Root-and-Pattern Morphology Without Roots or Patterns

Adam Ussishkin
University of California, Santa Cruz

Follow this and additional works at: https://scholarworks.umass.edu/nels
Part of the Linguistics Commons

Recommended Citation

Ussishkin, Adam (2000) "Root-and-Pattern Morphology Without Roots or Patterns," North East Linguistics Society. Vol. 30 , Article 18.
Available at: https://scholarworks.umass.edu/nels/vol30/iss2/18

This Article is brought to you for free and open access by the Graduate Linguistics Students Association (GLSA) at ScholarWorks@UMass Amherst. It has been accepted for inclusion in North East Linguistics Society by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Root-and-Pattern Morphology Without Roots or Patterns

Adam Ussishkin
University of Califomia, Santa Cruz

0. Introduction

The Prosodic Morphology research program (McCarthy \& Prince 1986, et seq.) has at its core the tenet that templates are defined as authentic units of prosody. This position greatly restricts the theory of templates because it limits potential templates to those that conform to independently mativated phonological and prosodic structures. Within Optimality Theory (OT; Prince \& Smolensky 1993), templates were originally specified through constraints that defined them in terms of the prosodic units they encompassed. For example, much work on reduplication concerns the shape of the reduplicant (in OT, this begins with McCartty \& Prince 1995, and continues in many other authors' research).

More recently, however, we have witnessed the emergence of an even more restrictive theory: one which does without constraints that explicitly define templatic shape. This move comes in reaction to a serious problem caused by such constraints: their existence predicts a broader typology than actually exists in natural language. The dilemma, dubbed the "Kager-Hamilton" problem, has been pointed out in most depth by Spaelti (1997) and McCarthy \& Prince (1999). The crux of the Kager-Hamilton problem is that given the existence of templatic constraints, we predict languages where the templatic requirement on a reduplicant may be forced (or "back-copied") on the base of reduplication. However, there is no such language in which this takes place.

Given this fact it is furifful to question the validity of templatic constraints. According to McCarthy \& Prince (1999), it is exactly these constraints that the theory must be rid of in order to avoid the Kager-Hamilton problem. In this approach, so-called templatic effects are actually an instance of the Emergence of the Unmarked (McCarthy \& Prince 1994), resulting from the following ranking schema:

(1) Input-Output-Faith » $\mathrm{C} »$ Base-Reduplicant-Faith

where C is some phonological markedness constraint. C is active just in the cases of reduplication, because C dominates the constraint demanding total identity between base
and reduplicant, a relation between different parts of a particular morphologicallyspecified output form.

The upshot of this approach is that one or many markedness constraints may explain the so-called templatic effects observed in reduplicants. What makes this theory so appealing is that it resorts to markedness constraints for which there is already an abudance of empirical evidence and whose effects are attested elsewhere, so no template-specific machinery is necessary. In this paper, I extend these principles to a different but related domain: templatic effects in Semitic. I henceforth label this phenomenon as fixed prosody, to emphasize that my analysis makes no use of templatic constraints in explaining the constant prosodic shape of words.

The remainder of the paper is structured as follows. In §1, I provide background on nonconcatenative morphology and prosodic morphology, focusing in particular on the verbal systern of Modem Hebrew, which displays characteristic "root-and-pattern" behavior. $\$ 2$ provides an analysis of this system, and argues for an approach based on morphologically-segregated faithfulness constraints to explain the phenomenon of Melodic Ovenwriting. In this section, I show that the constraints responsible for the fixed prosodic effects observed in Modern Hebrew are not templatic in nanure, but rather, that they are independently motivated constraints on prosodic and metrical strucrure. In §3 I discuss a potential alternative approach, which I reject due to its inabiliry to correctly predict attested pattems. § $\$ 4$ concludes the paper, and $\S 5$ provides an appendix on Modern Hebrew stress, showing that the same constraints responsible for fixed prosody in the verbal system are also active in the metrical structure of the language.

1. Empirical Background and Focus

Since the ground-breaking work on Semitic morphology and phonology of McCarthy (1979, 1981), languages of the Semitic branch of the Afto-Asiatic language family have served as a classic example of templatic effects. In his original work on these languages, McCarthy (1979, 1981) extended the representations provided by Autosegmental Phonology (Goldgmith 1976) to describe the patterning of morphemes in languages like Arabic. Three types of morpheme compose a word under this view: the vocalic melody, the consonantal root, and the CV template. To briefly illustrate an oft-used example, the representation of the word katab 'he wrote' appears as follows:
(a) the consonantal root
(b) the template
(c) the vocalic melody

Further developments in template theory arose in the work of McCarthy \& Prince (3986), known as Prosodic Morphology. The basic principle underlying this approach is that templates are defined in terms of authentic prosodic units. So, rather than defining the Arabic verbal tenplate for katab as CVCVC, it is defined as an iambic foot, which is independently known to occur in the language. This prosodic structure is illustrated below:

The superionity of this approach over the other is that templates are no longer viewed as extra-theoretical structures that the language happens to make use of, rather, their existence is driven by the fact that their prosodic make-up is independently necessary. In this view, templatic effects are linked to prosodic and metrical structure whose existence is independently borne out.

Within the framework of OT, the overwhelming majority of work conceming templatic effects centers on reduplicative phenomena. Much less work, if any, however, has been done in the domain of languages in which the majority of the words, as opposed to simply those in the reduplicative domain, exhibit templatic effects. It is the templatic effects or what I rerm here fixed prosocty in these languages which I turn to in this paper. The primary empirical focus of this study is the verbal system of Modem Hebrew, which is characterized by templatic effects typical of nonconcatenative morphology. In the following section I present a description of these effects in Modem Hebrew.

The Modern Hebrew verbal system contains seven classes or binyamim. ${ }^{1}$ The basic proposal here is that the one binyan serves as the base of affixation for the others ${ }^{2}$, and that the prosodic constraints govern this relation. I claim that the basic binyan is the pa§al binyan. If the pafal forn indeed serves as the base of affixation in an output-output correspondence relation (Benua 1995, 1997) for deriving the other binyanim, what can we say about the lexical status of the paial form itself? Interestingly, the pa\{al form has been claimed to be the unnarked, basic pattem by Horvath (1981:231), who maintains that the other binyanim can be semantically and/or syntactically characterized, as seen in the following table (adapted from Horvath 1981:231).

[^0]| Binyam name ${ }^{\text {S }}$ | Function | Example | Gloss |
| :---: | :---: | :---: | :---: |
| pa $\mathrm{al}^{\text {a }}$ | - unmarked, basic pattera | gadal
 katav | 'he grew' 'he wrote' |
| niffal | - passive of paSal
 - ingressive (change of state) from paial
 - Intransitive form of a transitive hiffid form | (none)
 nixtav | 'it was written' |
| pifel | - Attypically transitive basic pattern
 - Intensified form of pafal | $\begin{aligned} & \text { gidel } \\ & \text { (none) } \end{aligned}$ | 'he raised |
| pufal | - passive of pifel | gudal (zone) | 'he was raised' |
| hitparel | - middle voice reflex of transitives in pifel
 - reflexive
 - reciprocal
 - repetitive action | (none)
 hitkatev | 'he corresponded' |
| hiffil | - calusative of pasal
 - transitive reflex of niffal | higdil hixtiv | 'he enlarged' 'he dictated' |
| huffal | - passive of hiffil | hugdal
 huxtav | 'he was enlarged' 'it was dictated' |

Given this classification, we have two pattems which are candidates for lexical entries (or bases of affixation): the paial and the pifel binyanim, both of which may be "basic patterns", according to Horvath's classification. Interestingly, in favor of at least the paial being lexically listed, it is the only binyan that may surface as monosyllabic. This is seen in data such as the following:
(5)
Monosyllabic pa fal
kam
rac
sam
ba
gar
xas

I rake such forms as evidence that verbs in the patal binyan are lexically specified, and therefore subject to Input-Output faithfulness constraints. However, since paial forms serve as the base of affixation in forming other binyanim, these other binyanim are subject not to IO-faithfulness, but rather to Output-Output-faithfulness (Benua 1995, 1997). The emergent generalization, to be fleshed out in greater detail below, is that such affixation exhibits typical Emergence of the Unmarked (TETU) effects.

[^1]
2. Fixed Prosodic Effects: The analysis

In this section I provide an analysis of the Hebrew verbal system. The analysis involves two central theoretical claims: (i) that there are no specifically templatic constraints at work and (ii) that there is no need to refer to the consonantal root. I now tum to the fixed prosody, a term I introduce to describe the templatic effects so prevalent in the verbal system of Hebrew and "nonconcatenative" languages in general.

2.1. Bisyllabicity as a fixed prosodic effect

The table in (4) above shows that in general, verbs in Modera Hebrew are bisyllabic. In fact, this is true for every binyan except monosyllabic paial forms and the hitpafel, which contains three syllables due to the presence of the prefix hit-. If this prefix is considered to be outside the true verbal stem, then the generalization holds for this binyan as well. This observation will figure crucially in the analysis that follows.

This account is driven by several assumptions regarding Modern Hebrew prosodic morphology. The first of these is that there is no consonantal root. Rather than being derived from a consonantal root, words are derived from other words. This approach has shown to be quite productive in the analysis of denominal verb formation in the language (Bat-El 1994, Ussishkin 1999, to appear), where referring only to the consonantal root as opposed to an actual ousput obscures crucial information which turns out to be required for determining the pattern particular verbs will conform to. The analysis of denominal verb formation, and the analysis of relations between binyanim to be presented here, rely on the concept of Melodic Overwriting (Steriade 1988, McCarthy \& Prince 1990), whereby an affixal melody, rather than simply concatenating with a base of affixation, actually overwrites a portion of the phonological material in the base. This approach, I claim, is especially appropriate to an analysis of Semitic morphology, where in related forms the vowels may be the only material that differs. Note that this does not imply the existence of the coosonantal root qua morpheme; under this view the consonants happen to be consistent from one related form to another only because they are the residue remaining after Melodic Overwriting. This is illustrated in the following verbal paradigm, which contains related verbs in different binyanim.

(6) Binyon	Hebrew verb	Gloss
pafal	gadal	'he grew' (intransitive)
pifel	gidel	'he raised'
pufal	gudal	'he was raised'
hiffil	higdil	'he enlarged'
huffal	hugdal	'he was enlarged'

An important question relating to the above discussion concening templatic effects is how to enforce the bisyllabic limit on verbal stems in Hebrew. This is accomplished through the interaction of prosodic constraints, which I claim are those constraints responsible for the metrical structure of Hebrew. These are:

Parse- σ (cf. Halle \& Vergnaud 1987, Hayes 1987, Liberman \& Prince 1977, Mester 1994, Prince 1980.)
Every syllable must be parsed by a foot.
(8) FTBin (e.g., McCarthy \& Prince 1986, 1993, Prince 1980) Every foot consists of two syllables. ${ }^{4}$
(9) ALUGN-L (STEM; FT)

The left edge of every stem is aligned to the left edge of a foot.
(10 ALL-FT-L
The left of edge of every foot is aligned to the left edge of the prosodic word.
(11) OO-MAX-V (cf. McCartby \& Prince 1995)

Every vowel in the base must have a correspondent in the output.
(12) Prosodic Hierarchy

These constraints, when combined with the prosodic hierarchy (Selkirk 1980a,b), enforce bisyllabicity on all stems (Ito \& Mester 1992). Crucially, Parse-a must cnucially dominate OO-MAX-V, and so must FTBN. This is shown in the following tablesux, which demonstrate how the pifel verb gidel 'to raise' is derived from the paial form gadal 'to grow (intrans.)' by simply combining the affixal material $/ i$ e/ with the fill output form gadal. (Foot boundaries are indicated by '[' and ']'.)
(13) gidel from gadal

(i) gadaltie	PARSE-G	$\mathrm{OO-MAX}$
a. gi[dela]	*	\%
b. ga[dile]	*!	*
[c. [gidel]		**

(ii)	gadal ie		FTBIN	OO-MAX-
	a.	[gi][dela]	*1	\cdots
		[gadile]	*1	*
	c.	[gidel]		H/4

We have evidence for the following ranking schema, based on these tableaux:
(14) Interim ranking summayy

IO-FATTH is crucially ranked above FTBN to account for the fact that monosyllabic pa 5 al forms, who are lexically specified as such, do not conform to the fixed prosody. They are immune from the constraints enforcing fixed prosody precisely because they are governed by IO-faithfulness relations. However, all other binyanim are governed by

[^2]OO-faithfulness relations, and are thus subject to the constroints enforcing fixed prosody, since such constraints are ranked above 00 -faithfulness, as seen in (12).

2.2. Which vowels remain - a Head Dominance account

A serious question is still before us, however. What detemines which vowels are deleted in these cases? If we incorporate all three constraints into one tableal, we find that there are other potential winning candidates at this point:

There are (at least) two possible solutions to this problem. One appears in Ussishkin (10 appear a), where I argue that MaX-V must be separated into two constraints:

MAX-V-A(FFLX)
Every affxal vowel in the input has a correspondent in the output.
Max-V-S(TEM)
Every stem vowel has a correspondent in the outpurt.
In order. for gidel to be correctly selected as the optimal candidate, we must adopt the ranking seen in the following tableau:
(18) gidel from gadal

gadal + e		MAX-V-A	MAX-V-S
	a. [gadal]	ile	
	b. [gadel]	i!	- ${ }^{\text {a }}$
	c. [pidal]	e!	[${ }^{\text {a }}$
Tr	d. [gidel]		- ${ }^{39}$ 䢒

If the constraint MAX-V-A is undominated and crucially dominates MAX-V-S, the problem disappears. However, based on observations abourt faithfulness and markedness in different morphological domains, McCarthy \& Prince (1995:364) propose a universally fixed ranking between two different types of faithfulness constraints. This "Stem-Affix Faithfulness Metaconstraint" (henceforth SAFM) was originally introduced in McCarthy \& Prince (1994), and is presented in (19):
(19) Stem-Affix Faithfulness Metaconstraint (SAFM)s

STEMFATTH \# AFFLXFATTH
Clearly the SAFM is contradicted by the ranking in tableau (16) above. Rather than abandon the SAFM in toto, however, I propose that the SAFM is simply too strong to be universally fulfilled. In the case at hand, in addition to the case of denominal verbs as I argue in Ussishkin (1999), there are other principles at play. Specifically, I claim that this issue can be resolved with the theory of Head Dominance as proposed by Revithiadou

[^3](1999). Head Dominance provides an interface between prosody and morphology, and states that faithfulness to heads outranks faithfulness in general, as formalized by the following ranking:
(20) Head Dominance (FD; adapted fom Revithiadou 1999:5) HEADFAITH » OO-FAITH

HEADFASTH, formalized by Revithiadou (1999), requires faithfulness to material dominated by a head:
(21) HEADFAITH

A segment sponsored by a head in S_{1} has a correspondent in S_{2}; likewise, a segment sponsored by a head in S_{2} has a correspondent in S_{1}. In addition, featural specifications between corresponding segments in a head are identical in S_{1} and S_{2}.
(22) OO-FATTH

A segment in the base has a cormespondent in a related output form derived from it; likewise a segment in the derived form has a correspondent in the derivational base. In addition, featural specifications between corresponding segments are identical in the two forms.

Retuming to the case of the Hebrew binyanim, we no longer need to stipulate a questionable ranking between the constraints MAX-V-S and MAX-V-A. This is because the HD ranking configuration in (20) will determine which vowels must surface in gidel: the affixal vowels must surface, because they constitute a morphological head as a derivational affix. ${ }^{6}$ The following tableau illustrates this result, with the accompanying schematic representation capturing the compositionality of such a form:

(23) gidel from gadal				
gadal+ie			HEADFAITH	OO-FAITH
	a.	[gadal	i!e	10
	b.	[gadel]	i!	2. 113.
	c.	[gidal]	e!	
2	d.	[gidel]		

The following Hasse diagram summerizes the constraint ranking in effect.
Revised constraint ranking summary

The strategy of HD may be extended to all other binyanim. This is illustrated in the following tableaux.

[^4](26) higdil 'to enlarge' from gadal 'to grow'

gadal+hi ${ }^{\text {' }}$	HEADFATM	Parse-o	OO-FAJTH
a. hi[gadd]	i!	*	12
b. hi[gadid]		*!	A
c. Ki[gidal]		*!	
[4 d. [higdil]			

This case involves the hiffil binyan, which is the first case we have seen so far in which a prefix is affixed to the base form. This prefix consists of CV-, and the rest of the affix is simply vocalic. Interestingly, such cases force a CVC.CVC output in order to satisfy PARSE- σ. In other words, the [g] and [d] are adjacent to each other in this case, as opposed to gadal or gidel. A similar situation arises in the niflal binyan:
(27) nignay 'to be stolen' from ganon 'to steal'

	ganavtnia	HEADFAITH	Parse- σ	OO-FACTH
	a. ni[ganav]	1!	*	a
8	b. [nignav]			-

These cases, involving vowel-final prefixes, also provide evidence for further rankings among the relevant constraints. Notice that so far, in the non-prefixed forms, ALION-L is satisfied in every optimal output. However, given that in the cases invotving vowel-final prefixes the left edge of the stem is never foot-initial, ALIGN-L must be dominated by FTBN. This is illustrated for the form higdil below, where the stem boundaries are indicated by ' $\{$ ' and ' $\}$ ':
(28) higdil 'to enlarge' from gadal 'to grow'

	gadal+hi i	FTBIN	ALIGN-L	PARSE- σ
	a. bi[\{gdil $\}$]	*		F3\%
5	b. [hi\{gdil $\}]$		- *	\cdots

(29)

A different situation occurs, however, in the hitpafel binyan. This is illustrated in the following tableau.
(30) hitraxec 'to wash oneself from raxac 'to wash'

	raxac + hit a e	FTBN	HEADFATTH	PARSE-O	FATTH
	8. bit[raxac]		e!	\%	Waxay
	b. [raxec]		hit		hitw
	c. [hitraxec]	*!			. 2 za
	d. hit[raxec]			*	

Here, the optimal form consists of three syllables, rather than two. The main consequence of interest bere is that one of these syllables is not footed. As seen in (30), forms in the hitpasel form such as hirraxec require us 10 modify our ranking; the constraint Parse-a is actually violable. ${ }^{8}$ Further ranking arguments are also clear once we consider the hitpafei binyan So far, we have seen no reason for violating the constraint ALL-FT-L, which

[^5]requires all feet to be word-initial. However, this constraint is violated by the hitpa fel forms, in order to salisfy the constraint ALIGN-L. The interaction between these two constraints can be seen below:
(31) hitraxec 'to wash oneself' from raxac 'to wash'

raxac + hitae	ALJGN-L	ALL-FT-L
a. hitraxec]	!	
bir	b. hit raxec $]$	

This situation arising from the effects of fixed prosody gives nise a very interesting ranking schema, and one which is very reminiscent of a TETU ranking (McCartby \& Prince 1994). TETU describes cases in which certain phonological constraints are dominated by general faithfulness constraints, and so are inactive, except within specific morphological domains where farthfulness is subordinate to the phonological constraints. This is a novel instance of TETU, however, in that it is observed not in some special, morphologically-restricted domain, such as reduptication, but rather in a very large domain of a language. Consider the following fragment from the ranking for the Hebrew verbal system. As seen here, this is a clear case of TETU:

3. An alternative account

An altemative proposal that might at first glance seem appropriate in this empirical domain would be to adopt a constraint such as Realizemorpieme (Samek-Lodovici 1993, Rose 1996, 1997, 1998, Walker 1998, Kurisu to appear). This constraint (abbreviated RM) plays a similar role to HEADFATH, though the respective consequences of the two constraines diverge exactly in the cases at hand. For this reason I reject the RM analysis.

RM has been used in various analyses to assure that morphological material in the input corresponds to phonological material in the output. Formally, RM is defined as follows:

REALIEEMORPHEME
Every morpheme in the input has some phonological realization in the output.
It is clear how RM can be profitably employed in OT, but the force of this constraint actually turns out to be weaker than that of the HD analysis argued for above. Indeed, I claim that is in inadequate. Crucial to our purposes here is the fact that according to the definition of RM, some minimal realization of a morpheme will satisfy the constraint just as well as a mocimal realization of that morpheme. Previous analysts who have used RM to drive their analyses have typically done so in cases where the input and output differ minimally, that is, cases such as morphological gemination (Samek-Lodovici 1993), morphological reduplication (Rose 1996, 1997, 1998), and subtractive morphology (Kurisu to appear).

Root-and-Pattern Morphology Without Roots or Pattems
However, for the Semitic cases at hand, a RM analysis will not achieve the right results. This is exactly because of its permissive nature: any par of an input-specifed morpheme that surfaces in the output is sufficient to satisfy RM. However, this predicts that in Hebrew, a vocalic affix specified in the input could surface with only one vowel present. Even if RM is high-ranking, the wrong candidate(s) will be choser as optimal. The following tableau illustrates the situation, assuming that the same prosodic constraints in effect above are in effect here:
(35) failed attempt to derive gidel from gadal using Realize MORPHEME

In this case, it is not clear which candidate is optimal, and there are no constraints that could distinguish between the three potentially optimal candidates in this case without appealing to a mechanism like HEADFAITH. In other words, RM does not provide a way to force both affixal vowels to surface.

It is important at this point to note the parallel with earlier, serialist accounts of similar phenomena, termed Melodic Overwriting by Steriade (1988) in analyses of reduplicative morphology. Bat-El (1994) adopts this approach in her serial analysis of denominal verbs in Modern Hebrew, and Ussishkin (to appear) extends this idea to an OT account of similar data. Within OI, Melodic Overwiting is easity achieved by a phonology-morphology interface like the Head Dominance approach, where morphemes in the input have required correspondents in the output.

Another consequence of this approach is the elimination of the consonantal root as a morpheme. In the analysis advocated here, the consonantal root is simply the residue remaining after Melodic Overwriting has occurred. However, as seen in the tableaux above, the consonantal root is never referred to. This is because it has no morphemic status in this aralysis. This is an expected consequence of the combination of Melodic Overwriting with high-ranking constraints on prosodic shape. In addition, this accords with conclusions reached in Bat-El (1994) and Ussishkin (to appear) with respect to the formation of denominal verbs in Hebrew.

4. Conclusion

In this paper, I have investigated the verbal system of Modem Hebrew in an approach to root-and-pattern morphology without making any analytical to either the consonantal root or template-specific constraints. Based on general theoretical considerations of Optimality Theory and prosodic morphology, I have shown that Modern Hebrew can be seen as a case in which TETU effects are observed in the language as a whole and are not restricted to a particular morphological domain. Previous work has clearly established the ubiquity of TETU effects in the area of reduplicative morphology, but this is the first account of fixed prosodic effects analyzed as an instance of TETU.

I have also argued that within OT, Melodic Overwriting can be achieved through a phonology-morphology interface such as Head Dominance, where morphological heads are subject to special faithfulness constraints. Another consequence of this approach is the elimination of the consonantal root as a morpheme. In the analysis advocated here, the apparent consonantal root is simply the residue remaining after Melodic Overwriting. This is an expected result of the combination of Melodic Overwriting with fixed prosody,
and accords with conclusions reached in Bat-El (1994) and Ussishkin (to appear) with respect to the formation of denominal verbs in Modern Hebrew.

Futwre research is necessary to determine if this approach may be extended to all Semitic lenguages and to all systems involving fixed prosodic effects. To the extent that this approach is viable in such systerrs, the Semitic languages begin to look less exotic with respect to their morphology, further undermining the special status of "ponconcatenative" systems in general.

5. Appendix: Stress in the Modern Hebrew verb

In this appendix, I sketch an andysis of stress in the Modem Hebrew verbal system To begin, consider the following paradigm, which illustrates stress in a pifel form 'to speak' in the past, present, and future tenses:

Pasí tense		Present tense		Future tense	
dibárti	1.masc.sg.	medabér	masc.sg.	Pedabér	1.sg.
dibárta	2.masc.sg.	medabéret	fem.sg.	tedabér	2.masc.sg.
dibátr	2.fem.sg.	medabín	masc.pl.	tedabrí	2.fen.sg.
dibér	3.masc.sg.	medabrót	fem.pl.	yedabér	3.masc.sg.
dibrá	3.fem.sg.			tedabér	3.fem.sg.
dibánu	1.pl.			nedabér	1.pl.
dibárem	2.masc.pl.			tedabrú	2.pl.
dibárten	2.fem.pl.			yedabní	3.pl.
dibrú	3.pl.				

As the paradigro illustrates, stress tends to the right edge of the word. This motivates a constraint demanding the stress fall at the right edge of the prosodic word:

E (ND)R(UE)R(IGMT)
Stress falls at the right edge of the prosodic word.
This constraint, however, is not always satisfied. This is seen in forms above such as dibdenu, dibártem, dibärten, and medabéret. I set aside cases such as medabéret for now, under the assumption that they involve a more complex analysis than space permits here. Retuming to the generalizations regarding stress, the constraint ERR must be outranked by some other constraint that allows non-final stress in cases involving a consonant-initial suffix. I claim that this constraint is one of those seen above: namely, the alignment constraint forcing the left edge of every stem to be aligned to the left edge of every foot:

(38) ALJGN-L

Cases like dibdrrmu provide evidence for the ranking illustrated by the following tableau:
(39) dibármu

Interestingly, cases involving a vowel-initial suffix (e.g., dibrá, dibrí) involve deletion of a stem vowel. This shows that the effects of fixed prosody are active not only in deriving one binyan from another, but also in inflectional morphology. I claim that these effects are so be computed in the same way as seen above: the high-ranking

Root-and-Pattern Morphology Without Roots or Patterns
prosodic constraints enforce a bisyllabic fixed prosody. The following tableau illustrates the analysis for the third person feminine form dibrá, which derives from dibér, explaining not only the bisyllabicity but also stress placement:
(40) dibrá- deletion of a stem vowel!

		erta	ALIGN-L	ERR	PARSE-G	OO-FAITH
		[\{dibelr\}a		σ	W,	
		[\{dibé]r\}a		a!	**	
		(dipeer)a]	*	σ	,	
		\{diber)á]	*1		*	.
		[\{dibr)a]		$\sigma 1$,	*
		[dibr)ä]				-

Note that including all of these constraints in the analysis of dibarmu still produces the correct result: stress is on the penultimate syllable.
(41) dibarmu - now with all constraints

In summary, we have established the following ranking schema based on stress in the Modem Hebrew verb:
(42) Emergent ranking schema based on merrical structure

Together with the rankings established above in the analysis of fixed prosodic shape across binyamin, the following integrated schema results:
(43) Integrated ranlaing schema

References

Bat-El Outi. 1989. Phonology and Word Soncture in Modern Hebrew. Ph.D. dissertation UCLA.

Bat-El, Outi. 1994. Stem modification and cluster transfer in Modem Hebrew. Natural Language and Linguistic Theory 12:571-596.
Benua, Laura. 1995. Identity effects in morphological truncation. In Jill N. Beckman, Laura Walsh Dickey, and Suzanne Urbanczyk, eds. University of Massachusetts Occasional Papers [UMOP] 18: Papers in Optimality Theory, 77-136.
Benua, Laura 1997. Transderivational Identity: Phonological Relations Between Words. Ph.D. dissertation, University of Massachusetts, Amherst.
Goldsmith, John. 1976. Autosegmental Phonology. PhD. dissertation, MTT. Published 1979, New York: Garland.
Graf, Dafna 1999. Metrical structure of Modern Hebrew Nominals. Magisterarbeit, Heinrich-Heine-Universitäht, Düsseldorf.
Halle, Moris, \& Jean-Roger Vergnaud. 1987. An Essay on Stress. MIT Press. Cambridge.
Hayes, Bruce. 1987. A revised parametric metrical theory. In Proceedings of NELS 17:274-289. University of Massachusetts, Amherst, GLSA
Horvath, Julia. 1981. On the status of vowel patterns in Modern Hebrew: Morphological rules and lexical representations. In UCLA Occasional Papers 4:228-261.
Inkelas, Sharon. 1990. Prosodic replacement in Modern Hebrew. In Papers from the $26^{\text {th }}$ Regional Meeting of CLS, Volume 2: The parasession on the syllable in phonetics and phonology, Michael Ziolkowski, Manuela Noske, and Karen Deaten, eds.
Ito, Junko, and Armin Mester. 1992. Weak layering and word binarity. University of California at Santa Cruz, Linguistic Research Center Report, 92-109.
Keer, Edward. 1999. Geminates, the OCP, and the Nature of CON. Ph.D. Dissertation, Rutgers University.
Kurisu, Kazutaka. To appear. Morpheme realizations and phonological exponence, Proceedings of the $2^{\text {nd }}$ GLOW in Asia.
Liberman, Mark, and Alan Prince. 1977. On stress and linguistic rhythm. Linguistic Inquiry 8:249-336.
McCarthy, John. 1979. Formal Problems in Semitic Phonology and Morphology. Ph.D. dissertation, MIT, Cambridge, MA.
McCarthy , John. 1981. A prosodic theory of nonconcatenative morphology. Linguistic Inquiry 12:373-418.
McCarthy, John. 1993. Template form in prosodic morphology. In Laurel Smith Stvan et al., eds., Papers from the Third Annual Formal Linguistics Society of Midamerica Conference, Indiana University Linguistics Club, Bloomington, 187-218.
McCarthy, John, and Alan Prince. 1986. Prosodic Morphology. Ms., University of Massachusetts, Amherst, and Brandeis University.
McCarhy, John, and Alan Prince. 1990. Foot and word in prosodic morphology: the Arabic broken plural. Natural Language and Linguistic Theory 8:209-283.
McCarthy, John, and Alan Prince. 1993. Prosodic Morphology I: Constraint interaction and satisfaction. Ms., University of Massachusetts at Amherst and Rutgers University.
McCarthy, John, and Alan Prince. 1994. The emergence of the unmarked: Optimality in prosodic morphology. In Proceedings of NELS 24:333-379.
McCarthy, John, and Alan Prince. 1995. Faithfulness and reduplicative identity. In Jill N. Beckman, Laura Walsh Dickey, and Suzanne Uranczyk, eds. University of Massachusetts Occasional Papers [UMOP] 18: Papers in Optimality Theory, 249-384.
McCarthy, John, and Alan Prince. 1999. Faithfuiness and identity in prosodic morphology. In Rene Kager, Harry van der Hulst, and Wim Zonneweld, eds., The Prosody-Morphology Interface. Cambridge University Press.
Mester, Armin. 1994. The quantitative trochee in Latin. Natural Language and Linguistic Theory 12:1-62.

Prince, Alan. 1980. A metrical theory for Estonian quality. Linguistic Inquiry 11:511562.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generalive Grammar. Ms.; Rutgers University, and University of Colorado, Boulder.
Revithiadou, Anthi. 1999. Headmost Accent Wins: Head Dominance and Ideal Prosodic Form in Lexical Accent Systems. Ph.D. dissertation, University of Leiden, Holland. Published by Holland Academic Graphics, The Hague.
Rose, Sharon. 1996. Morphological expression in areal stem altemations. Handout of talk presented at UC Santa Cruz, February 28, 1996.
Rose, Sharon 1997. Theoretical Issues in Comparative Ethio-Semitic Phonology and Morphology. Ph.D. dissertation, McGill University, Montreal.
Rose, Sharon. 1998. Multiple correspondence in reduplication. In Proceedings of BLS 23.
Samek-Lodovici, Vieri. 1993. Morphological gemination. Paper presented at ROW-1, Rutgers University. October, 1993
Scalise, S. 1986. Generative Morphology. Foris, Dordrecht.
di Sciullo, A.M., and E. Williams. 1987. On the Definition of Word. MIT Press, Cambridge, Massachusetts.
Selkirk, Elisabeth. 1980a. Prosodic domains in phonology: Sanskrit revisited. In M. Aranoff \& M.-L. Kear, eds., Juncture:107-129. Anma Libri. Saratoga, California
Selkirk, Elisabeth. 1980b. The role of prosodic categories in English word stress. Linguistic Inquiry 11:563-605.
Sharvit, Yael. 1994. Issues in the phonology and morphology of the Modern Hebrew verbal system: An optimality-theoretic analysis. Ms., Rutgers University.
Spaelti, Philip. 1997. Dimensions of Variation in Multi-Pattern Rectuplication. Ph.D. dissertation, UC Santa Cruz.
Steriade, Donca. 1988. Reduplication and syllable transfer in Sanskrit and elsewhere. Phonolagy 5, no. 1:73-155.
Ussishkin, Adam. 1999. Head Dominance in Modern Hebrew prosodic morphology. In A. Ussishkin, D. Herrick, K Kurisu, and N. Sanders, eds., Phonology at Santa Cruz [PASC] 6:71-82.
Ussishkin, Adam. To appear. The inadequacy of the consonantal root: Modern Hebrew denominal verbs and output-output correspondence. To appear in Phonology 16.
Walker, Rachel. 1998. Nasalization, Neutral Segments, and Opacity Effects. Pb.D. dissertation, UC Santa Cruz.
Zwicky, Amold. 1985. Heads. Joumal of Linguistics 21:1-29.
Department of Linguistics
Stevenson College
UC Santa Cruz
Santa Cruz, CA 95064
ussishki@ling.ucsc.edu

[^0]: 'It tunss out that troo of these binyanim (pu fal and hurfal) are dependent on other binyanim (pired and biffij, respectively), so there are really only five patterns that need to be accounted for (see Horvalh 1981, Bat-El 1989).
 ${ }^{2}$ An important paper that makes a similar (pre-OT) proposal is MrCarth's (1993) work on Arabic and Akkadian. That account however, still relies on the consonantal root as a morpheme used to derive Binyan ($=$ pa fal), and therefore crucially differs from the account presented here. Other work arguing for high-ranking prosodic constraints in Modern Hebrew indude Bat-El (1994), Inkelas (1990), Sharvit (1994) and Ussishkin (1999, to appear).

[^1]: ${ }^{3}$ The system of binyan rames stems from the practice of associating (in traditional parlance) the consonantal root p, S, l (to which ene meaning 'to act' is atributed) with the appropriate vocalic melody and template.

[^2]: ${ }^{4}$ Modern Hebrew appears to be quantity-insensitive (e.g., Bat-El 1989, 1994, Graf 1999) so a moraic analysis of FTBin is inappropriate.

[^3]: ${ }^{5}$ I have termed this the Stem-Affix Faithfulness Metaconstraint rather than use McCarthy \& Prince's onginal Root-Affix Faithfulpers Metaconstraint in order to avoid confusion between roots in general and consonantal roots.

[^4]: ${ }^{\circ}$ See di Sciullo \& Williams (1987), Scalise (1986), and Zwicky (1985).

[^5]: ${ }^{7}$ This affix requires further invertigation. First of all, it violates Keer's (1999) conception of the Obligatory Contow Principle (OCP) because it contains an imput with two identical adjacent elements that do not necessarily fuse into one; and secondly, some EDGEMOST constralmt (e.g., McCarliry \& Prince 1993) is required here to assare that $h /$ - will be a prefix (this is tue for all the following cases involving prefixes).

 The unfooted status of hit- is not definitively clear. Native speaker informants do not have uriform judgrnents; for instance, regarding whether hit- may bear secondary stress. At the sentence level, at least, it appears that the prefix does not receive stress.

