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abstract: Biological populations are strongly influenced by random
variations in their environment, which are often autocorrelated in time.
For disturbance specialist plant populations, the frequency and inten-
sity of environmental stochasticity (via disturbances) can drive the qual-
itative nature of their population dynamics. In this article, we extended
our earlier model to explore the effect of temporally autocorrelated
disturbances on population persistence. In our earlier work, we only as-
sumed disturbances were independent and identically distributed in
time. We proved that the plant seed bank population converges in dis-
tribution, and we showed that themean and variance in seed bank pop-
ulation size were both increasing functions of the autocorrelation coef-
ficient for all parameter values considered, but the interplay between
increasing population size and increasing variability caused interesting
relationships between quasi-extinction probability and autocorrelation.
For example, for populations with low seed survival, fecundity, and dis-
turbance frequency, increasingly positive autocorrelated disturbances
decreased quasi-extinction probability. Higher disturbance frequency
coupled with low seed survival and fecundity caused a nonmontone
relationship between autocorrelation and quasi-extinction, where in-
creasingly positive autocorrelations eventually caused an increase in
quasi-extinction probability. For higher seed survival, fecundity, and/
or disturbance frequency, quasi-extinction probability was generally a
monotonically increasing function of the autocorrelation coefficient.

Keywords: disturbance specialist, stochastic autocorrelations, seed bank,
stochastic integral projection model, density dependence, Monte Carlo
simulation.

Introduction

Natural environments are variable in space and time, andun-
derstanding how environmental stochasticity affects popula-

tion dynamics is an important task for population ecologists
from both a theoretical and an empirical point of view (Ches-
son and Warner 1981; Chesson 1982; Ellner 1984; Chesson
and Ellner 1989; Doak et al. 2005; Schwager et al. 2006; Be-
naïm and Schreiber 2009; Alexander et al. 2012; Ellner and
Schreiber 2012; Schreiber 2012; Mustin et al. 2013; Nieddu
et al. 2014; Sharma et al. 2015; Roth and Schreiber 2014;
Haridas et al. 2015). One aspect of environmental stochastic-
ity that has been a focus for theoretical population ecologists
of late has been temporal autocorrelation (Johst and Wissel
1997; Petchey et al. 1997; Heino 1998; Palmqvist and Lund-
berg 1998; Ripa and Heino 1999; Heino et al. 2000; Green-
man and Benton 2003, 2005; Vassuer and Yodzis 2004; Sch-
wager et al. 2006; Lögdberg and Wennergren 2012; Mustin
et al. 2013). Theoretical and empirical work has shown that
population processes are strongly affected by the “color” of
environmental stochasticity where, generally, reddened noise
is positively autocorrelated, blue noise is negatively autocor-
related, and white noise—or noise that is independent and
identically distributed (IID) in space and/or time—is uncor-
related.
Natural disturbances acting on disturbance specialist plants

are an example where the qualitative dynamics of a popula-
tion are affected mostly by the characteristics of environ-
mental stochasticity rather than by an underlying determin-
istic skeleton (Alexander and Schrag 2003; Claessen et al.
2005a, 2005b; Eager et al. 2013, 2014b). Disturbance spe-
cialist plants use seed banks to combat environmental var-
iability, which is a widespread phenomenon in nature (see,
e.g., MacDonald and Watkinson 1981; Roberts 1981; Doyle
et al. 1986; McGraw 1986; Alexander and Schrag 2003; Fen-
ner and Thompson 2005; Moody-Weis and Alexander 2007;
Colbach et al. 2008; Alexander et al. 2009, 2012). By dispers-
ing through time and space, these seed banks buffer the ef-
fects of environmental variation on population size and per-
sistence ability, which is particularly important for annual
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species, as deleterious perturbations can leave a population
void of remaining aboveground biomass. For example, in the
case of the disturbance specialist Helianthus annuus, seeds
generally germinate only in freshly disturbed soil (Alexander
and Schrag 2003;Moody-Weis and Alexander 2007; Alexan-
der et al. 2009; Snow et al. 2009). Therefore, these popula-
tions are also able to capitalize on environmental stochastic-
ity that comes in the form of disturbance, since disturbances
not only create a more favorable environment for germina-
tion and recruitment by removing more competitive species
but also enhance the chance of population persistence and/or
permanence by helping seed bank formation (Moody-Weis
and Alexander 2007; Alexander et al. 2009). The frequency,
intensity, timing, and spatial extent of natural disturbances
can greatly influence the probability of germination and sur-
vival of seeds in a seed bank (Froud-Williams et al. 1984; Cla-
essen et al. 2005a; Moody-Weis and Alexander 2007; Miller
et al. 2012; Jauni et al. 2015), meaning any mathematical
modeling of disturbance specialist plants needs to incorpo-
rate these factors into its model structure.

Autocorrelated disturbances in real ecosystems are largely
thought to originate fromautocorrelations in purely environ-
mental variables as well as autocorrelations in the dynamics
of constituent populations. Caswell and Cohen (1995) stated
that most of the purely environmental factors in ecology elicit
positively autocorrelated noise in life-history parameters, but
resulting population dynamics of various species are often
negatively autocorrelated in response (Greenman and Benton
2005). Since natural disturbances can come about via purely
environmental processes (e.g., wind storms, flooding, land-
slides, and fires) and/or through the constituent agents that
ultimately cause disturbances (e.g., general predation and
foraging; earthworm cast andmole burial; caching activities
of birds, rodents, ants, and so on; digging activities of mam-
mals; and road construction by humans; Johst and Wissel
1997; Petchey et al. 1997; Eager et al. 2013), we explored both
negatively and positively autocorrelated disturbances in this
article, as our model is for a general disturbance specialist
plant population. For wild sunflower specifically, reanalyzing
the data fromAlexander et al. (2009) and using the presence/
absence of aboveground sunflowers as a proxy for distur-
bance/nondisturbance, we found autocorrelation coefficients
ranging between 0.09 and 0.44 for the presence/absence of
disturbance each year, meaning that it is likely that popula-
tions in these specific systems are subject to positively auto-
correlated disturbances. All data are available from the Dryad
Digital Repository, http://dx.doi.org/10.5061/dryad.bq340
(Eager et al. 2017).

In this article, we sought to determine how autocorrelated
disturbances affected the population dynamics of a distur-
bance specialist plant population and its seed bank. To do
so, we altered our model from Eager et al. (2013) and Eager
et al. (2014b), a nonlinear integral projection model, to char-

acterize disturbances using aMarkov chain. Our earlier work
demonstrated that increasing disturbance frequency increased
population viability for all parameter values considered, while
disturbance intensity was not monotonically related to pop-
ulation viability when disturbance frequency was low. For
low disturbance frequency, increasing disturbance intensity
actually decreased long-term population sizes and increased
quasi-extinction probability, whichwas a fairly surprising re-
sult. All of this work assumed that disturbances were IID in
time, however, limiting its applicability to populations of many
disturbance specialist plants in nature.
Various authors (e.g., Lawton 1988; Caswell and Cohen

1995; Johst andWissel 1997;Heino 1998; Lögdberg andWen-
nergren 2012; Mustin et al. 2013) have shown that increas-
ingly positive autocorrelated environments lead to an increase
in extinction risk, while others (Ripa and Lundberg 1996)
have concluded that increasingly positively autocorrelated
environmental variables decrease extinction risk. Whether
autocorrelation causes an increase in extinction risk has of-
ten been traced to other ecological factors, such as the pres-
ence of over- or undercompensatory density dependence,
with the former causing a decrease in extinction risk with in-
creasingly positive autocorrelation and the latter causing an
increase in extinction risk under increasingly positive auto-
correlation (Petchey et al. 1997; Ripa andHeino 1999; Green-
man and Benton 2005; Schwager et al. 2006; Ruokolainen
and Fowler 2009). When age or stage structure is introduced
into the modeling framework, extinction risk becomes de-
pendent on the mechanistic ways in which individuals go
through various life-history stages to produce new members
of the population (Ruokolainen et al. 2009). Disturbance spe-
cialist plant populations have relatively unique life history,
involving a trade-off in seed survival and germination that
is further complicated by the fact that seedling recruitment
cannot occur without a disturbance and is subject to under-
compensatorydensitydependence.Giventhatourenvironmen-
tal variable that was subject to autocorrelations (the presence
of a disturbance) took drastically different values, increasing
autocorrelation in this variable should have increased the
variability in population dynamics, which led us to conjec-
ture that increasingly positive autocorrelations would yield
an increase in the likelihood of population extinction that
largely coincided with previous results from the literature.
However, the amount of time a disturbance specialist plant
population spends away from its carrying capacity, due to
prolonged streaks of nondisturbance years,mightwork to re-
duce the effects of undercompensatory density dependence
and alter how the likelihood of extinction varies with respect
to increasingly positive autocorrelations.
Using our integral projection model, we proved that the

plant seed bank population converges in distribution as
t → ∞, and we employed numerical experiments to deter-
mine how autocorrelations affected properties of this sta-
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tionary distribution. Specifically, we explored how autocor-
relations affected the population’s long-term population size,
variance, and quasi-extinction probability as well as how it
affected the aforementioned relationship between population
viability and intensity of disturbance found in both Eager et al.
(2013) and Eager et al. (2014b). We found that the mean, var-
iance, and rare intrinsic growth rate of the seed bank’s total
population size were all increasing functions of the autocorre-
lation coefficient for all parameter values considered, but the
interplay between increasing population sizes and increas-
ing variability caused different relationships between quasi-
extinction probability and autocorrelation, which ran counter
to some of the results of previous research discussed above.
For example, quasi-extinction probability decreased with in-
creasingly positive autocorrelation if disturbances were in-
frequent and seed survival and fecundity were low, while
more frequent disturbances caused a nonmontone relation-
ship between autocorrelation and extinction; increasingly pos-
itive autocorrelations eventually caused an increase in quasi-
extinction probability. For higher seed survival probability
and/or fecundity, quasi-extinction probability was generally
an increasing function of the autocorrelation coefficient. Fi-
nally, we showed that the nonmonotone relationship be-
tween population size and disturbance intensity (defined
by mean depth of disturbance) found in Eager et al. (2013)
and Eager et al. (2014b) persisted for low disturbance fre-
quency and that populations near extinction levels fared better
with lower disturbance intensities, a relationship that changed
if disturbance frequency or seed survival increased.

Model

In this article, we used a nonlinear stochastic integral pro-
jection model (IPM; Easterling 2000; Ellner 2006; Ellner and
Rees 2007; Coulson 2012; Rees et al. 2014; Merow et al. 2014)
that is closely related to the one we used in Eager et al.
(2013). Thismodel was a discrete-timemodel where the con-
tinuous stage variable described a seed’s depth x in the seed
bank. We modeled the following sequence of events: dis-
turbance, redistribution of seeds, seed survival, plant recruit-
ment, and production of new seeds. We considered only dis-
turbances that occurred after seeds had been dispersed, because
for plants such as wild sunflowers, disturbances before dis-
persal have had a negligible effect on the seed bank (Moody-
Weis and Alexander 2007). Disturbances were modeled as
a single event each time step, thought of as the average of
the postdispersal disturbances to the population in a given
year.

Disturbance and Redistribution of Seeds

Wemodeled disturbances using a stochastic process fv(t)g∞
tp0.

At each time step t, we broke v(t) into two random vari-

ables, v1(t) and v2(t). The term v1(t) took the values 0 (no dis-
turbance) or 1 (disturbance) according to a Markov chain
(Doob 1953) with the following transition matrix:

M p
p 12 p

12 q q

� �
,

where p was the probability of transitioning from a distur-
bance year to a disturbance year and q was the probability
of transitioning from a nondisturbance year to a nondis-
turbance year. This Markov chain admitted an autocorrela-
tion coefficient r p p1 q2 1, with values in the interval
[21, 1]. In the case where disturbance years were likely
followed by disturbance years and nondisturbance years were
followed by nondisturbance years (p ≈ q ≈ 1), the value of
r was near 1. In the case where disturbance years were likely
followed by nondisturbance years and vice versa (p ≈ q ≈ 0),
the value of r was near 21. The IID case was recovered
when p1 q p 1. The long-term proportion of years with
a disturbance was given by the invariant distribution of
the Markov matrixM. This long-term proportion of distur-
bance years was

h p
12 q
12 r

:

Given p and q, we could solve for h and r, and vice versa. To
keep a close comparison with the results in Eager et al.
(2013) and Eager et al. (2014b), we characterized v1(t) by
prescribing a probability of disturbance h (which ranged
from 0.42 to 0.69 in our four wild sunflower sites) and auto-
correlation coefficient r and solved for p and q to run our
simulations.
The random variable v2(t) will be the same as in Eager

et al. (2013) and Eager et al. (2014b)—an exponential dis-
tribution truncated by the maximum depth in the seed bank
D. Formally,

Pr(v2(t) ≤ x) p
12 e2x=p x ! D
1 xpD,

�
ð1Þ

where r is the parameter we will refer to as the mean depth
of disturbance. Each time step, the depth of disturbance v2(t)
is drawn independently of previous years, always using equa-
tion (1) above, making the sequence of disturbance depths
(conditioned on the existence of a disturbance) an IID se-
quence of random variables.
The random variable v(t) used to characterize the dis-

turbance at each time t could thus be written as v(t) p
v1(t)v2(t) for every t p 0, 1, 2, ::: . Using this definition,
v(t) determined both the occurrence and depth of distur-
bance for each time step t. We defined the disturbance ker-
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nel K at time t for the disturbance v(t), acting on the seed
bank population u, as

ðD

0
K(x, y, v(t))u(y)dyp (v(t))21

ð
v(t)

0
u(y)dy 0 ≤ x ≤ v(t)

u(x) v(t) ≤ x ≤ D,

8<
:

ð2Þ
with the convention that the top term on the right-hand side
of equation (2) was equal to zero when v(t) p 0. The top
term in the right-hand side of equation (2) modeled the seed
bank population u being uniformly redistributed within the
interval [0, v(t)] of depths that were disturbed, and the bot-
tom term was the population u being left alone within the
interval [v(t),D] of depths that were not disturbed.

Survival

We assumed that the fraction of seeds that survived from one
time step to the next depended only on the seed’s depth x in
the seed bank, that seeds survived at their lowest rates near
the surface of the soil, and that seed survival increased with
seed depth.We used the function fromMohler (1993) below:

s(x) p s0(12 e2bx),

where s0 ∈ (0, 1) was the maximum survival probability of a
seed and b 1 0 modeled the gain in survival probability that
occurred through an incremental increase in seed depth.

Plant Recruitment

We assumed that germination could occur only in a time
step when a disturbance occurs; that is,

g(x, v(t)) p
gp(x) v(t) ( 0
0 v(t) p 0,

�
where gp(x) was the probability of a seed of depth x germi-
nating in a given time step, given a disturbance.We assumed
that a seed germinated at its highest rate near the surface of
the soil and that the probability of germination decreased as
depth increased (Chancellor 1964; Sester et al. 2007). We
used the function from Mohler (1993):

gp(x) p g0e2ax,

where g0 ∈ (0, 1) was the maximum germination probabil-
ity of a seed (which occurred near the surface of the soil) and
a 1 0 modeled the loss in germination probability through
an incremental gain in seed depth.

It has been shown empirically that even disturbance spe-
cialist plants experience density dependence in some years
(see, e.g., fig 3 in Alexander and Schrag 2003), and we explic-
itly included density dependence in our model by assuming
that seedling recruitment probability decreases with seedling

density. We assumed that total seedling recruitment fol-
lowed a Holling type II functional response (Holling 1959),
with the density of plants f (y) that result from y seedlings
per unit area given by

f (y) p
ay

b1 y
,

where a was the maximum number of adult plants that can
grow in a given area and b was the half-saturation constant.

Seed Production

We assumed that seed production is not affected by plant
density, although there is some evidence in the literature that
density dependence can occur during the seed production
process (Mercer et al. 2014). However, we show in Eager
et al. (2014a) that this would have a small effect on equilib-
rium population dynamics, since ourmodel already assumed
density-dependent recruitment. We assumed an annual dis-
turbance specialist plant and 1 year as the time step, and thus
we modeled the plant population with a scalar—essentially
characterizing the plant population by its average mature
plant. This assumption ignored the size structure of plants,
which was reasonable because we were envisioning an annual
plant and our time stepwas 1 year. Each plant was assumed to
produce an average of c seeds, which were distributed in the
seed bankwith depth distribution J(x).We assumed that Jwas
a truncated exponential distribution with mean m ≪ r ! D.
Since m ≪ r ! D, most of the newly created seeds died if
there was no disturbance following reproduction, because
seed survival at shallow depths was relatively low. Addition-
ally, most of the newly created seeds were set near the sur-
face of the soil, and thus the average disturbance affected
the majority of these new seeds.

Full Integral Projection Model

Let n(x, t) be the density of seeds in the seed bank between
the depths x and x1 dx and p(t) the total density of plants
in the population at time t, for t p 0, 1, 2, ::: . The seed
bank population n(x, t) is an integrable function on the in-
terval [0,D], while the plant population p(t) is a scalar value
for each time t. The model can be written as

n(x, t 1 1) p s(x)(12 g(x, v(t))
ðD

0
K(x, y, v(t))(n(y, t)

1 cJ(y)p(t))dy,

p(t 1 1) p f

�ðD

0
g(x, v(t))

ðD

0
K(x, y, v(t))(n(y, t)

1 cJ(y)p(t))dydx

�
,

ð3Þ
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for t p 0, 1, 2, ::: and the initial seed bankpopulationn(x, 0) 1
0. The first line in the model (3) can be read right to left and
states that the seed bank population at time t 1 1 in the in-
terval [x, x1 dx] results from three processes: the redistri-
bution of the existing seeds at time t via the disturbance ker-
nel K(x, y, v(t)), followed by dormancy and survival. The
second line states that the density of plants at time t 1 1
results from redistribution of the existing seeds at time t,
followed by germination and seedling recruitment.

In part A of the appendix, we showed that the popula-
tion f[n(x, t), p(t)]Tg∞

tp0 converged to a stationary random
population, [n(x)*, p*]T . Thus, as t → ∞, the population
modeled with (3) had a convergent long-term mean and
variance. The stationary random population [n(x)*, p*] was
completely concentrated on the extinction state [0, 0]T if
the value of

l≔ lim
t→∞

kA(v(t))∘A(v(t 2 1))∘:::∘A(v(0))1k1=t
∞ ,

was less than one, where A(v(t)) is the model (3) linearized
about the extinction state [0, 0]T , and 1 is the function that is
the constant 1 on the interval [0,D]. Since l, a constant with
probability one (Hardin et al. 1988; Ellner and Rees 2007;
Benaïm and Schreiber 2009), gives the population’s tendency
to grow or decrease when rare (near extinction), we called l
the rare intrinsic growth rate of the population (Eager et al.
2014b). Here, ○ denotes operator composition, and since
each A(⋅) is a linear integral operator, we used the methods
of Ellner and Rees (2007) for approximating l.

It is important to note that other studies have treated seed
depth as a discrete variable and constructed Markov chain-
like matrix models to model seed movement (see, e.g., Doyle
et al. 1986; McGraw 1986; Jordan et al. 1995; Gonzalez-
Andujar 1997; Claessen et al. 2005a, 2005b; Pekrun et al. 2005;
Mohler et al. 2006; Colbach et al. 2008). However, the pre-
dictions of these models can change as matrix dimension
increases (Easterling et al. 2000; Ellner and Guckenheimer
2006; Tenhumberg et al. 2009) and cannot capture even the
mean field dynamics of associated stochastic models for the
disturbance-driven dynamics of populations subject to natu-
ral, variable disturbances. By using a nonlinear stochastic
IPM, we did not have to explore the effects of matrix dimen-
sion (i.e., the number of seed layers) or worry about the error
introduced by Jensen’s inequality when one uses a mean field
model (Eager et al. 2013).

Model Analysis

All simulations were done in R (R Core Development Team
2014) and used the same numerical integration techniques as
in Eager et al. (2013; sample computer programs are avail-
able in a zip file online). The nonautocorrelation parameter
values that we considered are in table 1 in Eager et al. (2013)

and are displayed in each figure legend. We used D p 1 as
our maximum depth so that our depth values could be con-
sidered as proportions of maximum depth.
For each run, we simulated the population dynamics from

an initial population density of 5,000 seeds per area, uni-
formly distributed throughout the seed bank depth interval
[0,D], and 15 plants per area. We simulated the population
out to 10,000 time steps to eliminate transient dynamics
from our analysis and recorded the total seed bank density

kn(x, 10,000)k1 p

ðD

0
n(x, 10,000)dx

for 500 different runs. We took the mean, median, and var-
iance of these 500 runs as a proxy for the stationary random
population distribution. These mean, median, and variance
values are mean, median, and variance values across simu-
lations (i.e., different sample paths) and not across time,
although as t → ∞ these values became equivalent. We also
approximated the value of the rare intrinsic growth rate l of
the population by simulating the population out 150 time
steps and computing the average value of

l150 ≔kA(v(150))∘A(v(149))∘⋯∘A(v(0))1k1=150
∞

for 500 different runs as a proxy for the rare intrinsic growth
rate l alluded to in the previous section.
We performed this simulation study for 30 h values

spaced evenly between 0 and 1; the r values 0.14, 0.31, 0.48,
0.66, and 0.83 displayed in Eager et al. (2013); and the r values
20.75, 20.45, 20.15, 0.00, 0.15, 0.45, and 0.75. Notice that
the r p 0:00 value (the IDD case) is what was explored in
Eager et al. (2013).
As in Eager et al. (2013), we also computed the probabil-

ity of quasi-extinction by recording the number of trajecto-
ries that were below 50 seeds per area when t p 1,000 for
these scenarios. Since continuous (as opposed to individual-
based) models never actually reach the zero state in finite
time if they are initially positive, we had to create a threshold
(in this case, one-hundredth of the initial population) under
which we viewed the population as extinct. As expected,
quasi-extinction probability increasedwhen this threshold in-
creased, but the qualitative results regarding how they were
affected by model parameters were largely unaffected.
In this article, we also explored the effect of r by calculating

the mean and variance of the survival probability, the mean
and variance of the germination probability, and the mean
and variance of total seed production (on a per capita basis)
of the entire seed bank population for 20 evenly spaced r
values between 20.85 and 0.85 (extended from above by
0.1 in both directions formore sample points) and how these
calculations affected the quasi-extinction probability and to-
tal size of the seed bank population.
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Results

To illustrate the effects of autocorrelations on the total seed
bank population kn(x, t)k1, we projected example popula-
tion dynamics for various values of the autocorrelation co-
efficient r in the case where maximum seed survival in the
seed bank was low (s0 p 0:5) and high (s0 p 0:95), includ-
ing the IID case where r p 0. In cases of both low and high
seed survival, the number of time steps where the popula-
tion size was large increased as r increased (see figs. 1 and
2, respectively). Disturbances generally play two positive
roles for disturbance specialist plants; they redistribute seeds
to more advantageous depths in the seed bank and serve as
a catalyst for germination. Thus, a string of consecutive
disturbances that is more likely with higher rwill have a pos-
itive effect on population sizes, while the more oscillatory
nature of population dynamics subject to more negative r
will keep population sizes relatively low. Strings of consecu-
tive years without a disturbance are also more likely for in-
creasing r, but it appears that a year without a disturbance
did not have the negative effect on populations commensu-
rate with the positive effect of a disturbance year. In the s0 p
0:5 case, it appears that there were multiple time steps where
the population was dangerously close to extinction for all
r values considered, but as r became less negative and then
more positive, the average size of the population increased
due to the increased frequency of consecutive years of dis-

turbance working to offset consecutive years without a dis-
turbance.
In the maximum seed survival s0 p 0:95 case, the in-

crease in population size as r becomes less negative, and sub-
sequently more positive, was a bit more profound than in the
s0 p 0:5 case, although all populations were a safe distance
away from extinction. In the negative r case, the population
never achieved very high or low population values, since dis-
turbance years were most often followed by nondisturbance
years, and vice versa, which prevented any substantial pop-
ulation growth or decrease from happening. On the other
hand, when the autocorrelation coefficient r was positive,
disturbance years were most often followed by disturbance
years, which further increased population sizes before any
long streaks of nondisturbance years. Positive r values also
increased variability in population size, as a string of dis-
turbance years elicited population sizes that were substan-
tially different from that of a string of disturbance-free years.
For reference, example sequences of the disturbance variable
v1(t) for different h and r values are displayed in figure A1
(figs. A1–A9 available online).
In general, the effect of autocorrelation on population dy-

namics depended on the parameter scenario, and for most of
the parameter scenarios considered, the long-term median
of survival probability, germination probability, seed produc-
tion, and the total seed bank population never varied substan-
tially from the mean. Thus, we focused on the mean as the
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Figure 1: Example simulations of the total seed bank population kn(x, t)k1 for four different scenarios for the correlation coefficient r (left),
compared with the independent and identically distributed case (right), for low seed bank survival s0 p 0:5. Parameter values used for this
simulation are h p 0:5, r p 0:5, c p 50, a p 40, b p 50, a p 10, b p 10, g0 p 0:95, and m p 0:02. The initial seed bank population den-
sity was 100 seeds per area, distributed uniformly in the seed bank. The initial density of the plants was 15 plants per area.
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long-term centrality measurement of these metrics. Both per
capitamean germination and survival probabilities increased
with increasing autocorrelation coefficient r (figs. 3c, 3e, 4c,
4e, A2d, A2f, A3d, A3f ), while variance in both of these val-
ues decreased with increasing r for all parameter combina-
tions considered (figs. 3d, 3f, 4d, 4f, A2e, A2g, A3e, A3g).
For larger fecundity values (c p 150), the differences in
these values were exacerbated with differing probability of
disturbance h (figs. 4e, 4f, A3d, A3f ), where both mean seed
survival and germination probabilities were increasing func-
tions of h for negative r and decreasing functions of h for
positive r. Mean and variance in seed production were mostly
constant in r, with the former increasing in h and the latter
decreasing in h (figs. A2h, A2i, A3h, A3i).

We found that, for all parameter combinations consid-
ered, the mean and variance of the total seed bank popu-
lation increased with increasing autocorrelation coefficient
r (figs. 3a, 3b, 4a, 4b, A2b, A2c, A3b, A3c). The long-term
mean of the total seed bank population increased roughly
linearly with h (figs. A4, A7), while the variance in the long-
term population size was a unimodal function of the distur-
bance frequency h (figs. A6, A9). The variance changedmore
substantially as a function of the autocorrelation coefficient r
for smaller h (h values lower than 0.55, although this thresh-
old depends on the other parameters in the model) than for
larger h (above 0.55) due to the presence of a carrying capac-
ity limiting upward variability for populations with larger

h (and hence larger mean population sizes). Populations
with largerh can largely only vary downwardly,whereas pop-
ulations with lower h can vary in both directions, leading to
higher variability.
For small probability of disturbance h, maximumseed sur-

vival s0, and fecundity c, increasing the autocorrelation co-
efficient r decreased quasi-extinction probability, while for
larger h and small s0 and c, the relationship was nonmono-
tone: quasi-extinction probability decreased initially before
increasing for larger r (fig. 5a). These dynamics can be par-
tially explained by how the mean and variance of the total
seed bank population responded to changes in r. An increase
in the variance of the total seed bank population (fig. 3b)
as r increased was eventually enough to increase the quasi-
extinction probability for large h and small s0 and c, even
as the mean total seed bank population was simultaneously
increasing (fig. 3a). For higher s0 values, the quasi-extinction
probability was generally small, but as r became large enough,
the quasi-extinction probability eventually increased, espe-
cially for small h (fig. 5b, 5d), due to the aforementioned in-
crease in the population size’s variance. For higher c values,
quasi-extinction probability was generally increasing with r
(fig. 5c, 5d ). However, for some parameter values (high s0 and/
or high c), small h values corresponded to quasi-extinction
probabilities that initially increased for increasing (but neg-
ative) r before decreasing for intermediate r and then in-
creasing as r became large. The initial increases in extinction
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Figure 2: Example simulations of the total seed bank population kn(x, t)k1 for four different scenarios for the correlation coefficient r (left),
compared with the independent and identically distributed case (right), for high seed bank survival s0 p 0:95. Parameter values were otherwise
the same as in figure 1.
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probabilities in fig. 5b and 5c are due to the small population
sizes elicited by low h and negative r, coupled with the in-
creased variability associated with negative r values greater
than 21 (see fig. A2b, A2c).

Including autocorrelation in disturbance frequency did
not change the qualitative effect of the original disturbance
parameters h (probability of disturbance) and r (mean depth
of disturbance) on the long-term mean and variance of the

total seed bank population or the rare intrinsic growth rate
l, seen in Eager et al. (2013) and Eager et al. (2014b). When
maximum seed survival s0 was low, the effect of the mean
depth of disturbance r on the long-termmean of the total seed
bank population depended on probability of disturbance h:
when disturbances were infrequent, themean of the total seed
bank population was a decreasing function of r, while when
disturbances were more frequent, the relationship switched
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Figure 3: The mean (a) and variance (b) of the total seed bank population, mean (c) and variance (d ) of the germination probability of seeds
in the seed bank, and mean (e) and variance ( f ) of the survival probability of seeds in the seed bank. These simulations were performed with
low seed survival s0 p 0:5 and low fecundity c p 50, with r p 0:5; a p 40; b p 50; g0 p 0:95; a p 10; b p 10; m p 0:02; and h equal to
0.4, 0.5, 0.6, 0.7, and 0.8, shown with increasing line thickness and decreasing line darkness.
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(fig. A4). However, as the autocorrelation coefficient r in-
creased, this pattern appeared to become less pronounced.
For all r values, the high-survival (s0 p 0:95) case did not
elicit a nonmonotone relationship between the long-term
mean of the total seed bank population and r (fig. A6). The
rare intrinsic growth rate value l was an increasing function
of the disturbance frequency h and a decreasing function of

the mean depth of disturbance r for all parameter combina-
tions considered (figs. A5, A8).

Discussion

Howpopulations respond to environmental variability and to
temporal autocorrelations specifically is an important ques-
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Figure 4: The mean (a) and variance (b) of the total seed bank population, mean (c) and variance (d ) of the germination probability of seeds
in the seed bank, and mean (e) and variance ( f ) of the survival probability of seeds in the seed bank. These simulations were performed with
low seed survival s0 p 0:5 and high fecundity c p 150, with r p 0:5; a p 40; b p 50; g0 p 0:95; a p 10; b p 10; m p 0:02; and h equal to
0.4, 0.5, 0.6, 0.7, and 0.8, shown with increasing line thickness and decreasing line darkness.
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tion in population ecology (Johst and Wissel 1997; Petchey
et al. 1997; Heino 1998; Palmqvist and Lundberg 1998; Ripa
and Heino 1999; Heino et al. 2000; Greenman and Benton
2003, 2005; Vassuer 2004; Schwager et al. 2006; Logdberg
and Wennergren 2012; Mustin et al. 2013). Using an IPM
to model a general disturbance specialist, we found that,
for all parameter scenarios considered, the long-term mean
and variance of the total seed bank population increasedwith
increasing autocorrelation coefficient r. The increased possi-
bility of a string of disturbance years allowed for population
sizes to accumulate more rapidly than if disturbances are IID
or negatively correlated, and the positive impact of consecu-
tive disturbance years was higher than the negative impact of
consecutive nondisturbance years (on average), since fecun-
dity generally generates more recruits than mortality takes
away in a stable, density-dependent population. The in-
creased possibility of a string of nondisturbance years to go
along with the strings of disturbance years yielded the corre-
sponding higher variability for larger r, however. This inter-
action between the mean and variance of the total seed bank

population caused a complicated picture with regard to quasi-
extinction probability: for low maximum seed survival s0,
fecundity c, and disturbance frequency h (“low viability” sce-
narios), more positively autocorrelated disturbances yielded
lower quasi-extinction probabilities (by allowing otherwise
weaker populations to build on the higher likelihood of con-
secutive disturbance years), while higher h in these cases
yielded more nonmonotone effects. For example, in the case
where s0 and c were low and h was high, quasi-extinction
probabilities were the lowest for r ≈20:35 and increased
for increasing r values (by weakening otherwise-strong pop-
ulations through the higher likelihood of consecutive non-
disturbance years). For high s0 and/or high c (“high viability”
scenarios), the highest extinction probability generally oc-
curred for the highest r, although, for low h, there was still
some nonmonotonicity; that is, quasi-extinction probabil-
ity peaked when r ≈20:5 before decreasing for larger r
(fig. 5b, 5c) due to low population sizes coupled with in-
creasing variability (fig. A2b, A2c). These results coincide
roughly with the general results in the review article by Ruo-
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Figure 5: The quasi-extinction probability of the plant seed bank population as a function of the autocorrelation coefficient when s0 p 0:5 (a);
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kolainen et al. (2009), because when (undercompensatory)
density-dependent effects are more drastic (when average
population sizes are higher), extinction risk increases with
increasingly positive autocorrelation as a result of enhanced
population fluctuations.

Increasing the autocorrelation coefficient r had the effect
of increasing both the average seed survival and the aver-
age germination probability of a given seed in the seed bank
as well as decreasing the variances in both of these values.
Higher mean seed survival and germination rates, along
with decreasing variability in both of these rates, would seem
to imply more viable populations in response to increasingly
positive autocorrelations. However, this was generally not the
case for these high-viability scenarios, where quasi-extinction
probability increased with increasing r. This was likely due to
density dependence in conjunction with variance in the total
seed bank population size, the impact of both of which sub-
stantially increased as r increased. When seed bank popula-
tion sizes were high, there were generally many aboveground
plants in the event of a string of disturbance years and, sub-
sequently, many newly created seeds present to take advan-
tage of an increase in germination probability.However, there
is a maximum number of seeds that can eventually become
plants in any given year, and the density dependence in seed-
ling establishment causes a diminishing benefit of repeated
disturbances with increasing r. Meanwhile, with the risk of
repeated nondisturbance years increasing with increasing r,
extinction risk increased in these scenarios despite higher
(per capita) mean seed survival and germination probabili-
ties. In low-viability scenarios, disturbances were infrequent
enough that populations experiencing additional germina-
tion probability for increasing r from an otherwise smaller
total seed bank population would generally not be as limited
by density-dependent establishment. This, coupled with the
higher seed survival (particularly for lower h values), yielded
lower extinction probabilities and substantially higher mean
population sizes for increasing r values in these scenarios.

We found that a nonmontone relationship between total
seed bank population size and mean depth of disturbance
r found in Eager et al. (2013) was preserved for low maxi-
mum seed survival s0, that populations near extinction had
increasing mean population sizes when mean depth of dis-
turbance r was smaller. We reasoned in Eager et al. (2013)
and Eager et al. (2014b) that disturbance specialist plants that
are near extinction levels actually do better when less of the
population is disturbed each time step, since burying seeds
deeper in the seed bank (where survival is relatively low)
was less preferable than leaving them near the surface of
the soil (where the germination rate is higher). This relation-
ship also manifests itself when looking at the rare intrinsic
growth rate l, which gave insight into how well a population
grows, on average, when rare. We found that, for every pa-
rameter and autocorrelation scenario, l was a decreasing

function of r. However, it appeared thatl grewwith increasing
r for the parameter combinations that we considered, which
would seem to imply that increasing r decreases extinction
probability. This highlights the limitations with continuous-
space models like IPMs: populations that take arbitrarily small
population sizes habitually at or before increasing to a sto-
chastic equilibrium, or populations that persist at very small
population sizes, were considered nonextinct (l 1 1) from a
mathematical point of view but quasi-extinct by the stan-
dards we have set in this article. Creating a quasi-extinction
threshold is preferable to insisting that long-term popula-
tions aremathematically or computationally zero, since small
populations are especially prone to demographic stochastic-
ity, which, especially when coupled with environmental sto-
chasticity, increased extinction risk (Lande 1993).
Previous work (e.g., Lawton 1988; Caswell andCohen 1995;

Johst andWissel 1997;Heino 1998; Logdberg andWennergren
2012; Mustin et al. 2013) all concluded, for various model
structures and complexities, that increasingly positively auto-
correlated environments lead to an increase in extinction
risk, while Ripa and Lundberg (1996) concluded the oppo-
site—that increasingly positively autocorrelated environments
decreased extinction risk. Our results suggest that the effect
of r depends on population viability. If populations have a
high risk of going extinct (caused by low-viability scenarios),
increasingly autocorrelated disturbances are beneficial, but
if population viability is high (caused by high-viability sce-
narios), increasingly positive autocorrelated disturbances de-
crease population persistence. Petchey et al. (1997), Ripa and
Heino (1999), Greenman and Benton (2005), Schwager et al.
(2006), Ruokolainen and Fowler (2009), and Ruokolainen
et al. (2009) alluded to other ecological factors, such as over-
versus undercompensatory density dependence, as influenc-
ing whether increasingly positive autocorrelated environments
caused extinction risks to increase or decrease. Generally, over-
compensatory density dependence (caused by scramble com-
petition) coupledwithpositively autocorrelatedenvironmen-
tal fluctuations was found to decrease extinction risk, while
the opposite was true for undercompensatory density depen-
dence (caused by contest competition, as in our model). Our
results mostly coincide with previous work; that more-viable
populations—populations experiencing the effects of under-
compensatory density dependence—had higher extinction
risks as a result of increasingly positive autocorrelations. Pop-
ulations that were less viable did not experience density de-
pendence as heavily and thus were less likely to have increas-
ing extinction risk as r increased.
The rare intrinsic growth rate l increased with increasing

autocorrelation coefficient r for all parameter values consid-
ered (figs. A5, A8). In earlier work, the intrinsic growth rate
of the population has been found to change the way in which
populations respond to autocorrelation, with higher intrinsic
growth rates contributing to more variable population dy-
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namics, which lead to increasing extinction risk in response
to increasingly positive autocorrelated environments (Rough-
garden 1975; Heino 1998; Schwager et al. 2006). Since quasi-
extinction increased with r only when population viability
was high, our results appear to coincide with the literature
in only those scenarios.

Our environmental variable (disturbances), rather than
being simply a weak additive noise term on a population with
a strong deterministic signature (which is often how stochas-
tic populationmodels are constructed), was really driving the
population dynamics simulated by these models. Whether a
disturbance occurred, and how deeply disturbances affected
the seed bank if they occurred, fundamentally altered how
populations in one year contributed to populations in the
next year. Attempts to capture the “average” dynamics with
a deterministic model in systems like these are generally fu-
tile (Eager et al. 2013a) because of the drastic differences be-
tween a disturbance year and a nondisturbance year as well
as nonlinearities in themodel caused by density dependence.
However, allowing disturbances to be the specific mechanism
causing stochasticity and autocorrelation in our model added
to our ability to understand how autocorrelation affects pop-
ulation dynamics. Without disturbance, a disturbance spe-
cialist plant cannot reproduce, meaning that environmental
noise was necessary for these populations to persist. How-
ever, under certain parameter combinations, positively auto-
correlated noise could cause the population to go extinct any-
way, because sustained time periodswith frequent disturbance
cannot allow the population sizes to increase as much under
undercompensatory density dependence, because a similarly
long streak of nondisturbance years can deplete population
sizes. Since many aspects of the plant seed bank dynamics
for disturbance specialist plants may exhibit overcompensa-
tory density dependence (e.g., seed production or seed sur-
vival and germination; Moody-Weis and Alexander 2007;
Pico and Retana 2008; Jauni et al. 2015), future models may
need to include overcompensatory density dependence to
better understand how different density dependence assump-
tions affect model predictions. Since models with overcom-
pensatory density dependence often predict decreases in pop-
ulation size when population sizes in previous years are large,
overcompensatory density dependencewill likely decreasemean
seed bank population size in ourmodel. In our currentmodel,
undercompensatory density dependence simply imposes a
“cap”on large populations insteadof suppressing them.Coun-
terintuitively, it may be the case that adding overcompensa-
tory density dependence would decrease a population’s extinc-
tion risk as autocorrelation increases, since a prolonged streak
of nondisturbance years may drive a population to low enough
levels that the relief from density dependence is higher than
the losses incurred by a decrease in disturbance frequency.

For wild sunflower, we found that disturbance frequency
was positively autocorrelated with values ranging from 0.09

to 0.44 (Alexander et al. 2009). Thus, at least as they relate
to wild sunflower, our most important results center around
what happens when the autocorrelation coefficient r is greater
than 0. These results can be summarized in the following
way: for populations with favorable conditions, increasingly
positive autocorrelated disturbances will increase extinction
risk (even as they increase the population’s mean total pop-
ulation size, survival probability, and germination probabil-
ity). Populations with unfavorable conditions, while having
extinction probabilities generally higher than those frompop-
ulations with more favorable conditions, will see relief in ex-
tinction risk from increasingly autocorrelated disturbances.
The former result stems from density dependence limiting
the positive effects of a string of disturbance years, leaving
them more vulnerable when a prolonged streak of nondis-
turbance years hits. The latter stems from frequently low pop-
ulation sizes limiting the effects of density dependence, so
in these cases, these populations can take advantage of pro-
longed streaks of disturbance to counterbalance the negative
effects of prolonged streaks without disturbance. Future work
will explore autocorrelations in other demographic variables,
such as seed survival and germination, and how these auto-
correlations influence autocorrelations in disturbances and
subsequently affect population dynamics and extinction risk.
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Appendix from E. A. Eager et al., “Assessing the Influence of Temporal
Autocorrelations on the Population Dynamics of a Disturbance
Specialist Plant Population in a Random Environment”
(Am. Nat., vol. 190, no. 4, p. 570)

Part A.

To prove the convergence of the stationary distribution m* for f[n(x, t),  p(t)]Tg∞
tp0, we need to work in the space C1[0,D]

of positive continuous functions over the interval [0,D]. To do so, we need to use the kernel approximation as in
Eager et al. (2014b) to make K(x, y, v), a continuous function of the spatial variables x and y and disturbance depth v.
Please see Eager et al. (2014b, pp. 1815–1816) for how this is done. With this kernel construction, the population

x(⋅)t ≔n(⋅, t)1 cJ (⋅)p(t),

with n(x, t) and p(t) from equation (3), solves the stochastic difference equation (with the dependence on space omitted)

xt11 ≔H(vt, xt)≔ A0(vt)xt 1 bf (c(vt)
Txt), ðA1Þ

where the stochastic process modeling the disturbances fvtg∞
tp0 ⊂ Q, the probability space of all possible disturbance

scenarios. Here, b ∈ C1[0,D] is the function cJ (⋅), A0(q) are the linear operators from C1[0,D] to itself defined by

A0(v)u≔
ðD

0
s(⋅)(12 g(⋅, v))K(⋅, y, v)u( y)dy,

and cT (v) are the functionals from C1[0,D] into R1 defined by

c(v)Tu≔
ðD

0

ðD

0
g(x, v)K(x, y, v)u( y)dydx,

for u ∈ C1[0,D].
To best handle the years without disturbance, we create J p ft ∈ N jvt 1 0g, the subset of all time steps for which

there is a disturbance, which can be ordered to create a subsequence f̂tg∞
tp0 ∈ ℕ∪ f0g, as in Eager et al. (2014b). We

create this subsequence in the following way: if v0 1 0 (there is a disturbance at t p 0), define t̂ ∈ J to be the time step of
the (t 1 1)st disturbance. If v0 p 0 (there is no disturbance at t p 0), let 0̂ p 0 and define t̂ ∈ J to be the time step
of the tth disturbance. To allow us to use the results in Hardin et al. (1988), we study the population on the sequence of
time steps f̂tgt̂∈J . We note that, when vt p 0, in addition to being linear, the model (A1) is also completely deterministic.
To see this, note that, when vt p 0, the model (A1) becomes

x(z)t11 p

ðD

0
s(z)(12 g(z, 0))K(z, y, 0)x( y)tdy

1kJ (z) f

�ðD

0

ðD

0
g(z, 0)K(z, y, 0)x( y)tdydz

�
p s(z)x(z)tdy1 kJ (z) f (0)
p s(z)xt(z)

by the definition of K(⋅, ⋅, 0) and the fact that g(z, 0) p 0 for all z ∈ [0,D]. Therefore, if we let tt be the number of
time steps between (disturbance) time steps t̂ and dt 1 1 and only track xt for those time steps t̂ where there are disturbances
(i.e., gather together all nondisturbance time steps into one t̂ time step), then the model (A1) becomes

x dt 1 1
≔ Ĥ (vt̂ , xt̂ )≔ Â0(vt̂ )xt̂ 1 bf (ĉ(vt̂ )

Txt̂ ), ðA2Þ

q 2017 by The University of Chicago. All rights reserved. DOI: 10.1086/692911
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with

Â0(v)u≔
ðD

0
s(⋅)(12 g(⋅))K(⋅, y, v2)s( y)tu( y)dy,

and

ĉ(v)Tu≔
ðD

0

ðd

0
g(z)K(z, y, v2)s( y)

tu( y)dydz:

With this reformulation, our stochastic process is now the sequence f(v2)̂t, tt̂gt̂ ∈ J , where (v2)̂t is just the depth of
disturbance at the time step t̂, and the random variable t̂ is the number of time steps between the disturbance at time t̂
and t 1 1.

It also follows that (v2)̂t and tt̂ are probabilistically independent for each t̂. With this, we will define the stochastic
process fv̂ t̂gt̂∈ J p f(v2)̂t , tt̂gt̂∈ J , where fv̂t̂gt̂∈ J is now a sequence of IID random variables coming from the space Q of all
possible environmental states defining the stochastic process. Note that the probability spaces Q̂ and Q contain the same
relevant probabilistic information, because the values of when v p 0 do not influence the population. Also notice that,
since vt̂ ( 0 for all t̂, it follows that g(z, vt̂) is simply g(z) for all t̂. We need to assume, for analytical tractibility, that the
number of consecutive years without a disturbance is bounded above by T ≫ 1 and that the depth of disturbance v2 is
bounded below by the positive number v2 ≪ 1.

If we can prove that the probability measures fmt̂gt̂∈ J associated with the sequence fxt̂gt̂∈ J converge weakly to the
measure m̂*, independent of initial population, we will have that the probability measures fmtg∞

tp0 associated with the
sequence fxtg∞

tp0 (that explicitly includes nondisturbance time steps) converge weakly as well. This argument follows
exactly from pages 1817–1820 in Eager et al. (2014b), with the vector of probabilities [ p0, p1,:::, pT ]

T representing the
stationary distribution of the “age” of the seed bank, or the number of time steps since the last disturbance, being the
leading right eigenvector of the following T # T transition matrix

p 12 q 12 q ⋯ 12 q 1
12 p 0 0 ⋯ 0 0
0 q 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋯ ⋮ ⋮
0 0 0 q 0 0
0 0 0 ⋯ q 0

0
BBBBBB@

1
CCCCCCA:

It is not difficult to show that

p0 p
12 q

(12 q)1 (12 p)(12 q)T

and that pi p (12 p)qT21p0 for i p 1, 2, 3, ::: , T . This stationary distribution is different than that in Eager et al. (2014b)
because of the change from IID disturbances to autocorrelated ones.

The model (3) in the main body of this article (with the modified kernel) satisfies assumptions (A1)–(A5) and thus
properties (H1)–(H7) in Eager et al. (2014b). Thus, the proof of the following theorem establishing the stationary
distribution of f[n(x, t), p(t)]Tg∞

tp0 follows directly from pages 1823–1827 in that article:
Theorem 1. Suppose (A1), (A2), (A3), (A4), and (A5) in Eager et al. (2014b) for the model (A2) are satisfied and x0 (

0 ∈ C[0,D]1 with probability 1. Then xt converges in distribution to a stationary distribution m*, independent of x0, such
that either m*(f0g) p 0 or m*(f0g) p 1. If l 1 1, then m*(f0g) p 0, and if l ! 1, then m*(f0g) p 1.

Additionally, n(⋅, t) and p(t) converge in distribution to unique stationary distributions m*
1 and m*

2, respectively,
independent of n(⋅, 0) and p(0).
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Part B. Supplementary Figures
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Figure A1: Example sequences of v1(t) values for probability of disturbance values h p 0:25 and 0.75 and autocorrelation coefficients
r p20:75, 0, and 0.75 for 50 time steps each.
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Figure A2: The quasi-extinction probability (a), mean (b), and variance (c) of the total seed bank population, mean (d ) and variance
(e) of the germination probability of seeds in the seed bank, mean ( f ) and variance (e) of the survival probability of seeds in the seed
bank, and the mean (g) and variance (i) of the seed production of seeds in the seed bank. These simulations were performed with high
seed survival s0 p 0:95 and low fecundity c p 50, with r p 0:5; a p 40; b p 50; g0 p 0:95; a p 10; b p 10; m p 0:02; and
h equal to 0.4 (green), 0.5 (red), 0.6 (black), 0.7 (blue), and 0.8 (orange).
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Figure A3: The quasi-extinction probability (a), mean (b), and variance (c) of the total seed bank population, mean (d ) and variance
(e) of the germination probability of seeds in the seed bank, mean ( f ) and variance (e) of the survival probability of seeds in the seed
bank, and the mean (g) and variance (i) of the seed production of seeds in the seed bank. These simulations were performed with high
seed survival s0 p 0:95 and high fecundity c p 150, with r p 0:5; a p 40; b p 50; g0 p 0:95; a p 10; b p 10; m p 0:02; and
h equal to 0.4 (green), 0.5 (red), 0.6 (black), 0.7 (blue), and 0.8 (orange).
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