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Many recent developments in machine learning have come from the field of “deep

learning,” or the use of advanced neural network architectures and techniques. While

these methods have produced state-of-the-art results and dominated research focus in

many fields, such as image classification and natural language processing, they have not

gained as much ground over standard multivariate pattern analysis (MVPA) techniques

in the classification of electroencephalography (EEG) or other human neuroscience

datasets. The high dimensionality and large amounts of noise present in EEG data,

coupled with the relatively low number of examples (trials) that can be reasonably

obtained from a sample of human subjects, lead to difficulty training deep learning

models. Even when a model successfully converges in training, significant overfitting

can occur despite the presence of regularization techniques. To help alleviate these

problems, we present a newmethod of “paired trial classification” that involves classifying

pairs of EEG recordings as coming from the same class or different classes. This allows

us to drastically increase the number of training examples, in a manner akin to but

distinct from traditional data augmentation approaches, through the combinatorics of

pairing trials. Moreover, paired trial classification still allows us to determine the true

class of a novel example (trial) via a “dictionary” approach: compare the novel example

to a group of known examples from each class, and determine the final class via

summing the same/different decision values within each class. Since individual trials are

noisy, this approach can be further improved by comparing a novel individual example

with a “dictionary” in which each entry is an average of several examples (trials). Even

further improvements can be realized in situations where multiple samples from a single

unknown class can be averaged, thus permitting averaged signals to be compared with

averaged signals.

Keywords: EEG, MVPA, deep learning, machine learning, cognitive neuroscience

1. INTRODUCTION

Deep learning has produced state-of-the-art results in many areas of machine learning, but
adoption of deep learning for the classification of electroencephalography (EEG) signals, and
other types of human neuroscience datasets, has lagged compared to its popularity in other
fields. Although an increasing number of studies are using deep learning to process neuroimaging
datasets, the improvements in performance have typically not been as drastic as in other fields
(Lotte et al., 2018), and most human neuroscience research has continued to use more traditional
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multivariate pattern analysis (MVPA) approaches: Manual
feature extraction followed by a simple, typically linear, classifier,
such as support vector machines (SVMs; Cortes and Vapnik,
1995) or logistic regression and its derivatives, e.g., sparse
multinomial logistic regression (SMLR; Krishnapuram et al.,
2005).

Nevertheless, deep learning techniques are being explored
in EEG classification. Bashivan et al. (2015) used a recurrent
convolutional model to classify EEG data that was projected
onto a two-dimensional plane and then subjected to Fourier
analysis. The final model achieved an error rate of 8.89%, as
compared to a 12.59% error rate with a random forest. While
this is a meaningful reduction in error rate, boosting was not
employed in the training of the random forest, which likely
would have significantly shrunk the difference in performance.
Lawhern et al. (2018) explored the use of fully convolutional
neural networks; they applied convolutions in data that were
arranged in a (channels × timepoint) fashion to create a two-
dimensional matrix. These models had very few features, on
the order of 2,200. This work showed improvements over the
Filter Bank Common Spatial Pattern algorithm in a majority of
the datasets tested, including the P300 event-related potential
(ERP) in an oddball task, error-related negativity in brain-
computer interfaces, movement-related cortical potential in a
finger movement task, and sensory motor rhythm in imagined
movement. Schirrmeister et al. (2017) further demonstrated
the applicability of convolutional neural networks in decoding
raw EEG signals without hand-crafted features. They showed
that the learned filters were able to extract information in
the alpha, beta, and high gamma wavelengths, and found
a small improvement over the Filter Bank Common Spatial
Pattern algorithm in their test dataset (82.1% accuracy to
84.0%) accuracy.

There are many possible reasons for modern deep learning
techniques to underperform in EEG classification, compared to
the drastic benefits deep learning has had for other fields. For
one thing, EEG data are very noisy. The electrical activity that
makes it to the recording electrodes is spatially smoothed and
otherwise distorted by passing through poor conductors, such
as the skull and scalp. Signals propagating in opposite directions
interfere with each other and reduce the signal that makes it to
the sensor. Even more importantly, human subjects’ cognition
and brain activity naturally fluctuate from trial to trial; on some
trials, they may not be focused on the task at all, and thus may
produce brain signals that poorly reflect the trial type they are
presented with. As such, if participants’ attentiveness cannot be
inferred from behavioral performance, some trials may not be
classifiable at all, despite lacking any overt signal artifacts. While
averaging can be used in some cases to reduce the impact of this
unclassifiable data, it is not practical in all situations, such as
when working with brain-computer interfaces where real-time,
single-shot classification is the ultimate goal.

EEG data also have very high dimensionality. Signals in most
cognitive neuroscience studies are generally recorded with a
sampling rate of between about 250 and 1,000 Hz, with anywhere
between about 16 and 256 channels of data. Overfitting is
common on such high-dimensional signals. This problem is

further exacerbated by the limited number of examples (trials)1

that are usually available. It is impractical to collect EEG datasets
on the scale of hundreds of thousands of examples, as seen in
other deep learning applications, such as image classification,
as this would require extraordinarily long recording sessions
with human subjects and/or an unreasonably large number
of them. Finally, this is all further compounded by the large
individual differences between different human subjects (e.g.,
Valenzi et al., 2014). While a digital image of, say, a traffic light
could be taken from many different angles, under many different
lighting conditions, etc., traffic lights still have a number of visual
properties that are presumed to be more-or-less invariant across
different conditions and exemplars; if a so-called “traffic light”
were shaped like a pyramid, gelatinous, and translucent, and
contained lights of blue/magenta/orange, most image classifiers
(including human beings) would fail to recognize it as such,
but it could also rightly be argued that those changes make
it no longer a true “traffic light” anyway. In comparison, it is
much more difficult to make such distinctions in patterns of
neuroscience data across human beings; while certain general
phenomena appear to be near-universal across most humans,
such as the N170 ERP to face stimuli (Bentin et al., 1996),
there is still substantial variation across individuals and trials
that can be sufficient to fool many classifiers. And, because it
is usually impractical to determine whether these variations are
due to differences in head shape, recording artifacts, fluctuating
attention, functional brain organization/connectivity, cognitive
strategy, etc., it is much more difficult to establish any kind
of ground truth as to what an ideal response would look like.
Suppose a human participant exhibits noN170 ERP but has intact
face recognition ability, with no discernible artifacts in their data;
how do we reconcile this? In the EEG data, we have the equivalent
of a pyramidal, gelatinous “traffic light” but are confronted with
the awkward task of trying to determine if we can possibly align
it, somehow, with all the other pictures of rectangular solid ones.

Even if deep learning has not yet produced drastic
improvements in classification performance relative to
traditional MVPA techniques for most cognitive neuroscience
applications, it is still worth exploring further; there are a
tremendous number of possible configurations of deep neural
network architectures, and thus far we have only scratched the
surface of what might be possible with them. However, if we do
want to increase performance in the analysis of neuroscience data
with deep learning, it might be wise to begin thinking about ways
of changing how we could reformulate the basic problem. This
paper describes one such possible reformulation (out of probably

1The common parlance in psychology and cognitive neuroscience would be

“trials,” but the machine learning literature usually says “samples” or “examples.”

Given the confusion of using “samples” (since these can also refer to individual

data points of EEG), we will use “trials” to refer to these trial-like chunks of

neuroscience recording data, in which the intent is to classify each trial/example

into one of several categories. One caveat is that our approach relies on combining

two “trials” of EEG data to form each “example” for classification, so while “trials”

and “examples” would be synonymous for most traditional classification schemes,

they are semantically distinct in the context of our PTC approach. Thus, in the

present paper, we use “trials” to denote a short chunk of EEG data to be classified,

and “examples” to denote the units fed into a classifier, which are either individual

“trials” in traditional approaches or pairs of “trials” in PTC.
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many): Instead of classifying a single example at a time, one
could instead attempt to classify pairs of examples as belonging
to either the same class or different classes. We refer to this
general approach as paired trial classification (PTC), described
further in section 2.2.2. This method presents several potential
benefits. First, it allows for a drastic increase in the number of
training examples, as there are O(n2) possible pairs. This makes
it easier to find a neural network model that reliably converges,
which can be a significant issue in datasets with a comparatively
large number of features but comparatively few examples. Also,
given the otherwise low impact of standard data augmentation
techniques in the field (Bashivan et al., 2015), PTC could also
potentially improve the ability of the model to generalize to
new data by reducing the likelihood of the model to memorize
samples from the dataset. Second, it reduces the problem to two
classes, potentially simplifying multi-class problems and thus
presenting a second way of making it easier to achieve robust
classification performance from limited training data. Third, it
is flexible: The basic same/different judgment can be interpreted
either categorically or continuously, as a kind of similarity
metric; it can be combined with a “dictionary” approach (see
below) to achieve traditional multiclass classification; and trained
PTC models can in principle be used with any input data, not
necessarily just the categories it was initially trained with, which
could have interesting theoretical applications in the future.

As alluded to above, when trying to classify a novel example
into one of several categories, PTC could still be used by
employing a “dictionary” approach. That is to say, a new trial
can be compared to known trials from all known classes and
classified as the same class as the exemplar(s) to which it is/are
most similar. Thus, for a single trained network model, this
allows us to classify each example in the test set multiple times
and average the results of those individual decisions into a single
overall classification, which has the potential to reduce variability
in classification performance for individual trials. Novel trials
could also be compared against averaged signals from multiple
trials drawn from the training set. This allows for more stability
in the comparisons, further addressing the issue of noise in EEG
signals. Similar approaches based on “dictionary” comparisons
and/or averaging have been used with traditional MVPA going
back to its neuroimaging roots (Haxby et al., 2001), but PTC
allows those approaches to be combined with the power and
flexibility of deep learning.

Ideas similar to PTC, also with an intent to increase the size of
the dataset and the accuracy of the classifier, have been explored
in other domains. A similar pairing technique has also been
explored, but at the pixel-classification level, in hyperspectral
imaging. Rather than classifying individual pixels, Li et al. (2016)
classified a pixel in combination with each of its neighboring
pixels and used a voting strategy to determine the class of the
original pixel. Another similar approach by Inoue explored data
augmentation through the unweighted averaging of two images
in the training set. These images were not required to be drawn
from the same class but were always given the label of the
first chosen image, thus preventing perfect memorization of the
data. The final fine tuning was performed on unaugmented data.
They demonstrated substantial performance improvements on

the ILSVRC 2012 and CIFAR-10 datasets using GoogLeNet. This
approach differs from our proposed approach in that it performs
averaging rather than concatenation, and does not attempt to
predict the sameness of the two samples (Inoue, 2018). Using a
technique termed “Matched Pair-Learning,” Theiler (2013) paired
two signals with statistical dependence but differing labels (e.g.,
different frames of chemical plume data) and classified the pair
together, but their aim was not to classify whether those signals
had the same or different category, per se. Comparisons of
trials of neuroscience data to each other, or to averaged sets of
trials, have also been relatively commonly applied in “pattern
similarity” analyses within the traditional MVPA domain of
cognitive neuroscience; in essence, our method is an enhanced
version of those pattern similarity approaches, which would
typically use Pearson correlation, Euclidean distance, or other
distance/similarity metrics (for more, see section 2.2.2 below).
However, to our knowledge, this is the first time such an approach
has been tried within the domain of deep learning, or conversely,
the first occasion in which deep learning has been applied in the
domain of pattern-similarityMVPA to achieve a similarity metric
customized to the dataset at hand, and thus one that is “smarter”
than existing metrics based purely on mathematical formulas.

2. MATERIALS AND METHODS

2.1. Data
We used an EEG dataset consisting of the “initial presentation”
period of a cognitive neuroscience study first published by
Johnson et al. (2015); for full details, please see that paper. Briefly,
in the pertinent portion of that study, participants were presented
with a pair of visual stimuli for 1,500 ms: either two written
words, two images of faces, or two images of scenes. Thirty-
one channels of EEG data were recorded at 250 Hz. The signals
were bandpass-filtered via hardware in a 0.01–100 Hz range, and
recorded with 14 bits of precision. See Figure 1 for an illustration
of the stimuli and data.

A total of 37 subjects participated in the study and had
high enough quality data to be used. We used the same initial
pre-processing steps, trial rejection parameters, and participant
exclusion criteria as described originally by Johnson et al. In the
original publication, there were two experiments with N = 21
and N = 16, but the “initial presentation” period did not differ
between experiments, and thus we have combined them into a
singleN = 37 dataset for present purposes. Each subject had∼200
trials after artifact rejection (around 60–70 per image category),
for a total of just under 7,000 trials.

The data were then subjected to additional pre-processing for
the deep-learning-based PTC analyses. All data values (originally
in raw microvolts) were divided by a fixed factor of 20 to bring
their scale approximately into the −1 to 1 range in which neural
networks perform the best. Additionally, time averaging was
applied to reduce the dimensionality of the data by a factor of
10, i.e., data were downsampled into time bins of 40ms apiece,
similar to the bins used for MVPA in the original publication
(Johnson et al., 2015). Thus, the total data dimensionality per trial
was 31 channels× 37 time bins = 1, 147 features.
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FIGURE 1 | Cognitive task and sample EEG data. (A) Participants viewed pairs of one of three categories of images at the beginning of each trial of the cognitive task,

with blank-screen fixation intervals before and after. Other task components followed the presentation of the images, but those elements of the task are not presented

or analyzed here. (B) Single representative trial of EEG data after pre-processing and downsampling. Electrode labels are according to the standard 10–20 and 10–10

systems for EEG electrode placement.

2.2. Classification Methodology
2.2.1. Baseline Models
In order to attain a baseline classification accuracy on the dataset,
several widely used classifiers were examined. These include
both a traditional classification baseline and a deep learning
classification baseline. These models were trained on both single
trials and averaged trials to allow for comparisons between the
PTC methodology and other established techniques.

Traditional classification baselines were set using SVM
and SMLR techniques, which are both frequently applied in
traditional MVPA2. SVM analyses used a linear kernel, which is
also common in neuroscience studies usingMVPA, and which we
have found to outperform radial basis function kernels in some
of our previous analyses of EEG data. SVM hyperparameters
were chosen with grid search over C in the set [0.0001, 0.001,
0.01, 0.1, 1, 10, 100]. Similarly, the lambda hyperparameter in
SMLR was chosen through grid search from the set [0.001, 0.01,
0.1, 1, 10, 100, 1000]. These value ranges were chosen to span
a range commonly seen in practice, in order to ensure that our
comparisons were as fair as possible to the baseline conditions
(i.e., that we did not hamstring the baselines by a poor choice
of hyperparameter).

2The method originally used for this dataset by Johnson et al. (2015) was SMLR,

but in that paper, the authors were analyzing a different portion of the cognitive

task and used a different cross-validation scheme that would not be readily

comparable to our PTC approach or other baseline analyses in this paper, so those

previous findings are not discussed here.

The deep learning model developed for paired-trial
classification (see below) was also used for baseline analyses
as a more conventional three-class neural network classifier
(deep neural network [DNN] baseline model). This was done by
slightly altering the network architecture, namely, by modifying
the input layer to accept a single trial (rather than a pair), and
modifying the output layer to have three output nodes instead
of two, while leaving all hidden layers the same between the
baseline DNN and PTC network architectures. It is certainly
possible, given the effectively infinite number of combinations
of architectures and hyperparameters, that better-performing
DNN models could be found for the baseline analysis and/or
the PTC analysis; however, for this initial demonstration of PTC
we simply chose one relatively straightforward model that we
thought would be fairly representative of the types of DNNs used
to analyze cognitive neuroscience data.

2.2.2. Paired Trial Classification (PTC) Technique
The essence of the PTC approach is that instead of training
a neural network to classify a single trial of data into one
of several classes, the network is instead trained to determine
whether two trials of input data are drawn from the same
class or different classes. This binarization of the problem is
somewhat different to the approach of, say, performingmulticlass
classification with SVMs by creating a number of binary SVMs
and summing their outputs, because with the PTC approach,
the same network can theoretically learn to classify similarities
or differences between pairs of trials drawn from any class, for
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theoretically any number of classes. As such, PTC essentially
gives us a new kind of similarity/distance metric with some
useful characteristics: It can be interpreted either as a categorical
same/different judgment or a continuous similarity/dissimilarity
score, and it is “smarter” than simple formula-basedmetrics, such
as Euclidean distance, cosine similarity, and Pearson correlation,
having been trained to be sensitive to the features of a specific
dataset that matter in differentiating the classes, while ignoring
any nuisance features. To do this, each example fed into the
classifier is comprised of two trials of EEG data (with dimensions
Samples × Channels), stacked together to form a 2 × Samples
× Channels input. Regardless of how many classes or conditions
are present in the original dataset, the output layer always has
two units, one representing a decision that the two trials in
the input example are drawn from the same category, and the
other unit representing a decision that the two trials are drawn
from different categories. This also means that, in theory, a
trained PTC network could be applied or adapted (via transfer
learning) to previously unseen categories, although in this initial
demonstration we do not yet test that possibility.

We explored three variations of PTC analyses:

1. Single-to-single: In our initial analyses, we perform PTC
using pairs of individual (un-averaged) trials. This variation
will be referred to as “single-to-single.” One difficulty in
performing single-to-single PTC is that when individual
trials are relatively noisy or variable, as is often the case in
neuroimaging data and EEG in particular, the problem is
compounded by directly comparing two single recordings.
Thus, performance, in this case, might be expected to be
worse than typical neural network classification. By way of
comparison, although traditional DNNs are trained and tested
on individual trials, the network itself effectively embodies
the features that worked best across the full breadth of the
training set. In that sense, traditional DNNs might be a
closer comparison in some ways to the single-to-average PTC
analysis (see #3 below). To address the noise issue that arises
when comparing two individual trials, we also performed
PTC using two approaches that incorporate some form of
averaging prior to classification, and use trial averages rather
than individual trials as one or both elements of each input to
the model.

2. Average-to-average: In the first averaging-based PTC variation,
each training/validation/test example was composed of two
trial averages that combined signals from 20 trials each,
without overlap. This variation will be referred to as “average-
to-average.” At this point, it is important to note that most
analyses are performed under the assumption that we have a
pre-existing “known” dataset and a novel “unknown” dataset.
As such, we explore the case in which the first signal in the pair
is composed of an average generated from a single “unknown”
subject, and the second signal is generated from an average
across multiple “known” subjects, to form a sort of exemplar
pattern. For further details, see section 2.4.

3. Single-to-average: In this analysis, a single trial was compared
to a 20-trial average. This variation will be referred to
as “single-to-average.” Again, this is performed with the

assumption of “known” and “unknown” datasets. The single
trial is drawn from the “unknown” set, while the averaged
trial is computed across multiple subjects from the “known”
dataset. Again, see below for further details.

2.2.3. Dictionary Approach
The basic same/different PTC classifier can readily be mapped to
multiclass classification with the use of a corpus, or dictionary,
of “known” trials. To classify a given “unknown” sample, it is
compared to sets of “known” trials from each class using PTC.
The likelihood scores for each of the classes are passed through
a softmax function (Bridle, 1990), and the classification decision
for the unknown sample is determined by whichever dictionary
class has the highest average softmaxed likelihood value.

A naïve implementation of dictionary selection was used. One
hundred trials from each of the three classes were chosen at
random from the test and validation set to form the dictionary.
In the approaches that compare against averaged signals, each of
the trials in the dictionary is created by averaging 20 randomly
selected signals from the same class, chosen across subjects.

2.3. Network Architecture
Although in principle any number of architectures could be used
for PTC, a straightforward choice for this initial demonstration
was to use a convolutional network model, as that afforded a
clear way of training a classifier that could learn to compare its
two inputs. Each of the two trials is treated as an input channel,
so convolution can naturally capture their parallel (both channel
and time) nature3. A 3 × 3 2D filter was chosen to act over both
channels and time, respectively, using zero-padding to maintain
signal dimensionality between layers. The results were passed
through a leaky rectified linear unit activation (Leaky ReLU)
function and then a batch normalization layer. Four blocks of
convolution, activation, and batch normalization layers were
used. The number of filters per block was increased successively
from 12 to 48 to capture the hierarchical nature of the feature
representations. Each block was connected not only to the next
block with the output of the batch normalization layer feeding
into the next convolution, but all subsequent blocks with skip
connections using concatenation, as in DenseNet (Huang et al.,
2017). At the end of the densely connected portion, a final 2D
convolution with three filters was applied to reduce the data
dimensionality before feeding it into two fully-connected layers
with 64 and 32 neurons, and then a final classification layer. In
total, the network had 246,909 trainable parameters. While the
total number of parameters is substantially smaller than found
in many deep networks, previous literature has suggested that

3In some of our preliminary explorations of the PTC concept in another dataset,

we tried combining the “trials” end-to-end with various network models, and

also tried training SVMs, SMLR, and multilayer perceptrons to perform the

same/different classification on similarly concatenated pairs of trials. None of these

methods were able to learn to perform the classification above chance, which

suggests that structuring the input to “hint” at the paired nature of the problem

is necessary for an algorithm to reliably learn the same/different comparison

operation. In turn, this means that DNNs, particularly convolutional architectures,

may be uniquely well-suited to the task, as these architectures make it much easier

to take the structure of the input into account.
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FIGURE 2 | PTC neural network architecture. The input is two 31 × 37 EEG signals, stacked together in a 2 × 31 × 37 3D array. Batch normalization is immediately

applied to each signal, and the output of this is both passed through the 12 filter banks in the Convolution2D layer of Block 1 and passed directly to the Batch

Normalization block. Thus, the Batch Normalization layer of Block 1 outputs 12 + 2 = 14 images of size 31 × 37. This process is repeated for a total of four blocks. No

concatenation is performed in the dimensionality reduction block, and the 3 × 31 × 37 feature map is flattened and passed to the final dense layers before

classification. All convolutional and dense layers use the Leaky ReLU activation function unless otherwise specified.

substantially down-scaled neural networks are appropriate for
neuroimaging data, in part due to the tendency of larger networks
to overfit when trained with the limited size of dataset available
in neuroimaging (Bashivan et al., 2015). See Figure 2 for a visual
representation of the PTC network.

As noted above, a similar network was used for the baseline
DNN model that used a more conventional three-category
classification approach. The only differences were that in the
baseline DNN’s network, the first convolutional layer only
accepted a single trial’s data, and the final layer had one output

per class. This version of the network thus had a very similar
245,862 trainable parameters (less than half a percent fewer than
the PTC network), as the vast majority of the parameters are
found in the dense layers, which share the same input and output
shapes between the two models.

2.4. Training, Validation, and Test
Procedures
In all the variations of PTC, subjects were split into three disjoint
groups: training, validation, and test. A leave-one-subject-out
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cross-validation methodology was used, and the remaining
subjects were split with 80% randomly assigned to training, and
the remaining 20% assigned to validation. As per standard, the
training group was used to perform backpropagation updates
on the models; the validation group was used to determine a
stopping criterion for updating the model, and the test group was
used to determine the accuracy of the models.

All models were trained using the Adam optimization
algorithm (Kingma and Ba, 2015) and a batch size of
144. Minibatches were generated dynamically during training.
Samples were drawn randomly from all subjects in the
training group, with an even split across all possible class
pairs and orderings (e.g., Face-Face or Scene-Word). Since,
in a three-class problem, there are six “different” pairings
and three “same” pairings, the “same” pairings were sampled
twice as often to provide equivalent numbers of “same” and
“different” pairings during training. In the average-to-average
analysis, averages were constructed such that no trials were
shared between the two averages; in single-to-average, the
single trial was never one of the trials used to comprise
the average.

Standard techniques were implemented to reduce the
likelihood of overfitting. Dropout was enforced on the dense
layers (Srivastava et al., 2014), with a proportion of 10%. We
initially tried architectures with higher dropout rates, which
would be more standard usage of the dropout algorithm,
but those rates resulted in reduced performance during
training across all analyses and unreliable training convergence
in the single-to-single PTC variation. Early stopping was
employed when validation loss failed to improve for a
period of 30 epochs. The model from the epoch in which
the lowest validation loss was observed was chosen as the
final model.

For single-to-single and single-to-average “same-different”
accuracy, each sample in the test set (i.e., held-out subject)
was compared to a randomly selected set of trials drawn from
the training and validation sets, with 100 signals per class,
as described in section 2.2.3. For the average-to-average PTC
method, 80 averages were generated per class from the test set
(roughly approximating the number of individual trials per class
that a single subject would have) and then compared against a
dictionary built from the training/validation sets as in the other
PTC analyses.

For the baseline (non-PTC) deep learning analyses, a
similar leave-one-subject-out cross-validation scheme was used,
with the same network hyperparameters as the PTC analyses
(optimization algorithm, dropout, early stopping, etc.). Similar
to PTC, the non-left-out subjects were split with 80% randomly
assigned to training, and the remaining 20% assigned to
validation. For all deep-learning-based analyses, ten iterations
of the cross-validation were performed per left-out subject, and
results from all iterations were averaged to yield the final results
we present below.

SVM and SMLR models were also tested using leave-one-
subject-out cross-validation, but without a validation set. That is,
the models were trained on trials from all but one subject, and the
remaining subject’s trials were then used for testing.

TABLE 1 | Baseline accuracy (percent, with chance = 33.33%).

SVM SMLR DNN

Single 63.67 64.90 59.51

Averaged 81.54 82.52 82.54

Bold values indicate highest accuracy in each row.

2.5. Environment
All deep learning analyses (PTC analyses + the DNN baseline
analysis) were performed in Python 3.6 using the Keras toolbox
(Chollet, 2015) with a Theano backend (Theano Development
Team, 2016). Custom in-house Python scripts were used to
implement the specific analysis techniques we used, tabulate
results, and so on. NumPy was used in supporting functions
(Oliphant, 2006; Walt et al., 2011). SciKitLearn was used for the
SVM (Buitinck et al., 2013) and PyMVPA was used for SMLR
(Haxby et al., 2011).

3. RESULTS

3.1. Base Models
The performance of the three baseline classifiers is shown in
Table 1. All values reported are derived by first calculating
mean accuracies for each human participant (averaged across
iterations of the cross-validation algorithm, for all deep learning
models; SVM and SMLR are deterministic and did not require
multiple iterations), and then averaging across participants.
Overall, SMLR (with a lambda parameter of 100) achieved the
highest performance on single trials, with an accuracy of 64.90%
(against chance = 33.33%). SVM (with a C parameter of 0.0001)
achieved the second-best results with an accuracy of 63.67%.
Finally, the DNNmodel achieved an accuracy of 59.51%. SMLR’s
performance was significantly better than SVM’s (p = 0.0064)
and SVM’s was significantly better than the DNN model’s (p <

10−7; all comparisons are paired t-tests).
In the averaged-trials condition, all baseline models

performed similarly. The DNN model performed infinitesimally
better than SMLR, at 82.54 and 82.52%, respectively. SVM
achieved a slightly lower accuracy of 81.54%. However, none
of these values were significantly different from each other
(all p > 0.3).

3.2. PTC
The overall PTC results are shown in Table 2. The same-
different classification had a chance accuracy of 50%, and
the dictionary classification approach had a chance accuracy
of 33.33%. Generally, as more averaging was applied, the
accuracy increased. Same-different accuracy improved from
56.03% (single-to-single) to 71.25% (single-to-average) to 86.15%
(average-to-average) as the averaging was increased. As expected,
all of these values were significantly different from each other
(all p < 10−18).

Similarly, dictionary classification improved with more
averaging, from 49.21 to 61.53 to 83.32%. Again, as expected, all
of these values were significantly different from each other (all
p < 10−16).
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TABLE 2 | PTC accuracy summary (percent).

Same/Different Dictionary

Single-to-Single 56.03 49.21

Single-to-Average 71.25 61.53

Average-to-Average 86.15 83.32

(Chance) 50.00 33.33

The single-to-single PTC dictionary classification performed
worse than all of the single baselines (p < 10−13 against all single-
trial baseline classifiers). Similarly, the single-to-average PTC
dictionary model performed worse than all of the averaged-trial
baselines (all p < 10−11). However, given the differences in the
algorithms, a “fairer” comparison might be between the single-
to-average PTC dictionary model and the single-trial baseline
classifiers, since the trained baseline classifiers implicitly contain
a form of averaged representation of the training data, against
which individual trials are compared during testing. The single-
to-average PTC dictionary still performed significantly worse
than the single-trial SVM and SMLR classifiers (both p ≤ 0.001),
but it did outperform the single-trial DNN classifier with a nearly
identical network architecture (61.53 vs. 59.51%; p < 10−7).

The average-to-average PTC dictionary classification did
perform with a numerically higher accuracy than all of the
averaged-trial baselines (83.32% for PTC vs. next-highest DNN
baseline at 82.54%). However, as with the comparisons among the
individual averaged-trial baseline models, the average-to-average
PTC dictionary classifier was not significantly different from any
of them (all p > 0.14).

The same-different confusion matrices for the three methods
are shown in Table 3. All three models are more likely to
predict that two samples came from a different underlying class
than the same underlying class, with the difference being more
pronounced as more averaging is involved. As a result, accuracy
was higher when the actual trial pair was a “different” pair than
when it was a “same” pair.

Finally, graphical confusion matrices of the individual
stimulus categories are shown for baseline classifiers and PTC
analyses in Figure 3. Broadly speaking, all classifiers showed
the same general pattern, with words being correctly identified
most often, followed by scenes, followed by faces. In all
cases, averaging improved performance, and various individual
classifiers performed better than others, as detailed above;
however, none of the classifiers or manipulations appeared to
show a qualitative difference in the pattern observed in the
confusion matrices, beyond those that tracked with overall
increases/decreases in accuracy. As such, it appears that, broadly
speaking, all classifiers were picking up on approximately
the same general patterns in the data, with no classifiers or
manipulations appearing to show a particular bias for one
category over the others.

4. DISCUSSION

In this paper, we demonstrated a new method of deep-
learning-based classification for neuroscience data, paired trial

classification (PTC). Rather than using a DNN to classify a
trial’s category directly, we instead trained the classifier to
compare pairs of trials to each other. Using a “dictionary”
approach similar to ones employed in traditional MVPA studies
with conventional distance/similarity metrics, we also used PTC
to generate category predictions based on how often a test
trial was judged to be the “same” as other trials drawn from
the three categories of stimuli in our dataset. While it is
difficult to draw direct performance comparisons between PTC
and our baseline measures, given the significant differences in
how the problem was structured and how the results could
be interpreted, overall PTC performed comparably to other
measures, and in some cases perhaps a bit better. Either way, we
believe the novelty and flexibility of PTC make it an interesting
approach and a viable avenue for future explorations into
its potential.

In all cases, PTC performed with accuracy significantly above
chance. While the same-different classification for the single-to-
single paradigmwas onlymarginally better than chance at 56.08%
accuracy, the single-to-average paradigm was substantially better
than chance with an accuracy of 71.32%. This represents the
ability to say with some confidence whether a novel trial is similar
to some exemplar formed from the averaging of known trials.
Furthermore, the average-to-average paradigm is more accurate
at 86.15% accuracy, allowing for a more confident determination
of a group of novel samples known to be drawn from the same
unknown class.

The tendency of the models to predict “different” more often
than “same” is somewhat notable, considering the equal number
of “same” and “different” examples provided during training.
However, this tendency is straightforward enough to explain;
it stands to reason that noise is more likely to make a trial
appear as if it were coming from some different class than for
noise to cause two trials from different classes to appear to be
drawn from the same class. For instance, assume a research
participant stops paying attention for one trial, or flutters their
eyes enough to create a small artifact (but not one big enough
to trigger rejection of the trial using standard preprocessing
techniques). If the PTC algorithm is doing its job well, it is
likely to judge that noise trial as being “different” from the
trial it is paired with, regardless of whether the other trial is
the same category or not. In that case, the PTC algorithm may
not even be making an error when it judges some “same” pairs
as “different”; instead, it might be picking up on unanticipated
differences/noise in the data that are not accounted for by
the comparatively simple assumption that all “face” trials, for
example, should have similar neural activity to each other. This
feature might be exploitable in future work; for example, to
address the well-known issue with many conventional DNN
analyses that deep networks often yield high confidence scores to
noisy or adversarial inputs (Nguyen et al., 2015; Su et al., 2019), as
implicit in their training is the tendency to maximize confidence
scores as much as possible. In contrast, a PTC classifier given
a poor input might correctly give high-confidence “different”
responses to all of the possible categories (including the one
that is nominally the same as the poor trial), which effectively
can be read as a vote of no confidence in the quality of the
input data.
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TABLE 3 | Confusion matrices for PTC analyses (percent).

Single-to-Single Single-to-Average Average-to-Average

Predicted: Same Different Same Different Same Different

Actual

Same 53.71 46.29 60.96 39.04 79.39 20.61

Different 42.74 57.26 23.50 76.50 10.47 89.53

FIGURE 3 | Confusion matrices by individual stimulus categories for all classifiers. Values presented as proportions rather than percentages for readability.

We also observe that the dictionary-based classification
technique allows for the successful mapping back to the
multiclass classification paradigm. The results for the single-to-
average dictionary classification condition were on par with any
of the single trial baselines, and the average-to-average dictionary
classification conditions were on par with the averaged signal
baselines. These results were achieved with a naïve approach to
dictionary selection, so better performance could be seen with the

optimization of the dictionary; exploring potential improvements
to the dictionary portion of the algorithm would be one
promising direction for future work. Notably, the single-to-
single paradigm stands to improve from a less noisy dictionary.
As it stands in this implementation, a sort of “weak learner”
effect is observed between the two applications of the single-
to-single network: A single “same-different” classification was
successful 56.08% of the time, only 6.08% above chance, but
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the three-class classification was successful 49.35% of the time,
a more impressive 16.02% better than chance. Although the
two values are not directly comparable given the differences
in what they represent, they are suggestive that pooling the
individually weaker “same-different” classifications across a
multiclass dictionary can indeed produce robust overall results.
This also raises the possibility that the PTC approach might be
especially well-suited to datasets with higher numbers of classes.
In particular, if some of those classes had too few trials in them
to reliably train a conventional DNN to recognize them, a PTC
network trained with trial pairs from all classes might still have a
chance of picking them out.

Deep learning is useful because it can take advantage of the
multi-dimensional nature of datasets in a way that other methods
cannot (as the simpler linear techniques require vectorized
input); GPU acceleration and parallelization in general are better
supported for deep learning, making it more computationally
efficient for large datasets; and deep networks can be configured
flexibly to address a wider range of problem domains than simple
linear methods. However, deep learning is frequently difficult to
apply successfully in neuroscience. Often, human neuroscience
datasets can fall into a “Goldilocks problem” zone, meaning
that they can have too many trials or features for SVMs or
other conventional MVPA approaches to be performant, but
fewer training examples than are typically expected to enable
DNN-based analyses to converge reliably. In such cases, data
augmentation techniques could be applied to enable the use of
deep learning by increasing the generalizability of the network.
However, direct augmentation techniques pose challenges of
their own. For example, Bashivan et al. (2015) found that
temporal shifting techniques that have been applied successfully
in other fields did not meaningfully improve generalization in
their deep learning analyses of an EEG dataset. PTC offers an
alternative way of increasing the size of the training dataset,
not by augmenting the trial data itself, but rather by pairing
trials combinatorially. However, it does not require altering the
underlying data (except, optionally, by averaging trials to increase
signal-to-noise, as we did here), which could be a useful property
of this technique in specific scenarios, or provide another option
to try when standard data augmentation techniques fail.

The goal of this paper was to introduce the PTC paradigm and
show that it can easily bemapped back tomulticlass classification.
This approach is not limited, however, to cases in which there

are a discrete, known set of classes as in typical classification
applications. PTC could also be used for detecting trials that
differ substantially from those seen in the training dataset, such
as in outlier detection, novel stimulus identification, or artifact
rejection. It could also be used in situations wherein a more
conventional distance/similarity metric might be applied; for
example, to assess neural pattern similarity across exposures
to a set of stimuli, and to use these similarity judgments to
test hypotheses about memory, make predictions about which
stimulus is being seen or imagined at a particular point in time,
or perform clustering analyses.
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