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Abstract

Despite inherent complementarity, nuclear magnetic resonance spectroscopy (NMR) and mass 

spectrometry (MS) are routinely separately employed to characterize metabolomics samples. More 

troubling is the erroneous view that metabolomics is better served by exclusively utilizing MS. 

Instead, we demonstrate the importance of combining NMR and MS for metabolomics by using 

small chemical compound-treatments of Chlamydomonas reinhardtii as an illustrative example. A 

total of 102 metabolites were detected (82 by GC-MS, 20 by NMR and 22 by both techniques). 

Out of these 47 metabolites of interest were identified, where 14 metabolites were uniquely 

identified by NMR and 16 metabolites were uniquely identified by GC-MS. A total of 17 

metabolites were identified by both NMR and GC-MS. In general, metabolites identified by both 

techniques exhibited similar changes upon compound treatment. In effect, NMR identified key 

metabolites that were missed by MS and enhanced the overall coverage of the oxidative pentose 

phosphate pathway, Calvin cycle, tricarboxylic acid cycle and amino acid biosynthetic pathways 

that informed on pathway activity in central carbon metabolism leading to fatty acid and complex 

lipid synthesis. Our study emphasizes a prime advantage of combining multiple analytical 

techniques - an improved detection and annotation of metabolites.
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INTRODUCTION:

Metabolomics is experiencing exponential growth1 and has made substantial contributions to 

various research areas, such as nutrition, plant physiology, cellular metabolism, disease 

diagnosis and biomarker detection, and drug discovery and development.2–45–6 To date, 

metabolomics has primarily relied on the separate application of mass spectrometry (MS) or 

nuclear magnetic resonance spectroscopy (NMR), but there are also notable examples of the 

application of surface enhanced Raman spectroscopy and Fourier-transform infrared 

spectroscopy (FTIR).7 Nevertheless, the vast majority of recently published metabolomics 

studies are only making use of GC-MS or LC-MS despite prior contributions from NMR and 

other analytical techniques.8 In 2017, only 5% of metabolomics manuscripts published in 

PubMed described any form of a combined NMR and GC-MS approach to metabolomics 

(Figure 1). This may be explained, in part, by an erroneous belief that mass spectrometry is 

the optimal analytical technique for metabolomics. Unfortunately, this false perspective has 

begun to negatively impact the field, and will likely limit the coverage of the metabolome, 

potentially diminish the quality of research, and hamper progress. Instead, metabolomics 

should seek to maximize (not limit) the number of analytical techniques used to characterize 

the entirety of the metabolome. Moreover, the confidence and accuracy of metabolite 

identification and quantification is improved by the application of multiple analytical 

techniques. Thus, the goal of the field should be to accurately address scientific questions by 

striving for the broadest coverage of the metabolome; not by focusing on the type of 

instrumentation used.

NMR and MS are inherently complementary due to their distinct strengths and weaknesses. 

This, in turn, leads to different sets of metabolites that are uniquely detected by NMR and 
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MS. Accordingly, combining both NMR and MS will result in a greater coverage of the 

metabolome. Simplistically, NMR detects the most abundant metabolites and MS detects the 

metabolites that are readily ionizable. This arises from fundamental differences between 

NMR and MS. For example, NMR requires minimal sample handling, but chromatography 

is a necessary component of MS metabolomics because of the relatively narrow molecular-

weight distribution of the metabolome.9 Chromatography methods are plagued by non-

uniform metabolite derivatization, incomplete column recovery, decomposition during 

derivatization, ion-suppression due to the co-eluent matrix, and or misaligned retention times 

to name a few.10–14 Similarly, small molecules exhibit variable thermal stability that may 

lead to the loss of metabolites and the erroneous accumulation of degradation products at 

temperatures routinely used for gas chromatography (GC).15 Conversely, NMR lacks the 

sensitivity to detect metabolites in the sub-micromolar range (≥ 1 μM) and has limited 

spectral resolution that often results in peak overlap.16 MS also has a higher resolution (~103 

to 104) and dynamic range (~103 to 104) relative to NMR.

Ambiguous peak assignments are a common problem encountered by both NMR and MS. 

This issue is attributed to limitations in the availability of reference spectra, insufficient 

software and databases, and our incomplete knowledge of the metabolome. It is believed that 

nearly all metabolomics investigations have at least one misidentified or unidentified 

metabolite.17 Natural product chemistry has routinely employed protocols involving both 

NMR and MS data to identify novel compounds, but the application of this combinatorial 

approach has seen limited usage in metabolomics.18 Nevertheless, a few methods have 

recently been described that combine NMR and MS to assign metabolites and identify 

unknowns.19–21 Notably, the community has recognized that metabolomics needs to 

continue to move in this direction.8, 21–26 There have also been a few recent examples that 

highlight the utility and complementarity of combining 1D 1H NMR with direct injection or 

LC/GC-MS experiments for metabolomics.27–28 Most of these examples are methodology 

driven, are focused on improving statistical tools and modeling, or performed parallel, but 

separate, sample analysis.29–31 In this regards, NMR is routinely only used as a supplement 

to MS or in a secondary confirmatory role. Accordingly, the full impact of using NMR to 

characterize a metabolomics sample is missed.

Current estimates suggest the size of the human metabolome is approximately 150,000 

metabolites, but only upwards of a few hundred metabolites are typically identified in a 

given metabolomics study.32 Combining MS with NMR and other analytical techniques is 

necessary to move beyond this self-imposed limit.

To address this need, a global metabolomics study was performed in a platform-unbiased 

fashion to highlight the intrinsic benefits of combining NMR and MS. In this regard, NMR 

and MS data were collected on a similar set of samples without complicating existing 

workflows or requiring major protocol modifications. Accordingly, there were no serious 

experimental barriers encountered that would prevent the metabolomics community from 

adapting a combined NMR and MS approach as a standard for the field. As an illustrated 

example, the metabolome of Chlamydomonas reinhardtii grown in tris-acetate phosphate 

(TAP) media (13C2-acetate for NMR) was characterized by NMR and GC-MS. The cells 

were also treated with two lipid accumulation modulators (WD30030 and WD10784) as 
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described by Wase et al.33 The aqueous-extracted metabolomes from treated and untreated 

cells were then compared to identify metabolic variations due to the compound treatments. 

The eRah package was used to perform peak picking, retention time alignment and 

metabolite library search for the GC-MS dataset.33–34 Similarly, NMRpipe35 and 

NMRviewJ36 were used for processing and peak picking the NMR dataset and metabolite 

assignments were performed using spectral databases.37 A schematic overview of the 

workflow is shown in Figure 2A. Details of data handling, processing and analyses are 

available as supplemental information.

The complete 2D 1H-13C HSQC NMR spectra obtained from C. reinhardtii metabolome 

extracts were used for non-supervised multivariate analyses to generate a principal 

component analyses (PCA) scores plot with an associated dendrogram (Figure S-1A). 

Statistical models were generated after the data was processed as a matrix to be standard 

normal variate (SNV) normalized and unit variance scaled. The WD30030 and WD10784 

treated cells formed distinct clusters separate from the untreated control. The dendrogram 

generated from the Mahalanobis distances between each point in the PCA scores plot and 

the resulting p-value between each node indicates a statistically significant (p < 0.05) 

separation between each group. Similarly, metabolite assignments from the GC-MS spectral 

dataset were obtained from the eRah package and identified using the GOLM database.38 

The assigned metabolite peak areas were then imported as a matrix into MVAPACK to 

obtain a comparable PCA scores plot and dendrogram as described above (Figure S-1B).39 

A similar statistically significant group separation between the WD30030/WD10784 treated 

cells and the untreated controls was obtained. Importantly, the NMR and GC-MS datasets 

were successfully combined to generate a comparable multiblock (MB)-PCA model with a 

corresponding dendrogram (Figure 2B).30 The MB-PCA model provides a single statistical 

model for both datasets. In this manner, key metabolite differences between the treated and 

untreated controls can be identified irrespective of the analytical method.

Overall, 82 compounds were identified by GC-MS alone; 20 by NMR alone, and 22 were 

common to both methods (Tables S-1 to S-3). Of these 102 detected metabolites, a total of 

47 metabolites of interest were perturbed upon compound treatment (Table S-4). Thus, a 

greater coverage of compound-induced changes in the C. reinhardtii metabolome was 

obtained by combining the metabolite assignments from the NMR and GC-MS datasets. 

Specifically, 14 unique metabolites were identified from the NMR analysis of 13C2-acetate 

labeled C. reinhardtii cells that were significantly perturbed upon treatment with either 

WD30030/WD10784. Metabolites were assigned using the Biological Magnetic Resonance 

Bank (BMRB) metabolomics database.40 Similarly, 16 unique metabolites were identified 

from the GC-MS spectra using the GOLM database. Furthermore, an additional 17 

metabolites were identified by both NMR and GC-MS. In total, the metabolites comprise the 

following metabolic pathways: oxidative pentose phosphate pathway, Calvin cycle, 

tricarboxylic acid cycle and amino acid biosynthetic pathways. A summary of the C. 
reinhardtii metabolic changes of interest resulting from treatment with WD30030/WD10784 

is shown in Figure 3.

NMR and GC-MS identified nine glycolytic intermediates, where fructose, glycerol and 

pyruvate were uniquely identified by NMR and fructose-6-phosphate was unique to GC-MS. 
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All 20 amino acids were detected from the combined datasets, but asparagine, cysteine, 

histidine, serine and tryptophan were only observed by GC-MS. Consequently, glycine, 

lysine, methionine, and valine were unique to NMR. Tricarboxylic acid cycle and Calvin 

cycle metabolites exhibited the most variation. Acetate, isocitrate, ketoglutarate, malate and 

succinate were identified by NMR, but fumarate was limited to GC-MS. Ribulose and its 

phosphate derivatives were exclusively assigned through GC-MS. Nucleotide and nucleoside 

analogs were the metabolite group consistently observed by both techniques. Seven out of 

the ten metabolites, 2-deoxy adenosine, adenosine, guanosine, hypoxanthine, inosine, 

thymine, and xanthosine were observed by both NMR and GC-MS. Cytosine and uridine 

were uniquely identified by NMR; whereas, uracil was only observed by GC-MS. A 

complete list of metabolites identified by NMR and GC are provided in the supplemental 

information (Tables S-1 to S-4).

The complete set of 22 metabolites identified by both NMR and GC-MS including the 17 

metabolites of interest depicted in Figure 3 were further evaluated for overall consistency 

between the two methods. A correlation between the 22 common metabolites was evaluated 

using Pearson correlation within the R environment (http://www.r-project.org) and the 

resulting comparison is plotted in Figure 4. While there is significant scatter, the overall 

trend is quite similar. It is important to note that only relative changes in metabolite 

concentrations were compared. Furthermore, the GC-MS metabolomics analysis was 

untargeted and lacked any metabolite-specific calibration. Conversely, the absolute 

quantitation of metabolite concentration changes is an inherent strength of NMR. But, NMR 

was only used to monitor the relative changes in metabolites derived from 13C2-acetate; 

whereas, GC-MS captured total metabolite changes. Differences in the number of sample 

processing steps may also impart unintended variations. Metabolite derivatization has been 

identified as a major source of sample variation.10, 12, 14 Similarly, variable metabolite 

stability during GC-MS data acquisition is another potential source of error.15 Finally, a 

limited number of biological replicates will also contribute to a larger variance. We want to 

emphasize that given these unavoidable discrepancies, and the limited number of sample 

replicates, the observed correlation between the relative changes in metabolite concentration 

is quite notable. Importantly, the overall trend (or direction) in metabolite concentration 

change is preserved for the majority of metabolites despite the scatter in the magnitude of 

these changes. Furthermore, a simple comparison of metabolite trends is probably the limit 

of the data given the distinct and numerous sources of variance.

A pair-wise comparison between the 22 individual metabolites identified by both NMR and 

GC-MS are plotted as line curves in Figure S2. Again, an acceptable level of consistency is 

achieved in the pair-wise comparisons. A general agreement was also observed in the 

relative changes between both compound treatments. Any observed discrepancies between 

metabolite trends may be explained by the fact that GC-MS is capturing the total metabolite 

change while NMR is only capturing the changes in metabolites derived from 13C2-acetate. 

In this regards, both measurements are likely correct, but are simply observing different 

aspects of the metabolome. Again, this highlights the inherent strength of combining both 

NMR and MS. Conversely, if GC-MS observes a significantly lower metabolite 

concentration relative to NMR, this is a likely an error in the GC-MS data due to a limited 

thermal stability of the metabolite, variations in derivatization efficiency, and the multi-peak 
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phenomena.12–15 Additionally, given the fact that NMR routinely provides highly accurate 

sample quantitation relative to MS, NMR is likely to provide the correct metabolite change 

when the methods disagree (Figure S3).41

Extensive, nearly complete, coverage of key metabolic pathways associated with lipid 

accumulation was only achieved by combining NMR and GC-MS data. In effect, the NMR 

data filled-in the metabolites that were missed by GC-MS. Importantly, the broader coverage 

of the C. reinhardtii metabolome was able to provide a comprehensive view of the algae’s 

response to a compound treatment. This level of detail is essential to further our 

understanding of the mechanism of action of drug-leads, of drug resistance, and of disease 

development and progression, among numerous other potential utilities. Achieving this level 

of coverage of the metabolome requires employing multiple analytical techniques. This 

viewpoint is consistent with some prior observations.8, 21–26 For example, Chen et al. noted 

an improvement in biomarker identification by combining 1D 1H NMR and GC-MS for the 

analysis of urine from patients with bipolar disorder.42 Another recent example highlighted 

the use of 1D 1H NMR and GC-MS for the analysis of bronchial wash fluid to investigate 

responsiveness to air pollution.43 Barding et al. have highlighted similar improvements in 

coverage of the metabolome in molecular response of rice to stress.44 These studies were 

able to combine multiple datasets to obtain a robust set of biomarkers, which further 

emphasizes the benefit of combining multiple analytical platforms for metabolomics. These 

are other recent examples where both NMR and GC-MS metabolomics datasets have been 

integrated for applications in biomarker identification, food chemistry and plant physiology.
45–48

To date, the majority of metabolomics studies have been self-limited to a single analytical 

platform (Figure 1). This is despite the fact that NMR and MS (and other analytical 

techniques) are highly complementary. Furthermore, existing workflows (Figure 2A) can 

easily accommodate the inclusion of both techniques. Consequently, there is little to no 

barrier to the broad adoption by the scientific community of a multi-analytical approach to 

metabolomics. Importantly and as clearly demonstrated herein, combining NMR and MS 

improves the coverage of the metabolome, increases the accuracy of metabolite assignments,
19–21 and provides redundant validation of metabolite changes. In fact, our results 

demonstrate a limited overlap in the metabolites identified by both NMR and GC-MS. But, 

most metabolites in common did exhibit consistent trends in relative concentration changes, 

showcasing the robustness of the combined approach. Our results provide clear evidence that 

both NMR and MS are equally valuable and necessary for metabolomics studies; and that 

combining multiple analytical sources is essential to the future of metabolomics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A summary of metabolomics publications in PubMed that only refer to NMR (yellow), to 

GC-MS (blue) or to both GC-MS and NMR (grey).
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Figure 2. 
(A) A workflow schematic showing the key steps in the combined NMR and GC-MS 

analysis of the C. reinhardtii metabolome. Three biological replicates were prepared for each 

group consisting of the untreated controls, WD30030 treated cells, and WD10784 treated 

cells. A GC-MS spectrum and a 2D 1H-13C HSQC NMR spectrum were collected for each 

biological replicate. (B) Multiblock PCA scores plot generated from the combined GC-MS 

and 2D 1H-13C HSQC NMR datasets illustrating a distinct clustering for untreated controls 

(■) and the WD30030 (■) and WD10784 (■) treated cells. Three biological replicates are 

displayed per group, where each data point represents the combined GC-MS and 2D 1H-13C 

HSQC NMR datasets plotted in PC-space. The ellipses represent a 95% confidence limit of 

the normal distribution of each cluster. The associated dendrogram was derived from the 

PCA scores plot and each node is annotated with a Mahalanobis distance-based p-value. The 

separation between untreated controls and WD30030 (p-value 2.5 ×10−3) and WD10784 (p-

value 8.9 ×10−4), respectfully, is considered statistically significant (p < 0.05). The color 

scheme for the dendrogram is the same as the scores plot.
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Figure 3. 
Metabolic pathway summarizing the coverage of the C. reinhardtii metabolome (metabolites 

of interest) from the combined application of NMR and GC-MS. Metabolites that were only 

identified by NMR are colored blue. Metabolites that were only identified by GC-MS are 

colored red. Metabolites identified by both methods are colored black, and metabolites not 

identified are colored grey. The embedded Venn diagram identifies the total number of 

metabolites of interest within these metabolic pathways that were identified by either NMR, 

by GC-MS or by both techniques.
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Figure 4. 
A comparison of the 22 relative metabolite concentration changes detected by NMR and 

GC-MS. Metabolite changes resulting from treatment with WD30030 and WD10784 are 

colored green or blue, respectively. The regression line fitted to the data exhibited a 

correlation coefficient of R2 0.55 and confidence interval with a p-value < 0.001.
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