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A hail-producing supercell on 11 May 2017 produced a small tornado near Perkins, Oklahoma

(35.97, �97.04) at 2013 UTC. Two infrasound microphones with a 59-m separation and a regional

Doppler radar station were located 18.7 and 70 km from the tornado, respectively. Elevated infra-

sound levels were observed starting 7 min before the verified tornado. Infrasound data below �5 Hz

was contaminated with wind noise, but in the 5–50 Hz band the infrasound was independent of

wind speed with a bearing angle that was consistent with the movement of the storm core that

produced the tornado. During the tornado, a 75 dB peak formed at �8.3 Hz, which was 18 dB above

pre-tornado levels. This fundamental frequency had overtones (18, 29, 36, and 44 Hz) that were

linearly related to mode number. Analysis of a larger period of time associated with two infrasound

bursts (the tornado occurred during the first event) shows that the spectral peaks from the tornado

were present from 4 min before to 40 min after tornadogenesis. This suggests that the same

geophysical process(es) was active during this entire window. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5124486

[DKW] Pages: 1528–1540

I. INTRODUCTION

Numerous natural and anthropogenic sources emit infra-

sound, sound at frequencies below human hearing (<20 Hz).

Known sources include severe storms (Jones and Georges,

1976; Talmadge and Waxler, 2016), earthquakes (Young

and Greene, 1982; Le Pichon et al., 2005; Mutschlecner and

Whitaker, 2005), explosions/rocket launches (Waxler et al.,
2015; Blom et al., 2016), ocean waves (Waxler and Gilbert,

2006), and volcanoes (Johnson and Ripepe, 2011). Due to

weak atmospheric absorption at low frequency and an

“acoustic ceiling” within the atmosphere (Bedard and

Georges, 2000), infrasound can be detected over signifi-

cantly larger distances than audible sound. The infrasound

carries information about the source, its location/movement,

and the environment it passes through between the source

and receiver. While this makes infrasound an appealing

source for long-range, passive detection and monitoring of

infrasound producing events (including tornadoes) as well as

the environment it passes through, it makes identification

and isolation of a specific source difficult. This is particu-

larly true for tornadoes since they are rare, singular events,

and their locations are unknown until minutes before forma-

tion. The current work reports field results from infrasound

measurements located �19 km from a verified tornado. A

strong infrasound signal was received during the tornado,

and the focus of this paper is assessing the likelihood that

the received signal was associated with the tornado.

A renewed focus on understanding tornado infrasound

has been motivated by efforts to improve tornado warnings.

This is especially important for the southeastern United States,

where complex terrain, irregular road patterns, and nighttime

tornadoes have contributed to a disproportionately large num-

ber of killer tornadoes. The Verification of the Origins of

Rotation in Tornadoes Experiment – Southeast (VORTEX-

SE) aims to better understand the environmental factors associ-

ated with these tornadoes (Dumas et al., 2017; Lyza and

Knupp, 2018; Lee et al., 2019; Wagner et al., 2019), and the

National Oceanic and Atmospheric Administration (NOAA)

has also funded complementary work focused on tornado

infrasound in the Southeast. Georges (1973) notes that “the

history of the discovery of severe-weather infrasound is

clouded by an almost complete absence of early published

results.” Besides a few publications (Goerke and Woodward,

1966; Bowman and Bedard, 1971), documentation was pri-

marily from internal reports or records of oral conference pre-

sentations. Unfortunately, this trend has not changed since

these early findings. There were a few related publications in

the 1970s (McDonald, 1974; Georges and Greene, 1975;

Arnold et al., 1976) before the early 2000s when more activity

focused on tornado infrasound. Contemporary work includes

several oral presentations (Rinehart, 2012; Goudeau et al.,
2018; Elbing et al., 2018a), conference papers (Noble and

Tenney, 2003; Prassner and Noble, 2004; Bedard et al., 2004b;

Bedard et al., 2004a), and a recent project report (Rinehart,

2018); but only a few journal articles (Bedard, 2005; Frazier

et al., 2014; Dunn et al., 2016).

Bedard (2005) used an infrasonic observatory and collo-

cated radar to track a velocity couplet aloft that evolved into

a tornado and showed maximum circulation descending for

�30 min. The detected infrasound at �1 Hz followed the

trend of the radar observations. In addition, Bedard (2005)

notes that a reexamination of an archive of atmospheric

infrasound recordings resulted in the identification of over

a)Part of this work was presented at the 175th meeting of the Acoustical

Society of America in Minneapolis, MN, USA, May 2018.
b)Electronic mail: elbing@okstate.edu
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100 cases with infrasonic signals produced at the time and in

the direction of vortices, though few details of these 100

cases have been published. Frazier et al. (2014) examined

high-fidelity acoustic recordings covering the frequency

range from 0.2 to 500 Hz from three tornadoes in Oklahoma.

Primary findings from this work are the use of beamforming

at infrasound frequencies to track long-duration tornadoes,

detection of audible frequency sound, and demonstration of

a modified aeroacoustic jet turbulence model to predict the

observed signature in the audible frequency range.

Subsequently, this work is discussed further, particularly in

reference to potential infrasound production mechanisms.

Dunn et al. (2016) used a ring laser interferometer to detect

infrasound from an EF4 tornado in Central Arkansas on 27

April 2014. Associated infrasound was observed 30 min

before the tornado was initially reported and had a funda-

mental frequency of 0.94 Hz. This is consistent with the

observation of Bedard (2005) that large tornadoes produce

infrasound in the 0.2–1 Hz range. Three additional vortices

that ultimately produced tornadoes were claimed to have

been detected at least 30 min before reported touchdown.

Thus, there is strong evidence that infrasound is produced by

a tornado (including during formation), but relatively few

observations are well documented in the literature.

Given the dearth of detailed observations of tornado

infrasound in the archival literature, the aim of the current

work is not to attribute the infrasound observations to a spe-

cific tornado mechanism. A coherent understanding of the

general mechanism(s) associated with infrasound production

from tornadoes will require a broader sampling of infrasound

from tornadoes. Consequently, the current objective is to

establish confidence that the received signal was associated

with the reported tornado and provide sufficient characteri-

zation of the storm and received infrasound such that it can

be used to test proposed mechanisms. This includes a discus-

sion of proposed mechanisms and whether they are consis-

tent with available observations. The remainder of the paper

includes characterization of the storm and tornado in Sec. II,

analysis of infrasound during the tornado in Sec. III, discus-

sion and analysis in Sec. IV, and conclusions in Sec. V.

II. STORM AND TORNADO CHARACTERIZATION

A. Overview

On 11 May 2017, a line of storms to the west of the

infrasonic array included a hail-producing supercell. At 2013

UTC, the supercell produced a tornado, of unknown strength

on the Enhanced Fujita scale (EFU), near Perkins, OK

(35.97, �97.04), which was located 18.7 km south-by-east

(SbE) of infrasound microphones at Oklahoma State

University (OSU). The official tornado path length and dam-

age width were 0.16 km (0.10 miles) and 46 m (150 ft)

(NOAA, 2017), respectively. There were live news reports of

a possible second tornado after the first, but it was never con-

firmed due to the storm being rain wrapped with no low-level

radar coverage. Confirmed hail events during the life of the

supercell that produced the tornado are provided in Table I,

which includes the hail size, UTC time, time relative to the

reported tornado touchdown (tr), latitude (lat), longitude

(lon), distance between event and the array (L), and the bear-

ing angle (u) measured from the source to the receiver clock-

wise relative to north (0�). The largest confirmed hail was

108 mm (4.25 in) that was reported 25 km to the southwest of

the infrasonic array at 1956 UTC. There were two reports of

hail approximately an hour after the tornado with both events

being east of the infrasound microphones.

B. Ground-level atmospheric conditions

Ground-level atmospheric conditions were monitored

by Oklahoma Mesonet stations (Brock et al., 1995;

McPherson et al., 2007) and a weather station (termed

DML) located �170 m south of the infrasonic array. The

DML weather station (Vantage Pro, Davis Instruments) was

located on a building roof and provided 30 min averages of

temperature, humidity, atmospheric pressure, and wind

speed. The Oklahoma Mesonet network consists of 120 auto-

mated environmental monitoring stations that measure air

temperature 1.5 m above ground, relative humidity 1.5 m

above ground, wind speed and direction 10 m above ground,

barometric pressure, rainfall, incoming solar radiation, and

soil temperature. Data are packaged in 5 min “observations”

that are quality checked by the Oklahoma Climatological

Survey prior to being released. The current study used three

sites: Perkins (PERK), Stillwater (STIL), and Marena

(MARE).

The Perkins (PERK), Stillwater (STIL), and Marena

(MARE) Mesonet stations were located 3.3 km north-by-

west (NbW) of the tornado (15.4 km to array), 17.5 km NbW

of the tornado (1.9 km to array), and 18.8 km northwest-by-

west of the tornado (14.1 km to array), respectively. These

stations, in addition to the DML weather station, were used

to characterize the ground-level atmospheric conditions and

corresponding speed of sound. The measured air tempera-

ture, computed speed of sound in humid air (Cramer, 1993),

wind speed, and wind direction from each site for the two

hours before and after the tornado are provided in Fig. 1

with the time (tr) shown relative to the tornado report (11

May 2017, 2013 UTC). The general trends between the sites

are all comparable with the primary differences of note being

TABLE I. Confirmed hail and tornado events within 100 km of the infra-

sound array during the life of the storm that produced the tornado on 11

May 2017. For hail, the size is the reported diameter in millimeters.

Event Size Time (UTC) tr (min) Lat Lon L (km) u (�)

Hail 25 19:25 �48 35.95 �97.59 50.2 65.7

Hail 38 19:38 �35 35.84 �97.41 44.2 42.0

Hail 38 19:40 �33 35.88 �97.39 39.7 44.4

Hail 51 19:45 �28 35.95 �97.28 27.2 41.0

Hail 44 19:50 �23 35.95 �97.25 25.5 36.4

Hail 70 19:51 �22 35.95 �97.26 26.1 38.0

Hail 70 19:53 �20 35.95 �97.25 25.5 36.4

Hail 44 19:56 �17 35.95 �97.26 26.1 38.0

Hail 108 19:56 �17 35.95 �97.24 25.0 34.7

Hail 64 20:06 �7 35.84 �97.25 36.1 24.8

Tornado EFU 20:13 0 35.97 �97.04 18.7 �11.5

Hail 22 21:13 60 36.22 �96.57 46.7 �101.8

Hail 19 21:15 62 36.12 �96.58 45.1 �88.3
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that the minimum temperature occurred earlier at MARE and

higher wind speeds were observed at PERK. The higher wind

speed was due to the close proximity of the PERK site to the

tornado producing storm, and the earlier temperature drop at

MARE was due to it being farther west (i.e., the storm reached

this site earlier). Of particular note is that the wind direction at

PERK from �10 min before the tornado [marked with a verti-

cal dashed line in Fig. 1(d)] through the life of this storm was

aligned with the direction from the tornado to the infrasound

array [horizontal dashed line in Fig. 1(d)].

C. Radar analysis

Data were analyzed from the Weather Surveillance Radar-

1988 Doppler (WSR-88D) at Oklahoma City, Oklahoma

(KTLX; 35.33306, �97.27778), which is located �70 km

southwest of the verified tornado (Fig. 2). At this range, the

base-scan radar beam height was �0.95 km above radar level

(ARL). Data were analyzed from 1928 UTC on 11 May 2017

(�45 min prior to tornadogenesis) to 2103 UTC, when the

storm became too far from the radar for good data quality.

FIG. 1. (Color online) Ground level atmospheric state from the Mesonet and DML weather stations including: (a) Average air temperature with DML error

bars being the maximum deviations from the average, (b) speed of sound in humid air, (c) wind speed including maximum 3-s observations, and (d) the wind

direction.

FIG. 2. (Color online) Map showing the location of the WSR-88D radar

at Oklahoma City (KTLX). Black circle (radius 75 km) indicates the

region where the base-scan beam altitude was less than 1 km ARL,

assuming standard beam propagation.

1530 J. Acoust. Soc. Am. 146 (3), September 2019 Elbing et al.



Around this time, other nearby storms began to merge with the

storm of interest.

Several radar metrics were analyzed through the analy-

sis period for the storm of interest (11 May 2017 from 1928

to 2045 UTC). Base-scan data (radar reflectivity factor and

radial velocity) at an altitude of �0.88 km ARL near the

storm core at 1953 UTC are shown in Fig. 3. The velocity

difference near the surface and associated with the tornadic

vortex cannot be robustly analyzed for this event because of

its distance from the radar site. Compounding this problem

is the small size of the tornado (estimated width �50 m at

the ground), meaning that radar observations at this distance

are incapable of measuring maximum wind speeds toward

and away from the radar within the tornado. Instead, maxi-

mum radial velocity difference (MRVD) was derived for the

low-level mesocyclone at base scan, at an altitude of �1 km

ARL. This storm had a well-defined mesocyclone [Fig.

3(b)], so maximum velocity difference was computed as the

difference between the associated maximum inbound and

outbound velocities. This analysis was done from 1928 to

2045 UTC, since beyond this time the storm-radar distance

increased to too large of a value for velocity difference val-

ues to remain comparable.

Through the analysis period, the MRVD in the low-

level mesocyclone ranged from 13.5 to 42.5 m/s (Fig. 4).

The mesocyclone was relatively weak for a few time steps

after initiating but was well-defined and reasonably strong

by 1940 UTC (Fig. 4, MRVD). The low-level mesocyclone

reached its maximum intensity at 2000 UTC, �13 min prior

to reported tornadogenesis. Shortly after tornadogenesis, the

intensity of the low-level mesocyclone decreased sharply

and did not recover during the analysis period. Radar beam-

centerline altitude did not change substantially with the low-

level mesocyclone intensity, indicating that the observed

MRVD changes were genuine changes to storm organization

and not an effect of radar beam propagation.

The base-scan normalized hail areal extent (NHAE)

>35 dBZ in radar reflectivity factor (ZHH) (Van Den Broeke,

2017) was also analyzed. NHAE uses a combination of ZHH

and differential reflectivity (ZDR; e.g., Doviak and Zrnić,

2006) to identify areas where hail is present. NHAE is nor-

malized by the storm area, which makes it a percentage of

the base-scan storm area >35 dBZ dominated by hail and

allows for comparison between storms. The time history of

the NHAE is also shown in Fig. 4. An initial burst of hail

around 1947 UTC (tr � �26 min) is followed by a second-

ary burst of hailfall from 2006 to 2013 UTC (�7 min

< tr < 0 min). Prior work has noted that hailfall is often

maximized in the minutes leading up to tornadogenesis

(Browning, 1965; Van Den Broeke et al., 2008). Of note, the

majority of the reported hail for this storm occurred in the

time spanning these two hailfall bursts with the largest

reported hail occurring at tr¼�17 min (Table I). Area of the

storm dominated by hail decreased markedly after tornado

demise (Fig. 4).

III. INFRASOUND DURING THE TORNADO

A. Infrasound data acquisition

A 3-microphone (model 24, Chaparral Physics) infra-

sonic array was deployed on the campus of OSU during the

2017 tornado season. This effort was part of the CLOUD-

MAP project (Elbing and Gaeta, 2016; Hemingway et al.,

FIG. 3. (a) Radar reflectivity factor and (b) radial velocity from KTLX at 1953 UTC on 11 May 2017. Data are base-scan, with an altitude of �0.88 km ARL

near the storm core. Arrows in (b) indicate the inbound and outbound velocities associated with the low-level mesocyclone. In each panel, gold and purple

stars indicate the eventual tornado and infrasound array locations, respectively.

FIG. 4. (Color online) Time series of MRVD and of the NHAE from 1928

to 2025 UTC.

J. Acoust. Soc. Am. 146 (3), September 2019 Elbing et al. 1531



2017; Smith et al., 2017; Jacob et al., 2018), a multi-

university collaboration focused on the development and

implementation of unmanned aerial systems (UAS) and their

integration with sensors for atmospheric measurement. The

infrasonic array, satellite image shown in Fig. 5, was cen-

tered at (36.1344, �97.0815) and the coordinates for each

microphone as well as the separation distances are provided

in Table II. Tornadoes generally produce infrasound between

0.5 Hz (k � 686 m) and 10 Hz (k � 34.3 m), where k is the

acoustic wavelength. Bedard (1998) recommended a nomi-

nal spacing of k/4 between microphones in an array, though

k/2 is more widely accepted. Using the half-k spacing, the

ideal spacing between microphones is 343 m. Space limita-

tions resulted in the final spacing of �60 m, which makes it

tuned to �3 Hz (half-k spacing). Each microphone had a

nominal sensitivity of �400 mV/Pa and a nearly flat

response from 0.1 to 200 Hz. All the microphones had identi-

cal mounting structure that included a low-frequency vibra-

tion isolation pad with the microphone sealed within an

acrylic dome painted white. The mounting followed guide-

lines from the manufacture to mitigate the impact of rapid

temperature variations. Windscreens were produced using

four 15-m long porous hoses connected to each microphone

for spatially averaging to cancel out incoherent noise (e.g.,

wind). The microphones with and without the windscreens

(hoses) were tested in an anechoic chamber (though not

anechoic to infrasound frequencies) in a method similar to

that of Hart and McDonald (2009). These results showed

significant reduction in wind noise below 50 Hz without sig-

nificant attenuation of a reference signal, but no noise reduc-

tion by 100 Hz (Threatt, 2016). The microphones were

powered with DC-power supplies (APS-1303, Aktakom).

The output from each microphone was recorded via a

dynamic signal analyzer (USB-4432, National Instruments).

The data acquisition was controlled via a commercial soft-

ware package (Sound & Vibration Measurement Suite,

National Instruments). The sample rate was fixed at 1 kHz

and grouped in 20-min observation windows. Unfortunately,

there was cross-talk between microphones 2 and 3 that was

not identified until after the reported observation. However,

the current analysis includes microphone 3 data because

cross-talk was only confirmed in microphone 2 and, even

with the cross-talk, it contains independent data (though

potentially contaminated with “noise” from microphone 2).

B. Time series analysis

The time trace of microphones 1 and 3 are provided in

Fig. 6 with the time (tr) relative to the tornado report (11

May 2017, 2013 UTC). It is apparent that a signal that was

significantly stronger than the background levels peaks close

to the time of the tornado report, and a second strong event

begins �20 min after the reported tornado touchdown. While

seemingly aligned with the tornado report (and a potential,

un-confirmed rain wrapped second tornado), inspection of

the wind speed (STIL Mesonet) time trace (included in

Fig. 6) shows that the elevated infrasound levels are corre-

lated with when the wind speed exceeds �5 m/s. This is con-

sistent with Pepyne and Klaiber (2012) that observed that

porous hose filters were not effective windscreens when the

wind exceeds 5 m/s. This is also consistent with the fact that

microphone 3 (as well as microphone 2, not shown) was

attenuated relative to microphone 1 since microphone 1 was

elevated and microphones 2 and 3 are on the ground with

some natural wind breaks (e.g., trees, buildings) surrounding

them. In addition, there is a possibility that the porous hoses

on microphones 2 and 3 were infiltrated by rain water due to

FIG. 5. (Color online) Satellite image of the OSU infrasonic array.

Microphone locations are labelled and denoted by the “X” and microphone

elevation listed.

TABLE II. Summary of locations for each of the microphones, mounting loca-

tion (roof or ground level), and the separation distance between the microphones.

Location

Separation

Distances (m)

Latitude Longitude

Elevation

(m) Mounting Mic 1 Mic 2 Mic 3

Mic 1 36.1344 �97.0819 296 Roof 0 67.6 58.6

Mic 2 36.1342 �97.0813 291 Ground 67.6 0 58.5

Mic 3 36.1347 �97.0814 290 Ground 58.6 58.5 0

FIG. 6. (Color online) The measured sound pressure versus time in minutes

relative to the tornado touchdown (11 May 2017, 2013 UTC) for micro-

phones 1 and 3 with the amplitude of microphone 3 shifted for clarity. The

time trace of the STIL Mesonet site with a reference dashed line at 5 m/s is

also included for comparison.
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being laid directly on the ground. Conversely, microphone 1

was on a roof with good drainage and the porous hoses were

elevated 38 mm above the surface. For these and other issues

(Hart and McDonald, 2009; Pepyne and Klaiber, 2012),

there is active research searching for alternative windscreen

options (e.g., close-cell dense foam; Zuckerwar, 2010;

Shams et al., 2005; Shams et al., 2013; Alberts et al., 2013;

Dauchez et al., 2016) with most infrasound researchers mov-

ing to the use of porous domes (Talmadge, 2018; Pitre and

Petculescu, 2019).

These infrasound signals are nonstationary, but for the pur-

pose of analysis such signals can often be viewed as piecewise

stationary. This requires a means of identifying the appropriate

period, which is challenging since this is a singular event (i.e.,

a unique tornado with additional, unknown background infra-

sound sources). Here the analysis method of Bendat and

Piersol (2000) for a nonstationary single record is followed

with the assumption that the single measurement is the product

of a deterministic function and a random process. This analysis

demonstrates that increasing the averaging period T reduces

the random errors but increases the bias error. Thus, the selec-

tion of the period is critical for an accurate representation of

the data during the analysis. For the current work, the appropri-

ate averaging period was determined from the trial-and-error

approach (Bendat and Piersol, 2000). Figure 7 shows the

squared effective pressure, P2
e ¼ 1=T

Ð T
0

p2dt, from micro-

phone 1 with averaging periods from 0.01 to 1000 s (additional

periods were examined, though not shown). From these results

it is clear that T¼ 0.01 and 10 s still have abrupt variations

from one sample to the next, which is indicative of random

errors. Conversely, the results of T¼ 1000 s shows a significant

bias error as illustrated from the observation that P2
e increases

before the actual infrasound signal rises as tr ¼ �7 min and

20 min. Thus, from trial-and-error, a final averaging period of

T¼ 100 s was determined. Consequently, subsequent data anal-

ysis was performed within 100 s windows.

C. Spectral analysis

The sound pressure spectra, Uðf Þ, presented herein are

the single-sided form such that

P2
rms ¼

ð1
0

U fð Þdf ; (1)

where P2
rms is the pressure variance and f is the temporal fre-

quency. For the current analysis, the period of time when the

tornado was present was set at �46 < tr < 154 s, which cor-

responds to 6100 s from the nominal time arrival for the

direct path acoustic wave ðtr ¼ 54 sÞ. The 6100 s window

was selected because it is consistent with the averaging

period previously determined as well as being nominally

consistent with the level of accuracy with which it is known

the tornado was present. To determine the pressure spectra

during the tornado, the period of interest ð�46 < tr < 154 sÞ
was segmented into 100 s periods with 75% overlap. The

square of the double-sided fast Fourier transform (FFT) was

multiplied by two to give the single-sided sound pressure

spectra (i.e., power spectral density). The accuracy of each

spectrum was checked against Eq. (1), and the variation was

less than 1% for all computed spectra. All of the individual

spectra within the window of interest were averaged to pro-

vide the mean spectrum. Results from microphone 1 (indi-

vidual segments as well as the mean spectrum) during the

tornado are provided in Fig. 8 with the sound pressure spec-

tra reported in decibels referenced to 20 lPa. Here there is

gradual decay in the power spectral density from �0.1 Hz

until a broad peak is observed between 5 and 14 Hz. The ele-

vated spectral levels below 5 Hz are likely due to wind noise,

which is supported by the infrasound amplitude at these low

frequencies being well correlated with the local wind speed

(see Elbing et al., 2018b). The broad peak was smoothed

with a 1/50th decade filter and then the maximum energy

was used to identify the peak of 75 dB at 8.3 Hz with a qual-

ity factor of 1.6. The quality factor ðQ ¼ fpk=ðfU � fLÞÞ is a

measure of the bandwidth of the peak, where fU and fL are

the frequency 3 dB below the peak on the upper and lower

side of the peak, respectively. Following the initial peak at

�8.3 Hz, there are overtones with nominal peaks at 18, 29,

36, and 44 Hz, which have quality factors (Q) of 3.4, 3.8,

FIG. 7. (Color online) Squared effective pressure (Pe
2) versus time with a

wide range of averaging periods. The longest period (T¼ 1000 s) creates a

large bias error as evident at tr � 17 min.

FIG. 8. Sound pressure spectra during the nominal time of arrival of signals

emitted from the verified tornado (�46< tr < 154 s) compared with the

sound pressure spectra before the rise in infrasound (blue line). Thin black

lines correspond to spectra from individual 100 s intervals, and the thin

white line is the mean with a 1/50th decade filter applied.
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4.8, and 4.9, respectively. After the last overtone, there is a

rapid roll-off associated with the low-pass filter created by

the porous hose windscreens. The fundamental frequency

(8.3 Hz) peak was �18 dB above the levels before the rise in

infrasound associated with the tornado (�27< tr < �7 min).

D. Bearing angle estimate

As the larger amplitude content was likely associated

with wind noise, the question is whether these other peaks

are associated with the tornado. The cross-talk contamina-

tion between microphones 2 and 3 prevents bearing angle

calculation without applying assumptions about the resulting

pressure wave and its orientation. However, it is possible to

answer the question of whether the received signals are con-

sistent with what is expected if they were produced by the

tornado. For this analysis, it is assumed that the distance

between the tornado and the array (18.7 km) was sufficient

that the received signals are well approximated as plane

waves. Given the speed of sound (343.8 m/s; mean from

STIL, DML, PERK) and the frequency range of interest

(5< f< 14 Hz), the distance between the array and tornado

corresponds to 270 to 760 wavelengths. Next, it is assumed

that the received signals were propagating parallel to the

ground directly from the source with negligible impact due

to the elevation difference between microphones (difference

in propagation between the surface and the elevated sensor

introduces a bias error for broadband signals). Note that

given a range of 18.7 km with possible cross-wind propaga-

tion, this assumption adds uncertainty to the calculations.

The bearing angle of the filtered signal was determined

with time-domain beamforming using the time difference of

arrival technique (Dowling and Sabra, 2015). The separation

(or lag) time between microphones 1 and 3 ðt13 ¼ t1 � t3Þ
was determined from the peak in the cross-correlation

between the two signals. Given the assumptions, there are

two valid bearing angles mirrored about the line between

microphones 1 and 3 (if the horizontal plane wave assump-

tion were not applied this would represent a cone). The

speed of sound (c) and the distance between microphones 1

and 3 (L13) can be used to define the angle between the plane

wave front relative to the line connecting microphones 1 and

3, h ¼ cos�1ðcjt13j=L13Þ: Then with geometric relationships,

the bearing angle of the received signal (u) and its mirrored

result (u0) can be determined with the angle measured posi-

tive clockwise from north (0�).
The sensitivity of the bearing angle to the processing

parameters showed the largest measurement uncertainty.

Thus, the bearing angle was computed by applying a 5th

order Butterworth bandpass filter with the minimum and

maximum cutoff frequencies incrementally varied between

5.5 and 11.5 Hz and 40 and 50 Hz, respectively. These fre-

quency ranges were selected because they nominally span

the width of the fundamental peak and the 4th overtone,

respectively. In addition, the segment period and overlap

percentage between segments was varied, which produced a

total of 189 computed bearing angles per time step. In Fig. 9,

the resulting time history of the mean bearing angle for the

received infrasound signals is shown with the error bars

equal to the standard deviation determined from variation of

the processing parameters. Only u0 is shown in Fig. 9 for

clarity since this analysis is simply to show that the direc-

tionality of the received signals are consistent with that

expected from the tornado. For comparison, the relative

bearing angles for the front, middle, and back side of the

storm core that produced the tornado are also provided in

Fig. 9. Here the “storm core” location was defined via radar

reflectivity as the region of the storm that produced the tor-

nado with >50 dBZ at a nominal elevation of 1 km. In addi-

tion, a horizontal reference line at the bearing angle

corresponding to the tornado report (utornado¼�11.5�) is

included, which intersects the storm core center curve at

tr¼ 0. It should be noted that at �2035 UTC (tr � 22 min),

the storm core breaks into two segments with the bearing

angles shown corresponding to the front and back of the

leading and trailing segments, respectively.

While there is significant scatter in the results, the mean

bearing angles track with the general storm core direction

with the majority of data points falling between the bearing

angles corresponding to the leading and trailing edges of the

storm core. Ultimately, given the applied assumptions and

known noise contamination from the other microphone, the

bearing angles are nominally consistent with what would be

expected if emitted from the reported tornado location. This

gives corroborative evidence that the infrasound signal of

interest originated from the region within the storm that pro-

duced the tornado.

IV. DISCUSSION AND ANALYSIS

A. Characterization of events (infrasound bursts)

The time trace of the sound pressure (Fig. 6) shows that

there were two distinct infrasound bursts or events. This is

interesting given the possibility of a second tornado that was

not confirmed due to the rain wrapped storm and lack of

low-level radar. Examination of the sound pressure and the

FIG. 9. (Color online) Bearing angle (u0) of the received signal bandpass fil-

tered between 5 and 50 Hz. The horizontal dashed line is the tornado bearing

angle. The other dashed lines correspond to the nominal bearing angles of

the leading or trailing edges of the storm core while the solid line is the

storm core center. Sound pressure time trace is also included for reference.

Mirrored bearing angles are omitted for clarity.
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cross-correlation from microphones 1 and 3, C1;3ðtÞ
¼ 1=T

Ð T
0

P1ðsÞP3ðsþ tÞds, showed elevated sound pressure

and correlation levels during �7 � tr � 52 minutes, where s
is the lag (or shifted) time between signals. A more detailed

examination inside of this window shows that the spectral

peaks seen in Fig. 8 first appear at tr ¼ �4 minutes, and they

persist until tr ¼ þ40 minutes, including the period between

the two bursts where the sound pressure levels were reduced.

Figure 10 shows the pressure spectra during event 1 (�4< tr
< 11 min), event 2 (19< tr < 40 min), the period between

events 1 and 2, and the spectra before and after the rise in

infrasound.

First, it is important to note that the power spectra dur-

ing the larger window of event 1 are nearly identical to those

of the narrow window used to analyze Fig. 8. Furthermore,

events 1 and 2 are also nearly identical, which suggests that

they are both related to a similar physical process(es). It is

also interesting that the relatively quiet period between the

two events had pressure spectra that looked similar to events

1 and 2, though at reduced levels. This suggests that the

same mechanism was active throughout the period of interest

with the source either weakening for a period or the propaga-

tion path changing (e.g., wind speed/direction, source eleva-

tion, storm structure, etc.). Here we note that, while the

infrasound community has made great advances in the study

of acoustic propagation of infrasound (Ostashev et al., 2005;

Le Pichon et al., 2010; Waxler and Assink, 2017; Shang

et al., 2019; Sabatini et al., 2019), no corrections for propa-

gation effects have been applied for the current work. For tr
> 40 min, the tones are lost even though the spectra levels in

the 5–50 Hz band remain elevated, but they did drop to com-

parable levels as before event 1 for frequencies above

�5 Hz. Below 5 Hz, the signal remains elevated above the

background levels, which is associated with the wind noise

and can be seen in Fig. 6 with higher wind speeds and sound

pressure levels.

While the fundamental frequency and the associated

overtones during the tornado were identified from the power

spectra discussion, it is informative to precisely identify the

peaks during the various periods of interest. The fundamen-

tal and first four overtones were identified for periods before,

during, and after both infrasound events based on the maxi-

mum energy. These results as well as the peak amplitude are

provided in Table III. Note that the bands of interest were

also integrated and compared with the peak amplitudes,

which were nearly identical. Inspection of Table III shows

that the frequency of the peaks for the fundamental and over-

tones were similar between events 1 and 2 with the mean

deviation between events being 2%. The amplitudes had a

mean deviation of 3%, but consistently event 2 had the

higher amplitude. As previously mentioned (and observed in

Table III), the period between events 1 and 2 also had peaks

at nearly the same frequencies, though with a decrease in

amplitude (�6 dB relative to event 1). This gives strong evi-

dence that the mechanisms leading to the two events were

related.

Abdullah (1966) modeled a tornado as a compressible

Rankine vortex, which predicts overtones when constrained to

axisymmetric vibrations with a large vertical-to-radial wave-

length ratio,

fn ¼
4nþ 5ð Þc

4d
: (2)

Here, n is a non-negative integer, and d is the diameter of the

vortex core. While Schecter (2012) identified several funda-

mental issues (discussed in more detail subsequently) with this

analysis that precludes it as a potential mechanism, it is infor-

mative to compare the current observations that include over-

tones with these overtone predictions. Given the observed

fundamental frequency from the current observation, the result-

ing overtones are compared with the predictions from Eq. (2)

in Fig. 11. Given the fundamental issues, it is not surprising

that there is a significant deviation between the current obser-

vations and that predicted by Abdullah (1966). The error bars

on the current results are set based on the quality factor (i.e., 3-

dB reduction on each side of the peak). It is interesting that the

FIG. 10. (Color online) Comparison of the pressure power spectra during

the infrasound bursts (events), the period between the events, and for refer-

ence the spectra before and after these events.

TABLE III. Frequency and amplitude of the fundamental (n¼ 0) and over-

tones (n> 0) from before, during, between events, and after both infrasound

events.

N 0 1 2 3 4

Frequency Band, a–b (Hz) 5–14 14–23 23–32 32–43 43–52

Before Tornado(es) (�27 < tr < �7 min)

fn (Hz) 13.8 15.2 25.1 41.7 50.2

Peak (dB/Hz) 57.3 57.7 57.4 56.4 57.1

Infrasound Event 1 (�4 < tr < 11 min)

fn (Hz) 8.3 18.2 27.6 38.1 45.8

Peak (dB) 73.1 66.2 63.5 61.3 58.7

Between Events (11 < tr < 19 min)

fn (Hz) 8.3 19.1 27.6 38.1 47.9

Peak (dB) 66.0 59.4 56.7 56.2 56.8

Infrasound Event 2 (19 < tr < 40 min)

fn (Hz) 8.7 18.2 27.6 38.1 47.9

Peak (dB) 76.0 69.7 65.1 62.0 59.2

After Tornado(es) (52 < tr < 72 min)

fn (Hz) 5.3 19.6 25.0 39.1 51.2

Peak (dB) 60.2 60.5 66.9 55.4 56.1
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observed overtones are linearly related ðfn ¼ 9:47nþ 8:64Þ
but not pure harmonics (factor of �1.1 rather than 1.0 between

overtones). Linear regression analysis shows that both the lin-

ear slope (9.47 6 0.56) and intercept (8.64 6 1.38) were statis-

tically significant (p-value <0.05). Furthermore, using a t-test

on the slope shows that the multiplication factor between over-

tones was between 1.07 and 1.21 with 95% confidence. This is

a potentially important observation with respect to identifying

a fluid mechanism for the infrasound production, but more tor-

nado observations are required to explore these relationships in

greater detail.

B. Comparison with proposed mechanisms

While the current work does not aim to attribute the

observations to a specific mechanism, it can be informative to

compare the current observations to proposed mechanisms.

First, it should be noted that the higher frequency signature

Frazier et al. (2014) observed and demonstrated to be consis-

tent with aeroacoustic jet turbulence was not observed. This is

expected since Frazier et al. (2014) measured larger tornadoes

(EF-2, EF-4, EF-5) and noted that the frequency range was

10–100 Hz, which means the current small tornado (EFU)

would likely have a signature above 100 Hz (i.e., at a fre-

quency higher than the current acoustic array could observe).

Frazier et al. (2014) also notes that there was evidence of a

lower frequency (<2 Hz) signature. The low frequency signal

was assumed to be mostly due to wind noise, but there was

sufficient coherence for successful beamforming to produce

bearings to the tornado producing storms. This lower fre-

quency signature has had several proposed mechanisms

including radial oscillations (Abdullah, 1966; Bedard, 2005;

Schecter, 2012), electromagnetic sources (Balachandran,

1983; Few, 1985; Pasko, 2009), co-rotating vortices (Powell,

1964; Georges, 1976), vortex-surface-interactions (Tatom

et al., 1995), heat-related sources (Nicholls et al., 2004;

Akhalkatsi and Gogoberidze, 2009; Schecter and Nicholls,

2010; Markowski and Richardson, 2010; Schecter, 2012), and

non-equilibrium effects (Zuckerwar and Ash, 2006; Ash

et al., 2011).

As previously mentioned, Schecter (2012) has demon-

strated that the Abdullah (1966) analysis has fundamental

issues: primarily (i) constraints on the tangential velocity

fluctuations at d/2 are nonphysical, (ii) requirements on out-

ward propagation of acoustic waves are not met, and (iii) the

solution includes modes for nonphysical acoustic sources

outside of the vortex. In addition to the failure of Abdullah

(1966) to predict the overtones of the current observations

(Fig. 11), Fig. 12 compares the Abdullah (1966) predictions

against available observations (Bedard 2005; Dunn et al.,
2016; current). The diameter for the current observation was

set at the maximum damage path width (46 m). The maxi-

mum damage path is not the vortex diameter, but is the best

measure of the current observation since low-level radar data

were not available. There is a low quality video of this tor-

nado, in which the visible part of the funnel cloud has a max-

imum thickness that was �2.9 times the width at the ground

(Elbing et al., 2018a). This was used to provide a nominal

uncertainty estimate for the current tornado diameter. Also,

the error bars shown for the fundamental frequency was

determined from the 95% confidence interval from the linear

regression analysis of the spectral peaks evaluated at n¼ 0.

This shows that the current observation is the only measure-

ment that falls on the predicted fundamental curve of

Abdullah (1966), but with the tornado size uncertainty

biased towards the higher harmonics. All of the other obser-

vations tend to align better with the first or second harmonic.

The prolonged signal that began prior to tornadogenesis

is inconsistent with electromagnetic sources (impulsive sour-

ces) and vortex-surface-interactions (signals should not be

observed prior to touching the ground). In addition, the fre-

quencies of the current and previous observations were too

high for those predicted based on co-rotating vortices, and

the original postulate that motivated this mechanism has

been disproven. Recent simulations (Schecter and Nicholls,

2010; Schecter, 2012) show that there is a lack of discernible

infrasound in the absence of latent-heating effects and that

non-tornadic thunderstorm cells produce infrasound from the

melting level. This suggests that latent heat sources are a

FIG. 11. (Color online) Fundamental and overtones during infrasound event

1 (tornado) compared with the predictions from Eq. (2) given the fundamen-

tal frequency.

FIG. 12. (Color online) Available observations of infrasound fundamental

frequencies associated with tornadoes with estimates of the tornado size

compared against predictions from Abdullah (1966).
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likely mechanism, and simulations of the liquid-vapor transi-

tions within a cloud were able to produce infrasound between

0.1 and 10 Hz (Akhalkatsi and Gogoberidze, 2009; Schecter

and Nicholls, 2010). However, radial vortex oscillations includ-

ing the non-columnar nature of a tornado (Schecter, 2012) and

analysis incorporating non-equilibrium effects (Zuckerwar and

Ash, 2006; Ash et al., 2011) are also consistent with observa-

tions. As noted by Frazier et al. (2014), there are likely multi-

ple acoustic generation mechanisms active, which was based

on their datasets exhibiting coherent acoustic energy within

two distinct regimes (<2 Hz and 10–100 Hz with larger torna-

does; EF-2, EF-4, and EF-5).

C. Comparison with radar metrics

Given a history of a complex relationship between hail

production, vorticity, and infrasound production (Bowman

and Bedard, 1971; Bedard, 2005; Schecter et al., 2008), the

current infrasound observations (power spectral peak within

the 5–14 Hz band, Umax) are compared with the radar metric

NHAE in Fig. 13. In addition, the MRVD is included to

demonstrate that infrasound production was not correlated

with the large-scale rotation of the supercell that produced

the tornado (i.e., the MRVD peak occurs before the rise in

infrasound). Each parameter in Fig. 13 has been normalized

to facilitate comparisons. The maximum values used to scale

the pressure power spectra (Umax), MRVD, and the NHAE

were 0.3123 Pa2/Hz, 42.5 m/s, and 0.137, respectively. The

NHAE during event 1 generally follows the infrasound with

their rise, peak, and roll off occurring at nearly the same

time. This is consistent with observations by Schecter et al.
(2008) that infrasound from a tornado-like vortex radiates

infrasound in the 0.1–10 Hz range from the region where dia-

batic processes involving hail are active. It should be noted,

however, that before the infrasound signal was observed, sig-

nificant hail was produced from this storm as evident from

both radar metrics and hail reports (Table I). Ultimately,

these results suggest that infrasound from a tornadic storm

could be connected with hail production, but hail production

is not solely responsible for the infrasound production.

V. SUMMARY AND CONCLUSIONS

The current work presents infrasound measurements

during a hail-producing supercell in Oklahoma on 11 May

2017, which produced an EFU tornado near Perkins, OK

(35.97, �97.04) at 2013 UTC with a path length of 0.16 km

and damage path width of 46 m. The storm was character-

ized using ground based measurements (Mesonet sites and a

weather station at the infrasound sensors) of the air tempera-

ture, humidity, pressure, wind speed, and wind direction.

The closest WSR-88D radar (KTLX) was too far (�70 km)

to measure maximum wind speed within the tornado, but the

MRVD from low-level mesocyclone at �1 km ARL and

NHAE were used to characterize the storm before, during,

and after the tornado. There were reports of a possible sec-

ond tornado after the first, but it was never confirmed due

the storm being rain wrapped.

Two infrasound microphones with porous hoses as

windscreens were recording 18.7 km from the tornado. The

data below �5 Hz were contaminated with wind noise during

the tornado, but the 5–50 Hz band produced data above the

noise floor. During the tornado, a fundamental frequency of

8.3 Hz was observed with overtones at 18, 29, 36, and 44 Hz.

While two microphones were insufficient to identify a defini-

tive bearing angle, assumptions about the propagation and

filtering the data between 5 and 50 Hz showed that the

received infrasound was consistent with that expected from

the storm core that produced the tornado. Furthermore, the

bearing angle of the received signal during the confirmed

tornado was within the uncertainty of the bearing angle

measurement.

The spectral peaks observed during the tornado were

present from �4 to þ40 min relative to the confirmed tor-

nado (2013 UTC). The time trace shows two significant

bursts, which the events were identified based on cross-

correlation between the microphones as event 1 (�8 to

þ10 min) and event 2 (20–30 min). The power spectra from

events 1 and 2 were nearly identical to the narrow period

corresponding to the confirmed tornado. In addition, the

period between events 1 and 2 showed similar structure in

the power spectra, though at a lower amplitude. This sug-

gests that the second event (as well as the period between)

had similar active physical processes, and if a second tor-

nado did occur, it was likely from the same geophysical pro-

cess that produced the first tornado. The overtones observed

in the spectra were shown to be linearly related, but not

matching those predicted by Abdullah (1966). In addition,

comparison of the current results (noting that the damage

path width likely underestimates the vortex core size) and

past observations (Bedard, 2005; Dunn et al., 2016) show

Abduallah (1966) fails to predict the tornado size given the

fundamental frequency. However, the separation of the

available data does support the conjecture that a relationship

between tornado size and the infrasound frequency does

exist. While no specific mechanism was considered as a

potential explanation for the current results, the consistency

FIG. 13. (Color online) Time histories of the normalized pressure power

spectra within the 5–14 Hz band (Umax), MRVD, and the NHAE. Vertical

dashed and solid lines denote the windows corresponding to infrasound

event 1 and 2, respectively.
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of the current observation (as well as those in the literature)

with various proposed mechanisms were discussed.

Electromagnetic sources, vortex-surface-interactions, and

co-rotating vortices are inconsistent with observations, while

latent heat effects, radial vortex oscillations that include

non-columnar nature of a tornado, and non-equilibrium

effects are consistent with observations. In addition, it was

noted that the current observations did not measure at suffi-

ciently high frequency (>100 Hz) to assess the aeroacoustic

jet turbulence signature proposed in Frazier et al. (2014).

Finally, comparison of the infrasound with radar metrics

produced insights about the infrasound and its relationship to

the larger storm system. The MRVD of the base level of the

mesocyclone was not well correlated with the infrasound,

which suggests that the large-scale storm rotation is not a

mechanism for the infrasound. This is consistent with other

observations that the mesocyclone rotation is not responsible

for the production of infrasound, but rather the tornado struc-

ture. The NHAE did appear to be correlated with the infra-

sound in the 5–14 Hz band during event 1, which includes the

confirmed tornado. Here the rise, peak, and roll off of both the

infrasound and NHAE occurred nearly simultaneously. This

supports the observation in the literature that the infrasound

could be connected with the diabatic processes involving hail

activity. However, the maximum observed NHAE for this

storm occurred prior to the production of significant infrasound

in the 5–14 Hz band, which is consistent with past observations

that hail production alone (e.g., without rotation) does not pro-

duce infrasound. While it was unfortunate that the radar was

too far from this tornado for characterization of the tornado, it

does demonstrate the potential use of infrasound to characterize

even weak tornadoes in remote locations where low-level radar

coverage is poor. This work, combined with future observa-

tions of tornado infrasound, should provide insights into the

fluid mechanism(s) responsible for infrasound production. In

addition, there is a need for a more detailed analysis of hail

production, vorticity, and infrasound production.
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