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Abstract Setbacks are prescribed distances from sur-
face waters within which manure application is not
allowed. Little information is available concerning the
retention of swine slurry constituents in soil and crop
residue materials within setback areas. This study was
conducted to measure the retention of selected constitu-
ents within a setback area following the upslope appli-
cation of swine slurry and the introduction of simulated
rainfall. The no-till cropland site had a slope gradient of
4.9% and a mean winter wheat residue cover of
7.73Mg ha−1. Soil and vegetative samples were collect-
ed on 3.7 m wide by 23.2 m long plots with and without
the addition of slurry. Slurry was added at the 0–4.9 m
distance on selected plots, and simulated rainfall was
then applied to the entire plot area during two separate

events. Soil cores and vegetative samples were collected
from each plot at distances of 2.44, 5.18, 7.92, 11.0,
14.0, 17.1, and 20.1 m from the upper plot border. The
soil cores were separated into 0–10, 10–20, and 20–
30 cm depth increments. Significant increases in soil
concentrations of chloride, nitrate, phosphorus, and zinc
were found both within and downslope from the slurry
application area. Residue materials located both within
and downslope from the slurry application area
contained significantly increased concentrations of bo-
ron, calcium, copper, magnesium, sulfur, and zinc.
When estimating the downslope transport of constitu-
ents contained in swine slurry, contributions from run-
off, soil, and residue should all be considered.

Keywords Cropresidue . Infiltration .Landapplication .

Manure runoff . Nutrients . Swine slurry

1 Introduction

1.1 Background

The suitability of swine slurry as a source of nutrients
for plant production is influenced by the type of ration
that is fed, swine housing system, method of manure
collection, storage, and handling (Choudhary et al.
1996). The rate, timing, and method of swine manure
application affect plant nutrient availability. The
leaching of constituents following land application of
swine slurry serves to reduce the potential for off-site
surface water quality impacts. Soluble phosphorus
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concentrations have been found to diminish by repeated
rainfall events (Kleinman and Sharpley 2003) and the
time that has expired to the first runoff event (Smith
et al. 2007). The present study was conducted to mea-
sure changes in selected chemical constituents in soil
and crop residue located both within and downslope
from a slurry application area following the introduction
of simulated rainfall.

An area where manure is not applied but crops con-
tinue to be grown is a setback. Increasing the distance
that overland flow must travel to reach surface water
bodies reduces the transport of contaminants in runoff.
The application of manure no closer than 30.5 m to any
down gradient surface water, open tile intake structure,
sinkhole, agricultural well head, or other conduit to
surface waters is a US Environmental Protection Agen-
cy (EPA) requirement for concentrated animal feeding
operations (EPA 2012).

This manuscript contains additional information gen-
erated during an investigation reported by Gilley et al.
(2017). Gilley et al. (2017) examined the effects of
setback distance and runoff rate on concentrations of
selected constituents in runoff following the land appli-
cation of swine slurry to a no-till cropland site in south-
east Nebraska. An initial set of rainfall simulation tests
was completed to identify background concentrations of
runoff constituents. Swine slurry was then applied to the
upper 4.9 m of the slurry application plots, and addi-
tional rainfall simulation tests were conducted. A first-

order exponential decay function was used to estimate
the effects of setback distance on concentrations of
selected constituents. A setback distance of 12.2 m re-
duced runoff concentrations of dissolved phosphorus,
NH4-N, total N, boron, chloride, manganese, potassium,
sulfate, zinc, electrical conductivity, and pH to back-
ground values like those measured for the no-slurry
condition.

1.2 Swine Slurry Constituents in Soil

Several studies have been conducted which examined
soil characteristics following land application of swine
manure to sites on which corn was grown. Evans et al.
(1977) found that the addition of swine manure in
excess of crop nutrient requirements increased concen-
trations of nitrate, phosphorus, potassium, and sodium
within soil. Concentrations of nitrate, phosphorus, and
sodium in soil were also determined to increase with
greater swine manure application rates (Sutton et al.
1978). Sutton et al. (1982) reported that concentrations
of soil ammonium, nitrate, phosphorus, and potassium
were greater on plots where manure was injected rather
than surface applied. Increasing dietary salt levels re-
sulted in larger sodium levels in manure and sodium
loading of soil (Sutton et al. 1984).

The effects of land application of swine manure on
soil properties of pasture areas have also been investi-
gated. Reddy et al. (1980) found that the addition of

Table 1 Background constituent concentrations for crop residue, irrigation water, soil, and slurry

Material Ammonium (mg kg−1) Boron (mg kg−1) Calcium (mg kg−1) Chloride (mg kg−1) Copper (mg kg−1) EC (dS m−1)

Crop residue 4.35 (1.36) 7160 (1380) 790 (330) 7.31 (1.83)

Irrigation water < 0.1 (< 0.1) 0.06 (0.008) 83 (1.37) 4 (2.40) < 0.01 (< 0.01) 0.72 (0.023)

Soil (0–10 cm) 2.02 (1.87) 3780 (810) 2.77 (1.47) 1.10 (0.36) 0.498 (0.345)

Slurry 2980 (138) 4.40 (0.19) 2220 (191) 69.1 (15.9) 25.9 (2.81)

Standard deviation values are shown in parentheses

Table 2 Background constituent concentrations for crop residue, irrigation water, soil, and slurry

Material Iron (mg kg−1) Magnesium (mg kg−1) Manganese (mg kg−1) Nitrate (mg kg−1) pH Potassium (mg kg−1)

Crop residue 3720 (2160) 1470 (391) 167 (94.9) 2090 (591)

Irrigation water < 0.01 (< 0.01) 21 (1.17) 0.02 (0.005) 14.2 (0.55) 7.50 (0.055) 3 (0.00)

Soil (0–10 cm) 26.5 (8.6) 502 (162) 12.5 (3.4) 9.18 (6.82) 6.75 (0.32) 390 (90)

Slurry 202 (31.7) 1950 (308) 43.4 (9.20) 2.43 (0.455) 7.81 (0.19) 2640 (90.7)

Standard deviation values are shown in parentheses
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swine lagoon effluent to pasture areas increased soil
phosphorus. Increased concentrations of soil nitrate,
phosphorus, potassium, and sodium were found follow-
ing the introduction of swine manure to a soil on which
“Coastal” Bermuda grass was grown (King et al. 1985,
1990). Westerman et al. (1987) measured increases in
soil nitrate, phosphorus, potassium, and sodium follow-
ing the addition of swine manure to a site containing a
temperate forage mixture.

1.3 Changes in Chemical Constituents Contained
in Crop Residue

Crop residues may also influence nutrient concentrations
in runoff. Schreiber (1985) determined that wheat residues
subjected to rainfall were a substantial source of soluble
nutrients in agricultural runoff. Concentrations and quan-
tities of ammonium, nitrate, organic carbon, and phospho-
rus released from wheat straw as a function of rainfall
intensity were identified by Schreiber and McDowell
(1985). Less than 1% of the total N and 8 to 14% of the
total phosphorus in the wheat residue were leached for the
given experimental conditions. Cermak et al. (2004) found
that wheat residue adsorbed ammonia and phosphorus
with an increase in adsorption generally resulting from
greater residue immersion period. Wheat stalk residues

were found by Gilley et al. (2009) to adsorb nitrate and
ammonia and release phosphorus. The quantity of
ammonia adsorbed by wheat stalk residue increased as
the concentration of ammonia in solution became greater.
Lozier et al. (2017) reported that cover crops such aswinter
wheat have the potential to release substantial quantities of
phosphorus during the nongrowing season. Loads of dis-
solved reactive phosphorus (0.165–0.245 kg ha−1) and
total phosphorus (0.295–0.360 kg ha−1) leaving the fields
were small in comparison with phosphorus pools in cover
crops suggesting that much of the phosphorus released
from vegetation was retained within the field.

2 Materials and Methods

2.1 Study Site Characteristics

This field study was conducted at the University of
Nebraska Rogers Memorial Farm located 18 km east
of Lincoln, NE, USA. The study site had been cropped
using a long-term no-till management system with
controlled wheel traffic which included corn, grain
sorghum, soybeans, and winter wheat. Winter
wheat was harvested from the study location in
July 2015. Glyphosate was applied as needed

Table 3 Background constituent concentrations for crop residue, irrigation water, soil, and slurry

Material Sodium (mg kg−1) Sulfur (mg kg−1) Total N (mg kg−1) Total P (mg kg−1) Zinc (mg kg−1)

Crop residue 938 (174) 9900 (2060) 1110 (201) 32.4 (6.5)

Irrigation water 53 (2.26) 4.9 (0.25) 14.2 (1.61) 0.39 (0.39) 0.05 (0.035)

Soil (0–10 cm) 24.2 (24.6) 69.9 (67.8) 9.18 (6.82) 22.2 (13.7) 0.94 (0.36)

Slurry 920 (40.6) 588 (63.2) 5520 (643) 2890 (1070) 131 (15.2)

Standard deviation values are shown in parentheses

Fig. 1 Schematic showing plot layout for the experimental plots
on which soil and vegetative samples were collected. Both the
control and slurry plots were 23.2 m long. Neither rainfall nor
slurry was applied to the control plots. Rainfall simulation tests

were first conducted without swine slurry application on the slurry
plots. Slurry was then added to the top 4.9 m of the slurry plots,
and additional rainfall simulation tests were conducted
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following harvest to control weed growth. The
amount of vegetative material at the study site at
the time of the field tests was 7.73 Mg ha−1.

The soil at the site developed in loess under prairie
vegetation and is considered a benchmark soil. Using
procedures for soil particle size determination reported
by Kettler et al. (2001), the Aksarben clay loam (fine,
smectitic, mesic Typic Argiudoll) contained 22% sand,

44% silt, and 34% clay. The hydraulic conductivity of
the Aksarben soil is moderately low and the soil belongs
to hydrologic group C. Infiltration excess overland flow
is thought to be the primary runoff generating process at
this site (Buchanan et al. 2018).

Mean concentrations of Bray and Kurtz No. 1 P
(Bray and Kurtz 1945), water-soluble P (Murphy and
Riley 1962), and NO3-N at the 0–10 cm depth measured

Fig. 2 Schematic showing crop
residue and soil sample collection
locations. The small circles show
the sites where soil cores were
obtained. At a given distance,
crop residue was obtained in the
area located between the three soil
sample collection sites
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with a flow injection analyzer using spectrophotometry
(SEAL AutoAnalyzer 3, SEAL Analytical Inc.,
Mequon, WI) were 17.9, 1.7, and 9.4 mg kg−1, respec-
tively. The study site had a mean slope gradient of 4.9%,
electrical conductivity (EC) of 0.51 dS m−1, and a pH of
6.7 (Klute 1986). Using laboratory procedures devel-
oped byNelson and Sommers (1996), the organic matter
and total carbon content of the soil at the 0–10 cm depth
were 38 and 22 g kg−1, respectively, which are relatively
high for cropland sites in this region. The background
concentrations for other constituents contained in the
soil at the 0–10 cm depth, determined on a dry weight
basis, are identified in Tables 1, 2, and 3.

2.2 Experimental Design

The experimental plots were established using a random-
ized designwith four replications (Fig. 1). Each of the plots

was 3.7 m wide and 23.2 m long. Soil and vegetative
samples were collected on plots with and without slurry
over an 8-week period extending from June 8 to August 3,
2016. These dates were selected because students were
available during their summer break to assist with field
activities. Slurry was added at the 0–4.9 m distance on the
manure application plots. The concentration of chemical
constituents was reported on a dryweight basis on both the
slurry and no slurry treatments.

2.3 Slurry Collection and Application

Slurry was obtained a few hours prior to field applica-
tion from a deep pit on a commercial wean-to-finish
swine operation in southeast Nebraska. The slurry was
transported in 20 L plastic buckets until it was land
applied. Two subsamples of the slurry were collected
and composited from separate plastic buckets for

Table 4 Effects of slurry application, soil depth, and distance on soil characteristics

Boron Calcium Chloride Copper EC

Slurry application

No slurry 1.96 (2.06) 3490 (767) 2.42 (1.36) 1.26 (0.38) 0.467 (0.389)

Slurry 1.62 (1.69) 3770 (518) 4.17 (6.22) 1.34 (0.21) 0.435 (0.303)

Depth (cm)

0–10 1.76 (1.88) 3970a (669) 4.78a (4.56) 1.19b (0.31) 0.519 (0.347)

10–20 1.68 (2.05) 3460b (607) 2.53b (2.12) 1.39a (0.29) 0.414 (0.364)

20–30 1.92 (2.16) 3460b (547) 2.59b (1.81) 1.31a (0.27) 0.420 (0.349)

Distance (m)

2.44 2.01 (1.78) 3390 (604) 7.38a (10.7) 1.36 (0.37) 0.510 (0.370)

5.18 2.08 (2.13) 3600 (724) 3.15b (2.20) 1.28 (0.36) 0.524 (0.388)

7.92 2.32 (2.19) 3730 (723) 2.94 b (1.81) 1.29 (0.31) 0.470 (0.354)

11.0 2.78 (2.17) 3730 (729) 2.76b (1.40) 1.24 (0.28) 0.605 (0.382)

14.0 0.786 (0.588) 3660 (702) 2.40b (1.76) 1.30 (0.29) 0.305 (0.165)

17.1 1.31 (1.62) 3710 (562) 2.35b (1.73) 1.31 (0.29) 0.367 (0.327)

20.1 1.23 (1.48) 3570 (626) 2.10b (0.79) 1.31 (0.28) 0.375 (0.327)

ANOVA (p > F)

Slurry 0.52 0.55 0.14 0.70 0.82

Depth 0.74 < 0.01 0.02 0.04 0.19

Distance 0.11 0.12 < 0.01 0.84 0.06

Slurry × depth 0.75 0.38 0.06 0.38 0.62

Slurry × distance 0.02 0.61 < 0.01 0.59 0.07

Depth × distance 0.81 0.18 < 0.01 0.30 0.45

Slurry × depth × distance 0.70 0.60 < 0.01 0.42 0.58

All values are in mg kg−1 except for EC (dS m−1 ) and pH. Within the same column, values followed by different letters are significantly
different at the 0.05 probability level based on the LSD test. Standard deviation values are shown in parentheses
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chemical and physical analyses. The subsamples were
shipped to a commercial laboratory the same day they
were collected. The concentrations of constituents in the
slurry, which had a mean dry matter content of 5.35%,
are shown in Tables 1, 2, and 3. Mineral elements
commonly added to swine diets to enhance growth
performance include chloride, copper, iron, manganese,
sodium, and zinc (NRC 1998; Hill and Spears 2001;
Patience and Zijlstra 2001).

Slurry was applied at a rate required to meet the annual
nitrogen requirement for corn (151 kg N ha−1 year−1 for an
expected yield of 9.4 Mg ha−1). When calculating slurry
application rate, it was assumed that the nitrogen availabil-
ity from the swine slurry was 70% of the total amount of
measured nitrogen (Gilbertson et al. 1979). The amount of
slurry required to meet crop nutrient requirements was
calculated, and individual plastic buckets were weighed
until the desired quantity was obtained. The plastic buckets
were then transported and placed uniformly outside the

application area. The slurry was then carefully applied by
hand to the soil surface andwas not incorporated following
application.

2.4 Rainfall Simulation Procedures

A portable rainfall simulator designed by Schulz and
Yevjevich (1970) was used to apply rainfall at a rate of
approximately 52 mm h−1 to the entire plot area. The
52 mm h−1 intensity resulted when the recommended
sprinkler head spacing and design operating pressure were
utilized. The “sprinkler head grid system” used 3.0 m
sections of 10 cm diameter irrigation pipe on which 2 cm
diameter risers were mounted. Sprinkler heads were locat-
ed on the top of the risers which also contained a globe
valve, a flow control valve, and a screen. Placement of the
selected sprinkler heads at 3.0 m intervals along supply
lines separated by 5.2 m was found by Schulz and

Table 5 Effects of slurry application, soil depth, and distance on soil characteristics

Iron Magnesium Manganese Nitrate Phosphorus (Bray-1) Phosphorus (Mehlich-3)

Slurry application

No slurry 36.5 (14.7) 644 (239) 15.1 (6.4) 5.03 (5.19) 8.97 (9.48) 10.4 (12.2)

Slurry 32.2 (13.5) 754 (229) 13.4 (3.63) 7.1 (6.94) 8.16 (9.23) 11.4 (17.4)

Depth (cm)

0–10 25.6b (14.2) 553b (241) 12.1b (5.23) 11.3a (6.17) 17.6a (9.29) 24.3a (14.9)

10–20 44.9 a (14.8) 698b (244) 17.1a (6.2) 3.96b (1.47) 4.06b (2.40) 4.38b (2.92)

20–30 32.5b (12.3) 846a (228) 13.5ab (5.33) 2.96b (1.44) 4.02b (2.69) 4.06b (3.13)

Distance (m)

2.44 34.7 (13.6) 668 (225) 14.3 (4.9) 8.83a (11.6) 12.5a (14.2) 21.0a (29.2)

5.18 34.6 (14.4) 667 (229) 15.5 (6.0) 5.15b (3.53) 9.74ab (13.5) 11.7b (15.9)

7.92 32.6 (12.4) 724 (237) 14 (4.2) 5.88b (7.11) 7.58b (6.60) 8.29bc (8.16)

11.0 32.6 (13.2) 716 (254) 14.2 (5.7) 5.16b (4.10) 8.04b (6.72) 9.84b (9.20)

14.0 35.3 (15.9) 703 (250) 14 (5.7) 5.88b (4.00) 7.05b (6.77) 7.80b (8.55)

17.1 35.1 (14.2) 724 (254) 13.6 (4.7) 5.33b (4.30) 7.73b (7.07) 8.88b (8.72)

20.1 35.4 (16.7) 690 (259) 14.2 (5.5) 6.26b (4.34) 7.29b (6.00) 8.92b (9.11)

ANOVA (p > F)

Slurry 0.44 0.48 0.5 0.31 0.68 0.71

Depth < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01

Distance 0.84 0.65 0.53 0.03 0.02 < 0.01

Slurry × depth 0.53 0.38 0.43 0.49 0.87 0.65

Slurry × distance 0.81 0.18 0.47 < 0.01 < 0.01 < 0.01

Depth × distance 0.92 0.55 0.57 < 0.01 0.08 < 0.01

Slurry × depth × distance 0.72 0.57 0.32 < 0.01 < 0.01 < 0.01

All values are in mg kg−1 except for EC (dS m−1 ) and pH. Within the same column, values followed by different letters are significantly
different at the 0.05 probability level based on the LSD test. Standard deviation values are shown in parentheses

  322 Page 6 of 18 Water Air Soil Pollut         (2020) 231:322 



Yevjevich (1970) to provide a relatively uniform rainfall
distribution.

Water used in the rainfall simulation tests was ob-
tained from an irrigation well. Replicated samples for
background water quality analyses were collected from
the outlet of the distribution system near the beginning
and end of the field study. Variations in water quality
characteristics among samples were minimal. The con-
centration of constituents contained in the irrigation
water are identified in Tables 1, 2, and 3.

An initial rainfall simulation run without slurry addi-
tion occurred at the existing soil-water state and contin-
ued until steady-state runoff conditions had become
established. The length of time required for steady-
state runoff conditions to become established varied
among plots depending upon the occurrence and quan-
tity of natural precipitation. Steady-state runoff condi-
tions were determined from visual observations of run-
off quantities shown on stage recorder charts and are

reported by Gilley et al. (2017). A mean overland flow
rate of 22.9 l min−1 was measured without the addition
of inflow. A second rainfall simulation run was then
conducted approximately 24 h later, and it also contin-
ued until steady-state runoff conditions were
reestablished. The initial and second rainfall simulation
runs provided baseline nutrient transport measurements.

Within a few minutes following completion of the
second rainfall simulation run, additional field tests were
conducted to identify the effects of varying runoff rates
on nutrient transport. Inflow was added in three succes-
sive increments. A narrow mat made of green synthetic
material often used as an outdoor carpet was placed on
the soil surface beneath the inflow device to prevent
scouring and distribute the flow more uniformly across
the plot surface. Rainfall continued to be applied during
the inflow tests.

Slurry was added to the upper 4.9 m of the paired
plots on day 3 of the weekly test schedule. Additional

Table 6 Effects of slurry application, soil depth, and distance on soil characteristics

Phosphorus (water-soluble) pH Potassium Sodium Sulfur Zinc

Slurry application

No slurry 0.97 (0.71) 6.22 (0.56) 264 (112) 29.3 (30.1) 80.8 (115) 0.62 (0.36)

Slurry 1.04 (0.85) 6.51 (0.42) 279 (99.1) 34.9 (27.8) 60 (82.2) 0.71 (0.51)

Depth (cm)

0–10 1.65a (0.78) 6.91a (0.52) 392a (105) 31.2 (28.9) 64.1 (99.7) 1.09a (0.44)

10–20 0.690b (0.332) 6.07b (0.48) 212b (50) 29.8 (36.7) 71.7 (112) 0.497b (0.17)

20–30 0.690b (0.318) 6.13b (0.46) 210b (47) 35.3 (35.6) 75.3 (113) 0.403b (0.20)

Distance (m)

2.44 1.38 (1.42) 6.17b (0.47) 265 (105) 31 (28.5) 89 (120) 0.851a (0.716)

5.18 1.1 (0.85) 6.30a (0.55) 265 (97) 31.8 (26.9) 91 (120) 0.730ab (0.408)

7.92 0.968 (0.43) 6.48a (0.43) 273 (108) 35.5 (33.7) 92.2 (114) 0.670b (0.415)

11.0 0.765 (0.41) 6.40a (0.54) 264 (104) 38.3 (25.5) 105 (105) 0.617b (0.339)

14.0 1.02 (0.81) 6.45a (0.57) 274 (104) 21.1 (13.3) 19.6 (20.0) 0.592b (0.360)

17.1 0.924 (0.53) 6.42a (0.55) 288 (124) 33.5 (38.2) 45.3 (72.9) 0.605b (0.376)

20.1 0.888 (0.43) 6.39a (0.56) 271 (102) 33.4 (30.6) 50.3 (86.3) 0.589b (0.361)

ANOVA (p > F)

Slurry 0.55 0.13 0.71 0.65 0.50 0.45

Depth < 0.01 < 0.01 < 0.01 0.5 0.81 < 0.01

Distance 0.08 0.02 0.63 0.61 0.06 0.03

Slurry × depth 0.77 0.76 0.64 0.42 0.93 0.04

Slurry × distance < 0.01 0.21 0.81 0.07 0.11 < 0.01

Depth × distance < 0.01 0.65 0.87 0.73 0.55 0.03

Slurry × depth × distance < 0.01 0.62 0.47 0.51 0.63 < 0.01

All values are in mg kg−1 except for EC (dS m−1 ) and pH. Within the same column, values followed by different letters are significantly
different at the 0.05 probability level based on the LSD test. Standard deviation values are shown in parentheses
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rainfall simulation tests occurred approximately 24 and
48 h after slurry addition (days 4 and 5 of the weekly
routine) to provide nutrient transport measurements fol-
lowing slurry application. Runoff tests continued until
establishment of steady-state runoff conditions.

Rain gauges were placed around the perimeter of
each plot to measure total rainfall. The mean amount
of rainfall applied during the initial run without and with
slurry was 34 mm (standard deviation, 8 mm) and
36 mm (standard deviation, 11 mm), respectively. Mean
rainfall applications of 82 (standard deviation, 6 mm)
and 71 mm (standard deviation, 9 mm) was applied
during run 2 and the inflow run on the no slurry and
slurry treatments, respectively.

2.5 Crop Residue Collection Procedures

Crop residue was collected from each control and slurry
application plot at distances of 2.44, 5.18, 7.92, 11.0,

14.0, 17.1, and 20.1 m from the upper plot border
(Fig. 2). At each distance, residue samples were obtain-
ed at approximately 1.37 and 2.29 m transects from the
right border (looking downslope) so as not to impact the
surface where soil samples were later collected. Crop
residue on the soil surface within a 0.69 m diameter
circular frame was removed by hand and placed in paper
bags. Individual samples were not composited. For the
slurry application treatments, residue samples were col-
lected 1 week following slurry application just before
the soil samples were obtained.

Thus, two crop residue samples were collected at
each distance, and a total of 14 samples were obtained
on each plot. There were four replicates of each slurry
and control treatment for a total of 8 plots and 112
residue samples. The residue samples were first dried
in an oven and then ground. The mean mass of residue
obtained from each sample location was 289 g dry
weight. The samples were sent to a commercial

Fig. 3 Chloride concentration as
affected by soil depth and
distance for the no-slurry and
slurry experimental treatments. At
a given depth, points followed by
the same letter are not signifi-
cantly different (p ≤ 0.05). Ab-
sence of letters indicates no sig-
nificant differences in concentra-
tion values at a given depth
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laboratory for analyses of boron, calcium, chloride,
copper, iron, magnesium, manganese, nitrogen, phos-
phorus, potassium, sulfur, and zinc. The concentrations
of constituents contained in the crop residue on the
control plots are identified in Tables 1, 2, and 3.

2.6 Soil Sample Collection Procedures

After crop residue samples were obtained, a hydraulic
mounted soil probe with a 3.18 cm diameter tip was
used to collect 30 cm deep soil cores. Soil cores were
obtained from each plot at distances of 2.44, 5.18, 7.92,
11.0, 14.0, 17.1, and 20.1 m from the upper plot border
at transects approximately 0.91, 1.83, and 2.74 m from

the right border (looking downslope) (Fig. 2). The three
soil cores from each distance were separated into 0–10,
10–20, and 20–30 cm depth increments and composited.
Thus, for each distance, there were three composite soil
samples or a total of 21 samples from each plot. There
were four replicates of each slurry and no-slurry treat-
ment for a total of 8 plots and 168 soil samples. Mean
bulk densities at the study site for the 0–10, 10–20, and
20–30 cm depth increments were 1.44, 1.62, and
1.63 g cm−3, respectively.

Soil samples were collected 1 week following slurry
addition on the slurry application treatments. The week
delay following rainfall and slurry application allowed
easier access to the plot area and simpler removal of soil

Table 7 Slurry and rainfall application amounts and changes in soil, residue, and runoff quantities

Boron Calcium Chloride Copper Magnesium Nitrate[b]

Slurry application amount

0–4.9 m distance 0.305[a] 147 4.59 141 0.087

Rainfall application amount

0–4.9 m distance 0.113 157 7.54 0.00 39.6 26.8

4.9–23.2 m distance 0.423 584 28.2 0.00 148 100

Total 0–23.2 m distance 0.536 741 35.7 0.00 188 127

Soil constituent changes

0–4.9 m distance

0–10 cm soil depth 22.4 22.6

10–20 cm soil depth 6.55 2.73

20–30 cm soil depth 1.18 2.22

Total - 0–30 cm soil depth 30.1 27.6

4.9–23.2 m distance

0–10 cm soil depth 3.70 2.76

10–20 cm soil depth 1.47 5.34

20–30 cm soil depth 0.35 3.98

Total - 0–30 cm soil depth 5.52 12.1

Total 0–23.2 distance 35.6 39.7

Residue constituent changes

0–4.9 m distance 0.072 45.0 0.718 20.2

4.9–23.2 m distance 0.126 130 0.131 39.8

0–23.2 distance 0.198 175 0.849 60.0

Runoff constituent[c]

0–4.9 m distance 0.078 65.5 10.1 0.018 21.6 20.5

4.9–23.2 m distance 0.215 320 7.04 0.038 71.6 44.8

Total 0–23.2 distance 0.293 386 17.1 0.056 93.2 65.3

[a] All values are in grams
[b] The total nitrogen applied in slurry was 368 g
[c] Values obtained from study by Gilley et al. (2017)
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from the sampling tube. The plot area was covered with
plastic if natural rainfall was forecast, and the plastic
was removed when there was no longer a threat of
rainfall. The soil cores collected at the 2.44 m distance
on the slurry application plots were obtained near the
middle of the slurry application area which extended
4.9 m from the upper plot border. In comparison, the
5.18 m sample collection location was just below the
bottom of the slurry application area.

The larger size clods in the composited soil
samples were broken up by hand. The soil was
later removed from the plastic bags and allowed to
air dry. The air-dry soil samples were then ground
and separated into two groups. One group of sam-
ples was analyzed in a USDA-ARS laboratory in
Lincoln, NE, USA for Bray-1 P and water-soluble
P. The other group of samples was sent to a

commercial laboratory for analyses of boron, cal-
cium, chloride, copper, EC, iron, magnesium, man-
ganese, nitrate, Mehlich-3 phosphorus, pH, potas-
sium, sodium, sulfur, and zinc.

2.7 Statistical Analyses

The treatment factors used in the statistical analyses for
soil were slurry application (slurry or no-slurry), soil
depth (0–10, 10–20, and 20–30 cm), and distance
(2.44, 5.18, 7.92, 11.0, 14.0, 17.1, and 20.1 m). Slurry
application (slurry or no-slurry) and distance (2.44,
5.18, 7.92, 11.0, 14.0, 17.1, and 20.1 m) were the
treatment factors employed in the statistical analyses
for residue. Split-block analyses of variance were per-
formed on both the soil and residue data using SAS
(SAS Institute 2011). If a significant difference was

Table 8 Slurry and rainfall constituent application amounts and changes in soil, residue, and runoff constituent quantities

Phosphorus Phosphorus (Bray-1) Sulfur Zinc

Slurry application amount

0–4.9 m distance 207[a] 39.6 8.77

Rainfall application amount

0–4.9 m distance 0.740 9.24 0.09

4.9–23.2 m distance 2.75 34.5 0.47

Total 0–23.2 m distance 3.49 43.7 0.56

Soil constituent changes

0–4.9 m distance

0–10 cm soil depth 41.7 1.32

10–20 cm soil depth 6.78 0.09

20–30 cm soil depth 6.66 0.12

Total - 0–30 cm soil depth 55.2 1.53

4.9–23.2 m distance

0–10 cm soil depth 0.00 0.26

10–20 cm soil depth 0.00 0.00

20–30 cm soil depth 0.00 0.00

Total - 0–30 cm soil depth 0.00 0.26

Total 0–23.2 distance 55.2 1.79

Residue constituent changes

0–4.9 m distance 26.3 6.38 1.61

4.9–23.2 m distance 0.00 4.24 0.94

0–23.2 distance 26.3 10.6 2.55

Runoff constituent[c]

0–4.9 m distance 5.32 14.9 0.04

4.9–23.2 m distance 0.94 57.7 0.00

Total 0–23.2 distance 6.26 72.6 0.04

[a] All values are in grams
[b] The total nitrogen applied in slurry was 368 g
[c] Values obtained from study by Gilley et al. (2017)
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identified, the least significant difference (LSD) test was
used to identify differences among experimental treat-
ments. A probability level p ≤ 0.05 was considered
significant.

3 Results and Discussion

3.1 Soil Analyses

Analysis of variance indicated that there was no signif-
icant treatment or interactive effects for measurements
of EC, sodium, or sulfur (Tables 4, 5, and 6). Soil depth
significantly affected measurements of calcium, copper,
iron, magnesium, manganese, pH, and potassium.
Values for calcium, pH, and potassium were significant-
ly larger at the 0–10 cm depth. In contrast, concentra-
tions of copper, iron, magnesium, and manganese were
largest at the 10–20 or 20–30 cm depth increments.

Westerman et al. (1987) found that the application of
swine slurry to a pasture planted to a temperate forage
mixture had a minimal effect on soil concentrations of
calcium, copper, magnesium, and manganese.

The pH value of 6.17 measured at the 2.44 m
distance was significantly less than measurements
obtained at the other locations (Table 6). Slurry with
a relatively low pH value (larger quantity of H+

ions) infiltrated into the soil profile below the slurry
application area causing smaller pH measurements.
King et al. (1985) also noted a decrease in soil pH
resulting from the application of swine lagoon efflu-
ent to “Coastal” Bermuda grass. No significant dif-
ferences in pH measurements were found among
distances varying from 5.18 to 20.1 m.

An interaction between slurry application, soil
depth, and distance was found for concentrations
of chloride, nitrate, phosphorus constituents, and
zinc (Tables 4, 5, and 6).

Fig. 4 Nitrate concentration as
affected by soil depth and
distance for the no-slurry and
slurry experimental treatments. At
a given depth, points followed by
the same letter are not signifi-
cantly different (p ≤ 0.05). Ab-
sence of letters indicates no sig-
nificant differences in concentra-
tion values at a given depth
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The largest chloride concentrations were found at the
0–10 cm soil depth on both the no-slurry and slurry
treatments (Fig. 3). No significant differences in chlo-
ride concentration were found among sampling loca-
tions for a given soil depth on the no-slurry treatment.
The chloride concentrations of 24.6 and 7.65 mg kg−1

measured at the 2.44 m distance at the 0–10 and 10–
20 cm soil depths on the slurry treatment were signifi-
cantly greater than the 5.38 and 2.80 mg kg−1 measured
at the 5.18 m sampling location. (Soil constituent
amounts were determined by multiplying the soil vol-
ume by bulk density and constituent concentration.) It
was determined that 22.4 and 6.55 g of chloride had
infiltrated into the 0–10 and 10–20 cm soil depths within
the slurry application area (Table 7). (Data obtained in
the study reported by Gilley et al. (2017) were used to
calculate the quantity of constituents transported in run-
off shown in Tables 7 and 8.) The quantities of chloride
that infiltrated into the 0–10 and 10–20 cm soil depths

on the plot area downslope from the slurry application
region were 3.70 and 1.47 g, respectively (Table 7).

The largest concentrations of nitrate were found at
the 0–10 cm soil depth on both the no-slurry and slurry
treatments (Fig. 4). No significant differences in soil
nitrate measurements were found among sampling sites
at the 10–20 and 20–30 cm depth increments on either
the no-slurry or slurry treatments. The 31.4 mg kg−1 soil
nitrate concentrationmeasured at the 2.44m distance for
the 0–10 cm depth increment on the slurry treatment
was significantly greater than values obtained at the
other sampling locations. The total amount of nitrate
that infiltrated into the slurry application and downslope
areas were 27.6 and 12.1 g, respectively (Table 7).
Wienhold (2005) found that the nitrate content of soil
increased following the application of swine slurry to
plots on which sorghum were grown.

The largest concentrations of Bray-1 P were found at
the 0–10 cm soil depth on both the no-slurry and slurry

Fig. 5 Bray-1 phosphorus
concentration as affected by soil
depth and distance for the no-
slurry and slurry experimental
treatments. At a given depth,
points followed by the same letter
are not significantly different (p ≤
0.05). Absence of letters indicates
no significant differences in con-
centration values at a given depth
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treatments (Fig. 5). No significant differences in Bray-1 P
measurements were found among sampling sites at the
10–20 and 20–30 cm depth increments on either the no-
slurry or slurry treatments. The 40.6 mg kg−1 of Bray-1 P
measured at the 2.44 m distance for the 0–10 cm depth
increment on the slurry treatment was significantly great-
er than values obtained at the other distances. It was
determined that 41.7 g of Bray-1 P infiltrated into the
0–10 cm depth increment within the slurry application
area (Table 8). Bray-1P values did not change in the
downslope region following slurry application. The
experimental results shown for Bray-1 P are also
characteristic of results obtained for Mehlich-3 P
and water-soluble P. Reddy et al. (1980) found that
continuous application of swine lagoon effluent for
3 years on a Cecil sandy loam increased soluble soil
P and that no appreciable amount of P moved be-
yond the 30 cm depth. A significant increase in

Mehlich-3 P has been reported on soils following
the long-term application of swine effluent
(McLaughlin et al. 2010; Schlegel et al. 2015).

The largest concentrations of zinc were found at the
0–10 cm soil depth on both the no-slurry and slurry
treatments (Fig. 6). No significant differences in mea-
surements of zinc were found among sampling loca-
tions at the 10–20 and 20–30 cm depth increments on
the no-slurry treatments. The 2.26 mg kg−1 of zinc
measured on the slurry treatment at the 2.44 m dis-
tance for the 0–10 cm depth increment was signifi-
cantly greater than values obtained at the other sam-
pling sites. It was determined that 1.32 g of zinc
infiltrated into the 0–10 cm depth on the slurry appli-
cation area (Table 8). The long-term application of
swine effluent was found to significantly increase
extractable zinc in soil (Novak et al. 2004; Richards
et al. 2011).

Fig. 6 Zinc concentration as
affected by soil depth and
distance for the no-slurry and
slurry experimental treatments. At
a given depth, points followed by
the same letter are not signifi-
cantly different (p ≤ 0.05). Ab-
sence of letters indicates no sig-
nificant differences in concentra-
tion values at a given depth
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3.2 Residue Analyses

Analysis of variance indicated that neither slurry appli-
cation nor distance significantly affected measurements
of chloride, iron, manganese, nitrogen, or potassium
(Tables 9 and 10). However, interaction effects between
slurry application and distance were found for boron,
calcium, copper, magnesium, phosphorus, sulfur, and

zinc, and changes in these constituent quantities follow-
ing slurry application are presented in Tables 7 and 8.

No significant differences in concentrations of phos-
phorus were found among sampling locations on the non-
slurry treatments (Fig. 7). The phosphorus concentration of
3.01 g kg−1 measured at the 2.44 m distance on the slurry
treatment was significantly greater than values obtained at
the other sampling sites. It was determined that 26.3 g of

Table 9 Effects of slurry application and distance on chemical characteristics of residue

Boron Calcium Chloride Copper Iron Magnesium

Slurry application

No slurry 4.35b (1.36) 7160b (1380) 790 (330) 7.31b (1.83) 3720 (2160) 1470b (390)

Slurry 7.91a (1.82) 9780a (1580) 720 (280) 16.9a (19.5) 4930 (2040) 2340a (660)

Distance (m)

2.44 6.65 (3.99) 8260 (2740) 840 (410) 32.8a (31.8) 2850 (1200) 2050 (1060)

5.18 5.86 (1.97) 8270 (2020) 700 (220) 9.58b (3.58) 4670 (2540) 1950 (770)

7.92 5.45 (1.60) 8160 (1770) 730 (379) 8.18b (2.01) 4350 (2030) 1810 (490)

11.0 5.40 (1.44) 8450 (1580) 840 (328) 8.32b (2.03) 4500 (2300) 1800 (482)

14.0 5.59 (1.38) 8370 (1610) 710 (223) 8.33b (2.90) 4460 (1430) 1770 (516)

17.1 5.95 (1.67) 8680 (1700) 710 (191) 8.98b (2.30) 5130 (2430) 1940 (625)

20.1 5.51 (1.93) 9080 (2390) 780 (326) 8.56b (3.00) 4320 (2560) 2030 (769)

ANOVA (p > F)

Slurry 0.03 0.04 0.32 < 0.01 0.22 0.04

Distance 0.10 0.20 0.65 < 0.01 0.08 0.30

Slurry × distance < 0.01 < 0.01 0.65 < 0.01 0.49 < 0.01

All values are inmg kg−1 .Within the same column, values followed by different letters are significantly different at the 0.05 probability level
based on the LSD test. Standard deviation values are shown in parentheses

Table 10 Effects of slurry application and distance on chemical characteristics of residue

Manganese Nitrogen Phosphorus Potassium Sulfur Zinc

Slurry application

No slurry 167 (95) 9990 (2060) 1110 (201) 2090 (590) 938 (174) 32.4b (6.5)

Slurry 185 (66) 10,400 (1820) 1340 (827) 2270 (1640) 1070 (246) 64.6a (39.4)

Distance (m)

2.44 131 (41) 11,100 (2840) 2030a (1300) 2500 (2230) 1160a (408) 88.2a (70.4)

5.18 181 (80) 9940 (1380) 1140b (210) 2630 (1450) 980b (156) 43.7b (14.9)

7.92 170 (59) 10,200 (1520) 1110b (190) 2290 (585) 980b (161) 40.5b (10.1)

11.0 175 (89) 9680 (2090) 1040b (210) 2280 (650) 940b (163) 40.6b (9.4)

14.0 175 (47) 9830 (1690) 1050b (230) 2290 (1390) 970b (160) 41.1b (10.5)

17.1 194 (73) 10,600 (1760) 1120b (178) 2660 (1160) 1020b (172) 43.9b (13.3)

20.1 204 (138) 9690 (1870) 1070b (224) 2370 (810) 980b (166) 41.6b (12.2)

ANOVA (p > F)

Slurry 0.60 0.69 0.21 0.32 0.29 < 0.01

Distance 0.22 0.13 < 0.01 0.89 0.02 < 0.01

Slurry × distance 0.76 0.26 < 0.01 0.49 < 0.01 < 0.01

All values are in mg kg−1 . Within the same column, values followed by different letters are no manure
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phosphorus was absorbed by residue materials within the
4.9 m slurry application area (Table 8). No significant
changes in phosphorus concentrations were found in
the region downslope from the slurry application
area. The experimental results found for phosphorus
were also characteristic of measurements obtained
for copper and sulfur. Cermak et al. (2004) reported
that wheat residue adsorbed phosphorus with an
increase in sorption generally resulting from greater
residue solution/contact time.

Concentrations of zinc were greater on the slurry
than the no-slurry treatments at each sampling loca-
tion (Fig. 8). The 149 mg kg−1 of zinc found within
the slurry application area at a distance of 2.44 m
was significantly greater than values found at the
other sampling sites. The quantities of zinc adsorbed
by crop residue within the slurry application area
and downslope region were 1.61 and 0.940 g, re-
spectively (Table 8). Measurements obtained for
boron, calcium, and magnesium were also charac-
teristic of results found for zinc. Substantial quanti-
ties of boron, calcium, and magnesium were present
in both the slurry and simulated rainfall.

During the 48-h period prior to slurry application,
108 mm of rainfall was applied to the experimental
plots. The residue would have been at a near saturated
condition at the time of slurry application. Adsorption of
constituents contained in the slurry by the residue would
have been larger if slurry had not been applied when the
residue materials were at a near saturated condition.

3.3 Implications for Setback Calculations

No significant changes in soil concentrations of boron,
calcium, copper, iron, magnesium, manganese, potassi-
um, sodium, or sulfur with distance were identified
(Tables 4, 5, and 6). Additional quantities of chloride
(5.52 g), nitrate (12.1 g), and zinc (0.26 g) were mea-
sured in the soil downslope from the slurry application
area (Tables 7 and 8). In comparison, the quantities of
chloride, nitrate, and zinc transported in runoff from the
4.9–23.2 m distance were 7.04, 44.8, and 0.00 g,
respectively.

Concentrations of chloride, iron, manganese, nitro-
gen, and potassium within the residue materials did not
change significantly with distance following slurry

Fig. 7 Phosphorus concentrations of residue as affected by dis-
tance for conditions with and without slurry. Vertical bars are
standard errors. Concentration values with different letters for

conditions with or without slurry are significantly different at the
0.05 probability level based on the LSD test
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application (Tables 9 and 10). Additional quantities of
boron (0.126 g), calcium (130 g), copper (0.131 g),
magnesium (39.8 g), sulfur (4.24 g), and zinc (0.94 g)
were found within residue materials located downslope
from the area where slurry was applied (Tables 7 and 8).
The quantities of boron, calcium, copper, magnesium,
sulfur, and zinc transported in runoff from the 4.9–
23.2 m downslope distance were 0.215, 320, 0.038,
71.6, 57.7, and 0.00 g, respectively.

Dilution has been reported to be responsible for
the reduction in pollutant concentrations within
vegetative buffer areas (Bingham et al. 1980;
Overcash et al. 1981; Chaubey et al. 1994, 1995;
Edwards et al. 1996; Schmitt et al. 1999). In this
investigation, significant quantities of constituents
were measured in runoff, soil, and residue located
downslope from the swine application area. In
general, the quantity of constituents transported
downslope followed the trend: runoff > soil >
residue (Tables 7 and 8).

This study was conducted to measure the changes in
selected chemical constituents in runoff, soil, and crop
residue within a 48-h period following swine slurry

application. Additional quantities of chemical constitu-
ents would be transported in runoff during subsequent
rainfall events. The largest quantities of dissolved phos-
phorus in runoff have been measured during the first
rainfall events occurring following slurry application
(Gilley et al. 2007; Schuster et al. 2017).

4 Conclusions

Significant increases in concentrations of chloride, nitrate,
and zinc were measured in soil samples collected both
within and downslope of the slurry application area. Res-
idue materials both within and downslope from the slurry
application area contained significantly increased concen-
trations of boron, calcium, copper, magnesium, sulfur, and
zinc. The largest increases in constituent concentrations of
both soil and residue occurred within the slurry application
area. Contributions from runoff, soil, and residue should all
be considered when estimating downslope transport of
constituents contained in swine slurry. The downslope
transport of constituents contained in swine slurry followed
the trend: runoff> soil> residue.

Fig. 8 Zinc concentrations of residue as affected by distance for
conditions with and without slurry. Vertical bars are standard
errors. Concentration values with different letters for conditions

with or without slurry are significantly different at the 0.05 prob-
ability level based on the LSD test
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