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Humans spend more than 90% of their day in buildings, where their health and

productivity are demonstrably linked to thermal comfort. Building thermal comfort

systems account for the largest share of U.S energy consumption. Despite this

high-energy cost, due to building design complexity and the variety of building occupant

needs, addressing thermal comfort in buildings remains a difficult problem. To overcome

this challenge, this paper presents an Internet of Things (IoT) approach to efficiently

model and control comfort in buildings. In the model phase, a method to access and

exploit wearable device data to build a personal thermal comfort model has been

presented. Various supervised machine-learning algorithms are evaluated to produce

accurate personal thermal comfort models for each building occupant that exhibit

superior performance compared to a general model for all occupants. The developed

comfort models were used to simulate an intelligent comfort controller that uses the

particle swarm optimization(PSO) method to search for optimal control parameter values

to achieve maximum comfort. Finally, a framework for experimental validation of the

new proposed comfort controller that interactively works with the HVAC element has

been introduced.

Keywords: machine learning, comfort, HVAC, wearable devices, galvanic skin response, private model, PMV

INTRODUCTION

Nowadays, in developed countries, people spend more than 90% of their time in indoor spaces
(Höppe andMartinac, 1998; Frontczak andWargocki, 2011). Most of these indoors are conditioned
with different types of HVAC systems that consume about 50% of primary energy in the building
(Pérez-Lombard et al., 2008) to ensure occupant thermal satisfaction (Wagner et al., 2007) and
health (Allen et al., 2015). While the impact of thermal satisfaction on productivity in workplaces
is well-established (Leaman and Bordass, 1999; Salonen et al., 2016), there is a misconception that
considers air temperature as an accurate indicator of thermal comfort, as opposed to including the
variability in each individual’s thermal responses. Thus, common practices in buildings are limited
to setting universal temperature set points that may take seasonal changes into account but without
including the human in the control loop. These practices simply may result in a violation of the
recommendation of many health organizations such as the Health and Safety Executive (UK) for
establishing the minimum requirement of a reasonable comfort environment [i.e., at least 80% of
the indoor occupants are feeling comfortable (Contributors, 2016)].
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The conventional comfort model is the Predicted Mean Vote
model (PMV model) (Fanger, 1970). The PMV model, the most
commonly used comfort model adapted into ASHRAE Standard
55-Thermal Environmental Conditions for Human Occupancy
(ANSI/ASHRAE Standard 55-2013, 2013), is meant to estimate
the average thermal sensation that a group of people would report
when occupying a space. It correlates multiple environmental
parameters (air temperature, air velocity, relative humidity, and
radiant temperature) and personal parameters (metabolism and
clothing) to different levels of comfort based on a rating between
−3 and 3, where −3 means the body thermal sensation is very
cold and 3 means the body thermal sensation is very hot. The
PMV value can be directly calculated using a system of highly
non-linear and iterative equations. One of the key challenges
of the PMV model is that it cannot be applied to estimate the
personal comfort level because it is built to estimate the statistical
average thermal sensation of a large population of people.
Moreover, our recent sensitivity analysis for the PMV model
revealed that the PMV model thermal comfort prediction is very
sensitive to its personal parameters (metabolism and clothing)
(Hasan et al., 2016). Ironically, the PMV in real implementation
uses the predefined constant values for its personal parameters
with no feedback from occupants (Van Hoof, 2008; Auffenberg
et al., 2015). All these limitations, led to significant error and
high occupant’s comfort dissatisfaction when adapting the PMV
model to model and control comfort in buildings.

To address the PMV limitations, the study in Kim et al. (2018)
reviewed the new developments in comfort modeling during the
last 10 years and categorized the researches into two groups.
The first group is a data-driven approach to model and predicts
the thermal comfort of a general population (Chen et al., 2015;
Dai et al., 2017) and the second group is using the synthetic
data to model personal comfort (Ari et al., 2008; Zhang et al.,
2018). For the model output, most studies used the 3-point

FIGURE 1 | A schematic for the comfort control framework.

thermal preferences (warmer/no change/cooler) or ASHRAE 7-
point thermal sensation scale. Indoor air temperature, mean
radiant temperature, and relative humidity along with individual
information such as metabolism and rated skin temperature were
used mostly as the model input in this study (Peng and Hsieh,
2017) .

Recently, machine learning methods have been used
extensively in modeling thermal comfort. For example, in Zhang
et al. (2018) a deep neural network (DNN) was used to model
and control thermal comfort. In Chaudhuri et al. (2017), a
machine learning-based prediction model of thermal comfort
in buildings of Singapore was performed in real-time. The
model was trained using environmental and human factors
such as the six Fanger’s factors and newly proposed factors
such as age, gender, and outdoor weather. While the proposed
model requires many sensors data, it was shown to offer
high computational speed compared to the PMV model. Kim
et al. (2018), developed personal comfort models to predict
individuals’ thermal preference using six different machine
learning algorithms. A median accuracy of 0.73 was archived
for the best performing algorithm. A new work (Gao et al.,
2019) proposed a deep reinforcement learning-based framework
for controlling the comfort in buildings while minimizing
the energy consumption of the HVAC systems. To achieve
this goal, a deep neural network was used for predicting the
occupants’ thermal comfort, and a deep deterministic policy
gradients (DDPG) approach was used for learning the thermal
control policy.

A recent work (Jung et al., 2019) used machine learning
to create a heat flux sensing model to infer personal thermal
comfort under transient ambient conditions. Finally, an online
learning approach was introduced in Ghahramani et al. (2015)
for modeling personalized thermal comfort via stochastic
modeling. In this model, a Bayesian network is used to
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create a personalized comfort model from multiple probability
distribution comfort models.

Very few studies explored the use of wearable biometric data
to enhance modeling comfort (Huang et al., 2015; Hasan et al.,
2016; Rafaie et al., 2017). This reduces the need for having many
building sensors to model comfort in buildings. For example,
in our work (Hasan et al., 2016; Rafaie et al., 2017) we have
shown the use of wearable device biometric data to augment the
PMV comfort model with continuous feedback for the personal
parameter data. The work of (Huang et al., 2015) built a single
generalized/global comfort model (GM) from wearable devices
sensing data and comfort votes for eleven human subjects. As
the differences among people are poorly captured in a single
model, the global model leads to high error in predicting
individual comfort for these 11 human subjects. Thus, a much
higher prediction error is expected when the population size
of the occupant is very large, i.e., the case when the comfort
management system is deployed in a large building, and when
trying to predict comfort for new users that their data were not
used in training the GMmodel.

From the aforementioned literature review, it is concluded
that using machine learning methods for modeling thermal
comfort is gaining great attention recently. However, most of
these models were trained using many conventional building
sensors data. In real life implementation, these sensors are
assumed to be fully integrated. Thus, increasing the sensors
installation complexity and cost. Wearable devices, however,
offer an affordable alternative to provide most of the required
data for training machine learning comfort models. However,
their potential to accurately train personalized comfort models
has not been fully explored in the literature. To fill this research
gap, in this paper we develop a wearable-based personalized
comfort model, which exploits machine learning schemes to infer
and predict the comfort level of each person by fusing multi-
dimensional sensing data including (1) minimum environment
sensing data from static sensors deployed in the building, (2) the
human biometric data from the wearable devices, and (3) the
direct subjective feedback from the occupants.

The organization of the paper is as follows. In section
The Thermal Comfort Framework, an overall thermal comfort
framework is discussed in detail. In this section, the wearable,
as well as indoor ambient sensory employed in this work,
are presented. Moreover, the machine learning algorithms
used for comfort modeling and intelligent control approaches
are introduced and potential improvement in human thermal
comfort is presented. In section Future and Ongoing Work, our
ongoing and future experimental works on studying the impact
of the new comfort controller on HVAC energy use are briefly
presented. In section Conclusions, the conclusions of the paper
are presented.

THE THERMAL COMFORT FRAMEWORK

The general setup of the comfort control framework is shown
in Figure 1. The figure shows the framework three major
components; (1) data collection through wearable devices and

FIGURE 2 | A picture for the Microsoft Band 2. In the Figure 1, refers to the

Barometer, 2 to the Heart rate monitor, 3 to the UV sensor, 4 to the Charging

port, 5 to the Microphone, and 6 to the Galvanic skin response (GSR) sensor.

TABLE 1 | List of data collected from the Microsoft Smart Band 2.

Sensor data Details

1 Accelerometer Provides X, Y, and Z acceleration in g units

2 Gyroscope Provides X, Y, and Z angular velocity in degrees

per second units

3 Distance Provides the total distance in centimeters

4 Heart rate Provides the number of beats per minute

5 Pedometer Provides the total number of steps the wearer has

taken.

6 Skin temperature Provides the current skin temperature of the wearer

in degrees Celsius.

7 UV Provides the current ultraviolet radiation exposure

intensity.

8 Band contact Provides the current state of the Band as being

worn/not worn.

9 Calories Provides the total number of calories the wearer has

burned

10 Galvanic skin response Provides the current skin resistance of the wearer in

kohms

11 RR interval Provides the interval in seconds between the last

two continuous heartbeats

indoor ambient thermal condition sensors, (2) thermal comfort
modeling module, and (3) intelligent control module. Next, we
provide more details on each of these components.

Data Collection Through Wearable Devices
and Indoor Ambient Conditions Sensors
The second generation of the Microsoft smart band (Microsoft
Band 2) was selected in this study for collecting occupants’
biometric data. The band combines multiple features from a
smart band, a smartwatch, and an activity tracker. Similar to
the other smart-bands in the market, the band uses Bluetooth
connection to pair with a phone and interact with the cloud
service. Figure 2 shows a picture of the band including numbers
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referring to some sensors and features in the band. The
band has 11 sensors, listed in Table 1, and has a microphone
(numbered 6 in the figure) to speak with the Microsoft Personal
Digital Assistant (Cortana). This feature helps to operate some
voice commands like sending texts. Mobile applications were
implemented to collect the Microsoft band biometric data and
participant feedback. The collected data were pre-processed
before the application of different machine learning classifiers as
explained in the next section. In addition to the Microsoft Smart
Band 2, Hobo Data Logger UX100 with wireless temperature and
humidity sensors to be carried by users throughout the day to
measure ambient thermal conditions.

Figure 3 summarizes the data flow and mobile application
architecture implemented for data collection. The mobile
application is an Android application capable of connecting to
the Microsoft Smart band 2 and receives the sensor data in a
customized fashion as shown in Figure 4. The application was
designed to allow the user to enter his clothing conditions (the
clo value). A feedback of the thermal comfort of a user is received
as a number (called comfort vote here). The user vote and their
bio-information data are stored and labeled with an accurate
date-time. A notification in the mobile application was another
customizable functionality built to remind the user of entering
his/her current thermal votes. The voting scale was initially

FIGURE 3 | Mobile application architecture.

FIGURE 4 | The Comfort Vote mobile application showing screenshots of (A) collecting the clothing information. (B) Displaying the voting page. (C) The available

options in the application.
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TABLE 2 | Three group definition vote.

Situation Scaled vote Vote range

1 Hot +1 −6 to −2

2 Normal 0 −1 to 1

3 Cold −1 2 to 6

TABLE 3 | Occupants data description.

Model Gender Age Data size

1 Person 1 Male 20 54

2 Person 2 Male 24 91

3 Person 3 Female 21 143

4 General - - 286

chosen to be twice the PMV range from−6 to 6, with 6 being very
hot,−6 being very cold, and 0 being comfortable.While this scale
offers a large amount of variation, it was determined that people
struggle to distinguish between minimal differences on this scale
such as that between 5 and 6, introducing unnecessary human
error. For this reason, an alternative scale was created as shown
in Table 2. In this scale, the values from +/− 6 to +/−2 were
classified as +/− 1 respectively, while values from−1 to 1 were
classified as 0.

Comfort Modeling
The wearable-based personalized comfort model, designed to
take into account the subjective nature of thermal comfort,
initially takes both biometric (such as heart rate and skin
temperature) and environmental sensing data (temperature and
humidity) and the human direct vote/feedback and gradually
create the mapping between the features (i.e., temperature, heart
rate,..) and the predicted comfort level for each person. Then, the
model can infer the comfort level of each person without asking
for his subjective and direct comfort votes/feedbacks. A small
experiment was conducted to provide some preliminary results
for this comfort model. Three individuals, their descriptions
described below (Table 3), were invited to take part in this study.
These individuals were periodically prompted to vote for their
thermal comfort throughout the day.

For the completion of this task, five of the most prominent
machine learning algorithms were applied to create three
personalized models for each occupant and one general model
for the combined data for the three occupants as described in
Table 3. The used machine learning algorithms are decision tree
(Freund and Schapire, 1995; Quinlan, 2006), adaptive boosting
classifier (Mason et al., 2000), gradient boosting classifier
(Vezhnevets and Barinova, 2007), random forest classifier (Ho,
1998), and support vector machines (Chang et al., 2010). Next,
we briefly introduce these algorithms.

Decision Tree
The decision tree algorithm is a non-parametric supervised
learning method and is one of the simplest and yet most

TABLE 4 | The advantages and limitations of the five selected machine learning

algorithms.

ML algorithm Advantages Limitations

Decision tree • Fast

• Easy to understand

• Risk of overly complex

decision trees

• Mutually exclusive classes

are required

Adaboost • Exhibits Less error

based on ensemble

method

• Good explanatory

power and less

susceptible

to overfitting

• Sensitive to noisy data

and outliers

Gradient boosting • Can solve almost all

objective function

that we can write

gradient out

• Has an excellent

predictive accuracy

• Sensitive to overfitting if

the data is noisy

• Training takes longer since

trees are built sequentially

• Harder to tune. There are

three parameters: the

number of trees, depth of

trees and learning rate.

Random forest • Easier to tune than

GBM

• Harder to overfit

• Large number of trees

may make the algorithm

slow for real-time

prediction

• Not good for categorical

variables with different

number of levels

Support vector

machine

• Limit the risk of error

• Excellent to model

non-linear relations

• Models

are comprehensive/robust

• Training exhaustingly slow

• Risk of overfitting

• The model can be difficult

to understand

successful forms of machine learning for classification
and regression. It has the tree-like graph representation
that can be trained as a classifier to decide from
multiple possible choices. The depth of the tree is one
of the main parameters that can be tuned to enhance
learning performance.

Adaptive Boosting
Known as AdaBoost, is a learning method that is designed
to select a collection, or ensemble, of hypotheses from
the hypothesis space and combine their predictions. In our
investigation, for one of the AdaBoost tuning parameters; the
estimator count N, we varied its value from five to a thousand
with the step of five.

Gradient Boosting Classifier
The Gradient Boosting Classifier is another ensemble learning
technique used for classification and regression. This classifier is
known as a robust method to avoid overfitting. While it is found
that for this method that higher estimator counts generate better
performance in this study, we employed the same estimator
counts used for AdaBoost.
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TABLE 5 | The definition of feature list based on different sensor types.

Random Forest Classifier
Random Forest classifier is based on utilizing the aggregation of
decision trees built from various sub-samples of the datasets and
their averages to improve the predictive accuracy Similar to the
previous classifiers, it was employed while varying the estimator
count to achieve better accuracy.

Support Vector Machines
Known as SVM, is the most popular approach for “off-the-
shelf ” supervised learning. Besides the linear classification
approach, it adopts the kernel approach to perform non-linear
classification. Linear, Poly, Radial basis function (RBF), Sigmoid,
and Precomputed are the main kernels. In this work, we have

utilized the RBF. SVM with the RBF kernel can be tuned with a
variable called C. In this investigation, we varied the C parameter
with values from 0.1 to 35. The advantages and limitations of the
five algorithms are summarized in Table 4.

The scikit-learn package (Pedregosa et al., 2011) has been
used to simulate the above machine learning methods. The
scikit-learn is a Python-based program, built on top of SciPy
and distributed under the 3-Clause BSD license. The Holland
Super Computing Center at the State University of Nebraska
was used to carry out the heavy calculation needed in this
investigation. To evaluate the accuracy of the five machine
learning algorithms, a cross-validation method has been used
(random parts of the data used for learning and evaluation).
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TABLE 6 | Feature lists with the highest median accuracy considering all other

variations (e.g., machine model type).

Feature ID Median ML accuracy

1 Feature_25 0.65

2 Feature_42 0.63

3 Feature_44 0.62

4 Feature_17 0.62

5 Feature_21 0.62

6 Feature_23 0.61

7 Feature_06 0.61

8 Feature_32 0.61

9 Feature_08 0.60

10 Feature_10 0.60

11 Feature_19 0.60

12 Feature_28 0.60

13 Feature_30 0.60

14 Feature_12 0.60

15 Feature_35 0.60

TABLE 7 | Median of a specific ML accuracy for the best feature list, where C/N

refers to a tuning parameter in the machine learning.

ML Type C/N Features Accuracy

1 SVC RBF 1 Feature_32 0.80

2 SVC RBF 1 Feature_35 0.79

3 SVC RBF 1 Feature_08 0.79

4 SVC RBF 1 Feature_06 0.78

5 SVC RBF 1 Feature_28 0.78

6 SVC RBF 1 Feature_30 0.78

7 Ada boost classifier 1 Feature_10 0.78

8 SVC RBF 1 Feature_42 0.78

9 Ada boost classifier 1 Feature_06 0.78

10 Ada boost classifier 1 Feature_08 0.78

11 Ada boost classifier 1 Feature_12 0.78

12 Ada boost classifier 5 Feature_06 0.78

13 Ada boost classifier 5 Feature_08 0.78

14 Random forest classifier 100 Feature_23 0.78

Each of these algorithms was applied to 45 feature groups
(lists) as shown in Table 5. These groups consisted of different
combinations of the predictors (variables). When creating these
groups, it was required that all groups have a minimum of one
piece of external data (temperature and relative humidity), and
one piece of wearable data (such as heart rate, metabolism, and
skin temperature). The significance of creating these groups was
to allow individual variables to be separated from one another
and for their individual effects to be studied.

Table 6 shows the top 15 feature lists with the highest median
accuracy and Table 7 shows different machine learning methods
accuracy when the best features list are considered. Table 6

shows that 12 of the 15 most accurate feature lists include
room temperature, 8 include metabolism, and 9 include skin

temperature. Meanwhile, only one feature list includes CLO.
Therefore, it seems likely that using room and skin temperatures
and metabolism to predict thermal comfort will give a relatively
accurate thermal comfort prediction while using the clothing
insulation will result in a less accurate prediction. As we believe
clothing is an important factor in human comfort, one can
argue that skin temperature might have better representation for
that factor compared to the individual’s self-reporting of their
clothing status. The result of the heart rate is less conclusive.
While 10 of the 15 most accurate feature lists include the heart
rate; this variable is not seen in any of the top 3 most accurate
feature lists. While less conclusive, it seems using the heart rate is
relatively accurate at predicting thermal comfort. Finally, Table 7
shows that SVC is the most accurate machine learning method.

As mentioned above, our initial analysis revealed that, as
one would intuitively predict, indoor temperature and skin
temperature have been found as the most salient features that
capture the thermal comfort level of occupants. However, while
the above results were generated using one general model that
lumped all the three users’ data in one model, it is worth
to compare these results with results obtained from machine
learning models for each user (personalized model). Moreover,
while doing this work, it has been observed that the galvanic
skin resistance (GSR) also referred to as skin conductance,
which usually is ignored in comfort modeling, plays a vital role
in improving the accuracy of thermal comfort modeling. To
shed more light on these observations, next we investigate the
performance of personalizing the machine learning algorithms
as well as the relevance of GSR in determining an accurate
comfort model.

Figures 5–9 compare the performance of the generalized
comfort model with the personalized comfort model for each
occupant for each of the five machine learning methods while
varying a model parameter in the machine learning method
with and without GSR. The figures show, in almost all cases,
the models that were built by considering skin conductance
are more accurate. In the same fashion, it is evident that
the private models appear to be more representative of the
comfort level of an individual compared to the general models.
Another interesting finding from Figures 5–9 is they confirm
the fact that thermal comfort is a highly subjective matter
that is may attribute to other factors. Three people sitting
in similar room conditions exhibit different responsiveness
characteristics as evidently seen in the differences in the
accuracy level of the study subjects. Specifically, the same
machine-learning algorithm generates different performance
levels for each individual, which is mainly due to the
reason that comfort depends on many physiological and
biological factors.

Table 8 summarized our findings in Figures 5–9. The table
presents a comprehensive performance measure of the five
best performing machine learning algorithms used on the data
from the three subjects. Except for a few exceptions where
data collected from an individual is limited, the private models
outperform the general model that was trained with no regard
to the identity of the person reporting the comfort feedback
data. The private comfort models for Person 3, with the
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FIGURE 5 | Decision tree performance.

FIGURE 6 | AdaBoost classifier performance.

FIGURE 7 | Gradient boosting classifier performance.
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FIGURE 8 | Random forest classifier performance.

FIGURE 9 | Support vector machine with RBF kernel performance.

biggest reported data size, are shown to have better accuracy
levels than the other individuals on all machine learning
techniques applied.

In conclusion, our findings presented in the tables and figures
in this section can be summarized as follows:

• The accuracy of the personalized models are in most cases
higher than the general model.

• Including the GSR sensor data in most of the cases improves
both the personalized and general models accuracy.

• The random forest classifier exhibits a one time best accuracy
of about 88% compared to other machine learning. Overall,
SVM-RBF outperforms the others in mean accuracy.

Intelligent Thermal Comfort Control
An accurate individual comfort model is the first necessity for
providing thermal comfort in a building. The next challenge
is determining how information from this model can be

integrated with the building HVAC system controller (e.g.,
building thermostat). Typically, the thermal conditions are set to
a temperature set-point, that a typical building occupant tends
to change dramatically in response to temporary cold or hot
situations; resulting in more discomfort and high energy cost.
Ideally, the control parameter set-point should be automatically
selected to satisfy occupant comfort, and it should address
the conflicting comfort preferences of different people in one
conditioned space. To achieve these, we show next how to
integrate our new comfort models with the building’s HVAC
controls by inferring an adaptive set-point from occupants’
comfort information. In particular, the comfort level of each
occupant in a building is to be calculated from his learned
comfort model. Then, the particle swarm optimization technique
(PSO) will search for the optimal control parameters set-points
to resolve any comfort conflicts by solving the comfort model
inverse problem. The PSO; developed through attempts to model
bird flocks, treats each moving particle as a potential solution and
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TABLE 8 | Details of the performance review of machine learning for all the datasets.

Dataset Machine learning type Include GSR Max accuracy Min accuracy Mean accuracy

General AdaBoost classifier Yes 0.8251 0.7868 0.8060

No 0.7868 0.6883 0.7111

Decision tree Yes 0.8212 0.5964 0.6550

No 0.8176 0.5898 0.6113

Gradient boosting classifier Yes 0.7021 0.6280 0.6560

No 0.6324 0.5334 0.5444

Random forest classifier Yes 0.7379 0.5650 0.6994

No 0.7063 0.5931 0.6804

Support vector machines—RBF Yes 0.8176 0.8176 0.8176

No 0.8176 0.7719 0.7838

Person 1 AdaBoost classifier Yes 0.8214 0.7798 0.8167

No 0.8173 0.7964 0.8152

Decision tree Yes 0.7976 0.7202 0.7259

No 0.7964 0.6643 0.6747

Gradient boosting classifier Yes 0.8393 0.8185 0.8385

No 0.7768 0.7560 0.7685

Random forest classifier Yes 0.8560 0.5625 0.8130

No 0.8143 0.6839 0.7683

Support vector machines—RBF Yes 0.7964 0.7964 0.7964

No 0.8131 0.7964 0.8102

Person 2 AdaBoost classifier Yes 0.7901 0.6963 0.7656

No 0.7370 0.6850 0.7312

Decision tree Yes 0.7475 0.6514 0.6561

No 0.7475 0.6275 0.6416

Gradient boosting classifier Yes 0.7361 0.7044 0.7058

No 0.6726 0.6606 0.6624

Random forest classifier Yes 0.7721 0.7227 0.7599

No 0.7821 0.6528 0.7153

Support vector machines—RBF Yes 0.7787 0.7787 0.7787

No 0.7787 0.7549 0.7583

Person 3 AdaBoost classifier Yes 0.8455 0.8382 0.8421

No 0.8455 0.8382 0.8386

Decision Tree Yes 0.8320 0.7804 0.8211

No 0.8459 0.8244 0.8436

Gradient boosting classifier Yes 0.8586 0.7881 0.8295

No 0.8447 0.7959 0.8230

Random forest classifier Yes 0.8751 0.6326 0.8410

No 0.8739 0.7269 0.8510

Support vector machines—RBF Yes 0.8664 0.8527 0.8648

No 0.8664 0.8445 0.8473

records its current and the group’s best positions over iterations.
The velocity of each particle in the swarm can be updated by:

vi
(

k+ 1
)

= vi
(

k
)

+ γ1i

(

pi − xi
(

k
))

+ γ2i(G− xi(k)) (1)

where the ith particle position is then updated by:

xi
(

k+ 1
)

= xi
(

k
)

+ vi(k+ 1) (2)

where i is the particle index, k is a discrete-time index, v is
the velocity of ith particle, x is position of ith particle, p is
the best position found by ith particle (personal best), G is the
best position found by swarm (global best), γ1,2 is a random
number on the interval [0,1] applied to ith particle. Inertial
and acceleration weights could also be included to improve the
algorithm convergence. The PSO supports multiple-dimension
optimization. Hence, the comfort model can be simultaneously
searched for a set of control parameters (such as ambient
temperature, humidity level, and air velocity) to achieve a certain
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FIGURE 10 | Simulation example for the PSO to search for the best comfort control parameters for: (A) one user, (B) two users. Blue circles represent the particles,

green circles are the local best particles, and the red circle is the best global particle.

TABLE 9 | Comfort improvement using the proposed comfort control compared

to baseline.

Student Difference between baseline an optimized comfort control

Different homes (%) Same home (%)

Person 1 19.98 8.25

Person 2 13.25 6.17

Person 3 3.29 3.0

comfort level for the building occupants. Preliminary simulations
were performed to evaluate the use of the PSO method to
search for optimal control parameter values to achieve maximum
comfort. For example, Figure 10A shows the use of PSO to
find the optimal temperature (input 1) and humidity (input 2)
to move a user comfort level from −3 (very cold) to 0. The
initial temperature and humidity values were 15◦C and 70%
and the suggested set-points by the PSO are 20◦C and 67%.
The simulation was obtained assuming a metabolism value of
1.1 MET. Figure 10B shows an example of expanding PSO use
to negotiate comfort differences among multiple users sharing
the same conditioned space. To simulate personal comfort
difference, a metabolism value of 2.0 MET was assumed for
another user. Figure 10B shows that an ambient temperature of
20◦C and a humidity ratio of 46% are the suggested set-points to
make both users comfortable.

With respect to comfort control, Table 9 (second column)
summarizes some of our preliminary results for the comfort
improvement for the three different human subjects. In this 24 h
test, we have used the wearable-based comfort model to select
the right thermostat set-point compared to using an average
thermostat set-point. Table 9 (third column) shows comfort

improvement while negotiating their comfort preferences when
all are to present at the same conditioned place. While
comfort improvement in Table 9 is less than in Table 8, the
multi-occupant case demonstrates a more practical use of the
algorithm as most homes will have more than one occupant with
conflicting needs.

FUTURE AND ONGOING WORK

Wearable device sensor accuracy, our new comfort app usability,
and the small data size for issues of overfitting as well as other
factors remains to be the limitations of the private thermal
comfort model work. Moreover, as a continuation of this work,
we plan to validate the thermal comfort control impact on
energy use using experimental data from a real HVAC system.
Toward this goal and as shown in Figure 11, we have heavily
instrumented an HVAC packaged rooftop unit that its status
will be controlled by the new thermal comfort model. The unit
has two separate cooling circuits allowing a two-stage capacity
modulation with a partial load of 7.5 ton and a full load of
12.5 ton. Multiple universal superheat controllers produced by
DunAn Microstaq, Inc. will be used to log the temperature
and pressure values of both cooling circuits. Users can utilize
the MODBUS RTU communication protocol or a Windows-
based graphical user interface to communicate with the superheat
controller and retrieve the measured data.

The measured data will be used to evaluate the HVAC system
runtime before and after applying the new comfort controller.
For example, Figure 12 shows the HVAC system cooling run
time for more than 10 months before applying the comfort
controller (baseline). Data will be collected for a similar duration
when the comfort controller is applied. As these durations are
long, a typical HVAC system might experience some faults or
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FIGURE 11 | The HVAC system planned to be used in the experimental validation of the new comfort controller will be heavily instrumented so its operation can be

integrated and controlled by the new comfort controller.

FIGURE 12 | The baseline run time of the HVAC system.

wrong operation. Thus, in our work, the online pressure and
temperature measurements as shown in Figure 11 will be used to
evaluate the system health and factor out any excessive run time

due to these faulty operations that might bias our comparison.
For example, as shown in Figure 13 the very low suction
temperature and the inlet compressor pressure values indicate an
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FIGURE 13 | An example of an excessive run time that was detected using the HVAC system pressure and temperature measurements.

evaporator frost event that occurred, as indicated in the figure,
due to running the HVAC system at low outside temperature.
This frost event has resulted in a very excessive HVAC run time
that should be ignored in our planed comparison.

CONCLUSIONS

In this work, we have presented a framework for modeling
and controlling thermal comfort in buildings. Specifically, an
improved private comfort model has been developed from
biometric data gathered via wearable devices. In this model,
we have addressed the model accuracy to the features used
to learn the model and the machine learning type and its
tuning parameters. Thus, the best features that capture the
comfort characteristics and the best machine learning method
and parameter to model human comfort has been identified.
Apart from the typical bio-metric sensors that were proposed in
the literature to model thermal comfort such as skin temperature,
skin conductance has been introduced and it has been observed
that it is an important feature in creating a private comfort
model. The difference in the accuracies of three private models
of the individuals presented in this work shows that comfort is a
subjective state of being. While the general comfort model failed
to guarantee an accurate and reliable model that is representative
of the study subjects, limited data size was the main limitation of
the private comfort models.

Finally, we have presented an intelligent control approach
that utilized the newly developed comfort model to control

thermal comfort in a building. Simulation results for using the
SOP algorithm were presented showing a superior performance
compared to use an average thermostat set-point. A framework
for experimental validation of this new comfort controller has
been developed along with a new HVAC setup.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

FA developed the idea and managed the work and performed
the full edit for the paper. PA provided the idea and the
wireless infrastructure integration for the future work section.
DB implemented the wireless infrastructure and data collection
for the experimental HVAC system data. KS provided the real-
time data with thermostat API and weather station API data
for the future work section that include the HVAC system run
time. MR developed the machine learning models. MT wrote the
initial version of the paper and perform the data cleaning and
simulation. All authors contributed to the article and approved
the submitted version.

FUNDING

Part of this project was funded by DunAn Microstaq, Inc.

Frontiers in Built Environment | www.frontiersin.org 13 June 2020 | Volume 6 | Article 87

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Alsaleem et al. Modeling and Controlling Thermal Comfort in Buildings

REFERENCES

Allen, J. G., MacNaughton, P., Laurent, J. G. C., Flanigan, S. S., Eitland, E. S., and

Spengler, J. D. (2015). Green buildings and health. Curr. Environ. Health Rep.

2, 250–258. doi: 10.1007/s40572-015-0063-y

ANSI/ASHRAE Standard 55-2013 (2013). Thermal Environmental Conditions for

Human Occupancy. ANSI/ASHRAE Standard 55-2013.

Ari, S., Wilcoxen, P., Khalifa, H. E., Dannenhoffer, J. F., and Isik, C. (2008).

“A practical approach to individual thermal comfort and energy optimization

problem,” Paper Presented at the NAFIPS 2008-2008 Annual Meeting of

the North American Fuzzy Information Processing Society (Berlin), 1–6.

doi: 10.1109/NAFIPS.2008.4531261

Auffenberg, F., Stein, S., and Rogers, A. (2015). “A personalised thermal comfort

model using a bayesian network,” Paper Presented at the Twenty-Fourth

International Joint Conference on Artificial Intelligence (Buenos Aires).

Chang, Y., Hsieh, C., Chang, K., Ringgaard, M., and Lin, C. (2010). Training and

testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn.

Res. 11, 1471–1490.

Chaudhuri, T., Soh, Y. C., Li, H., and Xie, L. (2017). “Machine learning based

prediction of thermal comfort in buildings of equatorial Singapore,” in 2017

IEEE International Conference on Smart Grid and Smart Cities (ICSGSC)

(IEEE), 72–77. doi: 10.1109/ICSGSC.2017.8038552

Chen, X., Wang, Q., and Srebric, J. (2015). A data-driven state-space model of

indoor thermal sensation using occupant feedback for low-energy buildings.

Energy Build. 91, 187–198. doi: 10.1016/j.enbuild.2015.01.038

Contributors, W. (2016). Health and Safety Executive HSE - Designing

Buildings Wiki. Retrieved from: https://www.designingbuildings.co.uk/wiki/

Health_and_Safety_Executive_HSE

Dai, C., Zhang, H., Arens, E., and Lian, Z. (2017). Machine learning approaches

to predict thermal demands using skin temperatures: steady-state conditions.

Build. Environ. 114, 1–10. doi: 10.1016/j.buildenv.2016.12.005

Fanger, P. O. (1970). Thermal Comfort. Analysis and Applications in Environmental

Engineering. Copenhagen: Danish Technical Press.

Freund, Y., and Schapire, R. E. (1995). “A desicion-theoretic generalization of

on-line learning and an application to boosting,” Paper Presented at the

European Conference on Computational Learning Theory (Barcelona), 23–37.

doi: 10.1007/3-540-59119-2_166

Frontczak, M., andWargocki, P. (2011). Literature survey on how different factors

influence human comfort in indoor environments. Build. Environ. 46, 922–937.

doi: 10.1016/j.buildenv.2010.10.021

Gao, G., Li, J., and Wen, Y. (2019). Energy-efficient thermal comfort

control in smart buildings via deep reinforcement learning. arXiv Preprint

arXiv:1901.04693 doi: 10.1109/JIOT.2020.2992117

Ghahramani, A., Tang, C., and Becerik-Gerber, B. (2015). An online learning

approach for quantifying personalized thermal comfort via adaptive

stochastic modeling. Build. Environ. 92, 86–96. doi: 10.1016/j.buildenv.2015.

04.017

Hasan, M. H., Alsaleem, F., and Rafaie, M. (2016). Sensitivity study for

the PMV thermal comfort model and the use of wearable devices

biometric data for metabolic rate estimation. Build. Environ. 110, 173–183.

doi: 10.1016/j.buildenv.2016.10.007

Ho, T. K. (1998). The random subspace method for constructing decision forests.

IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844. doi: 10.1109/34.709601

Höppe, P., and Martinac, I. (1998). Indoor climate and air quality. Int. J.

Biometeorol. 42, 1–7. doi: 10.1007/s004840050075

Huang, C., Yang, R., and Newman, M. W. (2015). “The potential and challenges

of inferring thermal comfort at home using commodity sensors,” Paper

Presented at the Proceedings of the 2015 ACM International Joint Conference

on Pervasive and Ubiquitous Computing (Ann Arbor, MI), 1089–1100.

doi: 10.1145/2750858.2805831

Jung, W., Jazizadeh, F., and Diller, T. E. (2019). Heat flux sensing for

machine-learning-based personal thermal comfort modeling. Sensors 19:3691.

doi: 10.3390/s19173691

Kim, J., Schiavon, S., and Brager, G. (2018). Personal comfort models–A new

paradigm in thermal comfort for occupant-centric environmental control.

Build. Environ. 132, 114–124. doi: 10.1016/j.buildenv.2018.01.023

Leaman, A., and Bordass, B. (1999). Productivity in buildings: the ‘killer’variables.

Build. Res. Inform. 27, 4–19. doi: 10.1080/096132199369615

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). “Boosting algorithms

as gradient descent,” in Paper Presented at the Advances in Neural Information

Processing Systems (Denver, CO), 512–518.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12,

2825–2830.

Peng, B., and Hsieh, S.-J. (2017). Data-Driven Thermal Comfort Prediction With

Support Vector Machine.” P. V003T04A044 in Volume 3: Manufacturing

Equipment and Systems. ASME doi: 10.1115/MSEC2017-3003

Pérez-Lombard, L., Ortiz, J., and Pout, C. (2008). A review on buildings

energy consumption information. Energy Build. 40, 394–398.

doi: 10.1016/j.enbuild.2007.03.007

Quinlan, J. R. (2006). Simplifying decision trees. Int. J. 27, 221–234.

doi: 10.1016/S0020-7373(87)80053-6

Rafaie, M., Alsaleem, F., and Holthaus, A. (2017). “Data fusion application in

predicting human comfort,” in Structural Health Monitoring 2017: Real-Time

Material State Awareness and Data-Driven Safety Assurance - Proceedings of the

11th International Workshop on Structural Health Monitoring (Stanford, CA:

IWSHM). doi: 10.12783/shm2017/14170

Salonen, H., Kurnitski, J., Kosonen, R., Hellgren, U., Lappalainen, S., Peltokorpi,

A., et al. (2016). “The effects of the thermal environment on occupants’

responses in health care facilities: A literature review,” in 9th International

Conference on Indoor Air Quality, Ventilation & Energy Conservation in

Buildings (IAQVEC2016) (Seoul). Retrieved from: http://www.iaqvec2016.org/

download/Files/1276.pdf (accessed March 19, 2018).

Van Hoof, J. (2008). Abstract. Indoor Air 18, 182–201.

doi: 10.1111/j.1600-0668.2007.00516.x

Vezhnevets, A., and Barinova, O. (2007). “Avoiding boosting overfitting by

removing confusing samples,” in Paper Presented at the 18th European

Conference on Machine Learning (Warsaw), 430–441.

Wagner, A., Gossauer, E., Moosmann, C., Gropp, T., and Leonhart, R. (2007).

Thermal comfort and workplace occupant satisfaction—Results of field

studies in german low energy office buildings. Energy Build. 39, 758–769.

doi: 10.1016/j.enbuild.2007.02.013

Zhang, W., Hu, W., and Wen, Y. (2018). Thermal comfort modeling for smart

buildings: a fine-grained deep learning approach. IEEE Int. Things J. 6,

2540–2549. doi: 10.1109/JIOT.2018.2871461

Conflict of Interest: PA, KS, and DB were employed by company DunAn

Microstaq, Inc.

The authors declare that this study received funding from DunAn Microstaq, Inc.

The funder had provided access to complete unfiltered real-time remote access to

building thermostat data and HVAC system performance data.

Copyright © 2020 Alsaleem, Tesfay, Rafaie, Sinkar, Besarla and Arunasalam. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Built Environment | www.frontiersin.org 14 June 2020 | Volume 6 | Article 87

https://doi.org/10.1007/s40572-015-0063-y
https://doi.org/10.1109/NAFIPS.2008.4531261
https://doi.org/10.1109/ICSGSC.2017.8038552
https://doi.org/10.1016/j.enbuild.2015.01.038
https://www.designingbuildings.co.uk/wiki/Health_and_Safety_Executive_HSE
https://www.designingbuildings.co.uk/wiki/Health_and_Safety_Executive_HSE
https://doi.org/10.1016/j.buildenv.2016.12.005
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1016/j.buildenv.2010.10.021
https://doi.org/10.1109/JIOT.2020.2992117
https://doi.org/10.1016/j.buildenv.2015.04.017
https://doi.org/10.1016/j.buildenv.2016.10.007
https://doi.org/10.1109/34.709601
https://doi.org/10.1007/s004840050075
https://doi.org/10.1145/2750858.2805831
https://doi.org/10.3390/s19173691
https://doi.org/10.1016/j.buildenv.2018.01.023
https://doi.org/10.1080/096132199369615
https://doi.org/10.1115/MSEC2017-3003
https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.12783/shm2017/14170
http://www.iaqvec2016.org/download/Files/1276.pdf
http://www.iaqvec2016.org/download/Files/1276.pdf
https://doi.org/10.1111/j.1600-0668.2007.00516.x
https://doi.org/10.1016/j.enbuild.2007.02.013
https://doi.org/10.1109/JIOT.2018.2871461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	An IoT Framework for Modeling and Controlling Thermal Comfort in Buildings
	Authors

	An IoT Framework for Modeling and Controlling Thermal Comfort in Buildings
	Introduction
	The Thermal Comfort Framework
	Data Collection Through Wearable Devices and Indoor Ambient Conditions Sensors
	Comfort Modeling
	Decision Tree
	Adaptive Boosting
	Gradient Boosting Classifier
	Random Forest Classifier
	Support Vector Machines

	Intelligent Thermal Comfort Control

	Future and Ongoing Work
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


