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Abstract

Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate 

inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric 

and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA 

composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our 

studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing 

compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed 

hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed 

model we observed no significant difference in diet consumption between the groups. In contrast, 

the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in 

mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on 

the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in 

these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and 

docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that 

mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary 

myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular 

hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these 
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results support PUFA dietary regulation of hepatic pathology and inflammation with implications 

for enteral feeding regulation of steatosis and other hepatic lesions.
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1 Introduction

Omega-6 (ω-6) and omega-3 (ω-3) polyunsaturated fatty acids (PUFA) are essential fatty 

acids (FA), which cannot be interconverted in humans due to lack of ω-3 desaturase.[1] 

Besides their role in energy storage and production, PUFA are important constituents of 

biological membranes and are precursors to prostaglandin and pro-resolving lipid mediator 

pathways.[2],[3] Many lipid mediators derived from ω-6 PUFA have pro-inflammatory 

functions,[4] whereas; those synthesized from ω-3 PUFAs have anti-inflammatory 

properties.[5, 6] Both ω-3 and ω-6 PUFA are metabolized by the same enzymes resulting in 

signaling molecules with opposing bioactivities. Studies have suggested that humans 

evolved on a diet containing approximately a 1:1 ratio of ω-6:ω-3 PUFA[7]; however, 

current western diets has a high ω-6:ω-3 ratio.[8] A diet high in ω-6 PUFAs, such as linoleic 

acid (LA), results in decreased tissue levels of ω-3 long-chain (Lc) PUFAs, including 

eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)[9], and a heightened risk of 

chronic inflammatory disease processes.[10] In contrast, a diet containing a low ω-6:ω-3 

PUFA ratio, or one that is supplemented with Lc ω-3 PUFAs, reduces risk factors for 

chronic inflammatory diseases, including cardiovascular disease,[11, 12] cancer,[13, 14] and 

obesity.[15, 16] Dietary Lc ω-3 PUFA can also reduce hepatic inflammation, fibrosis, and 

steatosis in non-alcoholic fatty liver diseases (NAFLD), and non-alcoholic steatohepatitis 

(NASH).[17, 18]

Although hepatic lipid storage is normal, excessive intrahepatic lipid accumulation (>5.6% 

of liver weight) [19] is associated with steatosis, inflammation and cardiometabolic 

syndromes. Several mechanisms are involved in the accumulation of intrahepatic lipids, 

including increased accumulation of triglycerides in the liver, increased de novo lipogenesis, 

and/or reduced clearance and obesity.[20] Approximately 30% of Americans have a fatty 

liver, [19] and this is increased up to 75% amongst obese individuals.[21] Further, hepatic 

steatosis occurs rapidly with excess calorie consumption, independent of dietary 

composition.[22] In contrast, in humans a hypocaloric diet reduces steatosis,[23, 24] 

suggesting that it is crucial to differentiate between the effects mediated by total caloric 

intake versus obesity to understand the role of dietary composition in the modulation of the 

hepatic microenvironment. The majority of studies on hepatic steatosis have used high-fat 

diets (60% of calories from saturated fatty acids (SFAs)) and overfeeding to provide an 

animal model of NAFLD.[25, 26] To date, little is known about the effects of ω-6 and ω-3 

PUFA dietary composition, independent of caloric intake on the hepatic microenvironment.

Mature myeloid cells are terminally differentiated and continuously renewed by the 

proliferation of committed hematopoietic precursors, such that myelopoiesis is critical to 
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expand and replenish the myeloid cell pool. Numerous pathologic conditions stimulate 

myelopoiesis including, infections, autoimmune and inflammatory conditions, neoplasia and 

obesity in association with neutrophilia, splenomegaly and multifocal, hepatic 

extramedullary myelopoiesis (EMM), i.e. the formation of myeloid tissue outside of the 

bone marrow.[27] Hepatic EMM is normal during fetal and early development;[28, 29] 

however, EMM in adult tissues is associated with pathological conditions. Hepatocyte 

apoptosis indicates liver injury and found significantly increased in patients with NASH.[30] 

High fat diets have also been reported to increase the osmotic fragility of red blood cell 

(RBC) membranes resulting in decreased RBC counts and hemoglobin concentration.[31]

In the present study, we used an isocaloric, isolipidic liquid diet combined with pair feeding 

that allows for controlled dietary caloric intake and limited weight changes between groups. 

Using this model, we examined the effects of dietary ω-6 and ω-3 PUFA composition on 

hepatic pathobiology and report that dietary PUFA composition regulates hepatic steatosis, 

proliferation, apoptosis and EMM using a dietary model containing comparatively lower fat 

calories as a percent of total relative to previously reported studies.[25, 26]

2. Materials and Methods

2.1. Animals and Pair-fed Model

Female BALB/c mice (6 weeks old) purchased from Charles River Laboratories were 

housed in micro-isolators in groups of five mice per cage, under standard conditions of 

temperature and humidity, with a 12 h light-dark cycle. The micro-isolators were attached to 

high efficiency particulate air (HEPA)-filtered ventilation blowers for clean air. The animal 

housing facility was maintained as a specific pathogen free (SPF) area. The Institutional 

Animal Care and Use Committee at the University of Nebraska Medical Center approved the 

animal protocol for the study.

After 2 weeks of acclimation (Fig. 1A) to each diet, mice were divided at random into two 

dietary groups (n=20) on the basis of the experimental liquid diet (ω-6 or ω-3 diet). Our 

diets were isocaloric and isolipidic and had identical protein, fiber, and micronutrient 

contents. The ω-6 diet was the Lieber-DeCarli control diet (Dyets # 710027) containing 28.4 

gm/L olive oil, while the ω-3 diet was customized by using the base diet (Dyets # 710166) 

and adding 8.4 gm/L olive oil and 20 gm/L of encapsulated fish oil (NutriGold Triglyceride 

Omega-3 Gold capsules; Lot# 0081-3180-2) (Table 1). Both liquid diets provided 1.0 Kcal 

energy per ml of diet and equal calories from macronutrients (35% derived from fat, 47% 

from carbohydrate, and 18% derived from protein). The ω-6 and ω-3 diets differed primarily 

by the absence or presence of Lc ω-3 PUFA from fish oil and ω-6 PUFA from olive oil 

respectively. Omega-3 capsules and Lieber-DeCarli powder diets were stored at 4°C. Diets 

were prepared and delivered every 24-26 hours and daily intake was monitored. Ad libitum 
access to the liquid diets was provided for the first 5 days to acclimatize the mice to the 

diets. From day 6, the ω-6 diet group mice were pair-fed based on mean consumption of the 

ω-3 diet group from the previous day and this was continued throughout the study for 10 or 

20 weeks. Body weights were recorded twice a week. At the end of the experiment, blood 

was collected without fasting prior to the mice being euthanized and hematological 

parameters, such as total white blood cells count (WBC) count, red blood cells (RBC) count, 
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hemoglobin level, hematocrit and mean corpuscular volume (MCV) were determined by vet 

ABC animal blood counter (Scil animal care company, Grayslake, IL). Livers and abdominal 

adipose tissue were removed and weighed and the livers processed as described below. In 

addition, a limited number of control studies were undertaken with age matched, chow fed 

(#7912, Teklad) mice as a baseline control.

2.2. Fatty Acid Analysis

Portions of liver tissues and plasma samples from the diet fed mice for 10 weeks were snap 

frozen and stored at -80°C for FA analysis. Portions of ready-to-use ω-3 and ω-6 diets were 

also frozen until needed for lipid extraction. Omega-3 capsules were stored at 4°C and used 

directly for FA analysis. Total lipid extraction from tissues and diets were undertaken using 

antioxidant β-hydroxy-toluene (0.05%, wt/vol) as previously described.[32, 33] 

Heptadecanoic and nonadecanoic acid (100 μg each) were added to all samples to estimate 

the recovery of FA. Complex lipids were hydrolyzed by adding 0.5 ml of methanol 

containing 1% (wt/vol) sulfuric acid and 0.25 ml of toluene, and then were incubated at 

60°C overnight. Following incubation, 1.25 ml of water containing sodium chloride (5%, wt/

vol) was added and esters were extracted using hexane (2 × 1.25 ml per sample). The hexane 

layer was washed using 1 ml of water containing potassium bicarbonate (2%, wt/vol), and 

dried over anhydrous sodium sulfate. The solvent was removed under a stream of nitrogen 

and the FA methyl esters were analyzed by gas chromatography-mass spectrometry (GC-

MS) using an Agilent 6890 series gas chromatograph equipped with a 5873 mass-selective 

detector. For assessment of sterols, 100 μg of 5α-cholestane was added to samples as an 

internal standard. Sterols were separated and detected by GC-MS using a DB-17ms column. 

FA concentration was analyzed as μg/μl or μg/mg of the samples, analyzed, and compared 

between the diets and tissues from ω-3 and ω-6 diet fed mice

2.3. Histology and immunohistochemistry (IHC)

Liver tissues were fixed in zinc fixative for 24-48 hours, and transferred to 70% ethanol, 

prior to paraffin embedding, and sectioned at 4-6 μm. For Oil Red O (ORO) staining, fresh 

liver tissues were embedded in optimal cutting temperature (O.C.T) compound medium 

(Tissue-Tek #4583, Sakura Finetek, CA U.S.A) and stored at -80°C until sectioned and 

stained. Sections were stained with hematoxylin and eosin (H & E), examined under light 

microscopy using a Zeiss Axioplan-2 microscope with a HRc camera, and analyzed using 

Zeiss AxioVision Rel 4.8 software. Two persons examined the sections as “blinded” group 

assignments and an experienced pathologist validated the results. Steatosis was examined in 

H & E stained sections, then further confirmed and quantified by counting ORO stained lipid 

droplets in hepatocytes. Lipid droplets the size of a hepatic nucleus or larger were 

enumerated to analyze macro-vesicular steatosis, whereas smaller lipid droplets were 

considered for micro-vesicular steatosis analysis. To quantify hepatic steatosis, the number 

of lipid droplets per 1000× magnification field were counted for 10 random fields for each 

mouse liver. EMM was assessed based on foci of immature inflammatory cells and their 

nuclear morphology in H & E stained sections. The number of foci per field and the number 

of inflammatory cells per focus were counted in 10 fields at 200× magnification. Biliary 

duct size and the area of biliary epithelium were measured in the biliary ducts present in 10 

random fields at 200× magnification using Image-J software. Hepatic glycogen deposition 
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was measured using Periodic Acid-Schiff (PAS) staining on paraffin embedded liver tissue 

sections. Magenta color PAS positive hepatocytes were confirmed as glycogen deposited 

hepatocytes by comparing glycogen degradation in a serial section treated with PAS-diastase 

(PAS-digest). The average number of PAS-positive hepatocytes were counted in 10 fields of 

lobular regions (200×).

Rabbit polyclonal antibody to CD45 (ab10558 Abcam Inc, Cambridge, MA) and rabbit 

monoclonal antibody to Ki67 (ab16667, Abcam Inc.) were used to detect leukocytes and 

proliferation markers respectively. For IHC staining, deparaffinized and rehydrated liver 

sections were steamed in preheated sodium citrate antigen retrieval buffer (pH 6.0) for 20 

minutes using a steamer (HS1000, Black and Decker, Miramar, Florida), slides were cooled, 

washed 3 times in TRIS-buffered saline, pH 7.6 (TBS) containing tween-20 (TBST), 

endogenous peroxidase blocked by hydrogen peroxide, washed in TBST and blocked with 

5% goat serum in TBST (ab7481; Abcam Inc.) for 1 hour at room temperature (RT). 

Primary antibodies were diluted in antibody diluent (BD559148; BD), and incubated at 4°C 

overnight. For negative controls, serial sections were incubated in the diluent without the 

primary antibody and all other staining aspects undertaken. Sections were washed 3 times 

with TBST and incubated in Signal Stain Boost IHC detection reagent (HRP, Rabbit 8114S 

Cell Signaling Technology; Danvers, MA.) for 30 minutes at RT in a humid chamber. The 

washed sections were incubated with DAB chromogen (BD550880; Becton Dickinson, New 

Jersey) until a mild brown color was detected. Sections were briefly dipped in a hematoxylin 

solution (MHS32; Sigma-Aldrich, St. Louis, MO) followed by 0.1% sodium bicarbonate for 

counter staining. Images were captured on a Zeiss Axioplan-2 microscope as described 

above. The number of CD45+ cells in each cluster, and the number of clusters of CD45+ 

cells per 100× field were counted in 10 random fields per sample (n=5).

2.4. TUNEL Labeling

The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick 

end labeling (TUNEL) assay was performed on deparaffinized liver sections according to the 

manufacturer's instructions (Roche, Indianapolis, IN). The label solution without TdT was 

used as a negative control and liver sections with known tumor metastases were used as 

positive controls. Slides were cured overnight, in the dark, with ProLong® Diamond 

Antifade Mountant with DAPI (P36971; Thermo-Fisher, Grand Island, NY). Fluorescent 

images were captured on a Zeiss LSM-710 confocal microscope at 630× magnification, and 

the images were processed using the Zeiss Zen 2012 stitching software and merged into a 

single image. The number of TUNEL positive nuclei and DAPI positive hepatic nuclei per 

field at 630× magnification were counted in 10 random fields to calculate the number of 

apoptotic nuclei and relative percentage of apoptotic hepatocytes.

2.5. Protein extraction of hepatic lysate and western blotting

Freshly isolated liver sections were collected in ice-cold Tissue Protein Extraction Reagent 

(T-PER™; #77510; Thermo-Scientific, Grand Island, NY) containing complete™ ULTRA 

Tablets, EDTA-free, Protease Inhibitor Cocktail (#5892953001, Roche, Indianapolis, IN) 

and PhosSTOP™ phosphatase inhibitor cocktail (#04906837001, Roche, Indianapolis, IN), 

and then homogenized using tissue homogenizer with disposable tips (Omni TH; Omni 
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International, Kennesaw, GA). The homogenized tissues were centrifuged at 10,000g for 10 

minutes at 4°C. Protein concentrations of the whole tissue extracts were determined 

according to the manufactur's protocol (Pierce™ BCA Protein Assay Kit; #23227, Thermo-

Fisher, Grand Island, NY). For Western blotting, whole cell protein samples were separated 

by SDS PAGE using a 4-15% Mini-PROTEAN TGX Precast Gel (456-1084, Bio-Rad), and 

blotted using the Trans-Blot® Turbo™ Mini PVDF Transfer Packs (1704156, Bio-Rad) 

Trans-Blot® Turbo™ Transfer System (Bio-Rad, Hercules, California). The blotted 

membranes were blocked using 5% BSA in TBST for 1 hour at RT, followed by incubation 

in diluted primary antibodies anti-NF-kB p65 [E379] (ab32536), anti-beta Actin (ab8227) 

overnight at 4°C. After washing 3 times, blots were incubated with the secondary antibody 

[goat anti-rabbit IgG H&L chain, HRP] (ab6721, Abcam Inc.) for 1 hr at RT. All the 

antibodies were purchased from Abcam Inc. The protein bands were examined by using 

SuperSignal™ West Pico Chemiluminescent Substrate (34078, Thermo-Fisher, Grand 

Island, NY). Blots were exposed and digital images were acquired using a myECL™ 

Imager, and relative protein quantities were determined by using myImageAnalysis™ 

Software (62237, Thermo-Fisher, Grand Island, NY).

2.6 Flow cytometry and colony forming units-granulocyte, macrophage (CFU-GM)

Freshly isolated livers were minced into small pieces, treated with collagenase-IV 

(17104-019, Gibco) and DNAse I (D5025, Sigma), and filtered through cell dissociation 

sieve to prepare a single cell suspension. Hepatic leukocytes (WBCs) were isolated using 

mouse cell separation media, Lympholyte M (CL5035, Cedarlane). Then the total hepatic 

WBC count was analyzed using vet ABC animal blood counter and data presented as WBC 

count/gram of the liver. For flow cytometry, isolated leukocytes were stained with the 

indicated antibodies for 30 minutes at 4°C. The antibodies used were anti-CD45-V450 

(clone 30-F11, BD Pharmingen) anti-CD201-APC (clone ebio1560, ebioscience) and anti-

CD27-BV650 (clone LG3A10, BD Pharmingen). Flow cytometry was performed on BD 

LSRFortessa ×50 platforms and results were analysed using FlowJo software version 9.9.5 

(TreeStar). For CFU-GM assay, 105 cells were cultured in 1.1 ml of methylcellulose-based 

medium for myeloid progenitor cells (MethoCult™ GF M3534, STEM cell technologies) as 

per company protocol. Colonies of at least 50 cells were scored for analysis of CFU-GM.

2.7. Statistical Analysis

Results were expressed as mean +/- standard error of mean (SEM) for animal weights, liver 

weight, liver weight/body weight, abdominal fat weight, abdominal fat weight/body weight, 

fatty acid levels, histology and IHC quantification values. Data from the two groups was 

compared by Student's t-test for independent samples. Plots for change in body weights were 

compared by repeated measures test. All graphs were plotted using Sigma Plot software. All 

data was analyzed using SPSS. Data differing by p≤0.05 were considered to be significant.

3. Results

3.1. Pair-feeding, food consumption and body weight

During the initial 5-day ad libitum diet acclimation period (Fig. 1A), mice on the ω-6 diet 

consumed more feed than those in the ω-3-diet group (p<0.05). Therefore, when pair-
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feeding was initiated on day 6, the average amount of ω-3 diet consumed was used as the 

baseline for the ω-6 diet (Fig. 1B). Studies of changes in body weight over time with the 

isocaloric and isolipidic diets using a repeated measures test revealed significant increases in 

weight in the mice (n=20/group) given the ω-6 diets (Fig. 1C). In part due to the increased 

consumption of the ω-6 diet during a brief acclimation period a significant difference in 

body weight was observed between the groups on day 5 (Fig. 1D). Similarly, at the pair-

feeding mid points (day 20, and day 40) and at autopsy on day 69 (Fig. 1D) significant 

differences in body weights were also observed. Consistent with the higher body weights at 

autopsy (20 weeks) mice fed the ω-6 diet had significantly more abdominal fat (Fig. 1E) and 

abdominal fat weight relative to the body weight (Fig. 1F) as compared to ω-3 diet fed mice. 

On gross examination of the livers from the ω-3 (Fig. 1G) and ω-6 diet fed mice (Fig. 1H), 

livers from ω-6 diet fed mice were lighter in color (pink) and significantly smaller than those 

from the ω-3 fed mice, which were red-brown in color (Fig. 1H). In both groups liver 

weights (Fig. 1I) and liver:body weight ratios (Fig. 1J) were significantly lower in mice fed 

the ω-6 diet.

3.2. Effect of PUFA diet composition on the lipid profile of plasma and liver

The lipid composition of the plasma and livers were analyzed following autopsy at 10 weeks 

post dietary initiation (Table-2). These studies revealed an 8-fold higher level of AA (0.64 

μg/μl) in the plasma of ω-6 fed mice. However, as the ω-6 diet contained no AA (C20:4); the 

AA is of a metabolic origin from the ω-6 PUFA precursor, linoleic acid (C18:2), which is 

contained in both diets. Both of the diets and the plasma of mice on these diets had a 

comparable level of C18:2, but AA product:precursor ratio (C20:4/C18:2) was 5.8 fold 

higher in the plasma of ω-6 diet fed mice. Further, there was a 2.8-fold higher level of total 

ω-6 FAs in the plasma of ω-6 diet fed mice compared to ω-3 diet fed mice (p<0.05); even 

though both of the diets had comparable amounts of total ω-6 PUFAs. In contrast to ω-6 FA 

levels, the ω-3 PUFA, EPA was not detected in the plasma or livers of mice consuming the 

ω-6-diet. Similarly, levels of the ω-3 PUFA, DHA were 2.8-fold lower (0.05 vs. 0.14 μg/μl) 

in the plasma of mice fed the ω-6 diet (p<0.05). There were also 1.9-fold and 2.4-fold 

increase in the level of linoleic acid and AA respectively in the liver, resulting in a 

significantly higher level of total ω-6 PUFA in livers of ω-6 diet fed mice as compared to 

ω-3 diet fed mice (p<0.05). However, the C20:4:C18:2 FA ratio was not significantly 

different between the livers of ω-6 vs. ω-3 diet fed mice. Consistent with the plasma EPA 

levels, EPA was not detected in the livers of mice fed the ω-6 diet and the DHA content was 

significantly (11-fold) lower (1.5 vs. 16.5 μg/mg), compared to mice fed the ω-3 diet 

(p<0.05). We note that the mono unsaturated fatty acid (MUFA) content was significantly 

higher in the liver, but not in plasma of mice fed the ω-6 diet. Table 2 also has an analysis of 

the FA composition of the fish oil used in the diet, which contained 83.2% of total FAs in the 

form of ω-3 FA (from C20:5 and C22:6) resulting in a ω-6:ω-3 FA ratio of 0.7:1 in the ω-3 

diet compared to 21:1 in the ω-6 diet. The ω-6: ω-3 FA ratios of the plasma was similar to 

the dietary ratio.

3.3. Effect of dietary ω-3:ω-6 PUFA hepatic histopathology and steatosis

Histopathologic analysis of H & E stained liver sections from mice fed the different diets for 

10 weeks (Fig. 2A) revealed significant effects on hepatocyte steatosis. The livers from mice 
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fed the ω-3 diet had occasional hepatocyte lipid microvacuoles; whereas mice on the ω-6 

diet had an increase in macro- and micro-vesicular steatosis in their hepatocytes (Fig. 2A). 

Steatosis was quantified by counting the ORO positive fat droplets that were about the size 

of a hepatic nucleus. There was a 7-fold increase in macrovesicular steatosis in mice fed the 

ω-6 diet, compared to the ω-3 diet fed mice (p<0.05) (Fig. 2B and 2C). Moreover, an 

increase in microvesicular steatosis was observed in the livers of ω-6 diet fed mice (Fig. 

2C). This suggested that the increase in the dietary hepatic ω-6:ω-3 ratio in mice receiving 

the ω-6 diet (Table 2) enhanced hepatic macro-steatosis, independent of total caloric 

consumption.

Hepatic glycogen storage was assessed by the histological analysis of PAS (+/- diastase 

digestion) stained liver sections of mice fed the diets for 20 weeks (Fig. 3). The result 

showed that livers from mice fed the ω-3 diet had significant glycogen storage in 

hepatocytes around portal triad and central vein of hepatic lobules, which was absent in mice 

fed the ω-6 diet (Fig. 3A-3C). The presence of glycogen deposits in PAS positive cells was 

confirmed by a comparison to a serial section that underwent glycogen digestion (Fig. 3C). 

Thus, the results indicate that the dietary ω-6:ω-3 FA ratio might modulate energy storage 

and metabolism pathways such that increasing consumption of a diet with a high ω-6:ω-3 

FA ratio enhances hepatic fat storage whereas consumption of Lc ω-3 FA reduces fat storage 

but enhances energy storage in the form of glycogen. Collectively, the increase in the dietary 

ω-6:ω-3 FA ratio results in macrosteatosis, and decreased glycogen deposition in lobular 

hepatocytes. We also undertook a histological analysis of liver tissue from mice fed a chow 

control diet using H & E and ORO stained sections (Fig. S1 (A-C)). The histological 

features of livers from chow controls were distinct from the mice receiving liquid diets and 

had intermediate level of steatosis (more than the ω-3 group but less than the ω-6 group. 

Also, there were a few microgranulomas in the liver from chow fed mice but the size, 

number and features of those immune cells were distinct than what we reported as EMM in 

this study (Fig. S1B). Thus, mice in a chow control group were not used in further analysis 

as their dietary composition had multiple differences from our experimental liquid diets 

including lipid types, percentages, protein and carbohydrate levels and calories consumption.

The total WBC count of blood and liver was determined. There was no significant difference 

in the peripheral blood WBC count between the dietary groups, i.e.; 11.3 × 106 +/- 1.1 × 106 

and 9.3 × 106 +/- 1.0 ×106 WBC cells per ml of blood in mice from ω-3 and ω-6 diet groups 

respectively (n=20). In contrast, mice fed ω-6 diet had a significant (10-fold) increase in the 

number of WBC cells per gram of liver (7.9 × 106 +/- 1.3 × 106) compared to ω-3 diet fed 

mice (0.8 × 106 +/- 0.5 × 106). We also evaluated hepatic inflammatory cell infiltration by H 

& E and anti-CD45 staining from mice receiving the diets for 10 and 20 weeks (Fig 4A-4G). 

The differentiated inflammatory cells were observed in cellular clusters composed of 

immature myeloid cells with variable size and nuclear morphology (Fig. 4A), supporting 

hepatic EMM. Mice given the ω-6 diet for 10 weeks had a significant (9-fold) increase in 

EMM foci (0.9+/-0.2 per 100× magnified field), compared to ω-3 diet fed mice (Fig. 4A and 

4B). Similarly, mice given the ω-6 diet for 20 weeks had an inflammatory appearance, with 

significantly higher number of EMM foci (2-fold) compared to ω-3 diet fed mice 

(0.2+/-0.06 per 100× magnified field) (Fig. 4B). However, there was no significant 

difference in the number of EMM foci between the 10- or 20-week diet fed groups (Fig. 4B). 

Khadge et al. Page 8

J Nutr Biochem. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further, the EMM foci in ω-6 fed mice were larger and located adjacent to the central veins, 

whereas the EMM foci in ω-3 diet fed animals were smaller and located randomly in the 

hepatic sinusoids (Fig. 4A). The presence of inflammatory cells (individually distributed or 

in clusters) was confirmed by staining the liver sections with the anti-CD45 antibody (Fig. 

4C - 4G). The ω-6 diet fed mice had significantly higher numbers of individual CD45+ cells 

compared to the ω-3 diet fed groups, in both the 10 and 20 weeks' diet fed studies (Fig. 4C 

& 4D). Morphologically, these CD45+ cells included both myeloid and lymphoid cells. In 

addition, ω-6 diet fed mice had a significantly higher number of CD45+ inflammatory cell 

foci (6.8+/0.4) compared to ω-3 diet fed mice (0.4+/-0.3 per 100× magnified field). The foci 

were approximately 3 times larger (23.2+/-2.4 cells/cluster) in the livers of ω-6 diet fed mice 

compared to the ω-3 diet fed mice (8+/-5.3 cells/cluster) (Fig. 4E-4G). Similar results were 

observed in the livers of mice maintained on the diets for 20 weeks. Additionally, the 

number of inflammatory cells per EMM foci were significantly increased in the 20-week 

diet fed mice compared to the 10-week mice when studied using mice from both dietary 

groups. (Fig. 4F and 4G). Confirmation of the increase in hepatic hematopoietic progenitor 

(CD201+CD27+) cells [34] was obtained by flow analysis of isolated hepatic non-

parenchymal cells and found as a 24.4+/-4.9% of CD45+ cells in ω-6 diet fed mice versus 

3.7+/-1 % of CD45+ cells in ω-3 diet fed mice were of progenitor phenotype respectively. 

The myeloid phenotypes of progenitor cells were further confirmed by CFU-GM analysis, 

which showed that ω-6 and ω-3 dietary groups had 14.9+/-1.1 and 9.4+/-2.1 CFU-GM 

colonies/100,000 cells plated respectively.

Since NFκB expression is associated with myelopoiesis, we examined the expression of 

NFκB protein in the livers of mice fed the diets for 10 weeks and found that livers from ω-6 

diet fed mice had a significantly higher level of NFκB expression (Fig. 4H and Fig. 4I) 

(p<0.05, n=5), indicating inflammatory cell activation. Collectively, the higher ω6:ω3 FA 

ratio in the diets appeared to be associated with inflammation and EMM in the hepatic 

microenvironment.

3.4. Dietary ω3:ω6 PUFA regulation of hepatocyte proliferation, degeneration, and 
apoptosis

We examined hepatocyte proliferation (Ki67) and apoptosis (TUNEL) by IHC using mice 

fed the experimental diets for 10 or 20 weeks. Mice fed the diet for ten weeks did not have a 

difference in hepatocyte proliferation (data not shown). However, mice fed the ω-6 diet for 

20-weeks had a significantly lower number of proliferating hepatic nuclei (1.5-fold) as 

compared to ω-3 diet fed animals (Fig. 5A and 5B). In contrast to hepatocyte proliferation, a 

4-fold increase in the number of TUNEL positive hepatocyte nuclei was observed in the 

livers of mice fed the ω-6 diet for 20 weeks (Fig. 5C and 5D). When the number of TUNEL 

positive nuclei relative to total hepatocyte nuclei were compared, a significantly higher 

frequency of hepatocytes in the livers of ω-6 diet fed mice were TUNEL positive (41%) as 

compared to 15% of the hepatocytes in the livers of ω-3 diet fed mice (Fig. 5E). 

Collectively, these results suggest a potential mechanism for the decrease in liver weight in 

the ω-6 diet fed animals.
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Additionally, morphological differences were observed in the bile ducts of ω-3 versus ω-6 

diet fed mice (Fig. S2).

4. Discussion

In the present study, we compared the biological effects of feeding ω-3 versus ω-6 PUFA 

using Lieber-DeCarli, isocaloric liquid diets and a pair-fed model. During acclimatization, 

the dietary preference was for the ω-6 diet, which was consistent with our earlier 

observations. Thus, the ω-3 diet consumption was used as the base-line for pair feeding. In 

contrast to prior reports of pair-fed mice given isocaloric diets,[35, 36] in our studies 

significant differences in body weight were observed between mice fed an isolipidic ω-3 

versus ω-6 diet. It is noted that in the referenced prior studies, diets differed in components 

other than PUFA and so are not directly comparable. This is relevant as in the one published 

study, in which mice were pair fed, isocaloric and isolipidic diets differing in PUFA 

composition (safflower oil (ω-6) versus fish oil (ω-3)) mice on the safflower oil diet for nine 

months had a 31% increase in weight versus mice on the fish oil diet.[37] These 

observations support a need for pair-feeding to achieve an isocaloric diet due to dietary 

preferences by laboratory rodents, and a need for isolipidic diets to study PUFA regulation 

of body weight. Further, despite providing isocaloric and isolipidic diets, we observed a 

significant difference in fat mass measured as abdominal fat in ω-6 diet fed mice, suggesting 

differential metabolism between the two groups. This is consistent with prior reports of 

PUFA regulation of dietary fat content and body fat deposition and distribution.[38, 39] In 

one clinical study, consumption of PUFA diets was reported to decrease visceral fat and 

increase lean muscle mass as compared to individuals receiving high saturated fat diets.[38] 

Among the subtypes of PUFA, ω-3 can limit hypertrophy of abdominal fat deposits[40] and 

reduce weight gain in pre-obese animals and humans by a reduction in visceral fat[41-44]. 

Potential mechanisms for the divergent effects of ω-3 and ω-6 FAs in adipose tissue biology 

include the regulation of adipogenesis,[45] lipid homeostasis,[46] brain-gut-adipose tissue 

axis,[47] and systemic inflammation,[48] suggesting that lowering the dietary ω-6:ω-3 ratio 

might help control obesity.[49] The level of Lc ω-3 PUFA used in this study was higher than 

the dose used in clinical study [50], because the current study was primarily designed to 

analyze the effects of a ω-6: ω-3 ratio of 1:1, which has been reviewed in literatures as the 

ω-6: ω-3 ratio upon which humans evolved. [7]

The FA composition of diets can modulate the composition of stored and structural lipids;

[51] including the FA profile of plasma and tissues.[52] [53] In the present study, we 

observed a significant increase in total ω-6 PUFA, AA, and a decrease in DHA, and an 

absence of EPA in the plasma of mice fed a ω-6-diet. These observations are in agreement 

with a previous report, in which rats were fed a diet with a 1:1 ratio of ω-6:ω-3 FA resulting 

in a significantly higher levels of plasma EPA, DHA, and a lower level of AA compared to 

the rats fed a diet with a 30:1 ratio of ω-6:ω-3 PUFA.[52] The results are also consistent 

with a clinical study in which the plasma FAs in humans were associated with their dietary 

FA composition.[54]

Our results suggest that the plasma level of Lc ω-3 PUFA, such as EPA and DHA, reflect 

dietary intake. In contrast, plasma AA (C20:4) levels could only be explained by the 
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elongation and desaturation of the ω-6 linoleic acid (C18:2) in mice given the ω-6 diet. 

Further, the ω-6 and ω-3 PUFAs compete for incorporation into phospholipids and as 

substrates contributing to these differences.[55] In this study, the concentration of total ω-6 

PUFAs and linoleic acid (precursor to AA) did not differ between the experimental diets, 

although the AA: precursor linoleic acid was 5.8-fold higher in the plasma of mice fed ω-6 

diets. Thus, the decreased level of plasma AA in the ω-3 diet fed mice is apparently 

regulated by dietary ω-3 Lc PUFA, as a modulator of AA biosynthesis. This observation is 

supported by reports that both EPA and DHA can reduce proinflammatory cytokines[56] and 

hepatic steatosis.[57] The observation of significantly higher MUFA level in mice fed ω-6 

reflected the dietary composition of the ω-6 diet. Previous studies into the bioactivity of 

olive oil showed that an iso-energetic MUFA diet can reduce liver fat in diabetic patients 

[58], higher oxidation of MUFA in the liver of rats [59] and protects against experimental 

inflammation [60]. Thus, we posit that our observations of inflammatory signals in ω-6 diet 

fed mice is primarily due to changes in dietary ω-6: ω-3 or the absence of Lc- ω-3-PUFA, 

rather than an increase in MUFA with the ω-6 diet. In our studies we measured the ω-3 

PUFAs DHA and EPA in the livers of mice fed ω-3 and ω-6 diets. In a previous report, a 

decrease in total hepatic ω-6 PUFA and AA levels were observed in a mouse model of 

NAFLD, which was associated with the metabolic utilization of AA during chronic 

inflammation.[61] The majority of dietary NAFLD studies have been based on obesity such 

as the use of a model of over-consumption versus a control diet;[62] ad-libitum feeding of a 

high saturated fat diet (>60% calories from fat)[26, 63] or a high fat Lieber-DeCarli diet 

(71% of energy from fat) compared to the original Lieber-DeCarli control diet (35% fat, that 

we used herein).[64] Thus, the role of PUFA composition, as opposed to obesity, in the 

pathogenesis of “fatty liver” has to date been poorly evaluated. In these studies, we report an 

increase in macro-vesicular steatosis in ω-6 diet fed mice, an observation consistent with 

previous clinical and animal model studies, which emphasized that a western diet-induced 

hepatic steatosis.[63, 65] However, unlike previous animal studies, we observed lower 

relative liver weights and higher steatosis in the ω-6 diet fed mice,[63] supporting a role for 

dietary PUFA composition on the hepatic microenvironment, independent of total caloric 

intake.[66] Most studies used high fat/high caloric /high saturated fat diets to induce hepatic 

steatosis and compared the results with liver from control mice fed a standard laboratory 

chow diet, which has ω-6:ω-3 ratio of around 10:1 with variable dietary composition.[67, 

68] The present study compared the results between two liquid diets differed in FA 

composition only. Further, an increase in liver weights in diet induced NAFLD/NASH 

studies might be a consequences of severe steatosis along with induction of fibrosis in liver. 

Thus, it is possible that feeding the moderately fat ω-6 diet for 20 weeks may be insufficient 

for the development of other NASH symptoms such as fibrosis, which might be responsible 

for increasing liver weight in steatosis studies using NAFLD/NASH model. In this study, the 

lobular hepatocytes from ω-6 diet mice lacked glycogen storage (Fig.3) which is supported 

by the significant increase in macrosteatosis in lobular and portal regions of the ω-6 mice 

(Fig. 2I). Hepatic steatosis and glycogen storage levels vary depending on the strain of mice 

and the percent of glycogen positive cells decrease with an increase in steatosis in high fat 

diet fed BALB/c mice.[69] Similarly, increased macrosteatosis in the livers of mice fed a 

high carbohydrate diet was associated with a decrease in glycogen storage, which recoverd 

by inclusion of ω-3 FA in the diet. [70] The difference in hepatic glycogen storage might be 
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due to specific regulatory roles of ω-6 and ω-3 FA in metabolic pathways. [71] However, a 

comparison of hepatic glycogen content between moderately fat, isocaloric, isolipidic and 

pair-fed model has not been reported previously, suggesting a need for further studies to 

understand the metabolic regulation of the diets which might have modulated mechanisms of 

energy storage in the form of fat or glycogen. In summary, the decreased glycogen content 

(Fig. 3), together with increased steatosis (Fig. 2), decreased hepatocyte proliferation and 

increased hepatocyte apoptosis (Fig. 5) might contribute to the lower hepatic weight of the 

ω-6 diet fed mice observed in the current study.

In these studies, we observed a significant increase in hepatic inflammatory cells in an 

absence of leukophilia in the ω-6 diet group suggesting that the outcome of higher number 

of inflammatory cells in the liver was independent of a systemic inflammatory response. 

Further, histological analysis documented a significant increase in the number and size of 

inflammatory cell foci, containing immature myeloid cells in the livers of mice fed a high 

ω-6:ω-3 diet. The foci closely resembles hepatic EMH as defined by National Toxicological 

program [72] however, as majority of cells in the foci were early myeloid cells, likely 

myeloid progenitor cells with a lack of erythroid progenitor cells [as defined in EMH], we 

addressed the foci as EMM. We further confirmed the increase in hematopoietic progenitors 

in livers of the ω-6 diet fed mice by flow analysis and CFU-GM counts. Unlike humans, 

mice have a smaller medullary space resulting in EMH during early development; however, 

our observation of a significant increase in number and size foci of EMM in 30 weeks old 

mice fed an ω-6 diet compared to age matched ω-3 diet fed mice cannot be considered as a 

normal developmental phenomenon and needs further evaluation. An increase in EMM foci 

in association with hepatic steatosis has not been reported previously; however, prior hepatic 

steatosis studies were based on a NASH model, which might have an infiltration of mature 

inflammatory cells, such that enhanced EMM was obscured by regional inflammation. 

Modulation of the hepatic microenvironment and the production of growth factors such as 

granulocyte-monocyte colony stimulating factor (GM-CSF) by inflammatory cells may 

result in EMM.[72] Further, our observation of degenerating hepatocyte morphology with 

large lipid inclusions, higher numbers of apoptotic hepatocytes, and an increase in NFκB 

levels support an inflammatory cell role in the modulation of the hepatic microenvironment 

resulting in the mobilization of hematopoietic precursors leading to hepatic EMM in mice 

fed a high ω-6:ω-3 PUFA diet.

Hepatocyte proliferation [73] maintains hepatic mass and in our studies we observed 

decreased hepatocyte proliferation in the ω-6 diet fed mice. However, this differs from a 

previous report of an increased hepatocyte proliferation in NAFLD hepatic steatosis.[74] 

The basis of this difference needs further evaluation, but likely contributes to the decreased 

liver size in the ω-6 diet-consuming mice. Further, hepatocyte apoptosis is a prominent 

clinical feature of NASH and positively correlates with hepatic inflammation.[30] Thus, the 

observation of increased apoptotic hepatocytes in livers of mice fed ω-6 diet, steatosis and 

EMM supports a role of for dietary PUFA in the initiation of liver inflammation.

The significant increase in bile duct diameters at comparable levels of the biliary tree and 

morphological alterations on the biliary epithelium in mice fed ω-3 versus ω-6 diet may be 

secondary to the changes in liver mass between the dietary groups (Fig. S2). However, 
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additional mechanistic studies are needed to analyze a potential role for dietary PUFA on the 

biliary system.

In summary, employing a pair fed, liquid diet with a lipid composition of 35% of dietary 

calories, the present study demonstrates that consuming a high ω-6:ω-3 PUFA diet regulates 

hepatic steatosis, EMM, glycogen deposition, and hepatocyte apoptosis. These results 

indicate that dietary Lc PUFA ω-3 suppresses steatosis and prevents the “first hit” 

mechanism of fatty liver development, and potentially lowers the risk of NAFLD and liver 

injury associated hepatic disorders. This may support a role for a ω-6:ω-3 FA ratio, but not 

the average calories consumed from fat, (∼35%) in the initiation of the formation of a “fatty 

liver”. However, other attributes of metabolic changes due to hypercaloric consumption and 

obesity might promote progression to NAFLD and NASH.
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CFU-GM Colony forming unit-granulocyte-macrophage
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EMH Extramedullary hematopoiesis

EMM Extramedullary myelopoiesis

EPA Eicosapentaenoic acid

FA Fatty acid

Lc Long chain

MCV Mean corpuscular volume

MUFA Monounsaturated fatty acid

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

ORO Oil Red O

PAS Periodic Acid-Schiff

PAS-Digest Periodic Acid-Schiff-Diastase

PUFA Polyunsaturated fatty acid

RBC Red blood cell
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SFA Saturated Fatty Acid
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Figure 1. Isocaloric and isolipidic diets, pair-fed model and their impact on body weight
Mice were pair-fed omega- (ω-6) and omega-3 (ω-3) PUFA diets for 10 or 20 weeks. 

Experimental design for a pair-fed model (A). Mice were acclimatized to liquid diets by 

feeding ad libitum amounts for the first five days. Thereafter, the ω-6 diet group mice were 

pair-fed based on the diet consumed by the ω-3 mice on a cage basis on the preceding day. 

The average amount of diet consumed/day (B). Differences in percent changes in body 

weights between the pair-fed groups [n= 20] compared by a repeated measure test (C). Body 

weights before the start of the liquid diet [day 0], at the start of pair-feeding [day 5], on day 

20, and day 40, of pair feeding and before autopsy on [day 69] (n=20) (D). Comparison of 

abdominal adipose tissues between the groups (E and F) (n=3), based on abdominal fat 

weight (E), as well as, fat weight relative to body weight (%) at autopsy (F). Photographs of 

representative livers document differences in color and size from mice fed ω-3 (G) or ω-6 

(H) diets. Comparison of liver weight (I) and liver weight relative to body weight (J) (n=3). 

* = p ≤ 0.05
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Figure 2. Differential effects of dietary PUFA on hepatic steatosis
Hepatic steatosis analysis of livers by H & E staining (A). Oil Red O-stained liver sections 

analyzed for hepatic steatosis (B and C). Images were taken with magnification of 400× (A) 

and 1000× (B) (n=5) [*=p<0.05].
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Figure 3. Differential regulation of hepatic glycogen storage by dietary PUFA
Liver sections stained with Periodic Acid-Schiff (PAS) showed glycogen-containing 

hepatocytes around the regions of central vein and portal area of hepatic lobules in mice fed 

ω-3 diet but absent in ω-6 diet group (A and B). The hepatic glycogen was digested using 

PAS-diastase staining (PAS-Digest) (C). Images were taken with magnification of 200× (A 

and C) and (n=5) [*=p<0.05].
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Figure 4. Differential regulation of hepatic extramedullary myleopoeisis (EMM) by PUFA
Livers of mice were compared for hepatic EMM by counting the number and size of EMM 

foci in 10 microscopic fields/sample by H & E staining (A) (n= 3 to10). Arrows indicate a 

focus of EMM. Comparison of EMM foci between 10 weeks and 20-week diet fed mice of 

the dietary groups (B). Analysis of 100× magnified fields of CD45 stained liver sections for 

CD45+ single cells (C and D). Analysis of number and size of CD45+ cell clusters in dietary 

groups (E, F, and G). Images were taken at a magnification of 400× (A) and 100× (C and E). 

Hepatic NF kB protein expression was significantly higher in the ω-6 as assessed based on 

Western blots (H and I) [*=p<0.05].
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Figure 5. Dietary PUFA regulation of hepatocyte proliferation, and apoptosis
The livers of mice fed ω-3 and ω-6 diets for 20 weeks were compared based on proliferation 

(Ki67) and apoptosis (TUNEL) by counting the number of positive cells per 10 microscopic 

fields per sample (n=3). The number of proliferating hepatocytes observed are shown in A 

and B. The number of TUNEL+ (apoptotic) nuclei (C and D) and apoptotic nuclei relative to 

total nuclei (C and E) observed in are shown. Images were taken at a magnification of 100× 

(A) and 630× (C) respectively [*=p<0.05].
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Table 1
Composition of the experimental diets

The omega-6 diet (ω-6 diet) is the Lieber-Decarli control diet, which contains 28.4 gm/L of olive oil. Omega-3 

diet (ω-3 diet) was customized by replacing 20 gm/L olive oil with the ω-3 oil (NutriGold omega 3 capsule). 

All the other components were the same in both of the diets to maintain iso-composition and isocaloric 

properties.

Ingredient in Diet ω-6 Diet Grams/L ω-3-Diet Grams/L

Casein 41.4 41.4

L-Cystine 0.5 0.5

DL-Methionine 0.3 0.3

Corn Oil 8.5 8.5

Olive Oil 28.4 8.4

Safflower Oil 2.7 2.7

Maltose Dextrin 115.2 115.2

Cellulose 10 10

Mineral Mix 8.75 8.75

Vitamin Mix 2.5 2.5

Choline Bitartrate 0.53 0.53

Xanthum gum 3 3

Encapsulated omega-3 oil 0 20

Total 221.8 221.8
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