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abstract: Daily rhythms occur in numerous physiological and be-
havioral processes across an immense diversity of taxa, but there re-
main few cases in which mechanistic links between rhythms of trait
expression and organismal fitness have been established. We con-
struct a dynamic optimization model to determine whether risk allo-
cation provides an adaptive explanation for the daily foraging rhythm
observed in many species using the orb-weaving spider Cyclosa tur-
binata as a case study. Our model predicts that female C. turbinata
should generally start foraging at lower levels of energy reserves (i.e.,
should be less bold) during midday when predators are most abun-
dant. We also find that individuals’ foraging efficacy determines
whether daily rates of encounters with predators or prey more strongly
influences boldness under high risk. The qualitative model predictions
are robust to variation in our parameter estimates and likely apply to a
wide range of taxa. The predictions are also consistent with observed
patterns of foraging behavior under both laboratory and field conditions.
We discuss the implications of our study for understanding the evo-
lution of daily rhythms and the importance of model predictions for
interpreting empirical studies and generating additional hypotheses re-
garding behavioral evolution.

Keywords: daily rhythm, risk allocation, predation, foraging, predator-
prey interaction.

Introduction

Daily rhythms of physiology and behavior are a nearly ubiq-
uitous form of temporal organization in living systems. Not
only are daily rhythms extremely taxonomically widespread,
but they are also expressed across a variety of physiological
and behavioral traits within taxa (DeCoursey 2004). Al-
though a variety of proximate mechanisms may be used to
modify trait expression over the daily cycle (e.g., exoge-

nous cues, endogenous rhythms [sensu Aschoff 1981a],
and their interactions [Rietveld et al. 1993]), the resulting
pattern of changes in trait expression (the overt, or measured
rhythm sensu Rietveld et al. 1993) typically corresponds to
(or even anticipates) changes in external environmental con-
ditions that occur over the course of the day, such as changes
in the availability of resources or the intensity of risks. Con-
sequently, daily rhythms are widely assumed to be adaptive
strategies for coping with daily changes in environmental con-
ditions (DeCoursey 2004; Johnson 2005; Vaze and Sharma
2013). Although this assumption has motivated decades of
highly productive research on the proximate mechanisms
that contribute to overt daily rhythms of trait expression, such
as endogenous circadian rhythms, evidence for the adaptive
significance of daily rhythms remains surprisingly limited,
as rigorousmanipulative tests have proven difficult (reviewed
in DeCoursey 2004; Johnson 2005; Vaze and Sharma 2013).
Much of the putative evidence for an adaptive value of

daily rhythms rests on the assertion that daily changes in
trait expression should reflect changes in an environmental
factor with a plausible effect on the fitness consequences of
the trait. For example, it is well known that honeybees time
their foraging activities to match daily cycles of nectar and
pollen availability (reviewed in Moore 2001). Similarly, male
Texas field crickets sing louder, longer, and more frequently
during periods of the day when receptive females are abun-
dant relative to parasitoid flies (Bertram et al. 2004). How-
ever, rhythmic changes in trait expression may be correlated
with changing environmental conditions through mecha-
nisms unrelated to changing fitness consequences of trait ex-
pression per se (Johnson 2005). This may be the case if the
daily rhythm derives from intrinsic (e.g., organizational)
constraints or if altering the trait rhythm also produces cor-
related, nonrhythmic shifts in traits associated with fitness
(Beaver et al. 2003). Thus, more rigorous tests of the adap-
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tive value of a daily rhythm typically measure the fitness con-
sequences of experimentally decoupling patterns of trait ex-
pression and environmental change (but see Vaze andKumar
2013 for a discussion of empirical approaches). In practice,
this requires demonstrating that (i) changes in the pattern
of trait expression affect fitness and (ii) the fitness effects of
changes in the pattern of trait expression depend on the pat-
tern of environmental change. While the first criterion
assesses the potential for natural selection to favor the ob-
served rhythm, the second criterion determines whether daily
patterns of environmental change per se provide the mecha-
nism for selection on the rhythm (Vaze and Sharma 2013).

Very few studies demonstrate environmentally determined
fitness advantages of daily rhythms by meeting both of these
criteria. For example, in cyanobacteria, the outcome of com-
petition between strains that differ in the period of their en-
dogenous rhythm (and therefore presumably their overt
rhythm; Pittendrigh and Daan 1976; Aschoff 1981b; Emens
et al. 2009) depends on the correspondence between each
strain’s rhythm and the length of the light∶dark cycle (Ou-
yang et al. 1998). Similarly, in a Drosophila parasitoid, a daily
rhythm of oviposition behavior increases fitness by providing
competitively inferior larvae with a developmental advantage
when hosts are parasitized again later in the day by a compet-
itively superior congener (Fleury et al. 2000). However, to our
knowledge, the work of Fleury et al. remains one of the only
studies that directly assesses the fitness consequences of var-
iation in daily temporal niche separation for competitors, and
the ecological mechanism through which rhythms confer
competitive advantages in cyanobacteria is yet unresolved.
Consequently, our understanding of the evolution of daily
rhythms is perhapsmost limited by the lack of studies that in-
vestigate precise yet generalizable ecological mechanisms
throughwhich rhythmic changes in trait expressionmay pro-
vide fitness advantages. Addressing this knowledge gap re-
quires explicitly defining themechanisms throughwhich daily
environmental changes may affect trade-offs of trait expres-
sion and determining whether these mechanisms are likely
to produce selection for rhythms of trait expression under
natural conditions. Importantly, this focus on the ecological
mechanisms favoring the evolution of daily rhythms does
not require assumptions about the specific proximate mech-
anisms through which daily changes in trait expression are
achieved (Enright 1970). Instead, characterizing the optimal
pattern of trait expression under natural conditions may pro-
vide predictions about the nature of proximate mechanisms
that evolve in response to selection for the daily rhythm.

It is widely acknowledged that temporal variation in pre-
dation risk can drive patterns of behavior. This mechanism
of selection for shifts in behavior requires only that there be
trade-offs between predation risk and fitness-increasing ac-
tivities (e.g., searching for mates or foraging) and that the
intensity of predation risk relative to fitness benefits varies

over time (Lima and Bednekoff 1999). For example, Allenby’s
gerbils increase vigilance and leave behind more food under
brighter moon phases that increase the riskiness of foraging
(Kotler et al. 2010). Similarly, roe deer show greater levels of
vigilance during the period of the season when human hunt-
ing occurs (Sönnichsen et al. 2013). Given the ubiquity of daily
rhythms, it seems likely that predation risk also varies over
the daily cycle for many organisms. Thus, selection for daily
rhythms may in many cases arise from changes in foraging–
predation risk trade-offs that occur over the daily cycle. De-
spite this, there remain few studies that rigorously assess the
plausibility of temporal changes in foraging–predation risk
trade-offs for generating daily rhythms of behavior by testing
the predictions of mechanistic models under natural condi-
tions (but see Rosland and Giske 1994; Metcalfe et al. 1999;
Tarling et al. 2000; Jensen et al. 2006), and to our knowledge
no such studies have been conducted for terrestrial organisms.
Here, we develop a state-dependent dynamic optimal

foraging model to determine the extent to which adaptive
responses to temporal variation in predation risk provide
a general explanation for daily rhythms of foraging behav-
ior. We parameterize the model using empirical data from
an orb-weaving spider, Cyclosa turbinata, and compare the
model predictions to rhythms of behavior observed in the
laboratory (Watts et al. 2014) and under natural conditions
(this study). We find that the qualitative pattern of foraging
predicted by the model represents a robust solution to the
foraging–predation risk trade-off and is likely applicable
to a wide range of species. Moreover, the model predicts
that the effect of individual differences in foraging perfor-
mance on patterns of foraging decisions depends on prey
abundance and predation risk. This arises because the opti-
mal response of the pattern of foraging decisions to chang-
ing environmental conditions differs for more and less ef-
fective foragers.

The Model

We used stochastic dynamic programming (SDP; Clark and
Mangel 2000) to determine whether variation in the trade-
off between predation risk and food availability produces daily
rhythms in foraging activity of a sit-and-wait predator (we
briefly consider how the model differs for predators that must
actively search for prey in the appendix, available online). SDPs
are discrete-time models that can incorporate information
about individuals’ internal and external state, time constraints,
and the ecological and physiological consequences of decisions
to predict strategies that maximize fitness. Specifically, SDP
models determine for each combination of states the behavior
that maximizes expected fitness at the end of a period of inter-
est (e.g., the end of the daily cycle).
We begin by dividing the daily cycle into time steps

equal in length to the average time needed to complete a
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single foraging bout (i.e., the handling time, h). For simplic-
ity, we assume that an individual that does not suffer preda-
tion as a result of foraging in a given time step always sur-
vives to the subsequent time step (i.e., there are no other
sources of mortality). Although we acknowledge that other
sources of mortality affect the absolute expected fitness at
the end of the day, such fitness decrements are assumed
to occur for both resting and foraging spiders and therefore
should not affect the decision to forage. Thus, in each time
step, we consider the following hierarchy of events. The in-
dividual encounters (i.e., has an opportunity to attempt to
consume) a prey item with probability R(t). If no prey item
is encountered, the individual’s energetic reserves are re-
duced by the metabolic cost of resting for one time step,
c1. If instead the individual encounters a prey item, the in-
dividual must choose whether to forage or rest. This is the
decision over which the model optimizes fitness. If the in-
dividual chooses to rest, the individual’s energetic reserves
are reduced by the metabolic cost of resting for one time
step, c1, as if no prey had been encountered. If the individual
forages, then it must survive predation risk associated with
foraging (survival probability p 12 m(t)) that varies over
the daily cycle (i.e., across time steps). If the individual
survives this risk, then it captures the prey item with prob-
ability f. An individual that succeeds in capturing a prey item
increases its future energetic state by one unit, minus the
metabolic cost of foraging, c2 (where c2 1 c1). If the individ-
ual fails to capture the prey item (probability 12 f ), it gains
no energy but pays the metabolic cost of foraging c2.

It is worthwhile to note that this scenario differs from that
inwhich predatorsmust search for their prey. Searching pred-
ators must instead determine the optimal decision, to forage
or to rest, at each time of day regardless of whether prey have
been encountered and according to both predation risk and
the likelihood that prey would be encountered and then suc-
cessfully captured if the individual opted to search. We briefly
outline these differences and their implications for expected
patterns of behavior in the appendix.

State Space

We assume that an individual’s foraging behavior depends
only on energetic reserves (i) and the time of day (t). For
each combination of states, fitness is maximized over the
behavioral decision. Time of day is an external state variable
that determines (i) the time remaining to forage, (ii) the
likelihood that prey are encountered, and (iii) the magni-
tude of additional predation risk due to foraging.

Fitness Currency

We assume that individuals modify their foraging behav-
ior to maximize fitness at the end of each day, which

ignores possible effects of an organism’s age on the daily for-
aging rhythm. We further assume that fitness is a sigmoidal
function of energetic reserves (Clark and Mangel 2000). En-
ergetic reserves at the end of the daily cycle may be associ-
ated with fitness for at least two reasons. First, if energetic
reserves fall below a critical level, the individual will starve,
thereby forfeiting all future reproductive potential. Second, if
energetic reserves exceed those needed for survival, relative
fitness may be largely determined by the effect of energy re-
serves on key components of fitness such as fecundity or
growth rate. Although the precise shape of the relationship
between daily energetic reserves and fitness likely varies
among systems, in general, the relationship is likely to be
sigmoidal when considering the full range of possible ener-
getic reserves.

Predation Risk and Prey Availability

We assume that individuals that forage suffer predation risk,
m(t), due to foraging activities. This mortality risk depends on
the probability of encountering a predator during the time
step, which is a function of the time of day,P(t), and the prob-
ability m that an encounter with a predator results in preda-
tion (i.e., m(t) p m# P(t)). This parameterization encom-
passes situations in which predation must be inferred by
sampling the temporal distributions of the predators of the
focal species. Decomposing m(t) into two separate processes
is unnecessary if temporal distribution of m(t) can instead
be estimated directly. For our case study (see Parameteriz-
ing the Model), we inferred predation risk and prey intake
from the temporal distributions of the predators. Because
we did not have strong estimates for m, we varied this pa-
rameter to examine its effect on themodel predictions. Sim-
ilarly, we assume that prey consumption depends on both
the probability of encountering a prey item, R(t), and the
prey capture efficacy, f (i.e., the probability that the individ-
ual successfully captures the encountered prey item if the
individual chooses to attack). Because we also did not have
strong estimates for f, we varied this parameter to examine
its effect on the model predictions.
We also assume that individuals know the values of pre-

dation risk m(t) and prey availability R(t). The temporal pat-
tern of relative predator and prey abundance within the day
is typically associated with reliable environmental cues (e.g.,
changes in light, temperature, or humidity) and is likely to
be fairly consistent across days. Consequently, it is reasonable
to assume that selection could favor daily changes in behavior
associated with environmental predictors of relative preda-
tion risk and prey abundance. However, the overall magni-
tudes of m(t) and R(t) may vary across days as well. Like the
temporal pattern within days, changes in magnitude across
days may be in part associated with environmental cues or
show some degree of consistency (i.e., temporal autocorrela-
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tion). It is also likely that individuals can gather information
about the magnitudes of m(t) and R(t) over the course of the
day by monitoring previous encounter rates. Although we do
not explicitly consider situations in which individuals do not
know these environmental parameters, even an extreme sce-
nario in which individuals rely entirely on previous encounters
to estimate environmental parameters using simple memory
rules (e.g., sample and forget; Mangel 1990) would likely re-
sult in reasonable estimates of environmental parameters (Mc-
Namara and Houston 1985; Mangel 1990) and therefore
differ from our results primarily in the rapidity with which
behavior changes over the day (as individuals must sample
the environment to detect changing conditions; Mangle
1990).

Metabolic Costs

We assume that a unit of energetic reserves in ourmodel cor-
responds to the energetic content of a typical prey item. If the
value of the energetic content of prey and the basal metabolic
rate of the focal species are known, these values can be used to
estimate the fraction of an energy unit lost in each time step
due to resting metabolism, c1. We further assume that forag-
ing incurs additional metabolic costs associated with locomo-
tion and handling of prey. Consequently, we assume that the
metabolic cost of foraging, c2, is a scalar multiple s of the basal
metabolic rate, c1, such that c2 1 c1. Individuals choosing to
forage must pay the additional metabolic cost independent
of whether foraging is successful.

Dynamic Programming Equation

Assuming that the time step is equal in length to the han-
dling time of a single prey item h, independent of forag-
ing decision, and that individuals are in principle capable of
foraging for some portion of the day l, the model consists of
l=h time steps. The model includes the state variables time
(t p 1, 2, 3, ::: , l=h) and energy reserves (i p 0, 1, 2, ::: , 100),
where energy reserves represent the percentage of maxi-
mum possible reserves. Expected fitness at the end of the day
is therefore a function of current time and energy reserves,
F(i, t).

We consider only two actions, foraging and resting. If
no prey item is available, the individual has no choice but
to rest. If a prey item is available, the individual may choose
to forage or ignore the prey item (rest). Each of these actions
corresponds to a payoff (payoffforage or payoffrest). The payoff
of foraging depends on whether the individual survives pre-
dation (12 m(t)) and succeeds in capturing the prey item ( f ).

Thus, the payoffs for foraging (payoffforage) and resting (payoffrest)
are as follows:

payoff forage p (12 m(t))# ( f # F(i1 12 c2, t 1 1)

1 (12 f )# F(i2 c2, t 1 1)),

payoff rest p F(i2 c1, t 1 1),

where the value of F for noninteger values of energetic state
are estimated using linear interpolation (Clark and Mangel
2000). We represent this scenario in the following dynamic
programming equation that maximizes fitness F over the be-
havioral decision, forage or rest:

F(i, t) p (12 R(t))# payoff rest 1 R(tÞ
#max(payoff forage, payoff rest):

A Case Study of the Orb-Weaving
Spider Cyclosa turbinata

The Biological Scenario

Female Cyclosa turbinata construct small (∼30-cm-diameter)
orb webs that they decorate with a conspicuous column of de-
tritus and prey remains. Females perform their sit-and-wait
foraging from the center of the web (the web hub), where they
remain aligned with the web decoration (fig. 1). Studies on

Figure 1: A female Cyclosa turbinata resting at the web hub. The
web decoration extending above and below the spider is composed
of prey remains and detritus. Photo courtesy of Richard Bradley.
Reprinted from Watts et al. (2014) with permission of the publisher.
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other Cyclosa species have shown that the web decoration
reduces the ability of hymenopteran predators to locate the
spider at the web hub, thereby redirecting attacks away from
the spider and toward the decoration (Chou et al. 2005; Gon-
zaga and Vasconcellos-Neto 2005; Tseng and Tso 2009).
Hymenopterans, specifically wasps, are a primary source of
predation and parasitism for orb-weaving spiders (Blackledge
et al. 2003).

Female C. turbinata remain at the web hub continuously
and are thus capable of ensnaring prey at nearly all times of
day (Watts et al. 2014). However, ensnared prey can escape
the web if not subdued, and females must leave the safety of
the decoration to subdue prey. Consequently, increases in
energetic reserves (which increase fecundity in C. turbi-
nata; Spiller 1984) likely come at a direct cost of increased
exposure to hymenopteran predators, and femalesmust bal-
ance these demands to maximize fitness. Because visually
oriented hymenopteran predators are expected to be pri-
marily diurnal, female C. turbinata are expected to largely
ignore prey during the daytime and instead forage at night,
when the movement associated with subduing prey is less
likely to reveal the spider’s location to predators. Accord-
ingly, previous work shows that C. turbinata maintained
in the laboratory more frequently attack simulated prey
during the night (Watts et al. 2014). However, whether this
daily rhythm of foraging behavior can be driven by a trade-
off between foraging and predation risk alone has yet to be
tested directly using data collected under natural condi-
tions. We parameterize our general model using patterns
of predator and prey abundance from typical C. turbinata
habitat (Moore et al. 2016) to determine whether the opti-
mal foraging policy changes over the course of the day and

under what conditions this is expected to be the case. We
then compare the qualitative model predictions to data from
a previous laboratory study of the daily foraging rhythm in
C. turbinata (Watts et al. 2014) as well as new data from ob-
servations of foraging behavior of C. turbinata under natu-
ral conditions (see Foraging Observations).

Parameterizing the Model

Parameters used in our case study are presented in table 1
along with their definitions, default values, and sources.
We calculated the handling time h to be 85.8 5 79.5 s
(mean 5 SD) across all attacks observed in the field
(n p 110). We made the simplifying assumption that
females can ensnare prey at any time of day and therefore
divided the 24-h day into 1,007 time steps, beginning at
0600 hours when females typically finish the daily replace-
ment of the sticky capture spiral of their webs (Moore et al.
2016). This ignores the period of each night females spend
replacing the capture spiral, during which time they pre-
sumably cannot ensnare prey.
We estimated the probability, as a function of time of day,

of encountering potential hymenopteran predators and fly-
ing insect prey in the natural habitat of C. turbinata (i.e.,
R(t) and P(t)) from encounter rates published in a previous
study (Moore et al. 2016). We converted the published
estimates of the average encounter rates of potential pred-
ators (hymenoptera) and prey per 3-h interval of the day
(see detailed methods in Moore et al. 2016) to encounter
probabilities per time step of the model using the formula
p(event) p 12 e(2rt), where t is a single-model time step
and r is the average encounter rate per 3-h interval divided

Table 1: Parameters used in the stochastic dynamic programming model of daily foraging behavior in Cyclosa turbinata

Parameter Definition Value(s) Source

Units of t Time required to subdue one prey
item (i.e., handling time)

85.8 s This article

R(t) Probability of encountering
a prey item

max (0, 26.131 # 1022 1 1.207 # 1023 t 2
1.984 # 1026 t 2 1 8.367 # 10210 t3)

Moore et al. 2016; function
derived in this article

P(t) Probability of encountering
a predator

max (0, 24.086 # 1023 1 1.437 # 1024 t 2
3.071 # 1027 t 2 1 1.686 # 10210 t3)

Moore et al. 2016; function
derived in this article

Units of i Energetic reserves provided
by one prey item

5 calories Riechert 1991

c1 Fraction of i lost per t due
to resting metabolism

5.21 # 1024 Greenstone and Bennett
1980; Gnaiger 1983

c2 Fraction of i lost per t due
to metabolic costs of foraging

4 # c1 Wilder 2011

m Probability that predator encoun-
ter results in predation

.5 na

f Probability that an attack is suc-
cessful (prey capture efficacy)

Varied, {.4, .8} na

Note: na p not applicable.
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by the number of time steps per interval (in this case, ap-
proximately 126). These data are deposited in the Dryad
Digital Repository: https://dx.doi.org/10.5061/dryad.959g2
(Watts et al. 2017). We then estimated continuous probabil-
ity functions for predator (P(t)) or prey item (R(t)) encoun-
ters by applying polynomial regressions (using the poly
function in R v. 3.3.1) to the encounter probabilities esti-
mated for each 3-h interval. For each function, we determined
the degree of polynomial that best described the observed
patterns of encounter probabilities by comparing models fit
using polynomials of order 1–5 using the Akaike information
criterion (see appendix, sec. 1). For patterns of both predator
(P(t)) and prey (R(t)) encounters, third-order polynomials
were best supported in the model selection procedure (fig. 2;
appendix, sec. 1). For any times of day inwhich thebest-fitting
functions predicted negative encounter probabilities, we as-
sumed that the encounter probability was 0 (table 1).

We used data on basal metabolic rate of the sister taxon
to C. turbinata, Cyclosa conica, from Greenstone and Ben-
nett (1980) to estimate the loss of energy reserves due to
metabolism in each time step, c1. We converted the rate
reported in microliters of oxygen consumed per hour to
an estimated number of calories burned per time step us-
ing equations from Gnaiger (1983). Assuming a unit of
energy reserves in our model corresponds to the energetic
content of typical, small flying insect prey (i.e., ∼1.25 cal-

ories; Riechert 1991), we then express basal metabolic rate,
c1, as a fraction of a 1.25-calorie energy unit. Thus, we es-
timate basal metabolic rate c1 to be 5:21# 1024 prey items
per 85.8-s time step. These data are deposited in the Dryad
Digital Repository: https://dx.doi.org/10.5061/dryad.959g2
(Watts et al. 2017). To obtain c2, we estimated the value s
by which c1 increases as a result of leaving the web hub to
subdue a prey item (c2 p sc1). In spiders, activities such
as foraging can increase metabolic rates two- to sixfold
(Wilder 2011). Our analyses indicate that varying s within
this range does not affect qualitative model predictions, so
we report results for the average s value of 4.
Our general model rests on the assumption that in-

creases in energetic reserves cause increases in relative fit-
ness, although the precise mechanisms of this relationship
are likely system specific. In C. turbinata, diet manipula-
tions conducted under natural conditions show that exper-
imentally increasing prey capture leads to an increase in
the number of eggs produced by females (Spiller 1984). Con-
sequently, for our case study we assume that relative fitness
is an increasing function of energetic reserves due to effects
of energetic reserves on fecundity. Thus, the parameteriza-
tion of the model for C. turbinata effectively maximizes rel-
ative fecundity. As described in Fitness Currency, we con-
sider the full range of possible energetic states and therefore
assume that the relationship between energetic reserves and
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fitness (i.e., relative fecundity) is sigmoidal. A sigmoidal fit-
ness function accounts for changes in marginal fitness pay-
offs due to (i) possessing energetic reserves already sufficient
to nearly maximize fecundity and (ii) possessing energetic
reserves so low that marginal increases in resources that
can be allocated to reproduction do not increase the number
of viable offspring. For our case study described below,
relaxing this assumption does not affect the qualitative model
predictions (see appendix). We therefore show results only
for a sigmoidal fitness function of the form F(i) p
1=(11 e20:125#(i250))), such that the inflection point is located
at 50% of maximum energetic reserves (i.e., i p 50).

Model Analysis

Using the parameters described above, we solve the model
to determine the combination of states (energetic reserves
i and times of day t) at which female C. turbinata should
forage to maximize the expected energy reserves available
for producing eggs while minimizing predation risk (R
code deposited in the Dryad Digital Repository: https://
dx.doi.org/10.5061/dryad.959g2 [Watts et al. 2017]). In
this article, we consider the energy threshold below which
individuals start foraging a measure of boldness because
foraging in the presence of predators is risky. This implies
that, of two individuals with the same energy state, the one
that forages during the riskiest period of the day is bolder
than the resting individual. We then explore the sensitivity
of the model predictions to changes in parameter values and
model assumptions to determine whether the predicted pat-
tern of behavior represents a general solution to the foraging–
predation risk trade-off in C. turbinata and to what extent
the conclusions of our model may apply to a wide range of
species.

First, we recognize that R(t) and P(t) likely represent
somewhat upwardly biased encounter probabilities, if for no
other reason than the larger surface area of flight interception
traps relative to a C. turbinata web. Moreover, predation risk
m(t) depends on not only a predator encounter P(t) but also
the probability m that an encounter ends in predation (see
Predation Risk and Prey Availability). Similarly, the overall
probability of capturing a prey item depends on both the
probability of encountering prey R(t) and the individual’s
prey capture efficacy f (i.e., the probability that an attack is
successful). We currently have no strong empirical data to
inform our estimates of m and f under natural conditions.
Consequently, we vary the magnitude of m(t), R(t), and f to
simulate the effect of changes in overall predation risk, prey
abundance, and prey capture efficacy on predicted patterns
of foraging behavior. Because the large flight-interception
traps likely overestimate rates of predator and prey encoun-
ters at the web, we consider m(t) and R(t) with magnitudes
ranging from 10% to 90% of the estimates obtained from

the traps except where noted. We also consider scenarios
where m(t) or R(t) is uniform across the day to assess the rel-
ative contribution of patterns of prey and predator abun-
dance to the predicted rhythm of behavior.
Second, we acknowledge that the predictions of the model

may depend on the ratio of metabolic rate to energy con-
tent of prey. We vary the basal metabolic rate c1 and, as a re-
sult, the metabolic rate during foraging c2 to determine the
robustness of our model to our estimate of metabolic rate
in C. turbinata. By further varying basal metabolic rate out-
side the range likely for C. turbinata, we also assess whether
themodel predictions are likely to apply to sit-and-wait pred-
ators with higher metabolic rates than those of spiders.
Finally, we further vary predation risk, prey availability,

and metabolic rate parameters beyond the range likely to
occur in C. turbinata to assess the generality of the model
for organisms that face different physiological or ecological
constraints.

Foraging Observations

To determine whether foraging behavior under natural
conditions is consistent with our qualitative model predic-
tions, we used data from previous recordings of individuals
in the field. Specifically, C. turbinata foraging behavior
was recorded for 10 consecutive days at the field site de-
scribed above (see Parameterizing theModel). We collected
13 female C. turbinata from within 8 km of the field site
and placed them in open-sided wooden frames (30 cm #
10 cm # 30 cm) that were then mounted along a wooden
support structure to facilitate the attachment of a video sur-
veillance camera system capable of infrared recording in
the dark (Q-See 16-channel HD security system). Four of
the 13 individuals abandoned the wooden frames within
the first few days of observation. Consequently, we obtained
10 days of continuous video observations of nine female
C. turbinata. Using these videos, we recorded the time of
day of each instance of a prey item hitting the web and
whether the individual attacked the prey item. These data
are deposited in the Dryad Digital Repository: https://dx.doi
.org/10.5061/dryad.959g2 (Watts et al. 2017). We then used
a binomial generalized additive model (GAM) with logit link
(using the gam function in the mgcv package [Wood 2006]
for R v. 3.3.1 [R Core Team 2016]) to analyze the relationship
between the time of day that an insect hits the web (entered as
a continuous predictor) and individuals’ foraging decisions
(attack/rest), using an additional smoothing term to account
for individual identity and day random effects (Wood 2006).
Based on our model predictions, foraging is optimal across
virtually all energetic states between approximately 0100 and
0600 hours, but resting is optimal for at least some states
from approximately 0600 to 0100 hours (see Results); there-
fore, if at least some individuals were in a high energetic
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state during our observations, we expect the likelihood of at-
tacking to generally decrease with time of day (hours).

Results

Model Analysis

The SDP model determines for each combination of states
the optimal behavioral decision, forage or rest. We then
determine for each time of day the level of energetic re-
serves above which it becomes optimal to rest (hereafter,
the “energy threshold”). This energy threshold represents the
optimal behavioral policy (i.e., if energy reserves lie above
the threshold, rest; otherwise, forage). Because the differences
in fitness between foraging and resting for individuals near
the energy threshold can become very small toward the end
of the day and introduce rounding errors when determining
the optimal behavior (resulting in an unrealistically ragged
energy threshold), we assume that individuals forage by de-
fault unless the fitness benefits of resting exceed that of for-
aging by 2# 1024

fitness units (or 0.02% of the maximum
fitness). This small buffer removes rounding artifacts from
the model predictions. To determine whether a foraging–
predation risk trade-off can produce selection for daily
rhythms of foraging behavior, we visualize the energy thresh-
old over the day to determine whether the optimal behavioral
policy varies over the daily cycle. Stated differently, temporal
changes in the location of the energy threshold suggest that
the decision that maximizes fitness depends on the time of
day for at least some energetic states.

Our model results support the hypothesis that temporal
variation in a foraging–predation risk trade-off can select
for daily patterns of foraging behavior, as evidenced by a
strong temporal pattern in the energy threshold. Our
model predicts that female Cyclosa turbinata should gen-
erally start foraging at higher levels of energy reserves (i.e.,
should be more bold) during the early morning and late
night than during the daytime when predator abundance
peaks (fig. 3). Specifically, if hymenopteran predator abun-
dance is low during the night, individuals should attack
encountered prey during the early morning and late night
irrespective of energetic reserves. In contrast, females’ deci-
sion to attack encountered prey during the daytime depends
on energetic reserves for most parameter combinations.

Changes in the average magnitude of predation risk,
�m(t), have a subtle effect on the model predictions. Under
all levels of predation risk considered here (10%–90% of
the predation risk estimated from flight interception traps;
Moore et al. 2016), females should stop foraging at lower
levels of energy reserves during the midday period; how-
ever, the exact level of the energy threshold depends on the
magnitude of predation risk (fig. 4A). In general, as the av-
erage magnitude of predation risk increases, the model pre-
dicts that females should stop foraging during the midday pe-

riod even if energetic reserves are relatively low (i.e., females
should be shier). This follows intuitively from the additional,
time-dependent predation risk associated with leaving the
decoy to forage. Increasing the magnitude of this risk decreases
the range of conditions over which the risk of predation is out-
weighed by potential energy gains.
Similar to the effect of increasing predation risk, the prob-

ability of encountering prey R(t) affects the quantitative, but
not qualitative, model predictions. For all levels of prey avail-
ability considered here (10%–90% of the prey availability es-
timated from flight interception traps; Moore et al. 2016),
females’ energy thresholds should be lower during the risky
midday period than during the earlymorning or night. As the
average probability of encountering prey in the web, �R(t), in-
creases, the model generally predicts that the energy thresh-
old during midday decreases (i.e., females should be shier;
fig. 4B). As prey encounters increase in frequency, there
are more opportunities to gain energy through foraging,
and thus gaining energy during the high-risk midday period
becomes less critical for maximizing fitness over the daily
cycle.
The effect of prey capture efficacy f on the quantitative

model predictions depends on prey abundance and preda-
tion risk; thus, to better understand the effect of f, we com-
pare the energy threshold between a female with f p 0:8
and a female with f p 0:4 during the time when predation
risk is greatest (t p 316, or 1331 hours) over a range of av-
erage prey encounter probabilities for two different values
of predation risk (fig. 5). We vary prey availability by scal-

Figure 3: Predictions of the stochastic dynamic programming model
of daily foraging behavior in the trashline orb weaver, Cyclosa tur-
binata. The boundary represents the level of energetic reserves above
which the optimal decision for a female spider is to remain at rest at
the web hub at the expense of capturing prey ensnared in the web (i.e.,
the energy threshold). Here, prey capture efficacy f p 0:5; all other
parameter values are presented in table 1.
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ing the prey encounter probability function R(t) by a scaling
factor s ∈ (0, 1], which implies that a female will encounter
prey in the next time step with probability R(t)# s. The
two values of average predation risk, �m(t) p 1:89# 1023

and �m(t) p 9:46# 1023, represent 25% and 125%, respec-
tively, of the average predation risk estimated from flight
interception traps (Moore et al. 2016). We find that if prey
encounters are relatively infrequent, the model predicts
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that females’ energy thresholds during the midday period
should increase as prey capture efficacy f increases (i.e.,
more effective females should be bolder; fig. 5). In contrast,
if prey encounters are relatively frequent, females’ energy
thresholds should decrease as prey capture efficacy f in-
creases (i.e., more effective females should be shier; fig. 5).
The range of prey abundances over which a more effective
forager should be bolder increases with increasing predation
risk (fig. 5).

The effect of prey capture efficacy f arises because f
affects both the probability that any single foraging at-
tempt will result in energetic gain and the overall rate of
prey capture over the daily cycle. We have already shown
that the rate of prey capture affects the optimal level of bold-
ness during the high-risk period by varying �R(t) (fig. 4B).
However, we find a stronger decrease in boldness with in-
creasing prey abundance for females with higher prey cap-
ture efficacy (fig. 5). The effect of f on the response to prey
abundance implies that the energy threshold of a more ef-
fective forager is at most equal to that of a less effective
forager; however, f also determines the probability that a
foraging attempt will offset the risk of predation through
prey capture. Accordingly, we find that the effect of preda-
tion risk (i.e., to decrease boldness; fig. 4A) is indeed weaker
for more effective foragers (fig. 5). In our scenario, increas-
ing predation risk results in a decrease in the energy thresh-
old (change in the intercept of the linear model fit; fig. 5) of
about 14 units for more effective foragers and about 16 units
for less effective foragers. Because more effective foragers are
less sensitive to predation risk, the difference in boldness be-
tween more and less effective foragers is generally less than
predicted based on differential responses to prey abundance
alone. Combined with differential responses to prey abun-
dance, this effect leads to the prediction that more effective
foragers should be bolder than less effective foragers when
prey abundance is low. This also explains why the range of
prey abundances over which a more effective forager should
be bolder increases with predation risk (fig. 5). Because less
effective foragers show a greater decrease in boldness with in-
creasing predation risk, the level of prey availability necessary
to decrease the boldness of effective foragers to that of less
effective foragers increases as predation risk increases.

For C. turbinata, the qualitative model predictions are ro-
bust to variation in the estimate ofmetabolic rate c1. Intuitively,
as metabolic rate increases, the model predicts that females’
energy thresholds should increase, reflecting the need to
garner more energy before surpassing maintenance costs
and developing reserves allocable to egg production. How-
ever, the magnitude of this effect is small and quickly be-
comes negligible for estimates of c1 less than that obtained
from the literature for C. turbinata (appendix, sec. 5). Based
on the literature (Greenstone and Bennett 1980), there is
no biologically reasonable estimate of metabolic rate for C.

turbinata for which the model does not predict that indi-
viduals should have higher energy thresholds (i.e., should
be more bold) during the early morning and late night.
Daily patterns of predation risk, not prey availability,

drive the pattern of behavior predicted by the model (ap-
pendix, sec. 6). If both predation risk m(t) and the proba-
bility of encountering prey R(t) remain constant over the
daily cycle, the predicted energy threshold remains con-
stant. Incorporating the daily pattern of prey availability
alone does not influence this qualitative prediction. Only
when incorporating the temporal pattern of predation risk
due to foraging does the model predict that individuals
should forage in the early morning and over the night in-
dependent of energetic reserves yet forage during the day-
time only if energetic reserves fall below a critical value.
This effect persists even when R(t) does not change over
the daily cycle. This is because our model applies to sit-
and-wait predators that do not actively search for prey.
Because individuals can only choose to forage or rest once
prey have been encountered, they must balance current
predation risk against the long-term risk of not acquiring
enough prey, as the availability of a prey item at the mo-
ment of the decision is certain (we ignore prey detection
mistakes for simplicity). However, for cases in which pred-
ators must search for their prey (described in appendix,
sec. 2), both daily patterns of predation risk and prey
availability contribute to the daily pattern predicted by
the model (appendix, sec. 6). The sensitivity of searching
predators to patterns of prey availability arises due to the de-
creased profitability of foraging when prey are scarce and
provides one possible qualitative difference between model
predictions for sit-and-wait predators and searching pred-
ators.

General Considerations

We provide a preliminary assessment of the generality of
our conclusions for a wider range of organisms by further
varying parameters outside the range of values likely to oc-
cur for C. turbinata. Specifically, we assess the influence of
lower and higher values (!10% and 190% of our estimates)
of predation risk, prey availability, and metabolic rate, as
these parameters are likely to vary most widely among study
systems. In general, we find that our conclusions extend well
beyond the range of conditions experienced by C. turbinata
(see appendix).

Foraging Observations

The model predictions for C. turbinata generally reflect
the pattern of foraging behavior described in a previous
study conducted under controlled laboratory conditions
(Watts et al. 2014). By simulating prey vibrations in the
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web at different points in the daily cycle, Watts et al. (2014)
found that female C. turbinata more frequently attacked
prey during the early morning and night than during
the middle of the day, but females did not universally ig-
nore prey during the day. Based on our model predictions,
females’ tendency to ignore prey during the day depends
on energy reserves, so it is possible that the energy reserves
of some females dropped below the energy threshold be-
low which it is optimal to attack prey. However, because
females were fed two termite workers each day prior to the
experiment, the energy reserves of most females were likely
above this threshold, resulting in resting during the day.

In the field, we observed patterns of prey encounters at
the web similar to those described for malaise trap data
from Moore et al. (2016; fig. 6A), though we failed to de-
tect any incidences of predation. Nonetheless, we found a
significant effect of time of day on the likelihood of a spi-
der attacking prey that hit the web (binomial GAM: x2 p
7:15; estimated df p 1; reference df p 1; P p :008;
fig. 6B). As predicted, females always attacked prey during
the early morning and more frequently ignored prey dur-
ing the day. Specifically, the only instances in which females
rested instead of attacking occurred between 1000 and
2200 hours. Though we failed to recover statistical support
for an increase in boldness toward the very end of the day,
this may be due to the low frequency of prey encounters

between 2200 and 0000 hours. More generally, our predic-
tion that individuals should be less likely to attack during
the day rests on the assumption that some proportion of
individuals achieve a high enough energetic state to exceed
the threshold during the high-risk period. Consequently, a
rigorous test of our model would require manipulating or
quantifying individual energetic state. For instance, we ex-
pect that those spiders that ignore prey during the middle
of the day should be in a higher energetic state than those
that attack prey during this time.

Discussion

Despite the simplicity of the predation risk allocation hy-
pothesis (PRAH; Lima and Bednekoff 1999) and the prob-
able ubiquity of temporal variation in foraging–predation
risk trade-offs, there remain few studies in which the plau-
sibility of this mechanism for generating daily patterns of
behavior has been assessed by testing the predictions of
mechanistic models under natural conditions (but see Ros-
land and Giske 1994; Metcalfe et al. 1999; Tarling et al.
2000; Jensen et al. 2006), and to our knowledge, no such
studies have been conducted for terrestrial organisms. By
parameterizing our model using published data on ecolog-
ical and physiological/energetic parameters, we find that
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the PRAH provides a plausible explanation for daily rhythms
of foraging behavior in an orb-weaving spider observed in the
laboratory and under natural conditions and that such a
trade-off can contribute to selection for daily patterns of for-
aging across a wide range of ecological scenarios, including
those in which predators must actively search for their prey.
While similar qualitative predictions regarding relative changes
in behavior can be obtained by comparing ratios of risk to
reward across the daily cycle (Lima and Bednekoff 1999;
Metcalfe et al. 1999), modeling the optimal behavioral deci-
sion as a function of energetic state reveals additional impli-
cations of the risk-allocation problem.

First, our model predicts that the optimal solution to the
daily risk-allocation problem is generally state dependent,
suggesting that the same ecological mechanism that pro-
duces selection for rhythmicity also favors the ability to
suppress rhythmicity when individuals are in a low ener-
getic state. Consequently, findings that seem to contradict
the PRAH (e.g., a lack of foraging rhythm in individuals
that experience temporal variation in risk) may in fact be
consistent with the core predictions of this hypothesis, and
thus demonstrating the effect of individual state on the daily
rhythm should generally be critical for rigorous assess-
ments of the role of risk allocation in shaping behavioral
strategies.

Second, our model predicts that environmental param-
eters (i.e., predation risk and prey encounter rate) and in-
ternal parameters (i.e., prey capture efficacy) interact to de-
termine the optimal behavior. Specifically, more effective
foragers should be relatively more sensitive to changes in
prey encounter rates, whereas less effective foragers should
be relatively more sensitive to predation risk, and these dif-
ferences can lead to changes in the qualitative effect of dif-
ferences in foraging efficacy. These complex interactions
highlight the importance of thoroughly exploring predic-
tions of an adaptive hypothesis prior to assessing the sup-
porting empirical evidence. For example, researchers seek-
ing to test the role of risk allocation in a given taxonomic
group might do so by comparing behavioral rhythms be-
tween habitats that differ inmean predation risk or between
individuals that differ in their efficacy as foragers. Our model
suggests that the quantitative or even qualitative differences
in behavior expected in such studies likely depend on the
values of the remaining environmental or internal parameters.
Thus, the interpretability of such studies may rely on obtain-
ing estimates of additional parameters that might otherwise
be dismissed as irrelevant provided they are controlled through
experimental design.

For our case study, the model predicts that female Cyclosa
turbinata should be bolder (i.e., forage over a greater range of
energetic states) during the morning and evening when there
is little risk of encountering hymenopteran predators while
away from the web decoy. This predicted pattern of behavior

reflects those observed under laboratory conditions (Watts
et al. 2014), and we also found that individuals observed in
their natural habitat ignore prey more frequently during the
high-risk daytime period than during the early morning. Al-
though these patterns of behavior are consistent with ourmodel
of risk allocation, as we note above, our model also suggests
that a strong test of the predictions would require demonstrat-
ing the effect of energetic state on foraging behavior. As we
recorded individuals under natural conditions prior to devel-
oping our model, we did not attempt to assess or manipulate
energetic state in our observations.
Our model also provides generalizable insight into the

dynamics of consistent variation in behavior among indi-
viduals facing similar conditions. While among-individual
behavioral variation might be dismissed as noise around a
behavioral optimum, such variation is often highly consis-
tent through time (Sih et al. 2004, 2012). Consequently, con-
sistent differences in behavior (e.g., boldness) have garnered
considerable attention from behavioral ecologists seeking to
understand the processes that generate and maintain this
variation (Sih et al. 2004, 2012). As described above, our
model shows that among-individual variation in foraging
behavior can arise from state-dependent solutions to the
trade-off between foraging and predation risk (e.g., between
fed and hungry females). However, the dynamics we uncover
reflect aspects of the asset protection principle (Clark 1994;
Wolf et al. 2007), in which individuals who garner resources
become shier (more risk-averse), while individuals that fail
to garner resources become bolder (more risk-prone). Such
negative feedback between state and boldness may act to re-
duce variation in state (e.g., energy reserves) among individ-
uals under some conditions (McElreath et al. 2007; Luttbeg
and Sih 2010). Nevertheless, differences in state variables that
influence behavior may bemaintained to some degree by pos-
itive feedback mechanisms such as positive state-dependent
safety (Luttbeg and Sih 2010). In C. turbinata, the web decoy
is formed in part from remains of prey items and may there-
fore represent a positive feedback between current energetic
state and future safety.Moreover, ourmodel demonstrates that
foraging efficacy, which may be influenced by genetic or envi-
ronmental factors that are less dynamic than energetic state,
may also produce among-individual differences in daily pat-
terns of behavior. Considering such dynamics with respect
to daily rhythms may reveal mechanisms that generate and
maintain among-individual variation in boldness over the daily
cycle despite strong rhythms of individual behavior (Watts
et al. 2014, 2015). Additionally, because individuals that dif-
fer in prey capture efficacy should differ in the strength of
their responses to environmental conditions (see above), this
effect may provide an adaptive mechanistic explanation for
correlations observed between among-individual variation
in behavior and among-individual variation in behavioral plas-
ticity across a wide diversity of taxa (Dingemanse et al. 2009).
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We also briefly considered a scenario in which foragers
must search for prey and demonstrated one intuitive dif-
ference between searching foragers and sit-and-wait for-
agers. Searching foragers are sensitive to the temporal pat-
tern of both predation risk and prey encounters, whereas
sit-and-wait foragers are sensitive only to the temporal pat-
tern of predation risk. However, foragers that must search
for their prey may differ from sit-and-wait foragers with re-
spect to a variety of model parameters (e.g., handling time,
metabolic costs of foraging, or predation risk), and a thor-
ough exploration of these scenarios exceeds the scope of
this study. Additionally, because our model does not make
assumptions about physiological processes underlying daily
changes in trait expression (e.g., endogenous rhythms), our
general approach should apply to organisms that experience
rhythmic variation in risk at a variety of temporal scales. Con-
sequently, further research on how the predictions of the
PRAH differ among foraging strategies, as well as the extent
to which the PRAH can explain other biological rhythms,
such as tidal, lunar, or annual rhythms, should greatly en-
hance our understanding of the ultimate causes of rhyth-
micity in living systems.
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“The Pompilus, however, is a good-natured insect, showing no signs of pugnacity, except when she has a fine fat Tarantula in hand, and
then she only threatens violence by spreading out her red wings, and running a little way towards the intruder.” From “The Tarantula Killers
of Texas” by G. Lincecum (The American Naturalist, 1867, 1:137–141).
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