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Abstract
Large databases containing producer field-level yield and management records can 
be used to identify causes of yield gaps. A relevant question is how to account for 
the diverse biophysical background (i.e., climate and soil) across fields and years, 
which can confound the effect of a given management practice on yield. Here we 
evaluated two approaches to group producer fields based on biophysical attributes: 
(i) a technology extrapolation domain spatial framework (‘TEDs’) that delineates 
regions with similar (long-term average) annual weather and soil water storage 
capacity and (ii) clusters based on field-specific soil properties and weather dur-
ing each crop phase in each year. As a case study, we used yield and management 
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data collected from 3462 rainfed fields sown with soybean across the North Cen-
tral US (NC-US) during four growing seasons (2014–2017). Following the TED ap-
proach, fields were grouped into 18 TEDs based on the TED that corresponded to 
the geographic location of each field. In the cluster approach, fields were grouped 
into clusters based on similarity of in-season weather and soil. To evaluate how the 
number of clusters would affect the results, fields were grouped separately into 
5, 10, 18, and 30 clusters. The two stratification approaches (TEDs and clusters) 
were compared on their ability to explain the observed yield variation and yield 
response to key management factors (sowing date and foliar fungicide and/or in-
secticide). Lack of stratification of producer fields based on their biophysical back-
ground ignored management by environment (M×E) interactions, leading to spuri-
ous relationships and results that are not relevant at local level. In the case of the 
cluster approach, a fine stratification (18 and 30 clusters) explained a larger por-
tion of the yield variance compared with a coarse stratification (5 and 10 clusters). 
However, for our case study in the NC-US region, we did not find strong evidence 
that the data-rich clustering approach outperformed the TEDs on the ability to ex-
plain yield variation and identify M×E interactions. Only the stratification into 30 
clusters exhibited a small improved ability at explaining yield variation compared 
with the TEDs. However, the use of the clustering approach had important trade-
offs, including large amount of data requirements and difficulties to scale results 
to different regions and over time. The choice of the stratification method should 
be based on objectives, data availability, and expected variation in yield due to er-
ratic weather across regions and years. 

Keywords: Technology extrapolation domain, Cluster, Producer data, Soybean, Yield 
gap 

1. Introduction 

Analysis of large producer databases, including yield, management, 
and site-specific weather and soil data from multiple field-years, is be-
coming increasingly common in agriculture (e.g., Sadras et al., 2002; 
Lobell et al., 2005; Rattalino Edreira et al., 2017; Mourtzinis et al., 
2018; Di Mauro et al., 2018). When data from a large number of fields 
are available, analysis of these databases can help identify causes for 
yield gaps. However, the analysis can potentially be confounded as a 
result of variation in weather and soil across fields and years (here-
after referred to as the ‘biophysical background’). For example, let us 
consider a hypothetical management practice that has a positive and 
negative impact on yield in wet and dry environments, respectively, 
and a producer database collected from a region where frequency of 
dry and wet environments is similar (50:50). Analysis of the pooled 
data may lead to the conclusion that the practice does not have a 



Mourtzinis  et  al .  in  Field  Crops  Research 254  (2020)        3

consistent impact on yield. A corollary of this simple example is that 
stratification of fields based on biophysical background is needed to 
capture M×E interactions and to identify management practices with 
greatest impact on yield for a given climate and soil context. 

Stratification may not be needed for analysis of producer data col-
lected from relatively small geographic areas with small field-to-field 
and year-to-year variation in weather and soil (e.g., Grassini et al., 
2011; Silva et al., 2017). In other cases, a single variable is a strong 
predictor of the type of environment in each field-year; hence, a sim-
ple stratification based on that variable may be sufficient. An exam-
ple is the boundary-function analysis based on the relationship be-
tween water-limited yields and water supply (French and Schultz, 
1984). However, at issue is how to stratify producer fields for large 
agricultural areas that include diversity in climate and soil leading to 
variation in yield potential. Some previous studies did not account for 
variation in climate and soil among producer fields, using adminis-
trative units or loosely defined production areas as criteria to group 
fields (e.g., Villamil et al., 2012; Carr et al., 2016; Hurley and Mitch-
ell, 2017). Other studies have used agro-ecological zones that are too 
coarse for yield-gap analysis at local level (e.g., Tanaka et al., 2017; 
An et al., 2018). Some other studies have considered field-specific bio-
physical and management data to explain yield variation across pro-
ducer fields, without an explicit categorization of the fields into dis-
crete climate-soil domains (e.g., Dardanelli et al., 2006; Di Mauro et 
al., 2018). One limitation of this approach is the need for site-spe-
cific weather and soil data, which are usually not available, leading 
researchers to retrieve these data from distant weather stations and 
coarse-scale soil maps. Another problem is that, without stratifica-
tion, yield variation across fields reflects variation in yield potential, 
yield gaps, or both, making difficult to identify the causes for yield 
gaps for specific regions. For example, analysis of yield variation over 
a large geographic region, without any stratification, may reveal spu-
rious relationships due to strong correlations between weather and 
management practices (e.g., early sowing date and late cultivar ma-
turity associated with environments with long frost-free season and 
high yield potential). 

Seeking for an alternative to the previous approaches, two recent 
studies (Rattalino Edreira et al., 2017; Mourtzinis et al., 2018) assessed 
causes for soybean yield gaps in the North Central US (NC-US) region 
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using technology extrapolation domains (TEDs) as basis to stratify 
fields based on climate and soil similarity (http://www.yieldgap.org; 
Rattalino Edreira et al., 2018). The TED framework aims to reach a 
compromise between (i) accounting for biophysical factors with great-
est influence on crop yield and its stability, and (ii) allowing a reason-
able level of aggregation and geographic specificity to be relevant at 
informing research and extension programs. Briefly, the TED frame-
work delineates regions based on (i) annual total growing degree days 
(Tb=0⸰C), which correlates with the length of crop growing season, (ii) 
aridity index (calculated as the ratio between mean annual total pre-
cipitation and mean annual total evapotranspiration), which defines 
the degree of water limitation in rainfed cropping systems, (iii) an-
nual temperature seasonality, which differentiates between temperate 
and tropical climates, and (iv) plant available water holding capacity 
in the rootable soil depth (PAWHC), which determines the ability of 
the soil to supply water to support crop growth during rain-free peri-
ods. Details on TEDs development and data sources are available else-
where (Rattalino Edreira et al., 2018). The TED framework is static, 
that is, it does not account for year-to-year fluctuation in weather 
which, in turn, can lead to different responses to management prac-
tices. Another limitation is that TEDs are based on weather variables 
computed on an annual rather than crop-season basis. Annual means 
may mask the influence of weather during specific crop stages that 
are important for yield determination. A question is whether a more 
granular approach that accounts for year-to-year variation in weather 
and crop stages can improve the ability to identify causes for yield gap 
at regional level. 

As a starting point to evaluate the ability of different approaches 
to group producer fields for regional yield-gap analysis, we compare 
here two stratification approaches: one based on a framework delin-
eating ‘static’ climate-soil domains (TEDs), and another based on a 
data-rich clustering method using means of meteorological factors 
computed separately for each crop phase and field-specific soil prop-
erties (hereafter referred to as ‘clustering’). Our hypothesis is that a 
more granular approach should lead to improved capacity to identify 
causes for yield gaps. For this comparison, we used a large database 
including 3462 fields planted with soybean during four crop growing 
seasons (2014–2017) across the NC-US region - a region that accounts 

http://www.yieldgap.org
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for ca. 30% of global soybean production (FAOSTAT, 2016). We dis-
cussed advantages and disadvantages of the methods used for strati-
fying fields and implications for yield gap analysis. 

2. Methods 

2.1. Producer database and associated weather and soil information 

Soybean yield and management data were collected from rainfed 
fields sown with soybean across 10 states located in the NC-US re-
gion. The database included four crop growing seasons (2014–2017) 
and has been extensively described in Rattalino Edreira et al. (2017) 
and Mourtzinis et al. (2018). Producers reported data on field loca-
tion, average yield (adjusted to 13% grain moisture content), and man-
agement practices (e.g., sowing dates, application of foliar fungicide 
and/or insecticide, cultivar, etc.). Producers also reported incidence 
of other field adversities (e.g., pests, diseases, weeds, iron deficiency 
chlorosis, hail, waterlogging, and frost). Because the goal was to iden-
tify management practices that can be adopted by producers to in-
crease their yields, fields subjected to unmanageable field adversities 
(e.g., hail, frost, flooding) leading to substantial yield losses were ex-
cluded from the database. However, farmers tended to report dam-
age by wind, frost, or other adversities, even when damage was mild 
or nil, or when only affected a small portion of the field. Hence, we 
only excluded those fields reporting any of the aforementioned adver-
sities when they fall below the 25th percentile of the yield distribu-
tion within each TEDyear (4% of all fields contained in the database). 
After quality control, 3462 fields were included in the study. When 
aggregated at the county year level, yields were compared well with 
those reported by USDANASS for the same counties and years (Rat-
talino Edreira et al., 2017). 

Daily weather data for each field were retrieved from the DAYMET 
dataset (Thornton et al., 2017). DAYMET daily weather data is rea-
sonably accurate when means or totals are computed over extended 
periods (e.g., monthly or over a crop phase) (Mourtzinis et al., 2017). 
Weather variables retrieved for each field included incident solar ra-
diation, daylength, daily minimum (Tmin) and maximum (Tmax) 
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temperature, and precipitation. For each day, Penman-Monteith grass-
based reference evapotranspiration (ETo) was calculated following Al-
len et al. (1998). Similarly, daytime vapor pressure deficit (VPD) was 
estimated as 2/3 of the difference between the saturated vapor pres-
sure at Tmax and the saturated vapor pressure at Tmin following Ke-
manian et al. (2004). 

Soil pH and PAWHC were retrieved for each field from the SSURGO 
database. For each field, pH (0−150 cm) was calculated as a weighted 
sum of the pH values reported for the topsoil (0−30 cm) and subsoil 
(30−150 cm). We used the weighted sum of both depths due to their 
strong correlation (Pearson’s r=0.67, p < 0.05). Mean pH in a given 
field was derived from the pixel pH distribution within each field 
(ca. 9 pixels per field). Using the mode, instead of the mean, would 
have resulted in a negligible change in the calculated field-level pH 
(< 1%). Slope and terrain differences across fields can influence the 
crop water balance and final seed yield. Hence, we also calculated the 
topographic wetness index (TWI) for each field which has been used 
to characterize the potential for surface run-off and run-on in land-
scapes (Moore et al., 1993). High values are associated with flat ter-
rain whereas smaller values are associated with more uneven fields 
(e.g., fields with slopes). Thus, fields with high TWI are more likely to 
receive runoff water from adjacent areas and vice versa. TWI is usu-
ally correlated with other soil attributes, including soil organic mat-
ter, soil texture, and phosphorous content; hence, higher TWI values 
are generally associated with more productive soils. TWI was cal-
culated using the rsaga.wetness.index package in R (R development 
Core team, 2016) using the 30-m resolution National Elevation Data-
set (USDA:NRCS: Geospatial Data Gateway; https://datagateway.nrcs.
usda.gov/). For a given field, mean TWI was derived from the pixel 
TWI distribution within each field. 

2.2. Estimation of means of meteorological variables for each crop 
phase 

The most commonly used staging system for soybean was devel-
oped by Fehr and Caviness (1977). In this system, vegetative devel-
opment begins at emergence (VE) when cotyledons appear above the 
soil surface. A given vegetative stage (Vn) is reached when n number 

https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
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of nodes appear on the main stem with fully developed leaves begin-
ning with the unifoliolate nodes. Number n can be any number, be-
ginning with 1 for V1, which corresponds to the first-node stage. The 
beginning of flowering (R1) marks the initiation of the reproductive 
phase and is easily recognized by the first open flower at any node 
on the main stem. The beginning of pod-setting (R3) occurs when a 
pod of at least 5mm length is observable at one of the four uppermost 
nodes on the main stem. The beginning of seed filling (R5) is marked 
by the presence of seeds of at least 3mm in any of the four uppermost 
nodes. Physiological maturity (R7) indicates the end of the reproduc-
tive phase and is marked by the presence of one mature pod of brown 
color at any node on the main stem. 

In this study, we used SoySim model (Setiyono et al., 2007, 2010) 
to simulate dates of key developmental stages in soybean for each 
field year case, including VE, V4, R1, R3, R5, and R7. Model perfor-
mance at reproducing the observed vegetative and reproductive phe-
nology in producer fields in the US-NC region has been satisfactorily 
evaluated in previous studies, with an overall RMSE for the compar-
ison between observed and predicted crop stages of 3.6 d (Torrion et 
al., 2011). Simulations for each of the 3462 field-years was based on 
daily DAYMET weather and producer-reported sowing date (range: 
early March to late June) and cultivar maturity group (MG) (range: 
0.09 and 4.8). Based on the simulated dates of VE, V4, R1, R3, R5, 
and R7 for each field-year, average Tmin, Tmax, solar radiation, day 
length, and VPD were calculated for five crop phases: VE-V4, V4-R1, 
R1-R3, R3-R5, and R5-R7. Additionally, we calculated a simple wa-
ter balance to determine the degree of water limitation during each 
phase. Water balance was calculated as the difference between to-
tal precipitation and the non-water limiting crop ET derived from 
SoySim. The latter provides a proxy of the crop water demand and 
it was modelled based on the leaf area index, canopy characteris-
tics, and ETo. Water balance was calculated for all phases but for 
VE-V4. Except for extreme years with severe drought, which was 
not the case in any of the years included in the present study, soils 
in the NC-US region are fully recharged at sowing time and water 
is not limiting in early vegetative stages (Morell et al., 2016; Rattal-
ino Edreira et al., 2017). 
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2.3. Field stratification 

Selecting which approaches to compare and exactly how to imple-
ment them have, to a certain extent, a subjective component (e.g., 
selection of soil-weather variables, number of clusters, etc.). In our 
study, we used, first, a less-data intensive approach based on a spa-
tial framework that defines geographic regions with similar climate 
and weather (i.e., TEDs), and, second, a data-intensive approach that 
uses all available data and tools (i.e., clustering). The selected meth-
ods portray well the range of approaches that have been used in the 
literature. 

Following the first approach (i.e., TEDs), each field was assigned to 
a unique TED based on its geographic coordinates (Fig. 1). Fields were 
grouped into a total of 18 TEDs. Within a given TED, all fields would 
have, in principle, fairly similar (within a range) annual growing de-
gree day, aridity index, temperature seasonality, and PAWHC. Again, 
TEDs are based on annual-based long-term weather; hence, they do 

Fig. 1. Stratification of 3462 farmer fields in 18 technology extrapolation domains 
(TEDs). Fields shown with same color belong to the same TED, that is, a combina-
tion of long-term average climate and water storage capacity. Inset shows the TED 
spatial framework. Note that each field was assigned to a unique TED based on its 
geographic coordinates. Stars indicate the location of meteorological stations used 
to describe seasonal weather patterns shown in Fig. 3. 
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not account for weather variation across years. Similarly, they do not 
account for other soil and terrain properties (besides PAWHC) that can 
affect crop yield and stability such as pH and TWI. On average, there 
were 192 fields per TED, with>95 fields in all TEDs. The number of 
fields per TED was reasonable to detect yield differences due to man-
agement practices as reported elsewhere (Mourtzinis et al., 2018). To 
understand the degree of yield variation accounted for by TEDs versus 
year and TED×year interaction, we calculated the percentage of sum 
of squares (%SS) attributed to each term, after excluding the error. 
We also evaluated TEDs on their ability to group fields based on their 
yield potential. Following Rattalino Edreira et al. (2017), the yield po-
tential was estimated from the 95th percentile of the yield distribution 
in each TED-year; an average (4-y) yield potential was computed for 
each TED. Effect of TED on yield potential was evaluated using anal-
ysis of variance (ANOVA). 

In the second approach (i.e., clustering), crop-phase specific 
weather and soil properties were standardized to mean=0 and stan-
dard deviation= 1 and clusters were created using PROC FASTCLUS in 
SAS 9.4 (SAS Institute Inc., 1999). As mentioned previously, weather 
variables (water balance, solar radiation, Tmax, Tmin, VPD, and pho-
toperiod) were calculated separately for five crop phases (VE-V4, V4-
R1, R1-R3, R3-R5, and R5-R7) and soil properties included PAWHC, 
TWI, and pH. Briefly, the iterative algorithm minimizes the sum of 
squared distances from the cluster means, using Euclidean distances 
computed from numeric variables. This clustering method is called a 
k-means model, since the cluster centers are the means of the obser-
vations assigned to each cluster. In each iteration, the least-squares 
criterion is reduced until convergence is achieved. We used adaptive 
training (DRIFT option) in which the cluster seed is updated each time 
an observation is added. We specified LEAST=2 to minimize the root 
mean square difference between the data and the corresponding clus-
ter means. The LEAST option increases the maximum number of it-
erations and the chances that the optimization process will converge. 
The desired number of clusters for each scenario was achieved by us-
ing the MAXCLUSTER and DELETE options keeping the rest afore-
mentioned parameters constant. The number of clusters was pre-de-
fined and, to a large extent, subjective. In principle, one would expect 
greater similarity in climate and soil among fields as the number of 
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clusters increases, which should help at identifying the specific man-
agement practices that explain the greatest portion of the field-to-field 
yield variation. At the same time, higher number of clusters means 
fewer fields per cluster, which can result in insufficient power to de-
tect statistically significant differences in yield between management 
practices. Given this uncertainty, we included a stratification with 18 
clusters, which was comparable to the number of TEDs (n=18), and 
then some variants (n=5, 10, 30) to evaluate how the number of clus-
ters can influence the results. We did not include stratification with 
larger number of clusters as that would have led to an insufficient 
number of fields in many clusters to conduct a statistical analysis with 
adequate power. While we recognize that the analysis does not allow 
to establish a precise ‘optimal’ number of clusters, it does explore the 
plausible range of options. To summarize, we evaluated the cluster-
ing approach for four different number of clusters (5, 10, 18, and 30), 
hereafter referred to as C5, C10, C18, and C30, respectively (Fig. 2). 

Fig. 2. Stratification of 3462 farmer fields in 5, 10, 18, and 30 clusters. Fields shown 
with same color belong to the same cluster. Fields were clustered based on similarly 
of site-year weather during the crop season and soil properties.
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As a first step, frequency of each cluster within each TED was calcu-
lated to determine if one type of cluster prevailed over the others; the 
analysis was performed separately for C5, C10, C18, and C30. Subse-
quently, analysis of variance (ANOVA) using PROC MIXED in SAS 9.4 
was used to evaluate each of the stratification methods (TED and the 
four cluster sizes) on their ability to explain the observed variation 
in yield across field-year observations. To do this, we computed the 
%SS (relative to the overall SS) accounted for each of the five strati-
fications. We focused the analysis on understanding the effect of sow-
ing date and use of foliar fungicide and/or insecticide (FI) on soybean 
yield because previous studies using the same database have deter-
mined that those were the most important management factors ex-
plaining soybean yield gaps in the US NC region (Rattalino Edreira et 
al., 2017; Mourtzinis et al., 2018). Hence, we computed the %SS (after 
excluding the error) associated with each of these management prac-
tices (and their interactions) for each stratification method. Of par-
ticular importance was the analysis of management×TED (or cluster) 
interactions between stratification methods as this would give an in-
dication of the ability of the stratification methods to capture M×E in-
teractions. We note that the objective of this work was not to re-vali-
date the impact of sowing date and FI on soybean yield but rather to 
evaluate how different stratification methods can capture the effect 
of these management factors on soybean yield across producer fields 
with diverse biophysical background. 

3. Results 

3.1. Weather variation across sites and years 

The four years included in the database portrayed well the expected 
year-to-year and spatial variation in seasonal precipitation and tem-
perature in the region (Fig. 3). For example, total rainfall ranged from 
380 to 700mm at Ames, IA. The database also included years with rel-
atively warm and cool weather as indicated by the contrasting sea-
sonal growing-degree days accumulated in 2014 versus 2016. To sum-
marize, the database can be considered representative of the temporal 
variation in weather across soybean fields in the NC-US region. 
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Variation in weather across regions and years led to variation in 
producer yield (Fig. 4). The effect of TED, year, and TED×year inter-
actions were statistically significant (p < 0.001), but TEDs explained 
the largest portion of the modelled yield variation (67% of sum of 
SS after excluding the error); the rest of the variation was explained 
by year and TED×year interaction (16 and 17% of SS after excluding 

Fig. 3. Cumulative precipitation and growing-degree days (GDD, Tbase and Topt 8 
°C and 31 °C, respectively) from May 1st until September 30th, which roughly coin-
cides with soybean emergence and physiological maturity, at three representative 
locations across the west-to-east precipitation gradient in the U.S. Corn Belt in 2014 
(red), 2015 (blue), 2016 (green) and 2017 (orange). Dashed line indicates the long-
term (1988-2018) average. The three locations are shown in Fig. 1. 
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error). Similarly, the effect of TED on yield potential was statistically 
significant (p < 0.001), with yield potential ranging from 3.8 to 5.4 
Mg ha−1 across TEDs (Fig. 4). 

3.2. Field stratification into TEDs and clusters and associated drivers 

Number of field-years per cluster decreased with number of clus-
ters (Table 1). On average, there were 692, 346, 192, and 115 fields per 
cluster for the stratification based on 5, 10, 18, and 30 clusters, re-
spectively. Except for the stratification based on 30 clusters, all TEDs 

Fig. 4. Yield potential and average producer yield across technology extrapolation 
domain (TED). Values are 4-y means, computed from the average and 95th percen-
tile derived from the field yield distribution in each TED-year combination. Bars 
show the yield potential while the solid portion of the bar represents the average 
producer yield. Vertical lines indicate the standard deviation for yield potential. 
TEDs are sorted from lowest to highest yield potential. 

Table 1 Minimum, mean, and maximum number of fields (n) and field-to-field coefficient of 
variation (CV) for soybean yield within technology extrapolation domains (TEDs) and clus-
ters (C). Separate values are shown for fields grouped into different number of clusters (C5, 
C10, C18, and C30). 

	 C5 	 C10	  C18	  C30 	 TEDs 

	 n 	 CV	  n 	 CV	  n 	 CV 	 n 	 CV	  n	  CV 

Minimum 	 290	  16 	 185	  13	  73 	 13 	 41 	 12	  96	  11 
Mean 	 692	  19 	 346	  18 	 192	  17 	 115	  17 	 192 	 17 
Maximum 	 1031 	 22 	 772 	 22 	 454 	 23	  266	  22	  354 	 23 
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and clusters had a minimum number of fields near or larger than 100 
fields which, as mentioned previously, would allow to capture ex-
pected yield differences as a result of management practices (Mourtz-
inis et al., 2018). Coefficient of variation (CV) for yield was ≤ 23% 
across all clusters and TEDs, without any detectable difference be-
tween stratification methods. 

The two approaches to stratify producer fields lead to different 
grouping of the fields. In the case of the TEDs, the geographic distri-
bution of the different groups of fields portrayed gradients in tem-
perature (north-south) and precipitation (west-east) across the re-
gion and, to a lesser extent, variation in PAWHC (Fig. 1). For example, 
fields located in the western fringe of the region were grouped in dif-
ferent TEDs compared with fields in the eastern and central portions 
of the region as a result of the west-east gradient in seasonal precip-
itation. In contrast, the clustering approach grouped fields accord-
ing to field-year in-season weather and a number of soil properties 
(Fig. 2). As a result, the same field could be grouped in one cluster in 
a given year and in another cluster in the following year. For exam-
ple, despite differences in long-term average precipitation, ca. 270 
fields located in Nebraska were grouped together with fields in Iowa 
and Illinois because in-season precipitation (as well as other param-
eters used for clustering) was not too different among these fields in 
specific years. Similarly, analysis of frequency of clusters within each 
TED showed that, except for the case of the TED in the northwest-
ern portion of the region (North Dakota) and the analysis based on a 
small number of clusters (C5), none of the clusters clearly prevailed 
within a given TED (Fig. 5). 

Reported r2 values in Table 2 indicate the explained variability in 
a given variable when clusters were used as explanatory variables 
(PROC FASTCLUS, SAS 9.4). Crop phase-specific weather parameters 
were strong clustering predictors (Table 2). Most informative vari-
ables for cluster delineation were Tmax followed by VPD, daylength, 
and Tmin (Table 2). In all cases, the predictive power increased with 
higher number of clusters. Across cluster number×weather parame-
ter combinations, differences in r2 were relatively large among crop 
phases for water balance and Tmin, especially in C5 and C10. In con-
trast, differences among crop phases were small for the other clus-
ter number×weather parameter combinations. The r2 tended to be 
higher in reproductive versus vegetative phases for Tmax, Tmin, and 
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solar radiation, but this was not the case for the other weather pa-
rameters. Indeed, water balance early in the season was an impor-
tant factor for field clustering. In contrast to weather parameters, soil 
variables tended to be relatively poor clustering predictors, especially 
when the number of clusters was small (i.e., C5). Among soil parame-
ters, PAWHC was the most important clustering predictor, especially 
when the number of clusters was high (i.e., C30). 

3.3. Portion of yield variation accounted by each stratification 
method and effect of management practices 

Quantifying the fraction of overall yield variation accounted for 
by each stratification method provided an objective way to evaluate 
their performance at grouping fields based on their biophysical back-
ground (Fig. 6). Across stratification methods, the overall modelled 

Fig. 5. Pie charts showing frequency of clusters within each technology extrapo-
lation domain (TED). Separate panels are shown for stratification based on differ-
ent number of clusters (5, 10, 18, and 30 clusters). Each pie chart is centered on the 
centroid that corresponds to each TED. 
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Table 2 Coefficient of determination (r2) for soil and phase-specific weather variables for the 
fields stratified into different number of clusters: 5, 10, 18, and 30 (C5, C10, C18, and C30, 
respectively). Variables with high r2 were strong cluster predictors. 

Variable 	 C5 	 C10 	 C18 	 C30 

Soil parameters 
pH 	 nil 	 nil 	 0.01 	 0.02 
PAWH 	 nil	  0.21 	 0.24 	 0.36 
TWI 	 0.04 	 0.07 	 0.12	  0.17 
Water balance δ 
V4-R1 	 0.29 	 0.34	  0.44 	 0.52 
R1-R3 	 0.25 	 0.24 	 0.37 	 0.38 
R3-R5 	 0.02 	 0.18 	 0.27	  0.39 
R5-R7 	 0.18 	 0.32 	 0.37	  0.43 
Tmin 
VE-V4 	 0.36	  0.37	  0.57	  0.70 
V4-R1 	 0.32	  0.55 	 0.63 	 0.69 
R1-R3 	 0.50 	 0.56 	 0.68	  0.73 
R3-R5 	 0.42	  0.63	  0.67 	 0.75 
R5-R7	  0.29	  0.59 	 0.65 	 0.75 
Tmax 
VE-V4	  0.45 	 0.49	  0.64 	 0.76 
V4-R1	  0.42 	 0.61 	 0.67	  0.72 
R1-R3	  0.51	  0.58 	 0.70 	 0.79 
R3-R5 	 0.55	  0.63 	 0.72	  0.79 
R5-R7 	 0.47 	 0.66 	 0.69	  0.77 
Solar radiation 
VE-V4	  0.30	  0.47	  0.57 	 0.65 
V4-R1 	 0.34	  0.44 	 0.49	  0.60 
R1-R3 	 0.29 	 0.38 	 0.56 	 0.58 
R3-R5 	 0.27	  0.42 	 0.52	  0.62 
R5-R7 	 0.24 	 0.54	  0.59	  0.68 
VPD 
VE-V4 	 0.47	  0.55	  0.65	  0.75 
V4-R1 	 0.49	  0.63	  0.68	  0.73 
R1-R3 	 0.45	  0.53	  0.64 	 0.74 
R3-R5 	 0.38 	 0.44 	 0.58	  0.64 
R5-R7 	 0.42	  0.56 	 0.62 	 0.67 
Daylength 
VE-V4	  0.44 	 0.60	  0.69 	 0.78 
V4-R1	  0.55 	 0.66 	 0.72 	 0.75 
R1-R3 	 0.55 	 0.65 	 0.71	  0.75 
R3-R5	  0.53	  0.63	  0.69	  0.73 
R5-R7 	 0.51 	 0.61	  0.67	  0.71 

VE: emergence; V4: fourth vegetative stage; R1: beginning of bloom, R3: beginning of pod 
setting, R5: beginning of seed filling, R7: physiological maturity; VPD: daytime vapor pres-
sure deficit; Tmin: minimum temperature; Tmax: maximum temperature. δ Water balance 
during the VE-V4 phase was not included because water supply is not limiting in early veg-
etative stages. 
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%SS was relatively small, ranging from 7% to 23%. This result was 
expected considering the influence of management practices on yield 
and some residual variation in weather and soil within clusters or 
TEDs that cannot not be fully captured by the stratification methods. 
In the case of clusters, the analysis revealed that the fraction of mod-
elled variation increased with increasing number of clusters. Modelled 
variation was small for C5 (%SS=7) and changed little from C10 to 
C30 (from 18 to 23%). The portion of variation accounted for by TEDs 
(%SS=18) was slightly smaller (but comparable) to that of C10, C18, 
and C30 and more than 2x larger compared with C5 (Fig. 6). To sum-
marize, TEDs and clusters (except for C5) accounted for a relatively 
similar portion of the observed yield variance. 

The percentage of sum of squares explained by two key manage-
ment factors (sowing date and foliar fungicide and/or insecticide) and 
their interactions with the stratification method are shown in Table 
3. In general, the %SS accounted by the single effects of management 
practices decreased with increasing number of clusters. For example, 
in the case of C5, about 27 and 52% of the total variance (after ex-
cluding the error) was accounted by the effect of sowing date and FI, 
respectively, while only 4 and 29% (in the same order) of the total 

Fig. 6. Amount of soybean yield variability (expressed as percentage of total sum 
of squares) explained by each stratification variable: technology extrapolation do-
mains (TEDs) or 5, 10, 18, and 30 clusters (C5, C10, C18, and C30, respectively). Per-
centage of sum of squares was calculated using fixed effect models including only 
stratification method as independent variable in the model. 
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variance was explained by the same two factors in the case of C30 (Ta-
ble 3). In contrast, the %SS accounted by management×cluster inter-
action increased with higher number of clusters. These results sug-
gest that a greater number of clusters allowed a better identification 
of M×E interactions. In the case of the TEDs, its interactions with sow-
ing date and FI accounted for respective 8 and 23% of the total ex-
plained variance, which was similar to the %SS accounted by the C18 
(9 and 27%, respectively) (Table 3). 

Comparison of average yield response to sowing delay and FI on 
yield across all fields (i.e., without stratification) versus range in yield 
responses across clusters or TEDs highlighted the importance of strat-
ifying fields in order to capture M×E interactions (Fig. 7). However, 
it was difficult to find strong evidence that one stratification method 
outperformed the others in detecting the influence of management 
practices on yield. There were differences in the range of yield pen-
alty (due to delay in sowing) or yield difference (due to FI) among the 
different stratification methods. For example, only considering cases 
with statistically significant differences from zero, yield response to 
sowing delay ranged from ca. -11 to -32 kg ha−1 d−1 across clusters in 
C5 and C10 and from ca. 19 to −50 kg ha−1 d−1 across clusters in C18 
and C30 (Fig. 7). Number of clusters (as percentage of total clusters) 
without a statistically significant response to sowing delay increased 
from 20% (C5) to 56% (C30), and there was only one cluster (in C30) 
in which there was a statistically significant yield increase as a result 
of sowing delay (+19 kg ha−1 d−1). As a general trend, the magnitude 

Table 3 Portion of the modelled variation in soybean yield accounted for by stratification 
method (SM), sowing date (SD), foliar fungicide and/or insecticide (FI), and their interactions. 
Stratification methods include technology extrapolation domains (TEDs) and clusters (C). Sep-
arate values are shown for fields grouped into different number of clusters (C5, C10, C18, and 
C30). All sources of variation were statistically significant at alpha=5%. 

Source of variation 	                      % of sum of squaresa 

	 C5 	 C10 	 C18 	 C30 	 TEDs 

Stratification method (SM) 	 5 	 4 	 9	  13 	 8 
Sowing date (SD) 	 27	  14	  12	  4	  28 
Foliar fungicide/insecticide (FI) 	 52 	 54 	 44 	 29 	 33 
SM×SD 	 6 	 6	  9	  13 	 8 
SM×FI 	 10 	 21 	 27	  41	  23 

a Percentage of total sum of squares after excluding the error. 
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of the yield penalty due to sowing delay became more variable across 
clusters as the number of clusters increased. Range of yield differences 
due to FI followed similar patterns. In the case of the TEDs, the range 
of yield penalty due to sowing delay was similar to that observed for 
C5 and C10, but smaller compared with C18 and C30, ranging from 
-11 to −23 kg ha−1 d−1, with 22% of TEDs exhibiting no statistically sig-
nificant response to sowing delay. In the case of yield differences due 
to FI, the range observed across TEDs was similar to that for C18 and 
C30 (Fig. 7). 

4. Discussion 

Spatial and temporal variation in weather, together with field-to 
field variation in soil properties, can confound the effect of manage-
ment practices on yield. Hence, stratifying fields considering site-spe-
cific soil and crop-season weather can potentially increase the ability 
to identify management practices with greatest influence on yield and 
M×E interactions. Using producer soybean fields in the US NC region 

Fig. 7. Yield penalty due to sowing delay (upper panels) and yield difference be-
tween treated and non-treated fields with foliar fungicide and/or insecticide (FI; 
bottom panels). Each bar corresponds to a specific cluster or technology extrapo-
lation domain (TED; n = 18). White bars indicate cases where the effect of sowing 
date on yield (upper panels) or yield difference between treated and non-treated 
fields (bottom panels) was not statistically different from zero, respectively (P > 
0.05). Vertical bars indicate standard error of the mean. Horizontal red lines indi-
cate average yield response to sowing date delay and foliar fungicide and/or insec-
ticide application across fields without considering stratification. 
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as a case study, we showed that a data-rich approach to group pro-
ducer fields, such as clustering, resulted in a marginal increased abil-
ity to detect management practices influencing crop yield compared 
with a less-data intensive stratification approach (TEDs) based on an-
nual climate means and soil water storage. Still, the advantage of C30 
compared to the TEDs was small as quantified using the percentage of 
sum of squares for seed yield explained by each stratification method 
(% SS=18 versus 23 for TEDs and C30, respectively). 

There are a number of factors explaining the similarity in the analy-
sis based on TEDs versus clusters. First, year-to-year variation in yield 
across TEDs was relatively low as quantified using the inter-annual 
CV (range: 11–23%). Indeed, we found that year and TED×year inter-
action explained a much smaller portion of overall yield variance (16 
and 17% of modelled SS) compared with TEDs (67% of modelled SS). 
Second, there is usually a good correlation between seasonal versus 
annual means (or totals) of the meteorological variables for the region 
evaluated in the study. For example, total precipitation and mean tem-
perature during the crop season were highly correlated with their re-
spective annual values for all the TEDs evaluated in our study (r2=0.57 
and 0.93, respectively; p < 0.001). Hence, we consider the findings 
from our research to be applicable in other production environments 
that follow similar patterns in terms of yield stability and association 
between season- and annual-based weather. In contrast, we speculate 
that the cluster approach may have an advantage in current and future 
environments with more erratic weather patterns and, hence, higher 
yield variability due to year and stronger TED×year interactions as it 
is the case of the US Central Great Plains and Australia (Chapman et 
al., 2000; Lollato et al., 2017). We also recognize the importance of 
stratifying fields based on other non-biophysical factors. For example, 
if there are contrasting differences in the socio-economic background 
among farmers, it may be prudent to account for them by clustering 
fields based on other variables such as access to market or farm size 
(e.g., Jelsma et al., 2017). 

Potential advantages and disadvantages of each stratification 
method are shown in Table 4. For comparison purposes, we also dis-
cussed the approach without any stratification. On the one hand, us-
ing site-specific soil and crop-phase weather in the cluster approach 
would allow for a better characterization of the biophysical back-
ground associated with each site-year and better assessment of M×E 
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interactions. However, as mentioned previously, this would be relevant 
in environments with strong variation in weather across years, which 
was not the case in our study region. On the other hand, the cluster-
ing approach requires an enormous amount of ancillary weather and 
soil data as well as crop modeling to determine crop stages, with-
out a clear benefit in terms of additional explanatory power. Perhaps 
more importantly, most farmer decisions relative to crop manage-
ment are made before the season starts (e.g., tillage, fertilizer, sow-
ing), without knowing to which specific cluster the field would be 
grouped into in that particular year. Hence, extrapolation of result 
from analysis of cluster to a specific region is difficult. It can still be 
done if the frequency of clusters in each TED is known (Fig. 5) as long 
as the most dominant cluster(s) in each TED can be clearly identified, 
which, again, it is not the case for the US NC region. Conversely, the 
TEDs approach seems to be a reasonable approach to stratify fields 
given its low data requirements, ability to detect M×E interactions, 
and ease to extrapolate results to specific areas based on their aver-
age weather and soil conditions. Although not evaluated in the pres-
ent study, a potential drawback of the TEDs is that only those TEDs 
with a sufficient number of fields (> 100 in our case) would be con-
sidered for the analysis while the others (with smaller number of 
fields) would be discarded, whereas all fields could potentially be used 
with the clustering approach. Overall, we argue that further evalua-
tion of stratification methods across regions with contrasting year-
to-year weather variation should be performed to understand where 
the clustering approach would have a benefit that justifies the asso-
ciated high data requirement. For that cross-region analysis, it would 
be worthwhile to consider using a more objective and automated ap-
proach to determining the ‘optimal’ number of clusters for each re-
gion (e.g., Silhouette plots). Investigating whether less data intensive 

Table 4 Advantages and disadvantages associated with different methods for field stratification: no stratification, 
technology extrapolation domains (TEDs), and clusters. 

Attribute 	 No stratification 	 TEDs 	 Clusters 

Data requirements	 Low 	 Low 	 High 
Description of biophysical background in each field	 Poor 	 Acceptable 	 Excellent 
Ability to scale out results 	 Difficult	 Easy	 Intermediate-difficult 
Detection of M×E interactions	 Low 	 Intermediate-high 	 High 
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clustering approaches could also still lead to a justifiable result should 
be an explicit goal as this is one of the two main disadvantages of the 
cluster approach. 

Stratification of producer fields based on the biophysical back-
ground (either using TEDs or clustering) should be taken as a rou-
tinely step in any future studies assessing causes for yield gaps to 
avoid the confounding effect of varying climate and soil conditions, 
which leads to variation in yield potential across fields (Fig. 4). No 
stratification of producer data collected across wide geographic re-
gions would lead to spurious relationships and information that has 
little relevance at local level. For example, a simple analysis of yield 
variation across the NC-US region, without any type of stratifica-
tion, would reveal that soybean yield is associated with MG (r2=0.24, 
p<0.001). This is because late MG cultivars are grown in the warmer 
southern fringe of the region where the length of the frost-free sea-
son is longer and, in turn, an earlier sowing is possible; all together 
this would lead to higher yield. Such analysis would simply confirm 
the (well-known) fact that late MGs are sown earlier in the southern 
region (Mourtzinis and Conley (2017) but will have little value to help 
fine tune sowing date and MG choice for a specific climate-soil do-
main within the NC-US region. Similarly, lack of (or coarse) stratifi-
cation would ignore M×E interactions, as illustrated for sowing date 
and FI in Fig. 7, resulting in information that has limited value for 
farm management and prioritization of research and extension pro-
grams. Instead, proper field stratification, as performed in this study, 
allowed us to determine the effect of management practices on yield, 
in terms of both sign and magnitude, for clearly defined biophysical 
environments. 

5. Conclusions 

Lack of stratification of producer fields based on their biophysical 
background ignores M×E interactions, leading to spurious relation-
ships and results that are not relevant at local level. Results from this 
study showed that a fine stratification into 18 and 30 clusters of sim-
ilar environmental conditions explained a larger portion of the yield 
variance compared with a coarse stratification into 5 and 10 clus-
ters. However, for our case study in the NC-US region, we did not 
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find strong evidence that the data-rich clustering approach outper-
formed the TEDs on the ability to explain yield variation and iden-
tify M×E interactions. Only the stratification into 30 clusters exhib-
ited a small improved ability at explaining yield variation compared 
with the TEDs. In turn, use of the clustering approach has many trade-
offs, including high data requirements and difficulties to scale out re-
sults. The choice of the stratification method should be based on ob-
jectives, data availability, and expected variation in yield due to erratic 
weather across years. 
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