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abstract: Convergence occurs in both species traits and commu-
nity structure, but how convergence at the two scales influences each
other remains unclear. To address this question, we focus on tropical
forest monodominance, in which a single, often ectomycorrhizal (EM)
tree species occasionally dominates forest stands within a landscape
otherwise characterized by diverse communities of arbuscular mycor-
rhizal (AM) trees. Such monodominance is a striking potential ex-
ample of community divergence resulting in alternative stable states.
However, it is observed only in some tropical regions. A diverse suite
of AM and EM trees locally codominate forest stands elsewhere. We
develop a hypothesis to explain this geographical difference using a
simulation model of plant community assembly. Simulation results
suggest that in a region with a few EM species (e.g., South America),
EM trees experience strong selection for convergent traits that match
the abiotic conditions of the environment. Consequently, EM species
successfully compete against other species to form monodominant
stands via positive plant-soil feedbacks. By contrast, in a region with
many EM species (e.g., Southeast Asia), species maintain divergent
traits because of complex plant-soil feedbacks, with no species having
traits that enablemonodominance. An analysis of plant trait data from
Borneo and Peruvian Amazon was inconclusive. Overall, this work
highlights the utility of geographical comparison in understanding the
relationship between trait convergence and community convergence.

Keywords: community assembly, mycorrhizae, plant-soil feedback,
plant traits, priority effects, species pools.

Introduction

At the species level, convergence is defined by distantly re-
lated species sharing similar traits, but convergence is also
possible at the community level, in which distantly located
communities develop to have similar species abundance dis-
tribution, functional group composition, and other aspects
of community structure (Fukami 2009). These forms of
convergence are thought to result from the predictable re-
sponse of independently evolved species (e.g., Reich et al.
1997; Conte et al. 2012) and separately assembled commu-
nities (e.g., Samuels and Drake 1997; Li et al. 2016) to simi-
lar environmental conditions. Identifying factors that pro-
mote or prevent convergence is therefore fundamental to
the understanding of predictability at both the species and
community levels of biological organization (Stern 2013).
Despite this duality of convergence, the link between trait
convergence and community convergence remains poorly
investigated (Cavender-Bares et al. 2009). It may seem ob-
vious that trait convergence automatically translates into
community convergence (Melville et al. 2006). As we argue
in this article, however, the link may not be so straightfor-
ward, particularly when multiple lineages of species con-
verge in traits among themselves but diverge frommembers
of other lineages, which can promote divergence—rather
than convergence—of community structure.
How does community convergence and divergence take

place? Insights on this question can be found as early as
Clements, who developed the climax concept of plant suc-
cession (e.g., Clements 1936). According to this well-known
concept, communities converge to a predictable species com-
position determined by the abiotic environment (but see
Gleason 1927). More recently, increasing evidence suggests
that community divergence—in the form of alternative sta-
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ble states—may be more common than previously thought
(Schröder et al. 2005), but understanding when alternative
stable states emerge remains a major challenge for commu-
nity ecologists (Petraitis 2013). Local communities are con-
sidered to be in alternative stable states when they diverge
in species composition, even though the communities share
the same environmental conditions and the same species
pool (Fukami 2015). This divergence is driven by priority ef-
fects, in which the order or initial abundance in which spe-
cies arrive influences the effects that species have on one an-
other in local communities (Palmgren 1926; Sutherland
1974; Drake 1991). As factors determining when alternative
stable states occur, more attention has been paid to the abi-
otic conditions of local habitats than to the trait values of po-
tential colonists in the regional species pool (but see, e.g.,
Fox 1987; Fargione et al. 2003). Consequently, the connec-
tion between convergence in species traits and in community
structure remains poorly understood. In this article, we ex-
plore this connection, using tropical trees and their associa-
tion with mycorrhizal fungi as an illustrative example.

Mycorrhizal Association and Forest Monodominance

A classic case of convergent evolution in plants is their as-
sociation with mycorrhizal fungi (Brundrett 2002). There
are at least 19 evolutionarily independent origins of ecto-
mycorrhizal (EM) symbiosis in plants (Koele et al. 2012)
and more than 60 in fungi (Tedersoo et al. 2010). In addi-
tion, plants associated with EM fungi may potentially expe-
rience common selective pressure and, because of it, undergo
further convergent evolution in other traits, particularly those
related toresourceeconomy(e.g.,Read1991;Cornelissen et al.
2001; Phillips et al. 2013; but see Koele et al. 2012).

As a result, EM host plant species may form a species al-
liance (sensu Van Nes and Scheffer 2004). That is, EM host
plants may modify the local environment to make it more
favorable to the members of their own alliance (EM plant
species) than to those of other plants, which are often asso-
ciated with arbuscular mycorrhizal (AM) fungi. Thus, if by
chance a locality were initially dominated by EM plants, it
might persist as such owing to positive feedbacks resulting
from this alliance. Consequently, it is possible that local
plant communities diverge as alternative stable states, each
developing as either EM or AMdominated as a result of pri-
ority effects, as we explain in more detail below.

A particularly striking example of such alternative stable
states is seen in the phenomenon of tree species monodom-
inance in tropical forests, in which forests otherwise char-
acterized by highly diverse plant communities are dotted
by occasional stands in which one tree species is far more
dominant than any other (Richards 1952; Janzen 1974; Con-
nell and Lowman 1989; Hart et al. 1989; Torti et al. 2001). In
tropical forests, such stands can range in area from one

to several thousand hectares (Peh et al. 2011). The term
“monodominance” has been variously defined in the trop-
ical forest literature, but here we consider those cases in
which one species contributes more than 60% of total basal
area (Hart et al. 1989) or more than 25% of total stem den-
sity of a forest stand that is surrounded by mixed forest.
There are a number of hypothesized mechanisms by

which monodominance can emerge (Torti et al. 2001; Fred-
erickson et al. 2005; McGuire et al. 2008; Peh et al. 2011),
but one factor that is frequently associated with mono-
dominance is the mycorrhizal status of the plants (Hart
et al. 1989). Tree species that host any type of mycorrhiza
can form monodominant stands. For example, multiple spe-
cies from primarily AM plant families (Brundrett 2009)—
such as the Apocynaceae, Burseraceae, Euphorbiaceae, Faba-
ceae, Lauraceae, Moraceae (reviewed in Peh et al. 2011), and
Rubiaceae (Frederickson et al. 2005)—formmonodominance.
However, monodominance-forming species are dispropor-
tionately from EM lineages within the Dipterocarpaceae, Fa-
baceae, Fagaceae, and Juglandaceae (reviewed in Peh et al.
2011; Smith et al. 2013; Corrales et al. 2016). One defining
feature of monodominant stands of EM host tree species in
Neotropical rainforests is that they are embedded in forest
with a more even abundance distribution of primarily AM
host trees. EM host monodominance in these forests is par-
ticularly dramatic, given that far fewer tree species form EM
compared with AM associations in typical mixed forest stands
and that EM host species are often found at low abundances
outside of the monodominant patches (Henkel 2003; Cor-
rales et al. 2016).
The mechanisms that cause mycorrhizal status to gener-

ate monodominance are not fully understood but likely in-
volve positive plant-soil feedback as one form of priority ef-
fects. EM monodominant stands are thought to result in
part from positive feedback caused by their EM associa-
tion, in which local soil conditions are made more favor-
able to EM than to AM host trees (Dickie et al. 2014). These
changes in local soil conditionsmay involve the species com-
position of mycorrhizal fungi and other soil microbes or
plant-induced nutrient depletion (Corrales et al. 2016; Peay
2016). Priority effects driven by such self-enforcing habitat
modification—or niche construction (sensu Odling-Smee
et al. 2003)—can lead to alternative stable states, in which
EM trees may form monodominant stands when they es-
tablish earlier than other species after local disturbance but
are otherwise excluded by AM trees.
Intriguingly, however, these potential instances of alterna-

tive stable states with either high-diversity AM assemblages
or low-diversity EM monodominant stands are observed in
only some tropical regions (e.g., South America and Africa)
but not in others (e.g. Southeast Asia), where a diverse suite
of AM and EMplant species codominate. To our knowledge,
no study has directly addressed why this difference exists,
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yet this geographical contrast presents itself as an opportu-
nity to gain a better understanding of how and when mono-
dominance may arise as an alternative stable state.

Natural History of Mycorrhizal Association
as a Motivation for This Article

The purpose of this article is to develop a biogeographical
hypothesis to explain why EM monodominance arises in
some tropical forest regions and not in others. More gener-
ally, our goal is to use monodominance as a case in point to
discuss how community convergence can be influenced by
trait convergence and how the extent of this effect can be
mediated by the properties of the species pool.

Our motivation for this goal comes from the idea that
EM monodominance may be associated with convergent
values of plant traits related to resource economy, such as
leaf chemistry and decomposability (Torti et al. 2001; Peh
et al. 2011). Traits of EM host plant species (such as specific
leaf area, leaf C and N content, and C∶N ratio) have been
found to differ significantly from those of AMhost plant spe-
cies (Read 1991; Phillips et al. 2013), suggesting that several
lineages of EM plant species may have converged and, in the
process, as a functional group diverged from AM plant spe-
cies in these traits. Even so, there can still be substantial trait
variation across plant species within the EM group (Koele
et al. 2012), which may affect the strength and direction of
plant-soil feedbacks. For example, interspecific variation in
leaf C∶N ratios may increase the variation in the strength
and direction of plant-soil feedbacks among EM species (Ke
et al. 2015).

In this article, we seek to link the possibility that inter-
specific trait variation is associated with variation in plant-
soil feedbacks with one aspect of forest communities that is
highly variable among tropical regions: the size of the local
pool of tree species that host EM fungi (Peay 2016). This
size ranges from only a few species in South America (e.g.,
Baraloto et al. 2011) to hundreds in Southeast Asia (e.g.,
Brearley 2012). We focus on this difference among regions
in species pool size and the associated potential variation
in the strength of species interactionsmediated by plant-soil
feedbacks. We hypothesize that a diverse EM species pool
and the resulting complexity in local interactions among
EM speciesmakes trait convergence in these species difficult
and that this obstacle to trait convergence in turn prevents
the strong divergence of local communities that is necessary
for the emergence of monodominant patches.

To develop this hypothesis, we use results from computer
simulation of plant community assembly. The simulation
model is not intended to replicate actual community assem-
bly to quantitatively predict community patterns, but instead
to explore possible qualitative outcomes arising from a small
set of assumptions that characterize species interactions me-

diated by plant-soil feedbacks. We also examine whether
empirical leaf functional trait data are consistent with the hy-
pothesis developed with our model. Variation in leaf func-
tional traits reflects selection for ecological strategies of re-
source acquisition and conservation (Donovan et al. 2011;
Reich 2014) and is correlated with mycorrhizal status (Read
1991; Phillips et al. 2013). The leaf data we use for this pur-
pose are from two typical mixed forests in different geo-
graphic regions. One is from a Neotropical forest in the Pe-
ruvian Amazon, where EM plants are rare and the EM plant
species pool is small. The other is from a Paleotropical forest
in Borneo, where EM plants are common and the EM plant
species pool is large.

Simulation Methods

Overview

The simulation model we used is a modified version of Fu-
kami and Nakajima’s (2013) individual-based, spatially im-
plicitmodel of plant community assembly through stochastic
sequential immigration of species from an external species
pool. In this model, which is built on traditional plant com-
petition models (Chesson 1985; Pacala and Tilman 1994;
Mouquet et al. 2002; Fukami and Nakajima 2011), plant in-
dividuals compete for local resources during the individ-
ual establishment stage. They also affect one another’s com-
petitiveness via plant-soil feedback. We assume that plants
can take on one of two mycorrhizal associations, EM or
AM. There are other potential mycorrhizal states (e.g., non-
mycorrhizal or ericoid mycorrhizal), but EM and AM asso-
ciations represent most tree species and individuals in trop-
ical forests (McGuire et al. 2008; Brundrett 2009). We also
assume that plants that host both EM and AM fungi can be
considered primarily EM associated, because the root sys-
tems of these plants tend to become dominated by EM fungi
(Egerton-Warburton and Allen 2001).
We vary the size of the EM host species pool (the number

of EM host species) while holding constant the number of
AM species in the pool, and we examine how the size of the
EM species pool influences the way local plant communities
assemble, particularly with respect to the emergence of the
alternative stable state of EMmonodominance. By replicat-
ing community assembly in many local forest patches with
the same species pool, we examine how species abundance
distributions may vary among patches that have the same
set of local abiotic conditions within them but differ in the
history of stochastic species arrival. In particular, we assess
the conditions under which the local abundance of EM hosts
shows strong bimodality, in which a single EM host species
becomes monodominant in some local patches but remains
rare or absent in all other patches.
As in Fukami and Nakajima’s (2013) model, plant re-

cruitment occurs in sites that are arranged in a patch. Plants
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are recruited from both seeds produced by established indi-
viduals within the patch and immigration from an external
species pool. For immigration, species of plants were ran-
domly chosen for immigration each time step from the spe-
cies pool. The chosen species immigrated as a small number
of propagules to a local forest patch consisting of 1,000 re-
cruitment sites. One thousand recruitment sites roughly cor-
respond to the sapling abundance we may expect in a hect-
are, the scale at which small monodominant stands are
observed. All recruitment sites were initially empty. Subse-
quently, only one plant individual could establish and pro-
duce propagules in each recruitment site, even when multi-
ple propagules arrived from the species pool or from local
dispersal within the patch. Propagules were distributed ran-
domly to recruitment sites within the patch each time step.
Of the propagules that arrived at a recruitment site, the one
that belonged to the species that best fit the environmental
condition of the recruitment site could establish and pro-
duce propagules (determination of environmental fit is de-
scribed in more detail below). All plants within a patch pro-
duced propagules once each time step (e.g., each year or
each mast event) until they died. All plants died with a fixed
probability, and when they did, recruitment sites became
empty and available for a new plant individual to establish.
Real tree species vary in dispersal ability, fecundity, andmor-
tality rates, but we kept these constant across species to focus
on the mechanisms of monodominance in relation to our
hypothesis. This process of immigration, arrival, establish-
ment, reproduction, and death was repeated for 400 time
steps. All simulations were carried out using Mathematica
8.0 (Wolfram Research, Champaign, IL). Code and data are
available as supplementary material, available online.1

Species Pools

Regional species pools each contained 100 AM plant spe-
cies and one to 20 EM plant species. Each species i was de-
fined by a value Ri, which can be thought of as a multitrait
phenotype that determines how well species perform in lo-
cal abiotic conditions during the recruitment stage (see de-
tails below). Values of Ri were chosen randomly between 0
and 1 from a beta distribution, where the probability den-
sity for value x was proportional to xa21(12 x)b21 (Mouquet
et al. 2002).We set a p b, which causes the probability den-
sity for Ri to have a peak at 0.5, but the value of a was varied
in order to examine the effect that the amount of variation
in Ri among species had on community assembly. We re-
fer to 1=a as interspecific phenotypic variability v. A larger
v means that Ri values are more variable among species
(fig. 1B). In addition to Ri, species were also characterized

by a set of values (Sij) that defined the strength of plant-soil
feedback, in which the presence of a plant individual be-
longing to species j at a recruitment site during a given time
step changed the competitive ability of a plant belonging to
species i at that recruitment site during the following time
step (see details below).

Local Patches

Local forest patches each consisted of 1,000 recruitment
sites. Each recruitment site could accommodate only one
adult tree and was characterized by a value that represents
abiotic conditions (Hk), chosen randomly between 0 and 1
from a beta distribution. For the beta distribution forHk, we
set a p b p 2, which—as with the case of Ri—produces a

Arbuscular
mycorrhizal

trees

Ecto-
mycorrhizal

trees1

1

1.1 if i = j
[1, 1.1] if i ≠ j

1.1 if i = j
[1, 1.1] if i ≠ j

A

B

v = 1

v =  0.1

v =  0.01

v = 0.0001
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y

Species value, Ri (solid lines) or
abiotic condition, Hk (dashed line)
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4

Figure 1: Model description. A, Schematic summary of the strength
of plant-soil feedback (Sij) assumed in the simulation model. The val-
ues indicated were used for the simulation shown in figures 2–4 but
changed as specified in figure 5 to evaluate the effect of feedback
strength on community assembly. An Sij of 1 means no feedback. An
Sij value that is 11 means positive feedback. All intraspecific feedbacks
(i.e., i p j) were assumed to have Sij of 1.1, and Sij values for interspe-
cific feedbacks (i.e., i ( j) were assigned a random value between 1 and
1.1, so that they are all positive, but their strengths vary with species
identity and are never greater than intraspecific feedbacks. B, Probabil-
ity distribution for abiotic condition of recruitment sites (Hk; dashed
line) and for species phenotypic value (Ri) among ectomycorrhizal
species in the species pool under different degrees of species variabil-
ity (v, which is 1=b for the ß distribution for Ri).

1. Code that appears in the American Naturalist is provided as a convenience
to the readers. It has not necessarily been tested as part of the peer review.
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peak of Hk values at 0.5 (fig. 1B). For all simulations in a
run, the Hk values remained the same.

Competitive Ability

Values of Hk, Ri, and Sij together determined competitive
ability (Cijk) of species i at recruitment site k when the re-
cruitment site was occupied by species j at the previous
time step:

Cijk p (12 jHk 2 Rij)Sij:

Thus, assuming that Sij p 1 (i.e., no effect of species j and
species i through plant-soil feedback, as explained below),
a species would have a high value of Cijk if it had a value of
Ri that is close to that of Hk, as in Mouquet et al.’s (2002)
model. In our simulation, a close match between Hk and Ri

is most likely when a species’ Ri value is 0.5, since Hk also
has a peak at 0.5 (fig. 1B).

Plant-soil feedback moderates competitive ability, with
the value of Sij defining the direction and strength of the
feedback. Specifically, Sij defines the effect of species j occu-
pying a given recruitment site during a given time step on
the competitive ability of species i in that microsite during
the following time step. Thus, Sij affects the competitive
ability of species i independently of both recruitment site
condition (as defined by Hk) and species phenotype (as de-
fined by Ri) and represents the amount by which the differ-
ence between the abiotic environment and the species’match
to the environment is improved (Sij 1 1), worsened (Sij ! 1),
or not affected (Sij p 1) via plant-soil feedback (Fukami and
Nakajima 2013). That is, if Sij p 1, there is no net effect of
plant-soil feedback, whereas Sij 1 1 and Sij ! 1 represent pos-
itive and negative plant-soil feedback, respectively.

We set the values of Sij to attempt to represent the inter-
actions within and between AM and EM plants that are ob-
served in nature (fig. 1A). There are many ways in which
plant-soil feedback could be structured, but here we assume
that plants facilitated the growth of conspecific individuals
via local accumulation of specific mycorrhizal fungi that are
beneficial to them, via modification of soil nutrient com-
position to the species’ own benefit via their specific mycor-
rhizal association (Corrales et al. 2016) or via better protec-
tion from pathogens through added physical or chemical
defenses in mycorrhizal roots (Duchesne et al. 1989; News-
ham et al. 1995; Bennett et al. 2017). Plants can also nega-
tively affect conspecifics by, for example, accumulating soil
pathogens (Kulmatiski et al. 2008). However, studies that
examine net effects of pathogens plusmycorrhizae often find
overall positive effects from soil biota (e.g., fig. 1B inMangan
et al. 2010; see also Cortois et al. 2016; Bennett et al. 2017;

Teste et al. 2017). Similarly, in a large analysis of forest plots
in North America and New Zealand, Dickie et al. (2014)
found that most tree species exhibited positive density de-
pendence. We therefore assumed in our model that positive
effects outweigh negative ones to result in net positive plant-
soil feedback for conspecifics. Accordingly, we set Sij p 1:1
when i p j.
We also assumed that EM tree species shared similar ni-

trogen economy (Corrales et al. 2016) as well as similar as-
sociations with EM fungi. As a result, EM plant species can
benefit each other to some extent, but the strength of in-
terspecific plant-soil feedback is variable among EM plant
species pairs and is never greater than that of intraspecific
feedback. We believe that these assumptions are plausible
because evidence suggests that EM fungi tend to be gener-
alists with high overlap between co-occurring species (Ken-
nedy et al. 2003; Peay et al. 2015; but see Bennett et al. 2017)
and that shared EM fungi can facilitate interspecific recruit-
ment (Horton et al. 1999; Nara 2006b). In addition, there is
evidence that different combinations of EM fungi and plants
can have different effects on plant growth, even among closely
related species (Nara 2006a; Fransson et al. 2015). Conse-
quently, when i ( j, we assigned Sij values by taking a uni-
form randomly drawn value between 1 and 1.1 for each Sij.
For simplicity, we assume that this same pattern of intra-
and interspecific feedback strengths also holds for AM plant
species. In other words, EM and AM host species have sim-
ilar capacities for positive plant-soil feedback in our model.
Finally, we also assumed that EM and AM plant species did
not facilitate each other through plant-soil feedback. Thus,
Sij p 1betweenall pairs of anEMspecies andanAMspecies.
The direction and strength of plant-soil feedback in trop-

ical forests have not been thoroughly characterized, and it is
uncertain whether the assumptions specified above are al-
ways realistic. To examine whether model results are sensi-
tive to these assumptions, we ran two sets of additional sim-
ulation. In the first, we assumed that among EM host plants,
Sij took a uniform randomly drawn value between 1 and 1.1,
even when i p j, in order to relax the assumption that all
intraspecific feedbacks were more or equally positive com-
pared with any interspecific feedbacks (fig. S1B; figs. S1–
S5 are available online). In a second set, we used a combination
of alternative assumptions. Specifically, we assumed (1) var-
iable positive intra- and interspecific feedbacks for EM host
plants, (2) variable intra- and interspecific feedbacks (both
positive and negative) for AM host plants, and (3) negative
effects of EM host plants on AM host plants. For assump-
tion 1, we tried two variants. In one (variant 1), we used
the original assumption as above, that is, that the strength
of interspecific plant-soil feedback is variable among EM
plant species pairs and is never greater than that of intra-
specific feedback (fig. S1C). The other (variant 2) is that in-
terspecific and intraspecific feedbacks are all positive but
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equally variable, such that some intraspecific feedbacks are
less positive than some interspecific feedbacks (fig. S1D).

Community Assembly

At each time step, each species in the species pool immigrated
to the local patch with probability I. For each of the 100 AM
species in the pool, we used I p 0:05. For each EM species,
we used I p 1=(number of EM species in the pool). For
example, when we had two or 20 EM species in the pool,
I was 0.5 or 0.05 for each EM species, respectively. This
way, we standardized for the total immigration frequency
for all EMplants across the gradient of the size of theEMspe-
cies pool. We also did additional simulation in which I p
0:05 for each species, regardless of the size of the EM species
pool used, in order to decouple the effects of regional species
richness per se from those of regional relative abundance.

At each recruitment site in the local patch, spe-
cies i arrived with probability 12 exp[2(Pi 1 FNi)=
(total number of recruitment sites, i.e., 1,000)] at each time
step. Here, Pi is the number of propagules of species i that
immigrate from the species pool (20 propagules for species
chosen for that time step for immigration from the species
pool, and 0 seed for all other species), F is fecundity (50 for
all species), and Ni is the number of plants belonging to spe-
cies i in the local patch (0 for all species in the first time step,
i.e., at t p 1, which is analogous tomodeling recruitment af-
ter a stand-replacing disturbance). The specifications were
chosen so as to have values that likely fall within a plausible
range. When the number of recruitment sites that were as-
signed to receive a propagule of species i exceeded Pi 1 FNi

(which rarely happens), Pi 1 FNi recruitment sites were
randomly selected from these recruitment sites, and a prop-
agule of the species were assigned only to the selected re-
cruitment sites.

Given this probability, there were three possibilities re-
garding plant establishment and seed production in each re-
cruitment site. First, if the recruitment site were already oc-
cupied by a plant, that plant remained there. In other words,
we assumed that seeds could not displace established adults.
Second, if the recruitment site were empty and no species
arrived at that recruitment site, it remained empty. Third, if
the recruitment site were empty and one or more species ar-
rived at that recruitment site, of those species that arrived,
the one with the greatest value of Cijk (independent of the
number of propagules of each species) was assumed to occupy
the recruitment site and produce propagules starting the fol-
lowing time step. The seed-to-adult recruitment processes
are important in many of the dynamics modeled here, but
processes operating during those stages per se were not the
focus of our model, which was intended to identify the min-
imal processes required to produce monodominance.

After plant establishmentwas completed for all recruitment
sites, plants occupying a recruitment site died with probabil-
itym, which was 0.4 for all species. Thus, competitive ability
in our model is not related to dispersal, fecundity, or baseline
survival; it dictates only a species’ ability to win a recruitment
site.We assembled communities for 400 time steps. From vi-
sual inspection of results, 400 time steps seemed long enough
for most communities to reach an equilibrium state (fig. 2).

Manipulating Species Pool Size and Species Variability

Wemanipulated two factors—the number of EM species in
the species pool and the amount of variation in Ri among
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Figure 2: Examples of simulated population dynamics for two forest
patches, showing ectomycorrhizal (EM) monodominance (A) and
arbuscular mycorrhizal (AM) dominance (B) as alternative stable
states. Both A and B show results for one instance of local commu-
nity assembly under the same species spool, and each line indicates a
species, with warm colors denoting EM tree species and cold colors
denoting AM tree species. In these examples, there were 100 AM tree
species and 10 EM tree species in the species pool, and species variabil-
ity amongEM species (v) was set to be small (v p 0:0001), with all EM
species having an Ri value very close to the optimal, 0.5 (see fig. 1B).
Depending on assembly history, local communities develop either as
EMmonodominance (A), in which a single EM species becomes dom-
inant (orange line) and all others are AM species, or as an AM-only
community (B), in which a few EM species were able to colonize the
forest patch initially but became locally extinct because they were
not common initially and were excluded competitively by AM species
through positive plant-soil feedback among AM species.
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EM host species (i.e., species variability v, as defined in
“Species Pools”)—to examine their effects on EM abun-
dance in assembled local communities. To this end, under
each of the species pools we used (i.e., 16 pools in fig. 3),
we ran the simulation 100 times, with each run considered
one instance of community assembly in a local forest patch.
Under each species pool, the replicated 100 patches had the
same set of recruitment sites, which allowed us to evaluate
whether plant communities that develop in different patches
that share the same set ofHk values in them diverged in spe-
cies composition as a result of random variation in the his-
tory of species arrival from the species pool. If they did di-
verge, that would be evidence for alternative stable states.
We were particularly interested in assessing the conditions
under which EM monodominance arose. We defined EM
monodominance as the case in which only one dominant
EM species occupied one-fourth (25%) or more of the avail-
able recruitment sites in a patch, with the other sites being
occupied by AM species.

Simulation Results and Discussion

Simulation results verified that communities with (fig. 2A)
and without (fig. 2B) monodominant EM species could de-
velop as alternative stable states in our model. Under the
same species pool, communities were either dominated by
AM species without any EM species present or had at least
25% EM individuals, representing two alternative stable
states, similar to those seen in some Neotropical rainforests.

By varying species pool size and phenotypic variability
(fig. 3), we found that EM monodominance arose as an al-
ternative state whenever trait variability among EM species
was low. In these cases, all EM species in the species pool
had an Ri value that was nearly optimal for the abiotic con-
ditions available in the forest patch. Under this condition, a
single dominant EM species was competitive enough to form
monodominantstandswhenitarrivedearlyduringlocalcom-
munity assembly but not when it arrived late, as indicated by
the strongly bimodal pattern in the top row in figure 3. One
of the twomodes had no EMspecies, and the othermode had
only one EM species, even when the species pool contained
multiple EM species.

Regardless of species pool size, as Ri values became more
variable among EM species in the local species pool (i.e.,
moving fromtop tobottomrows infig. 3), theEMtotal abun-
dance became more variable among forest patches, and the
bimodal pattern became increasingly obscure. The frequency
of monodominance declined with greater phenotypic vari-
ability when there was more than one EM species in the pool
because, although thenumberof EMtrees in apatchmight be
high, these patches consisted of multiple EM species.

The additional simulation indicated that these results gen-
erally held under the alternative assumptions examined, but

only when all intraspecific feedbacks were more or equally
positive compared with interspecific feedbacks (fig. S1C).
Otherwise, multiple EMplant species often coexisted as a re-
sult of mutual facilitation among them, with only a small
number of monodominance patches developing (fig. S1B,
S1D). Therefore, one condition for monodominance forma-
tion in our model is stronger positive intraspecific relative
to interspecific feedback among EM trees, which is consis-
tent with some recent empirical data (Bennett et al. 2017).
Strong intraspecific feedback is possible if, for example, a
tree species cultivates an assemblage of highly beneficial EM
fungi. The additional simulation in which immigration rate
I was 0.05, regardless of the size of the EM species pool, in-
dicated that the number of monodominant patches is posi-
tively correlated with the immigration rate per EM species
(fig. S2A, S2C).
Together, these results suggest that there is no effect of

species pool size per se on whether EM monodominance
will emerge or on how strong the bimodal pattern reflecting
monodominance formation will be. Rather, it is the amount
of phenotypic variability among EM species that shapes the
pattern of EM abundance in local patches. Specifically, re-
duced variability tends to cause greater frequency of mono-
dominance (fig. 3). In order to directly test for the relation-
ship between species pool size and phenotypic variability of
EM species, we ran additional simulations to examine how
species pool size influences the relationship between spe-
cies phenotypic value (Ri) and the abundance of EM spe-
cies when EM species variability in the species pool is large
(v p 1). We found that when species pool size was small,
there was a relatively good correspondence between Ri value
and EM species abundance (fig. 4A). We call this corre-
spondence trait-environment matching, meaning that the
closer species are in their phenotype Ri to the optimal (i.e.,
0.5 in our simulation), the more abundant they tend to be-
come. In this case, the abundances of species follow what is
expected on the basis of their match to the environment
(i.e., jRi 2Hkj).
As species pool size was increased, this correspondence

became weaker (fig. 4), such that species with an optimal
Ri value (closer to 0.5) were not necessarily more abundant
than those with a suboptimal value (away from 0.5). When
the species pool was diverse, two additional abundance peaks
appeared (atRi of around 0.2 and 0.8), so that species that did
not have an Ri close to 0.5 could nevertheless be as abundant
as those with an optimal Ri, as most clearly seen in figure 4D.
In short, for EM species in our model, it is adaptive to have
traits that best match the underlying abiotic environmental
conditions if there are not many EM species in the species
pool. However, if the species pool has many EM species, our
results suggest that there can be disruptive natural selection
that keeps some species away from having the abiotically
optimal Ri value if the species pool has many species. As a
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result, convergent trait evolution that results in low interspe-
cific trait variability and tight trait-environment matching
in the species pool may be more likely when the EM species
pool is small, whereas divergent trait evolution may arise
when the EM species pool is large.

Why do EM species with suboptimal phenotypes obtain
comparable densities to those with optimal phenotypes
when the species pool is large (fig. 4D)? We suspected that
it was because the abundance of each EM species is affected
so strongly by the plant-soil feedback—which is mademore
complex by the larger number of EM species that each have
different strengths of plant-soil feedback—that the under-
lying influence of abiotic conditions is overwhelmed and
obscured. To test this idea, we reran the simulation, but this
time with the strength of plant-soil feedback among EM
and/or AM species (Sij) all set to 1.1 instead of being drawn
uniform-randomly from [1, 1.1]. Setting all Sij values to 1.1
makes interspecific feedback strengths all the same and
equal to intraspecific feedback strength, eliminating the
complexity of feedback strength. In this additional simula-
tion, we found good trait-environment matching—such as
the one seen under small species pools (fig. 4A)—if all Sij
values among EM species were set to 1.1 (fig. 5B). Poor
trait-environment matching was not, however, eliminated
when Sij values among AM species were set to 1.1 (fig. 5C,

5D). These results support our hypothesis that it is the var-
iation in interspecific feedback strengths among EM species
that makes trait-environment matching poor and mono-
dominance unlikely when the species pool is large.
In summary, our results suggest that two interdependent

processes influence the likelihood of trait and community
convergence. First, trait-environment matching that leads
to trait convergence among EM speciesmay be less likely un-
der a larger EM species pool because of local plant-soil feed-
backs that vary in strength. Second, weak trait convergence
may in turn impede the development of EMmonodominance,
which represents an extreme case of community divergence.

Empirical Trait Data Analysis

Study Systems and Methods

To begin to assess whether empirical data are consistent
with the hypothesis developed with the model above, we an-
alyzed leaf trait data from trees in two geographic regions:
Southeast Asia (Borneo), where EM trees are common in
most lowland forests, and South America (Peruvian Ama-
zon), where EM trees are generally rare but can become
monodominant. Both regions contain large areas of low-
land tropical rainforests with extraordinary levels of tree di-

Number of ectomycorrhizal tr

2 10 201

Species value, Ri

ee species in the species pool

S
pe

ci
es

 a
bu

nd
an

ce
, s

um
m

ed
ac

ro
ss

 4
0 

lo
ca

l p
at

ch
es

DCBA

HGFE

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

8000
6000
4000
2000

7000

6000

5000

4000

3000

2000

1000 500
1500

3500
2500

5000

3000

1000 500

1500
2000
2500

1000

100

300

500

700 350

250

150

50

2000
1500
1000
500

2500
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versity. The Peruvian Amazon has greater regional tree di-
versity (approximately 5,000 species; Pennington et al. 2004)
than Borneo (approximately 3,000 species) probably be-
cause it is connected to the rest of the Amazon basin, the
world’s largest contiguous area covered by lowland rainfor-
est. Thus, at the scale of a local patch of forest (e.g., Lambir
Hills in Borneo or Allpahuayo-Mishana in Peru), we expect
the regional tree species pool to be reasonably similar, with
Peru being slightly larger. However, the pool of EM trees is
much larger in Borneo than in Peru.

For our analysis, trait data were taken from two separate
studies of plant functional ecology inPeruvianAmazon (For-
tunel et al. 2012, 2014) and Borneo (Russo et al. 2005, 2013).
Detailed methods on data collection can be found from
Fortunel et al. (2012, 2014) and in the appendix, respectively.
Data in Peru were collected from multiple 0.5-ha Gentry
plots, whereas those in Borneo were collected from within
a single 52-ha forest dynamics plot in Lambir Hills National
Park.We used data on four leaf traits that are involved in the
fast-slow plant economics spectrum (Reich 2014) and that
are thought to be strongly filtered by environmental condi-
tions (Fortunel et al. 2014): specific leaf area (SLA), leaf car-
bon and nitrogen concentrations by mass, and leaf C∶N ra-
tio. Leaf C∶N ratio is considered a particularly important
trait in determining the strength of plant-soil feedbacks (De
Deyn et al. 2008; Ke et al. 2015). Data from individual plants
were averaged within species. Species’mycorrhizal status was

classified at the genus or family level on the basis of Brun-
drett (2009) and Peay et al. (2013). Data are deposited in the
Dryad Digital Repository: http://dx.doi.org/10.5061/dryad
.c0kr7 (Fukami et al. 2017).
For each region, we analyzed trait data from lower fertil-

ity (sand) and higher fertility (clay) soil habitats separately
because these habitats differ in species pool composition
within each region. The trait data set from Peru included
365 AM and 13 EM species from clay soils and 140 AM
and 3 EM species from sandy soils. The trait data set from
Borneo included 98 AM and 17 EM species from clay soils
and 111 AM and 35 EM species from sandy soils. We took
three approaches to look for differences in EM traits be-
tween the two species pools (Peru and Borneo) within soil
types. First, we compared mean trait values for EM versus
AM host species within each species pool, using a two-
sample t-test, to evaluate our prediction that EM species
are functionally distinct from AM species. Second, we com-
pared the variance of trait values for EM versus AM species
within each species pool, using a one-sided variance ratio
F-test, to evaluate our prediction that EM species have larger
trait variability than AM species. Third, we compared the
variance in trait values between EM species pools in Borneo
and Peru, using a one-sided variance ratio F-test, to evalu-
ate our prediction that there should be greater variation in
trait values among EM host species in Borneo than in Peru,
where EM monodominance is found. We do not approach
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this question in an explicit phylogenetic framework, but
our test is conservative because we predict larger trait varia-
tion in the narrower phylogenetic pool, that is, in Borneo,
which had only one EM family (Dipterocarpaceae).

Trait Analysis Results and Discussion

We found significant differences in some mean foliar trait
values between AM and EM species in both Peru and Bor-
neo that were consistent with our model prediction (table 1;
fig. 6). In Peru, foliar C∶N ratio was significantly different
between AM and EM species on both soil habitats, and fo-
liar nitrogen concentration was different only on clay soil.
In Borneo, foliar carbon concentration differed significantly
between AM and EM species on both habitats, but no other
significant differences were observed. The difference found
in Peru between AM and EM host species in foliar C∶N was
particularly large, in contrast to virtually identical means for
this trait in Borneo (fig. 6).

One possible explanation for these inconsistencies lies in
the relative differences in the sizes of EM and AM host spe-
cies pools in each forest. To the extent that greater richness
of the species pool causes more complex plant-soil feed-
backs within each mycorrhizal group, in Peru (with fewer
EM host species), their traits may track environmental con-
ditions closely, causing a large divergence from those of AM
host species. Since the pool of AM species is larger, theymay
be influenced strongly by the complex plant-soil feedbacks,
reducing their match to underlying abiotic conditions. In
contrast, in Borneo, where bothmycorrhizal groups are spe-
cies rich, complex plant-soil interactions might have pre-
vented species traits from tracking the environment in both
EM and AM host species.

Another explanation lies in the difference in the relative
soil fertility of these regions. Averaging over soil types and
mycorrhizal status, foliar N was significantly lower (F1, 781 p
133:7, P ! :001) and C∶N significantly higher (F1, 781 p
109:8, P ! :001) in Borneo than in Peru, and both soils at
the Bornean site are particularly low in soil N, P, K, and

other nutrients (Baillie et al. 2006). Low soil fertility is
strongly associated with overall low foliar nutrient concen-
trations and higher C∶N ratios (Chapin et al. 1993), which
could give less latitude for differences between AM and EM
host species in Borneo compared with more fertile sites.
Trait differences between AM and EM host species in Bor-
neo may be more tightly linked to leaf structure and physical
defense, as suggested by the significant differences between
mycorrhizal groups in foliar C, which is likely to affect leaf
litter decomposition and, in turn, the strength of plant-soil
feedbacks and the extent of trait-environment matching.
There were significant differences in the variance of leaf

traits between EM and AM host species in Peru and Bor-
neo. However, in contrast to our expectations, variance in
traits was often larger for AM than EM host species in Bor-
neo (three of four traits), whereas no significant differences
were observed in trait variances between AM and EM host
species in Peru (table 2). Furthermore, results for trait var-
iance of EM species pools did not support our model pre-
diction either. The variance in species traits was not larger
among EM host species in Borneo than in Peru for any of
the traits measured for clay (SLA F16, 12 p 0:56, P p :86;
leaf carbon concentration [LCC]F16, 12 p 0:52,P p :89; leaf
nitrogen concentration [LNC] F16, 12 p 0:05, P p 1; C∶N
F16, 12 p 0:87, P p :61) or sandy (SLA F34, 2 p 2:32, P p
:35; LCC F34, 2 p 5:13, P p :18; LNC F34, 2 p 0:03, P p 1;
C∶N F34, 2 p 0:49, P p :85) habitats.
How could these apparent discrepancies between model

predictions and empirical patterns be reconciled? Our fo-
cus in this article has been on contrasting alternative stable
states between diverseAMandmonodominant EMpatches,
but as a family, the Dipterocarpaceae dominate this and
many other forests in Southeast Asia in terms of basal area.
One potential explanation for their trait convergence may
then be that phylogenetic relatedness of dipterocarp species
have caused them to act as if they belonged to one species,
thereby allowing for trait-environment matching in the
absence of complex interspecific plant-soil feedback. As for
the apparent lack of trait convergence among EM relative

Table 1: Difference in species’ mean values of leaf traits between arbuscular mycorrhizal (AM) and ectomycorrhizal (EM)
tree species across two edaphic habitats in Peru and Borneo

No. species SLA LCC LNC C∶N

Region and habitat AM EM t P t P t P t P

Peru:
Clay 362 13 .06 .95 1.59 .14 24.18 .001* 6.15 !.001*

Sand 140 3 .97 .41 2.15 .89 22.87 .10 4.68 .03*

Borneo:
Clay 98 17 .98 .34 24.43 !.001* 1.06 .29 21.34 .19
Sand 111 35 1.29 .20 24.55 !.001* .58 .56 2.56 .58

Note: SLA, specific leaf area; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; C∶N, leaf C∶N ratio.
* P ! :05.
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to AMhost species in Peru, this result may reflect low statis-
tical power due to small sample size. The number of EM spe-
cies was much smaller in Peru (13 and three species) than in
Borneo (17 and 35 species).

Discussion

Taken together, our simulation results suggest one poten-
tial reason why EM monodominance is favored when the

species pool has a small number of EM species. Specifically,
results summarized in figure 3 indicate that monodomi-
nance can emerge only when EM species phenotypes (Ri)
closely match the environmental conditions available in lo-
cal forest patches (Hk). Results presented in figure 4 indi-
cate in turn that such optimal trait-environment matching
is more likely under small species pools because EM spe-
cies can thenmore easily track the environment. As a result,
trait evolution of EM species converges toward abiotically
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Figure 6: Probability density plots showing the frequency of tree species having particular foliar C∶N ratios under two soil conditions (less
fertile sand or more fertile clay) in Borneo and Peru. Dark gray indicates ectomycorrhizal (EM) host species. Light gray indicates all other
species, most of which are arbuscular mycorrhizal (AM) hosts. Dashed lines indicate means.
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optimal conditions. Finally, results in figure 5 show that the
reason why species do not track the environment under di-
verse species pools is because the complex plant-soil feedback
among the many EM species obscures the effect of environ-
mental heterogeneity on local species abundances. In other
words, environmental filtering (Kraft et al. 2015a) is weaker
than priority effects.

Although we have focused on mycorrhizal associations,
monodominance may arise through other pathways (Peh
et al. 2011). For example, a defensive ant-plant mutualism
generates monodominant stands of Duroia hirstuta known
as devil’s gardens in the Amazon (Frederickson et al. 2005).
Still, many tree species that form monodominant stands in
the tropics are EM. Studies have uncovered evidence sup-
porting a range of ways in which EM associations may gen-
erate positive plant-soil feedbacks that lead to monodomi-
nance, including commonmycorrhizal networks (McGuire
2007), alteration of local nutrient economies (Corrales et al.
2016), variation in leaf chemistry (Torti et al. 2001), and EM
mining of organic nitrogen (Orwin et al. 2011). Our model
does not distinguish between these different mechanisms.
Rather, our work is complementary to these studies in that
we ask why geographic differences in species pools may lead
to some tropical regions containing EM monodominant
stands and other regions showing local codominance ofmul-
tiple tree species of both mycorrhizal types.

We chose one simple way to represent plant-soil feed-
backs. Namely, we assumed that plant-soil feedbacks were
net positive and most beneficial to conspecifics. Choosing
appropriate values for plant-soil feedbacks is not trivial, be-
cause in nature these feedbacks are hard to estimate. Em-
pirical measurement of their strength should take into ac-
count multiple contributing factors, such as abiotic effects
(Waring et al. 2015) and the combined effects of pathogens
andmutualists (Klironomos2002) andnatural enemies (Bag-
chi et al. 2014). In addition, whether net feedbacks are pos-
itive or negative also depends on the choice of other het-
erospecific comparisons and sterilization methods used to
generate the reference point. A number of other factors

may influence feedback strength, such as phylogenetic relat-
edness (Gilbert and Webb 2007; Liu et al. 2012), local den-
sity (Comita et al. 2010; Mangan et al. 2010; Liu et al. 2012),
and mycorrhizal type (Johnson et al. 2012; Dickie et al.
2014; Bennett et al. 2017).
In this study, we attempted to keep the model focused

on differences in species pool size by keeping the nature of
plant-soil feedback identical between AM and EM species.
Through additional simulation (figs. S1, S2), we have made
an initial effort to examine the robustness of our model pre-
dictions to assumptions regarding plant-soil feedback. Fu-
ture iterations of this model could explore more complex
plant-soil feedback structure, such as more negative (or less
positive) intraspecific feedbacks and stronger positive feed-
backs in EM compared with AM plants. It is also possible
that EM plants are better able to make the environment less
suitable for AM plants, owing to the abilities of EM fungi
to access organic forms of nutrients and preempt nutrient
uptake by AM fungi. This scenario can be evaluated further
with our model. Finally, we assigned Ri and Sij values inde-
pendently, but in nature, species with similar traits—as re-
presented bymore similar values of Ri—might have the ten-
dency to share fungal symbionts and therefore have more
positive Sij. Phylogenetic relationships of plant species, which
we did not consider in this article, may prove useful in some
cases as a proxy for estimating Ri and Sij values.
It is well established in plant-soil feedback theory that pos-

itive feedback causes alternative stable states, whereas nega-
tive feedback facilitates species coexistence (Bever et al. 2012).
Our simulation results are consistent with this prior theory.
However, most previous plant-soil feedback theories have
considered interactions between only two plant species. Here,
we have studied interactions among many plant species (see
also Fukami and Nakajima 2011, 2013), which is the only
way to directly address the effect of the number of species in
the regional speciespoolon local communityassemblydriven
by plant-soil feedback.
One benefit of our model is that it makes specific pre-

dictions about trait variation of plant species and about

Table 2: Difference in leaf trait variance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) tree species
across two edaphic habitats in Peru and Borneo

No. species SLA LCC LNC C∶N

Region and habitat AM EM F ratio P F ratio P F ratio P F ratio P

Peru:
Clay 362 13 1.11 .45 1.03 .52 .34 1.00 1.65 .16
Sand 140 3 5.71 .16 4.24 .21 .79 .71 3.95 .22

Borneo:
Clay 98 17 1.15 .40 3.17 .006* 4.00 .001* 2.55 .02*

Sand 111 35 1.42 .12 4.07 !.001* 7.05 !.001* 5.44 !.001*

Note: SLA, specific leaf area; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; C∶N, leaf C∶N ratio.
* P ! :05.
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mycorrhiza-driven plant-soil feedbacks under different spe-
cies pool sizes, specifically that divergence in the values of
traits related to local environmental fit should be greater
in more diverse species pools. Our trait analysis did not yield
strong support for this prediction, perhaps because these are
difficult effects to measure empirically, since many factors
not included in our model influence trait variation in natural
settings. Moreover, uncertainties regarding the mycorrhizal
status (e.g., EMorAM) of plant species in different geograph-
ical locations may also have caused the poor correspondence
of model predictions and empirical patterns (Forrestel et al.
2017). In addition, detecting patterns in traits across a gra-
dient of species pool size is made difficult by the inherent
correlation between species pool size and statistical power
for any analysis that uses species as a unit of replication.

Our trait analysis is only a first step to begin to evaluate
the empirical relevance of the hypothesis we have devel-
oped here through the simulation modeling. Research on
the links between plant traits, mycorrhizal associations, and
the strength of plant-soil feedback is still at an early stage of
development (Laughlin et al. 2015; Cortois et al. 2016; Ben-
nett et al. 2017), and the dearth of relevant data may in part
explain thepoor correspondenceof our empirical resultswith
the model predictions. We list three future directions of
empirical research. First, with respect to the determinants of
monodominance, we need to better understand which traits
are important for tree species’ fit to the local environment
(Kraft et al. 2008; Fortunel et al. 2014; Laughlin et al. 2015;
Forrestel et al. 2017) and how correlated different traits are
with competitive abilities and the strength of plant-soil feed-
backs (Uriarte et al. 2010; Fortunel et al. 2016). For example,
some traitsmay bemore closely related to competitive ability
and others to niche differences (Mayfield and Levine 2010;
Kraft et al. 2015b; Kunstler et al. 2016). Likewise, the pat-
terns observed in the relationship between trait variability
and monodominance may depend on which traits are in-
volved inwhich kinds of interactions in the system. This pos-
sibility is supported by the fact that in our analyses of trait
variation, some traits showed patterns consistent with our
predictions, whereas others did not. To wit, plant-soil feed-
backs involving EMspecies in Borneomay bemediatedmore
strongly by the effects of trait variation in leaf structure and
physical defense on litter decomposability than by the effects
of foliar N because of the generally low fertility of soils in this
Bornean forest. Thus, whether patterns of variation consis-
tent with trait-environment matching are observed may not
only depend on how correlated the traits examined are with
plant-soil feedbacks but also be constrained by the local envi-
ronment. Second, to complement the indirect inference of
species performance and interactions through trait analysis,
more direct measurements of theCijk values could be helpful.
One approach may be leveraging trait values in neighbor-
hood models (Uriarte et al. 2010; Fortunel et al. 2016) as es-

timates of the Cijk in our model to test the effects of AM and
EM trees on each other’s growth and survival. Third, we com-
pared just two regions here, but it will be more informative
to analyze data frommore regions—including Africa, where
monodominance also arises—to assess the potential appli-
cability of our hypothesis across geographical regions with
different evolutionary histories.
If species pool properties are key determinants of com-

munity assembly (Ricklefs and Schluter 1993; Zobel 2016),
as we have considered in this article, a fundamental ques-
tion is what causes differences in species pools among trop-
ical regions in the first place. For example, what might ex-
plain the unusually high prevalence of EM lineages in the
Asian tropics? Any understanding of why the EM pool is so
large in Asia must reckon with the radiation of the Diptero-
carpoideae (Dipterocarpaceae), which numbers more than
470 species (Ashton 2002). More generally, many hypothe-
ses have been put forward to explain the disparities in tree
species diversity among different tropical regions. However,
there is no consensus explanation (Couvreur 2014). Some
authors emphasize the relative importance of extrinsic fac-
tors, such as climate or climatic stability (Couvreur 2014),
whereas others highlight intrinsic factors, such as history
of diversification of different lineages in different regions,
which have resulted in, for example, a diverse understory tree
flora only in South America (Gentry 1993; Terborgh et al.
2016). Another potentially important intrinsic factor is EM
association and its influence on the origin and maintenance
of tropical tree diversity, as outlined here. Clearly, more re-
search is needed to understand EM influences on patterns
of tree monodominance and how this relates to the commu-
nity assembly and diversity of regional tree floras.

Conclusions

To our knowledge, this is the first study to develop a hypoth-
esis to explain why alternative stable states of either local EM
monodominance or relative rarity arise in some tropical re-
gions and not others. Specifically, our hypothesis is that an
increase in the size of the EM tree species pool results in an
increase in the complexity of biotic interactions, which in
turn prevents monodominance by a single EM species. We
have proposed that under a diverse EM host species pool,
tree speciesmaintain divergence in traits because of the com-
plex plant-soil feedbacks among the many different tree spe-
cies, with no species achieving a monodominant status. In
contrast, under a depauperate EMhost species pool, tree spe-
cies experience strong selection for evolution toward the
optimal abiotic conditions, allowing them to become com-
petitive enough to form monodominant stands via positive
plant-soil feedback that causes priority effects. Overall, this
study highlights the importance of geographical variation in
species pools in understanding the conditions under which
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community divergence results in vastly different alternative
stable states.

Returning to the general topic of convergence, our goal in
this article has been to point out the utility of studying the
link between trait convergence and community convergence.
To this end, we have explored how trait convergence may
affect community convergence, using the case of tropical
monodominanceasan illustrative example.Althoughwehave
developed only one hypothesis, one thing that is clear from
our work is that the natural historical knowledge of how con-
vergent traits influence species interactions is essential to un-
derstanding community convergence.

Acknowledgments

We thank A. A. Agrawal for the invitation to contribute this
article to the special issue arising from the Vice Presidential
Symposium of the American Society of Naturalists held in
Austin, Texas, in June 2016. Comments from A. A. Ag-
rawal, P.-J. Ke, and three anonymous reviewers improved
the article. T.F. thanks the National Science Foundation
(NSF; DEB 1555786) and the Terman Fellowship at Stan-
ford University for financial support as well as the Center
for Macroecology, Evolution, and Climate and the Section
of Microbiology at the University of Copenhagen for sab-
batical support. K.G.P. was supported in part by the NSF
(DEB 1249342 and RAPID 1361171) and a Department of
Energy Early Career Grant (DE-SC0016097). S.E.R. was sup-
ported in part by the NSF (RAPID 1361171). Author partici-
pation: T.F. and K.G.P. designed the study; M.N. conducted
and analyzed simulation in collaboration with T.F.; C.B.,
P.V.A.F., and C.F. collected data from Peru; S.E.R. collected
data fromBorneo; K.G.P. and S.E.R. analyzed data fromPeru
and Borneo; T.F. wrote the first draft of the manuscript; and
all authors contributed to writing the manuscript.

APPENDIX

Methods for Quantifying Leaf Functional Traits
in Bornean Rain Forest

Study System and Species Selection

LambirHills National Park (Lambir) is located in the north-
western part of Borneo in the Malaysian state of Sarawak
(47200N, 1137500E). Lambir receives approximately 3,000 mm
of rainfall annually, with all months averaging 1100 mm
(Watson 1985). The region has the highest tree species rich-
ness recorded in the Paleotropics (Ashton 2005), with species
in the Dipterocarpaceae dominating the forest (Lee et al.
2002). The soils and geomorphology of Lambir have been
previously described (Baillie et al. 2006; Tan et al. 2009). The
soils range from coarse loams that are sandstone derived,
leached, nutrient depleted, and well drained with substantial

raw humus, to clays that are shale derived, less nutrient de-
pleted, and less well drained, with little raw humus. Tree com-
munity composition and demography vary across soil types,
with most species exhibiting soil habitat specialization and
tree demography varying across soil types (Davies et al. 2005;
Russo et al. 2005). Lambir is the site of a 52-ha research plot
that was established in 1991 as part of the Center for Tropical
Forest Science Forest Global Earth Observatory plot network
(Anderson-Teixeira et al. 2015) tomonitor woody plants. All
trees ≥ 1 cm in diameter at breast height are tagged, mapped,
and dentified, and their diameters are measured to the near-
est 1 mm.

Tree species were sampled for the quantification of leaf
functional traits fromwithin and near the Lambir plot (Russo
et al. 2013). The species identity of individuals sampled out-
side of the plot was verified using an on-site herbarium and
by consultation with local botanists (S. Tan). Species were
selected to encompass a wide range of families—targeting
taxa contributing substantially to forest basal area in the Lam-
bir plot—to target species-rich genera, such as Shorea (Dip-
terocarpaceae) and Diospyros (Ebenaceae), and to include
species with a range of shade tolerance niches. For each spe-
cies, juvenile (1–5 cm in diameter) and adult (110 cm in di-
ameter) trees were sampled as much as possible, with one to
22 individuals sampled per species.

Quantification of Leaf Functional Traits

From each tree, three to five mature, sunlit, minimally
damaged leaves were harvested. The petiole was cut from
the lamina, which was gently cleaned of debris. Fresh leaf
laminas were scanned (Canon LiDE 110), and the images
were analyzed with ImageJ software (Schneider et al. 2012)
to estimate the area of each. After oven drying at 607C for
3 days, the dry weight of each lamina was recorded. The
SLA (cm2/g) was calculated as fresh area divided by dry
weight, and SLA was averaged across leaves of each indi-
vidual. After drying, the midvein was removed from each
lamina. Laminas from each individual were ground to-
gether to a fine, uniform powder and analyzed by elemen-
tal combustion for carbon and nitrogen content (Costech
Analytical Elemental Combustion System 4010). For each
individual, percent carbon (C) and nitrogen (N) were cal-
culated as the mass of C (or N) in the sample/dry mass of
the sample # 100, and C∶N ratio was calculated as per-
cent C/percent N. Trait values were averaged across indi-
viduals to obtain mean values for each tree species.

Literature Cited

Ashton, P. S. 2002. Dipterocarpaceae. Pages 182–197 in K. Kubitzki,
ed. The families and genera of vascular plants. V. Flowering plants:

Tropical Forest Monodominance S119



Dicotyledons. Malvales, Capparales and non-betalain Caryophyl-
lales. Springer, Berlin.

Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E.
Addis, R. P. Freckleton, and O. T. Lewis. 2014. Pathogens and in-
sect herbivores drive rainforest plant diversity and composition.
Nature 506:85–88.

Baillie, I. C., P. S. Ashton, S. P. Chin, S. J. Davies, P. A. Palmiotto, S. E.
Russo, and S. Tan. 2006. Spatial associations of humus, nutrients
and soils in mixed dipterocarp forest at Lambir, Sarawak, Ma-
laysian Borneo. Journal of Tropical Ecology 22:543–553.

Baraloto, C., S. Rabaud, Q. Molto, L. Blanc, C. Fortunel, B. Hérault,
N. Dávila, I. Mesones, M. Rios, E. Valderrama, and P. V. A. Fine.
2011. Disentangling stand and environmental correlates of above-
ground biomass in Amazonian forests. Global Change Biology
17:2677–2688.

Bennett, J. A., H. Maherali, K. O. Reinhart, Y. Lekberg, M. M. Hart,
and J. Klironomos. 2017. Plant-soil feedbacks and mycorrhizal type
influence temperate forest population dynamics. Science 355:181–
184.

Bever, J. D., T. G. Platt, and E. R. Morton. 2012. Microbial popula-
tion and community dynamics on plant roots and their feedbacks
on plant communities. Annual Review of Microbiology 66:265–283.

Brearley, F. 2012. Ectomycorrhizal associations of the Dipterocarpa-
ceae. Biotropica 44:637–648.

Brundrett, M. C. 2002. Coevolution of roots and mycorrhizas of land
plants. New Phytologist 154:275–304.

———. 2009. Mycorrhizal associations and other means of nutri-
tion of vascular plants: understanding the global diversity of host
plants by resolving conflicting information and developing reli-
able means of diagnosis. Plant and Soil 320:37–77.

Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel.
2009. The merging of community ecology and phylogenetic biol-
ogy. Ecology Letters 12:693–715.

Chapin, F. S., III, K. Autumn, and F. Pugnaire. 1993. Evolution of
suites of traits in response to environmental stress. American Nat-
uralist 142:78–92.

Chesson, P. L. 1985. Coexistence of competitors in spatially and tem-
porally varying environments: a look at the combined effects of
different sorts of variability. Theoretical Population Biology 28:
263–287.

Clements, F. E. 1936. Nature and structure of the climax. Journal of
Ecology 24:252–284.

Comita, L. S., H. C. Muller-Landau, S. Aguilar, and S. P. Hubbell.
2010. Asymmetric density dependence shapes species abundances
in a tropical tree community. Science 329:330–332.

Connell, J. H., and M. D. Lowman. 1989. Low-diversity tropical rain
forests: some possible mechanisms for their existence. American
Naturalist 134:88–119.

Conte, G. L., M. E. Arnegard, C. L. Peichel, and D. Schluter. 2012.
The probability of genetic parallelism and convergence in natural
populations. Proceedings of the Royal Society B 279:5039–5047.

Cornelissen, J., R. Aerts, B. Cerabolini, M. Werger, and M. van der
Heijden. 2001. Carbon cycling traits of plant species are linked
with mycorrhizal strategy. Oecologia (Berlin) 129:611–619.

Corrales, A., S. A. Mangan, B. L. Turner, and J. W. Dalling. 2016. An
ectomycorrhizal nitrogen economy facilitates monodominance in
a Neotropical forest. Ecology Letters 19:383–392.

Cortois, R., G. B. De Deyn, T. Schröder-Georgi, and W. H. van der
Putten. 2016. Plant-soil feedbacks: role of plant functional group
and plant traits. Journal of Ecology 104:1608–1617.

Couvreur, T. L. P. 2014. Odd man out: why are there fewer plant
species in African rain forests? Plant Systematics and Evolution
301:1299–1313.

De Deyn, G. B., J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant
functional traits and soil carbon sequestration in contrasting bi-
omes. Ecology Letters 11:516–531.

Dickie, I. A., N. Koele, J. D. Blum, J. D. Gleason, and M. S. McGlone.
2014. Mycorrhizas in changing ecosystems. Botany 92:149–160.

Donovan, L. A., H. Maherali, C. M. Caruso, H. Huber, and H. de
Kroon. 2011. The evolution of the worldwide leaf economics spec-
trum. Trends in Ecology and Evolution 26:88–95.

Drake, J. A. 1991. Community-assembly mechanics and the structure
of an experimental species ensemble. American Naturalist 137:1–26.

Duchesne, L. C., B. E. Ellis, and R. L. Peterson. 1989. Disease sup-
pression by the ectomycorrhizal fungus Paxillus involutus: contri-
bution of oxalic acid. Canadian Journal of Botany 67:2726–2730.

Egerton-Warburton, L., and M. F. Allen. 2001. Endo- and ectomy-
corrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root col-
onization and effects on seedling growth. Mycorrhiza 11:283–290.

Fargione, J., C. S. Brown, and D. Tilman. 2003. Community assem-
bly and invasion: an experimental test of neutral versus niche pro-
cesses. Proceedings of the National Academy of Sciences of the
USA 100:8916–8920.

Forrestel, E. J., M. J. Donoghue, E. J. Edwards, W. Jetz, J. C. O. du
Toit, and M. D. Smith. 2017. Different clades and traits yield sim-
ilar grassland functional responses. Proceedings of the National
Academy of Sciences of the USA 114:705–710.

Fortunel, C., P. V. A. Fine, and C. Baraloto. 2012. Leaf, stem and root
tissue strategies across 758 Neotropical tree species. Functional
Ecology 26:1153–1161.

Fortunel, C., C. E. T. Paine, P. V. A. Fine, N. J. B. Kraft, and C.
Baraloto. 2014. Environmental factors predict community func-
tional composition in Amazonian forests. Journal of Ecology
102:145–155.

Fortunel, C., R. Valencia, S. J. Wright, N. C. Garwood, and N. J. B.
Kraft. 2016. Functional trait differences influence neighbourhood
interactions in a hyperdiverse Amazonian forest. Ecology Letters
19:1062–1070.

Fox, B. J. 1987. Species assembly and the evolution of community
structure. Evolutionary Ecology 1:201–213.

Fransson, P. M. A., Y. K. Toljander, C. Baum, and M. Weih. 2015.
Host plant-ectomycorrhizal fungus combination drives resource al-
location in willow: evidence for complex species interaction from a
simple experiment. Ecoscience 20:112–121.

Frederickson, M. E., M. J. Greene, and D. M. Gordon. 2005. ‘Devil’s
gardens’ bedevilled by ants. Nature 437:495–496.

Fukami, T. 2009. Convergence. Pages 188–191 in R. G. Gillespie and
D. A. Clague, eds. Encyclopedia of islands. University of Cali-
fornia Press, Berkeley.

———. 2015. Historical contingency in community assembly: inte-
grating niches, species pools, and priority effects. Annual Review
of Ecology, Evolution, and Systematics 46:1–23.

Fukami, T., and M. Nakajima. 2011. Community assembly: alterna-
tive stable states or alternative transient states? Ecology Letters
14:973–984.

———. 2013. Complex plant-soil interactions enhance plant species
diversity by delaying community convergence. Journal of Ecology
101:316–324.

Fukami, T., M. Nakajima, C. Fortunel, P. V. A. Fine, C. Baraloto, S. E.
Russo, and K. G. Peay. 2017. Data from: Geographical variation in

S120 The American Naturalist

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1017%2FS026646740600352X&citationId=p_4
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=24577702&crossref=10.1007%2Fs004420100752&citationId=p_21
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=19473217&crossref=10.1111%2Fj.1461-0248.2009.01314.x&citationId=p_13
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2FBF02067551&citationId=p_37
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F285143&citationId=p_29
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=26833573&crossref=10.1111%2Fele.12570&citationId=p_22
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F285524&citationId=p_14
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1139%2Fb89-351&citationId=p_30
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F285524&citationId=p_14
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2980%2F20-2-3576&citationId=p_38
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2486.2011.02432.x&citationId=p_6
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=24549348&crossref=10.1007%2Fs005720100134&citationId=p_31
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2F1365-2745.12643&citationId=p_23
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1016%2F0040-5809%2885%2990030-9&citationId=p_15
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=16177778&crossref=10.1038%2F437495a&citationId=p_39
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=28082590&crossref=10.1126%2Fscience.aai8212&citationId=p_7
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=12843401&crossref=10.1073%2Fpnas.1033107100&citationId=p_32
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2Fs00606-014-1180-z&citationId=p_24
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F2256278&citationId=p_16
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=12843401&crossref=10.1073%2Fpnas.1033107100&citationId=p_32
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F2256278&citationId=p_16
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=22726216&crossref=10.1146%2Fannurev-micro-092611-150107&citationId=p_8
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1146%2Fannurev-ecolsys-110411-160340&citationId=p_41
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=28074042&crossref=10.1073%2Fpnas.1612909114&citationId=p_33
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=18279352&crossref=10.1111%2Fj.1461-0248.2008.01164.x&citationId=p_25
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1146%2Fannurev-ecolsys-110411-160340&citationId=p_41
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=28074042&crossref=10.1073%2Fpnas.1612909114&citationId=p_33
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1046%2Fj.1469-8137.2002.00397.x&citationId=p_10
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=20576853&crossref=10.1126%2Fscience.1190772&citationId=p_18
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1744-7429.2012.00862.x&citationId=p_9
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=21790934&crossref=10.1111%2Fj.1461-0248.2011.01663.x&citationId=p_42
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2435.2012.02020.x&citationId=p_34
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2435.2012.02020.x&citationId=p_34
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2Fs11104-008-9877-9&citationId=p_11
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2F1365-2745.12048&citationId=p_43
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2F1365-2745.12160&citationId=p_35
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1139%2Fcjb-2013-0091&citationId=p_27
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F284967&citationId=p_19
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F284967&citationId=p_19
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=24463522&crossref=10.1038%2Fnature12911&citationId=p_3
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=23075840&crossref=10.1098%2Frspb.2012.2146&citationId=p_20
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=27358248&crossref=10.1111%2Fele.12642&citationId=p_36
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=21196061&crossref=10.1016%2Fj.tree.2010.11.011&citationId=p_28


community divergence: insights from tropical forestmonodominance
by ectomycorrhizal trees. American Naturalist, Dryad Digital Repos-
itory, http://datadryad.org/resource/doi:10.5061/dryad.c0kr7.

Gentry, A. H. 1993. Diversity and floristic composition of lowland
tropical forests in Africa and South America. Pages 500–547 in
P. Goldblatt, ed. Biological relationships between Africa and South
America. Missouri Botanical Garden Press, St. Louis.

Gilbert, G. S., and C. O. Webb. 2007. Phylogenetic signal in plant
pathogen-host range. Proceedings of the National Academy of Sci-
ences of the USA 104:4979–4983.

Gleason, H. A. 1927. Further views on the succession concept. Ecol-
ogy 8:299–326.

Hart, T. B., J. A. Hart, and P. G. Murphy. 1989. Monodominant and
species-rich forests of the humid tropics: causes for their co-
occurrence. American Naturalist 133:613–633.

Henkel, T. W. 2003. Monodominance in the ectomycorrhizal Dicymbe
corymbosa (Caesalpiniaceae) fromGuyana. Journal of Tropical Ecol-
ogy 19:417–437.

Horton, T. R., T. D. Bruns, and V. T. Parker. 1999. Ectomycorrhizal
fungi associated with Arctostaphylos contribute to Pseudotsuga
menziesii establishment. Canadian Journal of Botany 77:93–102.

Janzen, D. H. 1974. Tropical blackwater rivers, animals, and mast
fruiting by the Dipterocarpaceae. Biotropica 6:69–103.

Johnson, D. J., W. T. Beaulieu, J. D. Bever, and K. Clay. 2012. Con-
specific negative density dependence and forest diversity. Science
336:904–907.

Ke, P.-J., T. Miki, and T.-S. Ding. 2015. The soil microbial commu-
nity predicts the importance of plant traits in plant-soil feedback.
New Phytologist 206:329–341.

Kennedy, P. G., A. D. Izzo, and T. D. Bruns. 2003. There is high po-
tential for the formation of common mycorrhizal networks be-
tween understorey and canopy trees in a mixed evergreen forest.
Journal of Ecology 91:1071–1080.

Klironomos, J. N. 2002. Feedback with soil biota contributes to plant
rarity and invasiveness in communities. Nature 417:67–70.

Koele, N., I. A. Dickie, J. Oleksyn, S. J. Richardson, and P. B. Reich.
2012. No globally consistent effect of ectomycorrhizal status on
foliar traits. New Phytologist 196:845–852.

Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M.
Levine. 2015a. Community assembly, coexistence and the envi-
ronmental filtering metaphor. Functional Ecology 29:592–599.

Kraft, N. J. B., O. Godoy, and J. M. Levine. 2015b. Plant functional traits
and the multidimensional nature of species coexistence. Proceed-
ings of the National Academy of Sciences of the USA 112:797–802.

Kraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits
and niche-based tree community assembly in an Amazonian for-
est. Science 322:580–582.

Kulmatiski, A., K.H. Beard, J. R. Stevens, and S.M.Cobbold. 2008. Plant-
soil feedbacks: a meta-analytical review. Ecology Letters 11:980–992.

Kunstler, G., D. Falster, D. A. Coomes, F. Hui, R. M. Kooyman, D. C.
Laughlin, L. Poorter, et al. 2016. Plant functional traits have glob-
ally consistent effects on competition. Nature 529:204–207.

Laughlin, D. C., S. J. Richardson, E. Wright, and P. J. Bellingham.
2015. Environmental filtering and positive plant litter feedback si-
multaneously explain correlations between leaf traits and soil fer-
tility. Ecosystems 18:1269–1280.

Li, S. P., M. W. Cadotte, S. J. Meiners, Z. Pu, T. Fukami, and L. Jiang.
2016. Convergence and divergence in a long-term old-field succes-
sion: the importance of spatial scale and species abundance. Ecol-
ogy Letters 19:1101–1109.

Liu, X., M. Ligan, R. S. Etienne, Y. Wang, C. Staehlin, and S. Yu.
2012. Experimental evidence for a phylogenetic Janzen-Connell
effect in a subtropical forest. Ecology Letters 15:111–118.

Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C.
Valencia, E. I. Sanchez, and J. D. Bever. 2010. Negative plant-soil
feedback predicts tree-species relative abundance in a tropical for-
est. Nature 466:752–755.

Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of compet-
itive exclusion on the phylogenetic structure of communities. Ecol-
ogy Letters 13:1085–1093.

McGuire, K. L. 2007. Common ectomycorrhizal networks may main-
tain monodominance in a tropical rain forest. Ecology 88:567–
574.

McGuire, K. L., T. W. Henkel, I. G. de la Cerda, G. Villa, F. Edmund,
and C. Andrew. 2008. Dual mycorrhizal colonization of forest-
dominating tropical trees and the mycorrhizal status of non-
dominant tree and liana species. Mycorrhiza 18:217–222.

Melville, J., L. J. Harmon, and J. B. Losos. 2006. Intercontinental
community convergence of ecology and morphology in desert
lizards. Proceedings of the Royal Society B 273:557–563.

Mouquet, N., J. L. Moore, and M. Loreau. 2002. Plant species rich-
ness and community productivity: why the mechanism that pro-
motes coexistence matters. Ecology Letters 5:56–65.

Nara, K. 2006a. Ectomycorrhizal networks and seedling establishment
during early primary succession. New Phytologist 169:169–178.

———. 2006b. Pioneer dwarf willow may facilitate tree succession
by providing late colonizers with compatible ectomycorrhizal fungi
in a primary successional volcanic desert. New Phytologist 171:
187–198.

Newsham, K. K., A. H. Fitter, and A. R. Watkinson. 1995. Ar-
buscular mycorrhiza protect an annual grass from root pathogenic
fungi in the field. Journal of Ecology 83:991–1000.

Odling-Smee, J. F., K. N. Laland, and M. W. Feldman. 2003. Niche
construction: the neglected process in evolution. Princeton Uni-
versity Press, Princeton, NJ.

Orwin, K. H., M. U. Kirschbaum, M. G. St John, and I. A. Dickie.
2011. Organic nutrient uptake by mycorrhizal fungi enhances eco-
system carbon storage: a model-based assessment. Ecology Letters
14:493–502.

Pacala, S. W., and D. Tilman. 1994. Limiting similarity in mechanis-
tic and spatial models of plant competition in heterogeneous en-
vironments. American Naturalist 143:222–257.

Palmgren, A. 1926. Chance as an element in plant geography. Pages 591–
602 in B. M. Duggar, ed. Proceedings of the International Congress of
Plant Sciences, Ithaca, NY.

Peay, K. G. 2016. The mutualistic niche: mycorrhizal symbiosis and
community dynamics. Annual Review of Ecology, Evolution, and
Systematics 47:143–164.

Peay, K. G., C. Baraloto, P. V. A. Fine. 2013. Strong coupling of plant
and fungal community structure across western Amazonian rain-
forests. ISME Journal 7:1852–1861.

Peay, K. G., S. E. Russo, K. L. McGuire, Z. Lim, J. P. Chan, S. Tan,
and S. J. Davies. 2015. Lack of host specificity leads to indepen-
dent assortment of dipterocarps and ectomycorrhizal fungi across
a soil fertility gradient. Ecology Letters 18:807–816.

Peh, K. S. H., S. L. Lewis, and J. Lloyd. 2011. Mechanisms of mono-
dominance in diverse tropical tree-dominated systems. Journal of
Ecology 99:891–898.

Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to
the trees of Peru. Hunt, Sherborne.

Tropical Forest Monodominance S121

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=26032408&crossref=10.1111%2Fele.12459&citationId=p_84
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F2261180&citationId=p_76
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=20581819&crossref=10.1038%2Fnature09273&citationId=p_68
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=18522641&crossref=10.1111%2Fj.1461-0248.2008.01209.x&citationId=p_61
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=25521190&crossref=10.1111%2Fnph.13215&citationId=p_53
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2745.2011.01827.x&citationId=p_85
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=20576030&crossref=10.1111%2Fj.1461-0248.2010.01509.x&citationId=p_69
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2745.2011.01827.x&citationId=p_85
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=20576030&crossref=10.1111%2Fj.1461-0248.2010.01509.x&citationId=p_69
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=17503583&crossref=10.1890%2F05-1173&citationId=p_70
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=26700807&crossref=10.1038%2Fnature16476&citationId=p_62
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1046%2Fj.1365-2745.2003.00829.x&citationId=p_54
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=17360396&crossref=10.1073%2Fpnas.0607968104&citationId=p_46
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=17360396&crossref=10.1073%2Fpnas.0607968104&citationId=p_46
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=11986666&crossref=10.1038%2F417067a&citationId=p_55
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F1929332&citationId=p_47
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=18365256&crossref=10.1007%2Fs00572-008-0170-9&citationId=p_71
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F1929332&citationId=p_47
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=21395963&crossref=10.1111%2Fj.1461-0248.2011.01611.x&citationId=p_79
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F284941&citationId=p_48
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F285602&citationId=p_80
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=16537126&crossref=10.1098%2Frspb.2005.3328&citationId=p_72
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2Fs10021-015-9899-0&citationId=p_64
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1046%2Fj.1461-0248.2002.00281.x&citationId=p_73
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=22966750&crossref=10.1111%2Fj.1469-8137.2012.04297.x&citationId=p_57
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1017%2FS0266467403003468&citationId=p_49
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1017%2FS0266467403003468&citationId=p_49
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1139%2Fb98-208&citationId=p_50
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1146%2Fannurev-ecolsys-121415-032100&citationId=p_82
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=16390428&crossref=10.1111%2Fj.1469-8137.2005.01545.x&citationId=p_74
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=27373449&crossref=10.1111%2Fele.12647&citationId=p_66
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2F1365-2435.12345&citationId=p_58
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1146%2Fannurev-ecolsys-121415-032100&citationId=p_82
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=27373449&crossref=10.1111%2Fele.12647&citationId=p_66
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.2307%2F2989823&citationId=p_51
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=22082078&crossref=10.1111%2Fj.1461-0248.2011.01715.x&citationId=p_67
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=25561561&crossref=10.1073%2Fpnas.1413650112&citationId=p_59
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=23598789&crossref=10.1038%2Fismej.2013.66&citationId=p_83
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=16771994&crossref=10.1111%2Fj.1469-8137.2006.01744.x&citationId=p_75
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=25561561&crossref=10.1073%2Fpnas.1413650112&citationId=p_59
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=22605774&crossref=10.1126%2Fscience.1220269&citationId=p_52
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=18948539&crossref=10.1126%2Fscience.1160662&citationId=p_60


Petraitis, P. 2013. Multiple stable states in natural ecosystems. Ox-
ford University Press, Oxford.

Phillips, R. P., E. Brzostek, andM. G. Midgley. 2013. The mycorrhizal-
associated nutrient economy: a new framework for predicting
carbon-nutrient couplings in temperate forests. New Phytologist
199:41–51.

Read, D. J. 1991. Mycorrhizas in ecosystems. Experientia 47:376–391.
Reich, P. B. 2014. The world-wide ‘fast-slow’ plant economics spec-

trum: a traits manifesto. Journal of Ecology 102:275–301.
Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics
to tundra: global convergence in plant functioning. Proceedings of
the National Academy of Sciences of the USA 94:13730–13734.

Richards, P. W. 1952. The tropical rain forest, an ecological study.
Cambridge University Press, Cambridge.

Ricklefs, R. E., and D. Schluter, eds. 1993. Species diversity in ecolog-
ical communities. University of Chicago Press, Chicago.

Russo, S. E., S. J. Davies, D. A. King, and S. Tan. 2005. Soil-related
performance variation and distributions of tree species in a Bor-
nean rain forest. Journal of Ecology 93:879–889.

Russo, S. E., A. Kochsiek, J. Olney, L. Thompson, A. E. Miller, and S.
Tan. 2013. Nitrogen uptake strategies of edaphically specialized
Bornean tree species. Plant Ecology 214:1405–1416.

Samuels, C. L., and J. A. Drake. 1997. Divergent perspectives on com-
munity convergence. Trends in Ecology and Evolution 12:427–432.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Im-
age to ImageJ: 25 years of image analysis. Nature Methods 9:671–
675.

Schröder, A., L. Persson, and A. M. de Roos. 2005. Direct experimen-
tal evidence for alternative stable states: a review. Oikos 110:3–19.

Smith, M. E., T. W. Henkel, J. K. Uehling, A. K. Fremier, H. D.
Clarke, and R. Vilgalys. 2013. The ectomycorrhizal fungal com-
munity in a Neotropical forest dominated by the endemic diptero-
carp Pakaraimaea dipterocarpacea. PLoS ONE 8:e55160.

Stern, D. L. 2013. The genetic causes of convergent evolution. Nature
Reviews Genetics 14:751–764.

Sutherland, J. P. 1974. Multiple stable points in natural communities.
American Naturalist 108:859–873.

Tedersoo, L., T. W. May, and M. E. Smith. 2010. Ectomycorrhizal life-
style in fungi: global diversity, distribution, and evolution of phylo-
genetic lineages. Mycorrhiza 20:217–263.

Terborgh, J., L. C. Davenport, R. Niangadouma, E. Dimoto, J. C.
Mouandza, O. Schultz, and M. R. Jaen. 2016. The African rain-
forest: odd man out or megafaunal landscape? African and Ama-
zonian forests compared. Ecography 39:187–193.

Teste, F. P., P. Kardol, B. L. Turner, D. A. Wardle, G. Zemunik, M.
Renton, and E. Laliberté. 2017. Plant-soil feedback and the main-
tenance of diversity in Mediterranean-climate shrublands. Science
355:173–176.

Torti, S. D., P. D. Coley, and T. A. Kursar. 2001. Causes and conse-
quences of monodominance in tropical lowland forests. American
Naturalist 2:141–153.

Uriarte, M., N. G. Swenson, R. L. Chazdon, L. S. Comita, W. J. Kress,
D. Erickson, J. Forero-Montana, J. K. Zimmerman, and J. Thomp-
son. 2010. Trait similarity, shared ancestry and the structure of
neighbourhood interactions in a subtropical wet forest: implica-
tions for community assembly. Ecology Letters 13:1503–1514.

Van Nes, E. H., and M. Scheffer. 2004. Large species shifts triggered
by small forces. American Naturalist 164:255–266.

Waring, B. G., L. Alvarez-Cansino, K. E. Barry, K. K. Becklund, S.
Dale, M. G. Gei, A. B. Keller, et al. 2015. Pervasive and strong ef-
fects of plants on soil chemistry: a meta-analysis of individual
plant ‘Zinke’ effects. Proceedings of the Royal Society B 282:
20151001.

Zobel, M. 2016. The species pool concept as a framework for study-
ing patterns of plant diversity. Journal of Vegetation Science 27:8–
18.

References Cited Only in the Online Appendixes

Anderson-Teixeira, K. J., S. J. Davies, A. C. Bennett, E. B. Gonzalez-
Akre, H. C. Muller-Landau, S. J. Wright, K. Abu Salim, et al. 2015.
CTFS-ForestGEO: a worldwide network monitoring forests in an
era of global change. Global Change Biology 21:528–549.

Ashton, P. S. 2005. Lambir’s forest: the world’s most diverse known
tree assemblage? Pages 191–216 inD.W. Roubik, S. Sakai, and A. A.
Hamid, eds. Pollination ecology and rain forest diversity, Sarawak
Studies. Springer, New York.

Davies, S. J., S. Tan, J. V. LaFrankie, and M. D. Potts. 2005. Soil-
related floristic variation in the hyperdiverse dipterocarp forest in
Lambir Hills, Sarawak. Pages 22–34 in D. W. Roubik, S. Sakai,
and A. A. Hamid, eds. Pollination ecology and rain forest diversity,
Sarawak Studies. Springer, New York.

Lee, H. S., S. J. Davies, J. V. LaFrankie, S. Tan, T. Yamakura, A.
Itoh, T. Ohkubo, and P. J. Ashton. 2002. Floristic and structural
diversity of mixed dipterocarp forests in Lambir Hills National
Park, Sarawak, Malaysia. Journal of Tropical Forest Science 14:
379–400.

Tan, S., T. Yamakura, M. Tani, P. Palmiotto, J. D. Mamit, C. S. Pin,
S. Davies, P. Ashton, and I. Baillie. 2009. Review of soils on the
52-ha long term ecological research plot in mixed dipterocarp for-
est at Lambir, Sarawak, Malaysian Borneo. Tropics 18:61–86.

Watson, H. 1985. Lambir Hills National Park: resource inventory
with management recommendations. National Parks and Wildlife
Office, Kuching.

Symposium Editor: Anurag A. Agrawal

S122 The American Naturalist

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fecog.01643&citationId=p_103
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=28082588&crossref=10.1126%2Fscience.aai8291&citationId=p_104
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F318629&citationId=p_105
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.1365-2745.2005.01030.x&citationId=p_94
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F318629&citationId=p_105
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.3759%2Ftropics.18.61&citationId=p_114
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=21054732&crossref=10.1111%2Fj.1461-0248.2010.01541.x&citationId=p_106
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2Fs11258-013-0260-4&citationId=p_95
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F422204&citationId=p_107
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=21238141&crossref=10.1016%2FS0169-5347%2897%2901182-8&citationId=p_96
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=23713553&crossref=10.1111%2Fnph.12221&citationId=p_88
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=24105273&crossref=10.1038%2Fnrg3483&citationId=p_100
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=24105273&crossref=10.1038%2Fnrg3483&citationId=p_100
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=26224711&crossref=10.1098%2Frspb.2015.1001&citationId=p_108
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1007%2FBF01972080&citationId=p_89
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=22930834&crossref=10.1038%2Fnmeth.2089&citationId=p_97
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&system=10.1086%2F282961&citationId=p_101
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2F1365-2745.12211&citationId=p_90
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fjvs.12333&citationId=p_109
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&crossref=10.1111%2Fj.0030-1299.2005.13962.x&citationId=p_98
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=25258024&crossref=10.1111%2Fgcb.12712&citationId=p_110
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=20191371&crossref=10.1007%2Fs00572-009-0274-x&citationId=p_102
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=9391094&crossref=10.1073%2Fpnas.94.25.13730&citationId=p_91
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=9391094&crossref=10.1073%2Fpnas.94.25.13730&citationId=p_91
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F692439&pmid=23383090&crossref=10.1371%2Fjournal.pone.0055160&citationId=p_99

	Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees*
	Authors

	Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees

	Cit p_28:1: 
	Cit p_36:1: 
	Cit p_20:1: 
	Cit p_3:1: 
	Cit p_19:2: 
	Cit p_19:1: 
	Cit p_27:1: 
	Cit p_35:1: 
	Cit p_43:1: 
	Cit p_11:1: 
	Cit p_34:2: 
	Cit p_34:1: 
	Cit p_42:1: 
	Cit p_9:1: 
	Cit p_18:1: 
	Cit p_10:1: 
	Cit p_33:2: 
	Cit p_41:2: 
	Cit p_25:1: 
	Cit p_33:1: 
	Cit p_41:1: 
	Cit p_8:1: 
	Cit p_16:2: 
	Cit p_32:2: 
	Cit p_16:1: 
	Cit p_24:1: 
	Cit p_32:1: 
	Cit p_7:1: 
	Cit p_39:1: 
	Cit p_15:1: 
	Cit p_23:1: 
	Cit p_31:1: 
	Cit p_6:1: 
	Cit p_38:1: 
	Cit p_14:2: 
	Cit p_30:1: 
	Cit p_14:1: 
	Cit p_22:1: 
	Cit p_29:1: 
	Cit p_37:1: 
	Cit p_13:1: 
	Cit p_21:1: 
	Cit p_4:1: 
	Cit p_60:1: 
	Cit p_52:1: 
	Cit p_59:2: 
	Cit p_75:1: 
	Cit p_83:1: 
	Cit p_59:1: 
	Cit p_67:1: 
	Cit p_51:1: 
	Cit p_66:2: 
	Cit p_82:2: 
	Cit p_58:1: 
	Cit p_66:1: 
	Cit p_74:1: 
	Cit p_82:1: 
	Cit p_50:1: 
	Cit p_49:2: 
	Cit p_49:1: 
	Cit p_57:1: 
	Cit p_73:1: 
	Cit p_64:1: 
	Cit p_72:1: 
	Cit p_80:1: 
	Cit p_48:1: 
	Cit p_79:1: 
	Cit p_47:2: 
	Cit p_71:1: 
	Cit p_47:1: 
	Cit p_55:1: 
	Cit p_46:2: 
	Cit p_46:1: 
	Cit p_54:1: 
	Cit p_62:1: 
	Cit p_70:1: 
	Cit p_69:2: 
	Cit p_85:2: 
	Cit p_69:1: 
	Cit p_85:1: 
	Cit p_53:1: 
	Cit p_61:1: 
	Cit p_68:1: 
	Cit p_76:1: 
	Cit p_84:1: 
	Cit p_99:1: 
	Cit p_91:2: 
	Cit p_91:1: 
	Cit p_102:1: 
	Cit p_110:1: 
	Cit p_98:1: 
	Cit p_109:1: 
	Cit p_90:1: 
	Cit p_101:1: 
	Cit p_97:1: 
	Cit p_89:1: 
	Cit p_108:1: 
	Cit p_100:2: 
	Cit p_100:1: 
	Cit p_88:1: 
	Cit p_96:1: 
	Cit p_107:1: 
	Cit p_95:1: 
	Cit p_106:1: 
	Cit p_114:1: 
	Cit p_105:2: 
	Cit p_94:1: 
	Cit p_105:1: 
	Cit p_104:1: 
	Cit p_103:1: 


