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ABSTRACT

The benthic macroinvertebrate Diporeia spp. have been extir-
pated from many areas of the Laurentian Great Lakes, but the
mechanisms underlying such declines are not fully understood.
Diporeia declines coinciding with the invasion of exotic dreis-
senid mussels (zebra and quagga) have led to the hypothesis
that Diporeia declines are a result of decreased food availability
from increasing competition with dreissenids for diatoms.
There is additional evidence that Diporeia are negatively affected
when in close proximity to dreissenids, probably because of
exposure to toxins present in the mussels’ pseudofeces. Diporeia
are also known to be sensitive to anthropogenic contaminants
(such as polychlorinated biphenyls [PCBs]) present in Great

Lakes sediments. To better understand the physiological re-
sponses of Diporeia to diverse stressors, we conducted three
28-d experiments evaluating changes in the metabolomes of
Diporeia (1) fed diatoms (Cyclotella meneghiniana) versus
starved, (2) exposed (from Lake Michigan and Cayuga Lake)
to quagga mussels (Dreissena bugensis), and (3) exposed to
sediments contaminated with PCBs. The metabolomes of sam-
ples were examined using both two-dimensional gas and liquid
chromatography coupled with mass spectrometry. Each stressor
elicited a unique metabolome response characterized by en-
hanced citric acid cycle, fatty acid biosynthesis, and protein
metabolism in diatom-fed Diporeia; impaired glycolysis, protein
catabolism, and folate metabolism in Diporeia from Lake Mich-
igan irrespective of quagga mussel exposure, suggesting lake-
specific adaptation mechanisms; and altered cysteine and phos-
pholipid metabolism during PCB exposure. Subsequent
comparisons of these stressor-specific metabolic responses with
metabolomes of a feral Diporeia population would help identify
stressors affecting Diporeia populations throughout the Great
Lakes.

Introduction

Diporeia spp. were once a major component of the benthic
biomass (170%) in deep-water lakes of North America (Cook
and Johnson 1974; Nalepa 1989). Historically, these lipid-rich
amphipods constituted a major prey item for various fish spe-
cies in the Laurentian Great Lakes (Owens and Dittman 2003).
Like the European amphipod species, Diporeia also feed on
diatoms settling from the epilimnetic zones and in turn are
consumed by a number of fish species (Johnson 1987; Fitzgerald
and Gardner 1993). Diatoms are the main dietary source of
polyunsaturated fatty acids (PUFAs), which are essential for
reproductive functioning and brood survival in amphipods
(Wiklund and Sundelin 2001). So it is likely that diatoms play
an important role in Diporeia nutrition as well. However, since
the 1990s and with the arrival and establishment of nonnative
dreissenid mussels (zebra mussel Dreissena polymorpha, quagga
mussel Dreissena bugensis), Diporeia populations have experi-
enced severe declines in all of the Great Lakes except Lake
Superior (Nalepa et al. 1998, 2005; Dermott 2001; Lozano et
al. 2001). Since dreissenids also inhabit the upper sediment
layers, it has been hypothesized that they are intercepting set-
tling diatoms before they can reach Diporeia (Nalepa et al.
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2005). Dreissenids can also modify the epilimnetic habitat dur-
ing filter feeding by increasing water clarity resulting from the
higher grazing pressure on diatoms, making diatoms less likely
to settle on the lake floor (Scavia and Fahnenstiel 1987; Mak-
arewicz et al. 1999; Vanderploeg et al. 2002). This induced
scarcity of food could result in compromised survival and re-
productive output by Diporeia, as it did in other amphipod
species (Sundelin et al. 2008). Previously, impacts of such star-
vation on the physiology of Diporeia have been investigated in
laboratory-based mesocosm studies using metabolomics and
RNA : DNA ratios, which found disrupted protein and lipid
metabolism and declining RNA : DNA ratios under stress (Ryan
2010; Maity et al. 2012a).

Dreissenids can also indirectly affect the survival of Diporeia.
A study by Dermott et al. (2005) reported lower survival rates
(almost at a significant level) of Diporeia when exposed to
pseudofeces from quagga mussels. Therefore, it is possible that
these biodeposits can exert a negative impact on Diporeia, but
clear evidence supporting this hypothesis is still lacking. How-
ever, Diporeia populations are still abundant in Cayuga Lake,
a lake also densely populated by quagga mussels. Thus, it is
possible that Diporeia from this lake have “adapted” to the
presence of these mussels, compared to Diporeia from other
lakes that are declining in the presence of dreissenids.

While there are multiple lines of evidence that dreissenids
negatively affect Diporeia, the interactions between these in-
vertebrates are not straightforward. For example, in Cayuga
Lake, a stable Diporeia population is known to coexist with
dreissenids (Nalepa et al. 2006; Watkins et al. 2007, 2012). In
addition, several sites within the Great Lakes experienced large
declines in Diporeia numbers well before the invasion of dreis-
senids (Watkins et al. 2007; Nalepa et al. 2009). Therefore,
studies that evaluate the physiological response of Diporeia to
the presence of dreissenids are warranted as a way to better
understand the mechanistic relationship between these taxons.

Exposure of Diporeia to environmental pollutants has also
been hypothesized as a potential cause of their decline. Persis-
tent organic pollutants (POPs) such as polychlorinated bi-
phenyls (PCBs) are present at high concentrations (1200 mg/
g) in some areas within the Great Lakes (Cieniawski and Collier
2003; Hornbuckle et al. 2006). PCBs are known to elicit a
myriad of toxic effects ranging from immunosuppression to
cancer (Silkworth and Antrim 1985; Aznar et al. 2005). Lipid-
rich Diporeia would be an ideal target for lipophilic-PCB me-
diated toxicity, which could potentially increase the suscepti-
bility of Diporeia to secondary stressors (e.g., pathogens;
Landrum et al. 1998, 2001). Furthermore, Diporeia are not only
likely to be exposed to lipophilic contaminants but also highly
sensitive to their effects (Gossiaux et al. 1993; Landrum and
Nalepa 1998; Ralston-Hooper et al. 2008). Indeed, the extir-
pation of Diporeia from the Niagara River has been linked to
PCB contamination (Nalepa 1991). Dreissenids can potentially
increase the bioavailability of a number of organic pollutants
including PCBs in the benthic sediment via their feces or pseu-
dofeces accumulation (Bruner et al. 1994; Gossiaux et al. 1998;

Ma et al. 1999). Thus, the changing chemical characteristics of
benthic sediment might also affect the survival of Diporeia.

Here, we report on the results of three separate experiments
conducted to gain a better understanding of the potential in-
direct (food competition and increased PCB exposure) and
direct (exposure to pseudofeces) impacts of dreissenids on the
physiology of Diporeia. In the first experiment, Diporeia were
starved and their metabolomes were compared to those fed
with diatoms (to test the “food competition” hypothesis). In
the second experiment, Diporeia were exposed to quagga mus-
sels and their metabolomes were compared to those with no
dreissenids (to test the “direct dreissenid effect” hypothesis).
In the third and final experiment, Diporeia were chronically
exposed to sediments spiked with a mixture of PCBs (to test
the “pollution” hypothesis). We hypothesized that each stressor
would result in specific metabolite changes. To the best of our
knowledge, this study constitutes the first analyses of physio-
logical responses measured as changes in metabolite concen-
trations in Diporeia exposed to these stressors. The long-term
goal of these studies is to better understand the physiological
responses of Diporeia to different environmental stressors and
thereby facilitate elucidation of mechanisms underlying their
drastic decline in the Great Lakes.

Material and Methods

Diatom Feeding Experiment

A commercial strain of Cyclotella meneghiniana (one of the
most abundant diatom species in Lake Michigan) was pur-
chased from Bigelow Laboratory for Ocean Sciences (West
Boothbay Harbor, ME) for culture. Following the vendor’s in-
structions, we reared diatoms in L1�Si media (11 practical
salinity units) at 20�C and a 14L : 10D cycle for 30 d. Diatom
cultures were then centrifuged at 3,400 rpm for 60 min at 4�C,
and the supernatant was collected. Next, 5 mL molecular-grade
water was added to the pellet and vortexed for 2 min. The
number of cells per milliliter from each aliquot was quantified
under a microscope using a hemocytometer before preserving
at �80�C for future use.

In April 2009, live Diporeia were collected from southern
Lake Michigan on board the Environmental Protection
Agency’s R/V Lake Guardian. Using a ponar grab (0.23-m2

sampling area with 500-mm screen), we collected Diporeia from
the sediment-water interface (temperature, ∼4�C), and live an-
imals were sorted out after sieving the sediment through a 0.5-
mm mesh screen and placed in coolers filled with prechilled
(4�C) lake water and sediment. Live organisms were transported
to the laboratory and acclimated for 48 h in a dark walk-in
chamber set at 4�C in order to simulate deep-lake water con-
ditions. These environmental conditions were replicated in all
experiments. Next, one live animal was randomly assigned to
each of 50 Erlenmeyer flasks (125 mL) filled with ashed sand
(70 g) and reconstituted hard water (80 mL; Ralston-Hooper
et al. 2008). Half of the water in each flask was replaced every
week throughout the experiment. The treatment (starved)
group was not fed during the trial, and the control group was
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fed diatoms twice a week to allow for a daily feeding rate of
0.03 mg diatoms per individual Diporeia (estimated feeding
rate from Quigley and Vanderploeg 1991; Dermott et al. 2005).
At the completion of the experiment, live organisms were col-
lected, and randomly selected animals per treatment ( )n p 5
were assigned for metabolomic analysis as described below.

Quagga Mussel Exposure Experiment

In the summer of 2008, live Diporeia and quagga mussels were
collected from Cayuga Lake (Myer’s Point, 43�37′N, 79�35′W,
45 m) and Lake Michigan (site C-6, 42�79′N, 87�45′W, 93 m)
and brought back to the laboratory inside coolers with ice. In
the laboratory, 10 individual Diporeia from each site were ex-
posed to quaggas (collected near Muskegon in Lake Michigan
and Myer’s Point in Cayuga Lake; density, 2,000 individuals/
m2) in 250-mL glass jars prefilled with combusted sand sub-
stratum and Cayuga Lake water. Animals were not fed during
the experiment because we could not control how much, if
any, of the food provided would be eaten by the mussels com-
pared to Diporeia. Animals were held at 4�C in complete dark-
ness for 28 d. At the end of the experiment, a selected number
of live organisms ( per condition) were set aside for met-n p 7
abolomic analysis.

PCB Exposure

Animals for this experiment were collected concomitantly with
the animals used for the diatom feeding experiment (described
above). After arrival to the laboratory, organisms were allowed
to acclimate for 48 h at 4�C before the start of the experiment.
On the basis of reports describing the total body burdens of
PCBs in Diporeia (Wong et al. 2004) and a biota sediment ac-
cumulation factor of 1 (Landrum et al. 1998, 2001; Kukkonen
et al. 2004), we exposed Diporeia to a mixture of eight PCB
congeners (2-chlorobiphenyl, 2.3-dichlorobiphenyl, 2.4.5-tri-
chlorobiphenyl, 2.2′.4.4′-tetrachlorobipheyl, 2.2′.3′.4.6.-penta-
chlorobiphenyl, 2.2′.4.4′.5.6′-hexachlorobiphenyl, 2.2′.3.3′.4.4′.6-
heptachlorobiphenyl, and 2.2′.3.3′.4.5′.6.6′-octachlorobiphenyl)
purchased from ChemService (West Chester, PA). The sediment
for this experiment was collected from Lake Michigan and ster-
ilized by autoclaving it. The control sediment was then spiked
with analytical-grade acetone (0.5 mL/100 g). Sediment was
placed inside a stainless steel container and stirred for 45 min
with a handheld blender for homogenous mixing (Kukkonen
et al. 2004). Next, the sediment was resuspended in reconsti-
tuted modified hard water (RMHW; 1 : 1 w/v), and the su-
pernatant was decanted four times. Each Erlenmeyer flask (125
mL) was filled with either control sediment or treated sediment
(40 g) and RMHW (80 mL). Each treatment was replicated 25
times (one Diporeia per flask). The experiment was kept in
complete darkness at 4�C for 28 d. At the completion of the
study, live Diporeia were collected and preserved at �80�C,
with per treatment randomly selected for metabolomicsn p 5
analyses.

Extraction and Analysis of PCBs from Spiked Sediments. Sedi-
ment samples were prepared by extracting with equal volumes
of acetone and hexane 25 mL of acetone and 25 mL of hexane
per 10 g of sediment (wet mass) using published protocols
(Brannon and Karn 1990). The solvents were added into glass
vials containing the sediment and allowed to shake overnight
at 37�C. The following morning the samples were centrifuged
at 1,200 rpm for 10 min, and the supernatant was transferred
to a fresh glass vial. After the samples were dried with nitrogen
gas, each sample was reconstituted in 100 mL of acetone and
vortexed for 10 min before being transferred to an autosampler
vial. Samples were analyzed with an Agilent 6890N gas chro-
matograph (GC) coupled to a Leco Pegasus III time-of-flight
mass spectrometer (TOF-MS). An Agilent HP-5MS column (30
m # 0.250 mm, 0.25-mm film) was used for GC analysis. The
initial temperature was 100�C, held for 2 min. A ramp of 15�C/
min was used until reaching 160�C, followed by 5�C/min up
to 270�C. This temperature was held for 1 min and then re-
turned to 100�C before the next injection. The carrier gas was
helium with a flow rate of 1 mL/min, and an inlet split ratio
of 10 was used. Each sample had an injection volume of 3 mL.
The GC inlet temperature was set to 225�C. The transfer line
from GC to MS was set to 250�C. MS data were collected from
60–800 mass units (u) with an acquisition rate of 20 spectra/
s in one-dimensional mode only. The detector voltage was 1,700
V. Electron impact was used with electron energy set to �70
eV. All samples were processed with Leco ChromaTOF (ver.
3.32) software. The detected PCB level in the spiked sediment
was 4.5 mg/g, which is below previously detected PCB levels
(200 mg/g) in contaminated sediments from the Great Lakes
region (Cieniawski and Collier 2003).

Metabolomic Analyses

Metabolomics data from whole organisms were collected using
a combination of mass spectrometry coupled with two-dimen-
sional gas chromatography (GCXGC) and liquid chromatog-
raphy (LC) following protocols described by Maity et al. (2012a,
2012b) and Ralston-Hooper et al. (2008) with some modifi-
cations. Briefly, each sample (composed of a single Diporeia,
0.0021–0.0098 g) was homogenized, methanol (300 mL) and
chloroform (450 mL) were added, and the sample was centri-
fuged in order to separate polar (methanol : water) and non-
polar (chloroform) phases. After the solvents were allowed to
evaporate at 45�C using a Savant SPD 131DDA SpeedVac con-
centrator (Thermo Electron Corporation, Milford, MA), dried
sample pellets were collected for metabolomics analysis. The
dried nonpolar (chloroform)-phase extract was resuspended in
an LC-MS mobile phase solution (50% water, 25% methanol,
25% acetonitrile, and 0.1% piperidine) and analyzed using LC/
TOF-MS. The polar (methanol : water) phase was analyzed us-
ing two-dimensional GCXGC/TOF-MS. The polar phase was
derivatized in two steps. First, a 30-mL solution of methoxy-
amine hydrochloride (20 mg) dissolved in 1 mL anhydrous
pyridine was added to the dried pellet and placed on a shaker
for 30 min at 60�C. Next, 45 mL of N-methyl-N-(trimethylsilyl)
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trifluoroacetamide was added to this mixture and the solution
was heated for 1 h at 60�C before transferring it for GCXGC/
TOF-MS analysis.

Instrumental Conditions. Nonpolar metabolites were analyzed
using LC based on an Agilent 1100 (Agilent Technologies, Santa
Clara, CA) platform with a Zorbax-C8 column (2.1 mm #
150 mm, 5 mm; Agilent Technologies). The instrumental pa-
rameters were as follows: initial injection volume, 8 mL; flow
rate, 300 mL/min; gradient of two separate mobile phases A
(water � 0.1% piperidine) and B (50 : 50 v/v acetoni-
trile : methanol � 0.1% piperidine), A : B at 50 : 50 for 5 min
followed by a linear increase to 100% B over 20 min, a return
to A : B at 50 : 50 for 5 min, and an additional 10 min of
A : B at 50 : 50 to reequilibrate the column. After the chro-
matographic separation, nonpolar metabolites were analyzed in
negative electrospray ionization mode using LC/TOF-MS (Agi-
lent G6200 series, LC/MSD TOF). Instrumental conditions
were as follows: capillary voltage, 3,500 V; flow rate of desol-
vation gas, 9.0 L/h; desolvation temperature, 350�C; nebulizer
pressure, 40 psi; fragmentor voltage, 175 V; skimmer voltage,
65 V; octapole resonant frequency, 250 V. With a detectable
mass range of 100–1,800 da and scan rate of 1 spectrum/s,
Agilent Masshunter (ver. 01.03) was used to process mass
spectra.

Derivatized polar samples were analyzed in a Pegasus III
GCXGC/TOF-MS (Leco, St. Joseph, MI). Samples (2 mL) were
injected into the GC column under the following instrumental
settings: split-mode ratio, 20; flow rate carrier gas (helium), 1.5
mL/min; inlet port temperature, 280�C. The dimensions of the
first and second columns were as follows: Restek Rtx-225 ma-
trix, 0.25 mm # 30 m, 0.25 mm, and Agilent HP-5 matrix,
0.32 mm # 2 m, 0.25 mm, respectively. The temperature of
the first column was gradually increased from 50� to 240�C
(7�C/min) and held at 270�C for 5 min. The temperature of
the second column was raised following a similar pattern with
an offset of �50�C. The MS spectra was acquired under the
following instrumental conditions: ionization mode, electron
impact; data acquisition using TOF measured for ion fragments;
temperature, 200�C; detectable mass range, 30–800 da; detector
voltage, 1,700 V; electron energy, �70 V; scan rate, 100 spectra/
s. An acquisition delay of 150 s was applied at the start of the
run.

Data Processing and Statistical Analysis. Processing of LC-MS
spectra involved identification, alignment, and merging of com-
mon peaks across multiple samples. Two software packages
(XMASS and XAlign) designed by Bindley Biosciences Center
at Purdue University were used for this purpose (Zhang et al.
2005). Peaks were normalized using a constant mean under the
assumption of equal intensity of total ion current of all spectra
compared. Next, the value of mass over charge (m/z) of each
peak was accepted as proxy for their potential identity, and the
tentative list of potential metabolites was prepared after search-
ing the Human Metabolome Database (http://www.hmdb.ca;
Wishart et al. 2007).

Spectra from GCXGC-MS were processed and analyzed using
two different software packages, ChromatTOF (ver. 3.32, Leco)
and MSort, an in-house software (Oh et al. 2008). Multiple
entries of single peak were merged and aligned across samples
by calculating the retention time (RT) and similarity value (SV)
indices. The first and second RT windows were set at 1% and
5%, respectively, with a correlational value of 0.95 as minimum
threshold. Each spectrum was searched against the National
Institute of Standards and Technology (NIST) database
(http://www.nist.gov/srd/nist1.cfm) and compared for an over-
all SV with available spectrum in the library. On the basis of
the SV the potential identity of the metabolite was determined.
For example, an SV of 1,000 signifies a complete match, while
an SV between 600 and 800 indicates a fair possibility (Cristoni
et al. 2009). We set up the minimum threshold of SV at 600
for peak identification.

Both LC-MS and GCXGC/TOF-MS data were analyzed using
multivariate statistical methods implemented in R open-source
statistical software (ver. 2.9.2, R Foundation for Statistical Com-
puting, Vienna). Missing values pose a common problem for
“omics” data (Chich et al. 2007; Karpievitch et al. 2010). Be-
cause of a limited sample size, coupled with the prohibitive
cost of repeated measures, and to minimize loss of information,
we deemed missing value imputation essential for any “omics”
data (Unnebrink and Windeler 2001; Colinge et al. 2005). In
this study, missing values were imputed with the group mean
if missing values were present in half (or less) of the total
samples per group; otherwise, missing values were replaced by
1 (Colinge et al. 2005). Data were analyzed using heuristic
methods of dimension reduction (principal component analysis
[PCA]). Two-sample t-tests adjusted for false discovery rate
(Benjamini and Hochberg 1995) were used to compare signif-
icant ( ) metabolite concentrations between controla p 0.05
and experimental samples.

Results

Diporeia responded with changes in a unique set of metabolites
when exposed to one of the following three environmental
stressors: lack of food, coexposure to quagga mussels, or ex-
posure to a mixture of PCBs. For example, PCAs demonstrated
a clear separation between diatom-fed versus starved Diporeia
(fig. 1a; combined contribution of the first two PCs explained
57% of the total variation) and PCB-exposed versus control
Diporeia (fig. 1c; combined contribution of the first two PCs
explained 67% of the total variation). While the quagga mussel
coexposure experiment revealed a strong lake effect (fig. 1b;
combined contribution of the first two PCs explained 52% of
the total variation), Diporeia from Cayuga Lake tended to clus-
ter into two separate groups based on the presence/absence of
quagga mussels (although organisms from Lake Michigan did
not). In contrast to metabolite responses, survival rates did not
differ among treatments (180% across all experiments; data
not presented).

The metabolites that were up- or downregulated after stressor
exposure varied for the three different stressors (for altered

http://www.hmdb.ca
http://www.nist.gov/srd/nist1.cfm
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Figure 1. Principal component analysis plot of Diporeia samples show-
ing differential metabolic profiles between control and treatment
groups. a, Diatom feeding; b, quagga exposure; c, polychlorinated bi-
phenyl (PCB) exposure experiments. Each symbol represents the me-
tabolome of a single Diporeia along three principal components (PCs).
Proportion of variation explained is shown in parentheses.

polar and nonpolar phase–extracted metabolites, see tables 1,
2, respectively). A total of nine metabolites (four polar phase
and five nonpolar phase), seven metabolites (three polar phase
and four nonpolar phase), and four nonpolar metabolites were

significantly altered in the diatom feeding, quagga mussel coex-
posure, and PCB exposure experiments, respectively. These me-
tabolites fell into different classes, including fatty acids, phos-
pholipids, amino acids, by-products of amino acid metabolism,
and pheromones. Below we discuss the potential mechanisms
and biological implications of these metabolite changes.

Discussion

Diatom Feeding Experiment

The main objective of this experiment was to identify metab-
olite changes in Diporeia fed a diatom diet in relation to starved
animals. This is important because a major hypothesis for their
decline is a decrease of phytoplankton availability due to in-
creased competition with dreissenids. Thus, a better under-
standing of the physiological response of this amphipod to
starvation is needed. In order to determine whether Diporeia
were ingesting the diatoms being offered, we examined a rep-
resentative number of organisms using standard histological
techniques and observed plant material in the gastrointestinal
tract (data not shown). This finding, coupled with the metab-
olite profile observed in the diatom-fed group (overall increased
glycolysis, lipidogenesis, and protein synthesis), is indicative of
organisms having preyed on diatoms during the trial. However,
it is important to note that the feeding regime utilized in this
experiment is probably different from real environmental con-
ditions; Diporeia are likely to feed intermittently (during spring,
more than twice per week) on a variety of phytoplankton and
bacterial species. Thus, extrapolation of these data to Great
Lakes conditions should be done with caution.

Increased concentrations of palmitoleic, octadecenoic (stea-
ric), and malonic acids in the diatom-fed group (tables 1, 2)
are indicative of increased lipidogenesis and decreased lipid
peroxidation. Palmitoleic and octadecenoic acids are important
for fatty acid and triacylglycerol synthesis. Crustaceans are
known to store high levels of palmitoleic acid, which is utilized
during growth and molting (Sheen and Wu 1999). In addition,
the ratio between stearic (i.e., octadecenoic) acid and oleic acid
is crucial for maintaining plasma membrane fluidity, intercel-
lular signaling, and immune function. A higher abundance of
octadecenoic acid suggests a healthy organism. Elevated ma-
lonic acid levels are indicative of not only enhanced acetyl-CoA
carboxylase activity and thus lipidogenesis but also reduced
lipid oxidation (Cake et al. 1995). Malonic acid is also an im-
portant component of cuticular lipids in invertebrates (Buckner
et al. 1996). If a similar function exists in Diporeia, a decrease
of malonic acid could result in alterations in molting cycle and
cuticle formation.

Higher concentrations of urea (table 1) and lower concen-
trations of L-pipecolic acid (table 2) suggest increased protein
synthesis, and therefore enhanced growth, in the diatom-fed
group. Urea is a by-product of excess proteins, and in crus-
taceans the cellular concentrations of a number of compounds
including glutamine, L-aspartate, creatine, and arginine are
closely linked with urea production (Wright 1995; Weihrauch
et al. 2004). L-pipecolic acid is a by-product of lysine degra-
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Table 1: List of significant metabolites (mean � SE; individual Diporeia per condition) extractedN p 5
from polar fraction that were altered during the diatom feeding and quagga mussel coexposure
experiments

Mean expression level

Metabolite name
Identification criteria

based on SVa Fed (control) Starved P valueb

Direction of
changec

Diatom feeding:
Urea 785 18.24 � .11 ND !.0001 f

1-I2MU 871 10.02 � .60 ND !.001 f

Octadecanoic acid 908 10.96 � .11 4.54 � 2.43 .04 f

Glycosided 794 11.16 � .23 ND !.0001 f

Cayuga Lake Lake Michigan

Quagga coexposure:
Heptacosane 772 6.23 � 2.55 14.79 � .28 .03 F

L-proline 798 15.51 � .05 14.59 � .20 !.001 f

G3P 773 5.69 � 2.29 14.09 � .10 .02 F

Note. For the quagga mussel coexposure experiment, data shown are the comparison of Diporeia between lakes, since presence of

quagga mussels caused little to no effect on the metabolomes. No significant polar metabolites were detected in the polychlorinated

biphenyl exposure experiment. ND p not detected; 1-I2MU p 1-iodo-2-methylundecane; G3P p glyceraldehyde-3-phosphate.
aIdentification based on mass spectra similarity value (SV) match against National Institute of Standards and Technology library.
b (Benjamini Hochberg corrected).P ! 0.05
cCalculated in relation to the control group.
dUndetermined type.

dation, and lysine is an essential amino acid stored to meet
energy needs during periods of food deprivation (Cowey and
Forster 1971; Lasser and Allen 1976; Miyajima et al. 1976).
Lysine is also a precursor of carnitine, which is involved in
lipid biosynthesis (Dall and Smith 1987). During starvation,
amino acid reserves would be progressively metabolized to sus-
tain basic physiological processes leading to their increase in
cells. Therefore, an absence of L-pipecolic acid in the diatom-
fed group suggests little to no protein catabolism.

Other interesting metabolites that showed significant differ-
ences between the diatom-fed and starved groups included 7C-
aglycone, glycoside, and 1-iodo-2-methylundecane (1-I2MU;
tables 1, 2). 7C-aglycone is a breakdown product of vitamin K
metabolism, and it is produced via beta oxidation of phyllo-
quinone (Wishart et al. 2007). Since the primary dietary source
of phylloquinone is plant based, the lack of diatoms likely
caused a rapid depletion of vitamin K in the starved group.

Glycosidic groups are important components of plant fla-
vonoids and sterol biosynthetic pathways. A number of differ-
ent sterol biosynthetic pathways have been elucidated in crus-
taceans over the years (Kanazawa 2001). Glycosidic sterols are
derived from plants and are involved in the production of
eicosanoids, crucial for the initiation of molting in crustaceans.
They are also important for normal reproduction and devel-
opment (Martin-Creuzburg and Elert 2004) and are needed
for the synthesis of PUFAs (Tornabene et al. 1974). Thus, star-
vation can quickly lead to potential reproductive and devel-
opmental side effects.

We previously reported the presence of 1-I2MU in Diporeia
that were starved for 60 d (Maity et al. 2012b). 1-I2MU levels

ranged widely across individuals and decreased during our star-
vation trials. We are unsure of its function in Diporeia, but it
resembles 1-iodoundecane, a pheromone produced after estro-
gen stimulus and present in cow urine during estrus (Achir-
aman et al. 2010). An elevated level of this metabolite in
diatom-fed Diporeia might be indicative of “normal” repro-
ductive function compared to the starved group.

Quagga Exposure Study

We conducted this experiment to test how Diporeia respond
to the presence of quagga mussels. There is some indication
that Diporeia might be negatively affected by the presence of
these mussels as a result of the toxic effects of their pseudofeces
(Dermott et al. 2005). However, Diporeia populations are still
abundant in Cayuga Lake, a lake also densely populated by
quagga mussels. To test the hypothesis that Diporeia from this
lake are less sensitive to the presence of these mussels, we ex-
posed Diporeia from both lakes to quagga mussels and ex-
amined their metabolomes. We found a strong lake effect on
metabolite profiles with quaggas not being a determining factor
(fig. 1b). In other words, irrespective of the presence of quagga
mussels, Diporeia from Cayuga Lake and Lake Michigan re-
sponded differently. On the basis of the comparison between
Diporeia from Lake Michigan and Cayuga Lake, a common set
of metabolites was identified that were differentially expressed
between two lakes. The biological roles of these metabolites are
discussed below.

Glyceraldehyde 3-phosphate (G3P) was upregulated in Di-
poreia from Lake Michigan (table 1). G3P is an important
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Table 2: List of significant metabolites (mean � SE; individual Diporeia per condition) extracted fromN p 5
nonpolar fraction that were altered during the diatom feeding, quagga mussel coexposure, and polychlorinated
biphenyl exposure experiments

Mean expression level

Metabolite name
HMDB no.
(m/z value)a Fed (control) Starved P valueb

Direction of
changec

Diatom feeding:
Malonic acid HMDB00691 (102.974) 4.17 � .02 ND !.0001 f

L-pipecolic acid HMDB00716 (128.071) ND 7.00 � .09 !.001 f

DHAP HMDB01473 (168.991) ND 5.81 � .004 !.001 F

Palmitoleic acid HMDB03229 (253.219) 5.90 � .04 ND !.001 f

7C-aglycone HMDB04808 (297.142) ND 5.54 � .06 !.001 F

Cayuga Lake Lake Michigan

Quagga coexposure:
Glycyl-L-leucine HMDB00759 (187.117) 2.98 � .97 6.54 � .02 .02 F

13-cis-retinal HMDB06220 (283.221) 6.72 � .22 2.87 � 1.19 .01 f

LPA HMDB07850 (437.228) 4.37 � 1.65 10.04 � .05 .03 F

2,5,-DAPNTP HMDB06821 (511.912) 4.74 � 1.83 11.07 � .14 .03 F

Controls Exposed

PCB exposure:
3-mercaptopyruvic acid HMDB01368 (118.994) ND 5.21 � .09 !.001 F

12-KETE HMDB13633 (317.219) 5.77 � .09 ND !.0001 f

LysoPE HMDB11502 (438.284) ND 4.86 � .04 !.0001 F

PG HMDB10585 (719.481) 8.70 � .31 7.84 � .20 .04 f

Note. For the quagga mussel experiment, data shown are the comparison of Diporeia between lakes, since presence of quagga mussels caused

little to no effect on the metabolomes. ND p not detected; DHAP p dihydroxyacetone phosphate; LPA p lysophosphatidic acid; 2,5,-DAPNTP p
2,5-diaminopyrimidine nucleoside triphosphate; 12-KETE p 12-keto-eicosatetraenoic acid; LysoPE p lysophosphatidylethanolamine; PG p
phosphatidylglycerol.

aHuman Metabolome Database (HMDB) accession number and (mass over charge ratio).
b (Benjamini Hochberg corrected).P ! 0.05
cCalculated in relation to the control group.

component of both the glycolytic and gluconeogenic pathways
(Wishart et al. 2007). Since G3P is linked with sterol biosyn-
thetic pathways, changes in G3P concentrations will impact
lipid production. G3P concentration can also be used as an
indirect estimate of GAPDH activity, the target of S-glutathione
that helps minimize oxidative stress. This step renders GAPDH
inactive, thus raising the concentration of G3P in the cell (Klatt
and Lamas 2000). GAPDH is also thought to be relevant in
controlling apoptosis, making it an important indicator for
overall physiological status (Chuang et al. 2005; Lauritano et
al. 2011). Thus, an accumulation of G3P in exposed animals
indicates less availability of GAPDH. We speculate that this
could be due to an elevated stress response and possibly result
in hindered lipid production in affected animals.

Changes in the concentration of several metabolites point
toward an increased oxidative damage and potential stress re-
sponse in Diporeia from Lake Michigan compared to animals
from Cayuga Lake. The nonpolar compound 13-cis-retinal was
consistently downregulated in Diporeia from Lake Michigan
(table 2). This metabolite is a type of retinoid acid belonging
to the polyisoprenoid lipid family (Chen et al. 2010). These

lipids perform an array of biological functions in animals. For
instance, they act as the substrate binding site for lipocalin-
type prostaglandin D synthase (Zsila et al. 2004), leading to
anti-inflammatory responses (Wishart et al. 2007). They are
also related to sterol biosynthesis and possess antioxidant prop-
erties (Chen et al. 2010). A decrease in the concentration of
this metabolite might affect sterol production and increase ox-
idative damage in Diporeia from Lake Michigan.

The level of another nonpolar metabolite, 2,5-diaminopyr-
imidine nucleoside triphosphate (table 2), was also increased
in Diporeia from Lake Michigan. This metabolite is a by-prod-
uct of folate metabolism (Wishart et al. 2007). Activation of
folate metabolism is indicative of enhanced antioxidant glu-
tathione production to counteract radical oxygen species-
mediated cellular damage (Quinlivan et al. 2006). Thus, in
general, Diporeia from Lake Michigan were experiencing ele-
vated oxidative stress.

Dipeptides such as glycyl-L-leucin are readily utilized in
healthy animals as precursors for different chemical reactions
(Wishart et al. 2007). Leucine is an important amino acid that
performs diverse cellular functions including synthesis of pro-
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teoglycans (Iozzo 1999). Under stress, the reduced activity of
dipeptidase enzymes results in an elevated level of dipeptides
such as glycyl-L-leucine (Egorova et al. 2008). Thus, an increase
in the concentration of glycyl-L-leucine in Diporeia from Lake
Michigan might be indicative of decreased amino acid utili-
zation due to increased stress.

PCB Exposure Study

Another potential environmental stressor that could help ex-
plain the disappearance of Diporeia is exposure to POPs such
as PCBs. Because of their high lipid content, Diporeia are likely
to bioaccumulate POPs with high octanol-water partition co-
efficients (Helm et al. 2008; Kuo et al. 2010). Overall, exposure
to a mixture of PCBs resulted in disrupted lipid metabolism,
increased oxidative stress, and induction of aryl-hydrocarbon
receptor (AhR)–mediated pathways as discussed below.

The phospholipid lyso-phosphatidyl ethanolamine increased
in PCB-exposed Diporeia (table 2). Although not significant,
the phospholipid precursor’s octa- and hexa-decanoic acids
were more abundant in the PCB-exposed group. Their accu-
mulation indicates reduced production of essential lipids in
PCB-exposed Diporeia. Another phospholipid, phosphoglycer-
ide also declined in exposed animals. In crustaceans, phos-
pholipids are crucial for the production of cholesterol, which,
in turn, is important for effective control of molting cycle, larval
development, and oocyte formation (Lee and Puppione 1978;
Coutteau et al. 1997; Gonzalez-Felix et al. 2002; Sánchez-Paz
et al. 2006). Thus, a decline in phospholipids could have a
broad range of effects.

The other nonpolar metabolite, 3-mercaptopyruvic acid (ta-
ble 2), is a by-product of amino acid cysteine (Wishart et al.
2007). It contains a thiol group that acts as an effective mediator
to control protein oxidation. Because of its role as an antiox-
idant, cysteine also has affinity for heavy-metal ions and thus
acts as an important indicator of metal toxicity. Reversible ox-
idation of proteins often contributes to the activation and de-
activation of the transcription factors responsible for cell sig-
naling or protein kinase activity within the cytoplasm
(Cumming et al. 2004). The disulfide bonds produced by two
cysteine molecules are also critical in maintaining the func-
tionality of proteins (Wishart et al. 2007). A disrupted pro-
duction of cysteine could affect detoxification and transcription
mechanisms in affected Diporeia.

12-KETE, a by-product of arachidonic acid metabolism, was
decreased in PCB-exposed organisms (table 2). Arachidonic
acid (a type of PUFA) is essential for a range of biological
functions including enhancing growth and survival in prawn
larvae, increasing fecundity, and maintaining homeostasis (Ka-
nazawa et al. 1977; D’Abramo and Sheen 1993; Rees et al. 1994).
In crustaceans, PUFAs are especially important as a source of
energy during prolonged starvation (Bychek et al. 2005). They
also aid in eicosanoid production, hormone synthesis, and the
production of prostaglandins and leukotrienes important in
immune function (Smith and Borgeat 1985; Blomquist et al.
1991). Declining arachidonic acid might have significant impact

on these physiological processes. Also, 12-KETE is an important
conversion component of 12-HETE, a ligand for the activation
of AhR-mediated pathways (Spokas et al. 1999). PCBs are
known AhR agonists (Cooke et al. 2001; Pocar et al. 2006),
and thus an increased activity of the AhR pathway is an ex-
pected outcome.

Conclusions and Future Research Needs

Overall, our results suggest that a different set of metabolites
is expressed in response to each stressor: (a) a diatom-rich diet
enhanced fatty acid biosynthesis, whereas starvation resulted in
altered glycolysis and sterol biosynthetic pathways; (b) lake type
has more impact than quagga exposure on Diporeia metabo-
lomes, and animals from Lake Michigan responded with an
induction of oxidative stress and altered lipid metabolism when
compared to samples from Cayuga Lake; and (c) exposure of
Diporeia to a mixture of PCBs resulted in disrupted phospho-
lipid and eicosanoid production, decreased PUFA levels, and
increased AhR-mediated activity.

Our results should not be viewed as the final answer but
rather as a first step for identifying relevant metabolites and
biochemical pathways associated with stress and potential lower
fitness in Diporeia. Furthermore, our studies have laid the
groundwork for future hypothesis-driven and more targeted
approaches that should be conducted next. For example, the
stressor-specific metabolite profiles identified through these ex-
periments can be compared to metabolite profiles from in situ
collected Diporeia, thereby potentially facilitating the identifi-
cation of stressors affecting Diporeia in various areas of the
Great Lakes. This research has also demonstrated the appli-
cation potential of metabolomics in the study of aquatic
ecology.

Acknowledgments

We would like to thank Daniel Ryan for the collection of sam-
ples; Carol Lembi, Charles Britton, and Kimberly Schulz for
their assistance and advice on the diatom culture; and Jennifer
Myer and Carolyn Foley for providing their assistance during
experimental setup. This research was funded by the Great
Lakes Fisheries Trust (grant 2008.886).

Literature Cited

Achiraman S., P. Ponmanickam, D. Ganesh, and G. Archunan.
2010. Detection of estrus by male mice: synergistic role of
olfactory-vomeronasal system. Neurosci Lett 477:144–148.

Aznar F., D. Perdiguero, A. Pérez Del Olmo, A. Repullés, C.
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