were found to consume gizzard shad as a major portion 
of their diets in Harlan County Reservoir, Nebraska (Olson et 
al. 2007). Walleye populations appear to benefit from having 
the soft-rayed, calorie-dense gizzard shad available (Ward et 
al. 2007, Wuellner et al. 2008, VanDeHey 2011).

During winter 2000–2001, eastern Nebraska experienced 
unusually cold winter conditions resulting in the extirpation 
of gizzard shad from several small flood-control impound-
ments including East Twin Reservoir and Pawnee Reservoir 
(Porath 2006). Gizzard shad were the only species extirpated 
during this event, for a description of the aquatic systems 
evaluated and population assessments methods refer to Po-
rath (2006). These two reservoirs provide important urban 
fisheries and there were concerns regarding the impacts of 
the loss of gizzard shad for each respective sport fishery. In 
addition, white perch (Morone americana) were discovered 
in Pawnee Reservoir shortly after the winterkill; the popula-
tion rapidly expanded and comprised up to 97% of walleye 
diets (by weight) in 2006 (Gosch 2008). However, gizzard 
shad were not replaced with an alternative prey fish in East 
Twin Reservoir, although other small-bodied fishes (such as 
Lepomis and Pomoxis species) remained available. These 
two systems provided an ideal opportunity for identifying 
trophic changes in walleye populations following the loss of 
an important prey species in Midwestern reservoirs. Howev-
er, without historic information on the diets of walleye, com-
paring walleye trophic interactions could not be completed 
with traditional methods (e.g., stomach contents analysis).
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Stable isotope analysis (SIA) is a useful tool for quan-
tifying food web linkages in terrestrial and aquatic systems 
(Peterson and Fry 1987, Dalerum and Angerbjörn 2005), as-
sessing species introduction and extirpations (Vander Zanden 
and Rasmussen 1999), evaluating temporal changes in aquat-
ic food webs (Satterfield and Finney 2002), and determin-
ing trophic level and energy sources (Peterson and Fry 1987, 
Grey 2006). Stable isotope analysis also provides a tempo-
rally integrated indicator of an organism’s position in the 
food web (Vander Zanden and Rasmussen 1999, McIntyre 
et al. 2006). Carbon (δ13C) and nitrogen (δ15N) isotopes can 
be used to estimate energy sources and trophic position of an 
organism (Peterson and Fry 1987, Grey 2006). 

Muscle tissue is most commonly used for SIA in fishes, 
but fins, otoliths, and scales also have been used (Sanderson 
et al. 2009, Fincel et al. 2011a). Calcified structures, such as 
scales, are often available for historic food web studies as 
management agencies often keep archives for aging purpos-
es. Scales are well suited for retrospective studies, and pro-
vide a medium for non-lethal study of a fish’s trophic level 
(Satterfield and Finney 2002, Dalerum and Angerbjörn 2005, 
Kelly et al. 2006). Despite widespread availability, only a few 
studies (Perga and Gerdeaux 2003, Pruell et al. 2003, Vander 
Zanden et al. 2003, Gerdeaux and Perga 2006, Grey et al. 
2009) have conducted SIA on scales and the use of SIA on 
archived calcified structures to assess the impacts of histori-
cal extirpations and invasions on food web ecology is a novel 
concept. Therefore, our objective was to examine changes in 
walleye trophic position after gizzard shad extirpation using 
stable isotope analysis (SIA) on archived walleye scales.

STUDY AREA

We studied walleye energy sources at two flood control 
reservoirs in Lancaster County, Nebraska. East Twin Reser-
voir was an 85 ha reservoir constructed in 1965. Pawnee Res-
ervoir was a 300 ha reservoir constructed in 1964. Both res-
ervoirs were in the Salt Creek watershed (see Porath 2006 for 
impoundment characteristics), an intensively cultivated re-
gion (Tunink 1991, Jackson 1995). East Twin Reservoir was 
part of a Nebraska Game and Parks Commission (NGPC) 
Wildlife Management Area and Pawnee Reservoir was part 
of a NGPC State Recreation Area; both reservoirs were used 
for recreational angling.

METHODS

Sample collection

We collected walleye from each lake using experimental 
gillnets during standardized fish surveys conducted by the 
NGPC between 1997 and 2007 using methods described in 
Jackson (1995). We collected a minimum of 10 scales from 
individual walleye for aging purposes. We kept scales that 

were not processed for aging and stored them in the enve-
lopes in a climate-controlled office building. We collected to-
tal length (TL; mm) and weight (g) of each walleye collected 
and recorded the total number of fish caught per net night. 
To allow sufficient turnover of stable isotope values between 
prey conditions (Buchheister and Latour 2010), we used 
walleye scales from surveys conducted at East Twin Reser-
voir in 1997 and 2000 (pre-winterkill), and 2006 and 2007 
(post-winterkill). Similarly, we used walleye scales from sur-
veys conducted at Pawnee Reservoir in 1997, 1998, and 2000 
(pre-winterkill) and 2007 (post-winterkill). 

In addition to walleye sampling, we also obtained stable 
isotope samples for potential prey of walleye following the 
winterkill. We targeted a minimum of five individuals of 
each small-bodied or juvenile fish observed in each system. 
Gosch et al. (2010) documented Pawnee Reservoir walleye 
consumed white perch following the winterkill. Pawnee Res-
ervoir walleye diets were comprised of >80% white perch (by 
weight) in spring, summer, and fall of 2006 and 2007. How-
ever, there was no previously available walleye diet informa-
tion post-gizzard shad winterkill from East Twin Reservoir. 
Therefore, we collected a variety of small-bodied fishes that 
could potentially serve as walleye prey from East Twin Res-
ervoir in August of 2009 using night near-shore, AC, boat 
electrofishing. We placed prey samples on ice for transporta-
tion and froze them at –20o C until further processing. We 
were unable to procure baseline samples retrospectively and 
therefore assumed a constant δ15N baseline across the study 
period.

Stable isotope analysis

We rinsed walleye scales with de-ionized water to remove 
surface debris and dried them for a minimum of three days 
at 60° C. We sent scales to the Cornell Stable Isotope Labo-
ratory in Ithaca, NY, where they were ground with a SPEX 
Certiprep 6750 Freezer/Mill (SPEX SamplePrep, LLC, 
Metuchen, New Jersey, USA), and weighed (0.25 mg) with 
a Sartorius MC5 Microbalance (Data Weighing Systems, 
Inc., Elk Grove, Illinois, USA). We determined stable δ13C 
and δ15N using a Delta V isotope ratio mass spectrometer 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) 
interfaced to a Carlo-Erba NC2500 elemental analyzer (CE 
Elantech, Inc., Lakewood, New Jersey, USA). We analyzed 
prey fish samples separately. We removed the head and en-
trails from prey fish (Fincel et al. 2011b) and dried remaining 
tissue for a minimum of three days at 60° C. We ground dried 
samples with a mortar and pestle and weighed the contents 
with a Mettler-Toledo XP26 Delta Range balance (Mettler-
Toledo GmbH, Greifensee, Switzerland). We analyzed sam-
ples for δ13C and δ15N using a Europa 20–20 mass spectrom-
eter (Sercon, Ltd., Cheshire, UK) at the Precision Agriculture 
Laboratory at South Dakota State University in Brookings, 
SD. Prey fish δ13C was corrected for lipid content using the 



74 The Prairie Naturalist  •  44(2): December 2012

equation recommended by Post et al. (2007). We assumed 
one trophic level to be equal to 3.4‰ δ15N (Vander Zanden 
and Rassmussen 2001).

Statistical analysis 

Due to fluctuations in walleye population size-structure 
over time, the TL of walleye sampled for SIA before and af-
ter the winterkill was unequal. In piscivores, δ15N generally 
increases with body size as fish prey become more important 
in the diet (Vander Zanden and Rasmussen 2001). Therefore, 
we tested for significant differences in mean TL of walleye 
from pre- and post-winterkill samples using an analysis of 
variance (ANOVA) and where differences in mean TL ex-
isted between pre- and post-winterkill periods, we correct-
ed isotope ratios for length (covariate) differences between 
years using adjusted least square means (Ott and Longnecker 
2001). We used Student’s t-test to determine differences in 
δ13C and δ15N walleye and two-sample F-tests for variances 
to compare δ13C variance before and after the gizzard shad 
winterkill. We conducted all statistical analyses using SAS 
version 9.2 (SAS Institute, Cary, NC, USA) and set alpha at 
0.05.

RESULTS

Mean TL of walleye sampled for scale SIA from Paw-
nee Reservoir did not differ (F1,65 = 0.36, P = 0.55) pre- and 
post-winterkill, but East Twin Reservoir mean TL of walleye 
sampled pre-winterkill were longer (F1,35 = 16.03, P <0.001) 
than fish sampled post-winterkill, necessitating the use of ad-
justed mean SIA values in East Twin Reservoir. Pre-winter-
kill walleye collected from East Twin Reservoir ranged from 
390 to 710 mm TL, with a mean of 527 mm (SE = 20, n = 
22). Fish collected post-winterkill ranged from 246 to 625 
mm TL with a mean of 389 mm (SE = 29, n = 14). In Pawnee 
Reservoir, pre-winterkill walleye length ranged from 159 to 
558 mm TL, with a mean of 440 mm (SE = 37, n = 24), and 
post-winterkill length ranged from 285 to 668 mm TL with a 
mean of 419 mm (SE = 12, n = 44).

In both populations, mean walleye d13C and d15N shifted 
after the gizzard shad winterkill (Fig. 1). In East Twin Res-
ervoir, adjusted mean d13C of walleye scales increased from 
–23.01‰ to –19.86‰ (t 35 = 9.16, P < 0.001) and became 
more variable (F1,35 = 4.06, P < 0.001) after the gizzard shad 
winterkill, indicating walleye consumed a wider variety of 
prey and likely derived their energy from more benthic than 
pelagic (gizzard shad) prey after the winterkill. Walleye 
mean d15N decreased from 17.8‰ to 16.0‰ (t35 = –7.91, P < 
0.001), approximately half a trophic level.  In East Twin Res-
ervoir, isotopic values of post-winterkill scales were variable 
but were approximately one trophic level above the com-
mon prey fish signature. The small-bodied fishes we sampled 
from East Twin Reservoir as representative potential prey 

post-winterkill had similar isotopic signatures compared to 
pre-winterkill walleye. The green sunfish (Lepomis cyanel-
lus), bluegill (L. macrochirus), white crappie (Pomoxis an-
nularis), white bass (M. chrysops), juvenile largemouth bass 
(Micropterus salmoides), and juvenile walleye we sampled 
all measured about one trophic level below the post-winter-
kill adult walleye and had similar d13C values (Fig. 1).

In Pawnee Reservoir adjusted mean d13C increased from 
–23.08‰ prior to extirpation of shad to –18.11‰ following 
winterkill (t65= 26.40, P < 0.001) but did not increase in vari-
ability (F1,65 = 1.02, P = 0.47). This increase in d13C, indicated 
walleye in Pawnee Reservoir also consumed more benthic 
than pelagic prey after the gizzard shad extirpation. Mean 
d15N of walleye scales decreased from 15.5‰ to 13.5‰ in 
Pawnee Reservoir (t65 = –10.88, P < 0.001) following the 
gizzard shad winterkill. In Pawnee Reservoir post-winterkill 
walleye isotopic signatures were close to values measured for 
white perch (Fig. 1). 

DISCUSSION

In Pawnee and East Twin Reservoirs walleye δ13C became 
less negative, indicating more reliance on benthic or littoral 
prey resources post gizzard shad extirpation. Additionally, 
trophic level of walleye decreased in both systems. These re-
sults, consistent among the two populations, provide evidence 
for change in walleye trophic position following gizzard shad 
extirpation. The diet breadth of walleye, as indicated by the 
variability in δ13C values, increased in East Twin Reservoir 
after the extirpation of gizzard shad, suggesting walleye con-
sumed a wider variety of prey items post-gizzard shad ex-
tirpation. Furthermore, the stable isotope values of Pawnee 
Reservoir walleye scales after the winterkill and introduction 
of white perch were consistent with the findings of Gosch et 
al. (2010), suggesting white perch were the dominant energy 
source for walleye.

One limitation common to archived SIA studies is the 
lack of comparable archived baseline data. In recent years, 
much attention has been paid to the variability of stable iso-
tope baselines temporally and spatially within systems (Grey 
2006, Solomon et al. 2008, Fincel et al. 2011b, Guzzo et al. 
2011). Without baseline data for Pawnee and East Twin Res-
ervoirs, it is not possible to wholly attribute the shift in wall-
eye scale stable isotope values to a shift in feeding habits. 
However, documentation of the same trend in both systems 
coupled with previous diet information (Porath 2006, Gosch 
et al. 2010) suggested that shifts in isotopic signatures were 
likely not a result of shifting baselines. Walleye are adapt-
able predators as evidenced by numerous studies that have 
documented diet shifts both experimentally (Lyons 1987, Po-
rath and Peters 1997) and in situ (Parsons 1971, Forney 1974, 
Knight et al. 1984, Lyons and Magnuson 1987). Where wall-
eye exist without soft-rayed prey fishes (e.g., gizzard shad 
or cisco; Coregonus artedi) they primarily consume littoral 
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fishes and invertebrates (Lyons and Magnuson 1987, Liao et 
al. 2002, Chipps and Graeb 2011). Our data support these 
previous studies; walleye maintained a high trophic level by 
consuming a pelagic prey resource before the gizzard shad 
winterkill, then declined in trophic level when they switched 
to more benthic or littoral prey resources following gizzard 
shad elimination. Further, the increase in isotopic variabil-
ity of walleye in East Twin is indicative of fish consuming a 
wider variety of prey items and is not necessarily impacted 
by shifting baselines (Vander Zanden et al. 2000, Bearhop 
et al. 2004, Paterson et al. 2006, Syvaranta and Jones 2008).  

Walleye diets in our study shifted and became more variable 
following the extirpation of gizzard shad.

MANAGEMENT IMPLICATIONS

Many agencies are discontinuing the use of scale collec-
tion as they switch to using other structures (e.g., otoliths) 
to age fishes. However, as scales are relatively inexpensive 
and non-lethal structures to collect from most fish, we recom-
mend agencies continue collecting scales for stable isotope 
analysis. As many changes in fisheries trophic structure are 

Figure 1. Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios from adult walleye scales (open circles) collected from East Twin 
Reservoir (A) and Pawnee Reservoir (B) pre- and post-gizzard shad winterkill that took place in winter 2000–2001. Pre-winterkill 
walleye were collected in 1997 and 2000 in East Twin Reservoir, in 1997, 1998, and 2000 in Pawnee Reservoir. Post-winterkill wall-
eye were collected in 2006 and 2007 in East Twin Reservoir and in 2007 in Pawnee Reservoir. Potential prey fish (closed circles) 
stable isotope ratios from East Twin Reservoir are also presented. LMB = juvenile (< 200 mm TL) largemouth bass (Micropterus 
salmoides), WAE = juvenile (< 200 mm TL) walleye, WTC = white crappie (Pomoxis annularis), GSF = green sunfish (Lepomis 
cyanellus), BLG = bluegill (L. macrochirus), WHP = white perch (Morone americana) and WHB = white bass (M. chrysops). White 
perch stable isotope values from Pawnee Reservoir were obtained from Gosch (2008). Error bars represent one standard error.
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unforeseeable, having an archived collection of scales may be 
useful for reconstructing food webs and making comparisons 
over time. We suggest that while agencies may be without the 
resources to invest in costly, time-intensive diet studies, the 
periodic collection of calcified tissue samples and baseline 
data for SIA may be a viable means for clarifying long-term 
trends in trophic interactions among fishes. Additionally, we 
recommend research be conducted comparing isotope signa-
tures from calcified structures temporally to identify if the 
duration of preservation impacts SIA signatures. 
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