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Resolving some apparent formal problems of OT Syntax 

10nas Kuhn 

Universitll.t Sruugan 

O. Introduction 

In this paper, I I present a formalization of Optimality Theoretic Syntax and address some 
apparent fonnal and computational problems that such a comparison-based syntax model 
has to face. The main focus is on a set of problems having to do with tbe complexity of 
the processing tasks (parsing or recognition, and generation) when wOrking with an OT 
grammar. The strategy adopted is to restrict the expressiveness of the fonnalism in a way 
that is compatible with the linguistic intuitions to be modelled. As it turns out, this move 
will also solve other. conceptual problems. The individual problems are: 

A. (complexity problem:) When the comparison-based definition of 
grammaticality in Optimality Theory (OT) is applied literally in a computational model 
of syntax. a massive complexity problem arises: for the determination of grammaticality. 
a large (potentially infmite2

) set of higbly complex candidate analyses has to be computed 
and checked for constraint violations (cl. also l ohnson 1998 for a decidability problem). 

Two aspects of the complexity problem can be distinguished: (i) What restrictions 
can be imposed on the formalism to make the processing tasks decidable. i.e., to 
guarantee that algorithms can be devised that perfoon the tasks? (ii) Can further 
restrictions guarantee that tbe processing complexity lies in a realistic complexity class? 

I Parts of this paper arc abbreviated sections from Kuhn 1999. 
2 Resulls by Tesar (1995:ch. 2,3) show that infinity oflhe candidate set is not a problem by itself: 

his dynamic programming techniques can deal with infinite candidate sets. The challenge for a 
compUlational treatment of OT Syntax is to come up with algorithms {or grammars beyond context· 
frecness, and without the input being resaicted to a "strictly ordered sequence of elements" (Tesar 
1995:111). 
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444 Jonas Kuhn 

Aspect (i) is discussed at length in Kuhn 1999, here I will present just a summary and 
report on work in progress on aspect (ii). 

B. (ambiguity problem:) According to Smolensicy (1996), comprehension and 
production do nor differ in terms of the algorithm applied (or selecting the most hannonic 
analysis-in production the candidates share the same underlying representalion, in 
comprehension the same surface foOD. Hale and Reiss (1998) point out that this is 
incompatible with the ubiquitous phenomenon of ambiguous surface foons (it is 
predicted that only the most hannonic reading should exist), 

C. (conceptual problem:) To aCCollnt for language~particular ineffability. 
Legendre. Smolensky I and Wilson (1996) assume that a candidate unfaithful to the input 
LF (or Index LF') can win a competition. Even under the "inventory perspective" on OT 
tbat they adopt, the intuitive starus of such LF·unfaithful analyses, which duplicate 
another-faithful--analysis without meaning anything different, is obscure. An alter· 
native that Legendre et al. (fn. 8) discuss would be to assign no interpretation at all to LF­
unfailhful winners. Trus seems more plausible, but would require some additional 
mechanism (applying after harmony evaluation), which checks the optimal candidate's 
LF against the inputllndex LF, and nullifies the result in case of divergence. 

In this short paper I cannot go into the technical details of problem C. (one reason 
being that the account involves a different set of assumptions than the OT model adopted 
here to tackle problem A.). Nevertheless, the discussion of complexity issues in OT 
syntactic processing opens up the possibility for a new view on the status of LF­
unfaithful winners: The constraint.compilation framework of sec. 5 below can be seen as 
an implementation of the inventory idea, and the LF·unfaithful winners "disappear" from 
the online processing model. 

Sec. 1 of this paper introduces the non-derivational model of OT syntax proposed 
by Bresnan (1998), sec. 2 discusses the formalization of constraints. In sec. 3, the 
processing task of parsing, besides generation, and the complexity issue is addressed. In 
sec. 4. I propose to exploit relative locality of the domain of constraint inreraction. Sec. 5 
flDally sketches how this idea migbt be taken even further in an offline compilation 
approach to optimization. 

}, Candidate generation in a Don·derlvational model of OT syntax 

Many notions of OT Syntax are still subject to discussions, so it would be too early to fu 
them once and for all in a fonnaJization. Nevertheless it is important for this paper to be 
able to pinpoint a particular conception for certain notions formally. such that, e.g .• 
computauonal consequences can be investigated. 

I will follow the OT syntax model proposed by Bresnan (1998, a.o.),3 which is 
based on the fonnalism of Lex..ical-Functional Grammar (LFG) and has been called the 

1 Bresnan shows that Grimshaw's (1997) analysis can be n:constructed in the non-derivational 
framework. Most examples in the present paper ate adOpl:ed from this fragment. 
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Resolving some apparent problems of OT Syntax 445 

OT-LFG system. Adopting this approacb has the advantage that results from the rich 
computational literature on LFG can be applied. LFG's system of correspondence 
between parallel structures4 turns oul very useful in the or context. 

The input for candidate generation that Bresnan asswnes is "a (possibly 
underspecified) feature structure representing some given mOIphosyntactic content 
independent of its form of expression" (Bresnan 1998:sec. 1.1). An exampJe (that in 
English would have we saw you as irs optimal realization) is given in (1). 

(I) Input (-structure 

PRED 'SEE(x,y)' 

GF, 
[PRED 

'PRO' 1 PERS I 
NUM PL 

GF, 
[PRED 

'PRO' 1 PERS 2 
NUM SG 

TNS PAST 

In a fully specified f-structure, concrete instantiations of me grammatical 
functions GFj will appear: SUB!, OBI etc.; also, further features may be added. The 
candidate analyses in an OT competition consist of such fully specified f-structures, 
togelher with a c-structure that realizes the underlying information. Some such c­
structures for (1) are given in (2). 

(2) a. 
b. 
c. 

[lPwe [I'did [ypsee you]]] 
(IP we (I' saw [yp you]]] 
[cPsaw [JPwe [dvpyou]J]] 

The c-structure/f-structure pairings have to obey inviolable principles that can be 
formalized as a "classical" LFG grammar: Accordiog to the "extended head theory" 
adopted in recent LFG work (see Bresnan 1999), all positions in the extended X-bar­
schema are optional, including the heads. This freedom is controlled by f-structural and c· 
structural well~formedness principles. The system allows for a strictly non·derivational 
conception of the base grammar (without having to assume traces at c·structure). 

With this underlying grammar of inviolable principJes (which we can call Gjllviol), 

candidate generation can be formalized as follows: 

( The most imponantlevels of representation are c(ategorial}-slrUcture and f(unctional}structure. 
Principles about the former Cllll be captured by context-free rules, the lattef is constrained by feature 
equatiOns based on c-structure categories. A correspondence function ("projection") maps categories on f­
structurcs-fypically as a many-to-one function. 

3
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446 Jonas Kuhn 

(3) For a given input f·structure 4>/, the set of candidate analyses Gen(q:,;) is the set of 
LPG (c· and f·structural) analyses (T, <1>') generated by Gillv;o/, such that 4>; 
subsumes ~'. 

Hence, the task of determining the candidate set for a given input consists of 
monotonically adding information to the input f.strucrure, plus finding a corresponding c· 
structure. This is exactly the classical task of generation from a semantic structure. 

As Wedekind (1999) shows, this problem is undecidable in the general case. 
However, as discussed in Kuhn 1999:sec. 3.1, it is plausible to assume fonnal restrictions 
on allowable grammars and on the potential to add f-structure information during 
generation that will avoid the undecidability problem.j This methodological move is 
typical for the whole entetprise that the present contribution is a part of: linguistic 
accounts applying a certain formalism attempt to arrive at explanatory restrictions of the 
full power of the formalism. Likewise, for a computational account certain restrictions 
have to be assumed that will guanmtee decidability, or membership in a certain 
complexity class. The interesting question is whether these two motivations for restricting 
the fonnalism converge in some way or other. 

2. Constraint marking and harmony evaluation 

OT constraints are typically fonnulated as universally quantified implications over 
structural elements, saying that whenever a structure satisfies description A, it should also 
satisfy desCription B (simpler constraints can be generalized to this form). An obvious 
reaction would be to express the constraints as fonnulae in a logic with appropriate 
quantifiers. and model tbe constraint marking function marks as checking whether a 
given candidate structure satisfies these general formulae. 

To allow for multiple violations, structure checking has to continue even when an 
inconsistence has arisen. lbis creates an indeterminacy for formulae involving several 
quantifiers, which is somewhat counterintuitive: For instance, wbat does the bypothetical 
constraint (4) say about a candidate containing a DP that has two non·nominal daughters. 
like (5)? Does (5) violate (4) once or twice? Both might be plausible. 

(4) Hypothetical constraint 
For all DP categories, all their daughters are nominal. 
Itn.[DP(n) ..... ltm.IM(n.m) ..... nom(m)]] 

(5) ... lop V PP] ... 

The formulae (6) and (7) are both equiValent to (4) in terms of c1assicallogic, but 
they yield different results for our candidate (here intuitions are fairly clear): (5) should 
violate (6) twice. but (7) only once. 

j The restriction has consequences in particular for the generation of ''unfaithful'' candidates. Input 
information cannot be deleted from the candidate analysis. However, Bresnan's (1998) lex.icalist approach 
to faithfulness violatioll5 is compatible with tflis restriction (sec Kuhn 1999:scc. 3.3). 

4
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Resolving some apparent problems of OT Syntax 

(6) Every daughter of a OP category is nominal. 
\lm.[3n.[M(n,m) A DP(n)] ..... nom(m)] 

(7) For every category, if it has a non-nominal daughter, then it is Dot a OP. 
V'n.[3m.[M(n,m) /\ --, nom(m)] ~..., DP(n)] 

447 

So, assuming fully general formulae to model constraints is problematic. 
Certainly, marc work on the logic of violable constraints is required, but we may 
introduce a rather simple restriction on the fonn of violable constraints that avoids the 
problem and that is also in line with the goal of keeping QT constraints simple (as is 
argued for example in Grimshaw 1998). The idea is to take out of the constraint 
formulation the explicit generalization over structures (which makes the constraint 
recursively applicable on all embedded structures). Instead, the universal applicability is 
now implicit to all constraints and will be made effective in the checking routine that the 
candidate structures have to undergo after they have been constructed: at every structural 
object (category/f-structure), all constraints are applied. This application of the 
constraints to multiple objects is the only source for mUltiple violation9-a single 
structural element can violate each constraint only once. The constraints are then 
interpreted classically. 

In order for this to work, the structural object which a given constraint focuses on 
has to be clearly identified. I will assume a metavariable * for this (reminiscent of the * 
used jn f-annotations of categories to rt:fer to the category node itself). When the 
constraints are checked, the metavariable * will be instantiated to one structural element 
after the other. Thus, the constraints are acrually specified as constraint schemata, 
generating classical constraints when instantiated. 

We can now express (4) in either of the following two ways in (8a), bringing out 
the difference in constraint violations incurred by a candidate like (5) much more clearly: 
(8a) is about DPs and is thus violated once by (4); (8b) is abom daughters of DPs, so (4) 
incurs two violations.6 

(8) a. 
h. 

DP(*) ..... \1m. [M(*, m) -> nom(m)] 
\In. [DP(n) ..... (M(n,*) ..... nom(*))] 

It is compatible with the resmction on constraint formulation to assume a "scalar" 
interpretation of alignment constraints like, e.g., HEAD LEFr (9). (Under a scalar 
interpretation, this constraint is violated twice if there are two intervening elements 
between a (single) head and the left periphery of its projection.) The metavariable-based 
formulation allows for a clear distinction between the non-scalar and the scalar version of 
this constraint, as shown in (10) (it is assumed that the function proj and the relations M 
-for mother-and precede are defIned appropriately). 

, A more intuitive way of expressing (8b) is presumably (i). which is equivalent (cf. also (6». Note 
that with the constraint schemata, classical equivalences can be exploited again. 

(i) 3n.{M{n, *) 1\ DP(n)] -+nom(*) 

5
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448 Jonas Kuhn 

(9) IlEADLEFT: (Grimshaw 1997:374) 
The head is leftmost in its projection. 

(10) non-scalar interpretation: head(*> --t -.3n.[M(pro)(*), n) A pr~cede (n, *)J 
scalar interpretation: cat(*) -+ -.3n.(head(n) /\ M(proj(n), *) /\ precede(*. nn 
The first fonnulation is stated from the point of view of the head; since the 

instantiated schema is interpreted classically (Le., incurring maximally one constraint 
violation for each structuraJ element), a given head can violate this constraint only once 
(even if there are several intervening nodes to the left of it), The second fonnulation is 
from the point of view of the intervening category; thus if there are several of them, the 
overall structure will incur several violations of this constraint. 

With constraints expressed as such schemata, constraint marking on a single 
candidate is an easy computational task (model checking). Since furthermore, the set 
output of Gen can be characterized by a context-free grammar (an unpublished result by 
Ron Kaplan and Jurgen Wedekind, p.c., 1999), hannony evaluation is indeed feasible 
even if there are infInitely many candidates: it suffices to check the constraint profIle of a 
finite number of candidates, since all structures beyond a certain limit are guaranteed to 
be less harmonic than the candidates already checked.7 (For some more discussion, see 
Kuhn 1999:sec. 32.) 

This completes the OT model of input-based candidate generation, constraint 
marking, and harmony evaluation to determine the optimal, and thus grammatical 
candidate; so it seems that the decidability aspect of the complexity problem (A.) can be 
solved with some plausible restrictions on the formalism (of course, more work is needed 
to pinpoint the necessary asswnptions). 

3. Generation and parsing 

So far, the LFG grammar capturing the inviolable constraints has been applied in the 
generation direction, modeling language production and capturing that only grammatical 
(i.e., optimal) candidates are ultimately output. It would be ruce if the same set-up of 
determining a set of candidates, plus applying constraint marking and harmony 
evaluation couId be applied in the opposite direction to model understanding (cf. 
Smole.sky 1996). 

However, as also Johnson (1998) observes, an OT competition among candidates 
with on a conunon phonological string does not model the standard recognition task for 
the language generated by a grammar (here, a grammar is an entire OT model with a 
particular constraint hierarchy). In particular, the string-based competition will fail to 
reject ungrammatical candJdate strings, since all competitors share that string, so the most 
harmonic one will be among them. The string language accepted will in effect be the 
language generated by the base grammar modeling the inviolable principles. 

7 Tesar (1995) employs a similar technique to deal with infinitely many candidates in the context 
of regular and context-free base grammars ("GI~riD/')' 

6
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Resolving some apparent problems of or Syntw:: 449 

A related problem is observed by Hale and Reiss (1998): the system would predict 
that there are practically no ambiguous surface strings, since whenever two analyses of a 
string have a different constraint prof.tle, one should be ruled out being unoptimal. 

Clearly, a simple string-based competition is inappropriate to model the 
recognition task.8 The reason is that (for the systems we are looking at) grammaticality is 
defined by optimization in the generation direction. Thus, more care has to be taken (0 

ensure that the right candidate set enters the competition-even when the processing 
direction for the overall system is turned around. 

A possible method is proposed in Kuhn 1999:sec. 4.1. Initially. the input string is 
parsed by the base grammar Gj",,;ol. The resulting parsing analyses are required only to 
find out possible f-strUctures. From these f-structures the amount of infonnation that 
forms an OT input is extracted. Next. a "backward generation" step is perfonned. 
generating candidates from the extracted OT input f-structuIes. applying the generation­
based optimization (as discussed here in sec. I and 2). For each of these competitions 
there are two possibilities: (i) the siring of rhe optimal candidate is different from the 
original input string--this means that the string we started from is Dot grammatical for 
that input; or (li) the optimal candidate is an analysis of the original string-this means 
we have found one grammatical analysis. If case (li) occurs for none of the competitions 
based on inputs extracted from the parsing results. then the string is not contained in the 
language generated by the OT grammar. The approach certainly captures that many 
strings are ambiguous (several parsing analyses tum out to be instances of case (n)). 

A possible conceptual objection to this mechanism is that the understanding task 
is no longer symmetrical to the production task. A further problem is the considerable 
processing complexity added by the backward generation step. But even without this 
additional factor. the processing complexity seems problematic. 

So, although restrictions can be imposed on the formalism that ensure decidabiliiy 
of the generation and parsing tasks, the other aspect of problem A. remains: the 
processing model outlined foUows the conceptual definition of candidate generation quite 
literally. In order to determine grammaticality, all alternative realizations are effectively 
constructed and evaluated. With the highly unrestricted underlying grammar of inviolable 
principles. the processing expense is immense. Intuitively, it does not seem very plausible 
that generation of entire candidate structures has to take place during online processing. 

The question arises if there are further possibilities of imposing plausible 
restrictions on the formalism in order to allow for more efficient processing. The explicit 
construction of global syntactic candidate analyses seems to miss some concept of 

• This docs not mean that the simple parsing task has no status in the theory. For instance, it plays 
an important role in the learning algorithm as robust intcrpretive pming (Tesar and SmolcnskY 1998). 
Moreover, Frank. King, Kuhn, and Maxwell (l998) apply a similar parsing.based constraint system 10 
imposc a prekrcncc ranking on analyscs in large computational LFG grammars (with a clnssical conccpt of 
grarnmaticality). 

7
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relative locality inherent to theoretical OT accounts.9 In sec. 4, I will attempt to pinpoint 
this intuition in a more fonnal way. Furthermore. one intuitively expects that once the 
language-particular ranking is known, there should be a fairly direct way of determining 
the optimal candidate for a given string or semantil;: representation. Can't one anticipate 
which candidates will be losers. thus avoiding their construction in the first place? In 
finite-state aT phonology. a compilation of the competition is possible (with certain 
limitations as to mUltiple constraint violations) (Frank and Satta 1998, Karttuneo 1998), 
In sec. 5, I address very briefly how this conception might be extended to syntax. 
building on the locality restriction of sec. 4. 

4. Locally restricted OT competition 

The apparent reason why candidate analyses of considerable size have to be constructed 
prior to optimization (which will typically rule out all but one analyses) is the following: 
Unlike with hard constraints, in OT one cannot discard an analysis on the basis of a local 
constraint violation, since the analysis may still be the best of all possible ones due to 
more highly ranked constraints. 

Nevertheless, a striking property of OT systems in the literature is the relatively 
restricted structural domain to which the competition can be limited. Let us look at an 
example which demonstrates this relative locality: tableau (11) illustrates the competition 
underlying the combination of a matrix and an embedded clause (the constraint 
definitions are given in (12». 

(11) 
*LEx-F AGR FuLL 

a. I not think that he not smokes *!* 
b. I don't think that he not smokes *' * 
c. I think not that he not smokes *' * 
d. I not think that he doesn't smoke *' * 

=> e. I don't think that he doesn't smoke ** 
f. I think not that he doesn't smoke *' * 
g. I not think that he smokes not *' * 
h. I don't think that he smokes not *' * 
I. I think not that he smokes not *!* 

(12) *LEX-F: No lexical heads in functional categories. (Bresnan 1998:(54» 
AGR: A subject and its predicate in c-structure agree. 

FuLL(-iNT) 

(i.e. A c-structure subject requires that its sister constituent have an 
agreeing extended head.) (Bresnan 1998:(25» 
(roughly:)'Parse', i.e., use all morpholexical constraints. 

(cf. Bresnan 1998:42ff) 

9 Frank and Satta (1995) also reach the conclusion-bascd on complexity considerations for OT 
phonology-that optimization should be local to structural domains of bounded complexity. 

8

North East Linguistics Society, Vol. 30 [2000], Art. 4

https://scholarworks.umass.edu/nels/vol30/iss2/4



Resolving some apparent problems of OT Syntcu 451 

What is striking about tableau (11) is that it wouldn't have been necessary to 
construct the full amount of candidate analyses. Rather, it would have been enough to 
determine the different types of analysis each of the two clauses can adopt and compute 
locally for these which is the most hannonic (as in tableaux (13) and (14». Combining 
the two winning local analyses will have the desired effect (leading to candidaIe (lIe». 

(13) 
*LEx-F AOR FuLl. 

a. I not think CP '! 
=> b. I don't think CP • 

c. I think not CP '! 

(14) 
*LEx-F AOR FULL 

a. that he not smokes '! 
=> b. that he doesn't smoke • 

c. that he smokes not '! 

The question is what properties a tableau has to have in order for such a split to be 
possible. A relevant formal property is defined in (15). Let us assume we have ways of 
identifying and composing subparts of LFG analyses (like the partial c- and f-structures 
corresponding to the matrix clause and the embedded clause in (11), respectively). 

(15) Call two sub-Stnlcrutes R, S of an analysis A harmonically independent or b­
independent with respect to a definition of Gen and a given set of constraints. if 

(i) corresponding substructures RI, SI can be uniquely jdentified in any of 
the candidate analyses AI (presumably with reference to the structure of the input), 
such that any distinctive constraint violation incurred by Aj is also incurred by 
either Ri or Sf (but not both); 

(li) the different possible substructures Rj • SJ combine freely (i.e., the 
candidates of the overall structure can be formed by taking the cross-product of 
tbe substructures). 

(16) Lemma 
For h-independent substructures, the computation of the overall winner is 
equivalent to computing the individual winners (the most hannonic Rj , and the 
most hannonic Sit.) plus putting the substructures together. 

Kuhn 1999:sec. 5,1 contains a proof sketch of lemma (16). Clearly, OT analyses 
have to assume some structural domains the elements in which are not h-independent. 
The whole point of the violability assumption-that even grammatical analyses may 
violate certain constraints-is to allow for situations in which the lesser of two evils is 
chosen. If the violation of some constraint CI is accepted in the optimal solution, then 
only to avoid a violation of some other constraint ez, which wouJd have been even worse. 
The part of the structure that violates C1 cannot be h-independent from the part that might 

9
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have violated C2• In order to evaluate the competition we have to take aJi combinations 
(local to the non-h-independent portion of structure) into account. 

However, as the example (11) (and its factorization into (13) and (14» suggested, 
at some level h-independent substructures may nevertheless arise. When dealing with 
substructures that have this property, a potentially exponential amount of processing 
expense could be saved: rather than constructing the cross-product of possible analyses 
for the individual substructures. all but the optimal candidate for the subparts can be 
discarded. (fhis presupposes that the competition for each of the substructures can be 
processed individually.) 

It seems that most syntactic OT accounts can be captured if the domain of 
competition is restricted to what is contained in one extended projection (cf. Grimshaw 
1991). With Bresnan's (1998, 1999) LFG account of extended projections, we have a 
simple way of relating the input----an underspecified f-structure----to the relevant extended 
projections: the lexical head of the extended projection and the functional co-bead(s) are 
all projected to the same f-structure. Thus, already the structure of recursive embedding 
in the input (f-structure) detemtines in rust approximation the domains, locaJ to which 
realization alternatives will compete. So it is linguistically plausible to assume the 
following restriction on the interpretation of constraints: 

(17) Locality of constraint interpretation 
If a part of a structure violates a constraint and there exists an alternative 
realization for the underlying input not violating this constraint, then the 
altemati ve realization lies within the same extended projection. 

5. Exploiting locality in processing 

Having limited the scope of OT constraints to extended projections, the particular way in 
which h-independence is exploited in processing is still open. A conceivable option of 
modifying the parsing routine with "backward generation" discussed in sec. 3accorclingly 
might be the following: the input string is parsed as usual, detennining potential 
underlying forms conveyed by that shing. For each reading, the portion of the f-structure 
analysis that makes up the OT -input is filtered out. Now, rather than generating entire 
candidate analyses for these predicate-argument-structures while leaving the optimizing 
competition until the end, a separate substructure for each extended projection is 
constructed based on tbe respective part of the predicate-argument-structure, and a local 
OT competition is computed, passing on just the winning candidate. (Under a head-first 
processing regime, this sbould allow ODe to save an exponential amount of time.) 

Another way to go is to appJy compilation ideas from computational OT 
pbonology to the (sets of) rules covering an extended projection. Karttunen (1998). 
extending ideas from Frank and Satta 1998 shows that in the finite-state approach to 
computational phonology it is possible to compute the OT competition offline. In this 
compilation step, a transducer is constructed that composes the violable constraints in a 
("lenient") cascade. For the online application--i.e., when confronted with a specific 

10
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Resolving some apparent problems of OT Syntax 453 

input structure---this transducer will determine the optima] candidate for the given 
underlying fonn, without effectively computing tbe candidate structures. The opposite 
processing direction works exactly the same way (not requiring any "backward 
generation", but nevertheless avoiding the ambiguity problem). 

Exploiting the h-independence postulation of extended projections, an offline 
competition ntight also be incorporated in tbe LFG set-up: with restriction (17), tbe 
evaluation domain is already quite restricted; so one might go one step furtber and 
confine the allowable extended projections formally to partial tree structures that can be 
described by regular expressions (roughly, binary right-branching skeletons). If 
furthennore the OT constraints can talk about no more than a finite domain of f-structure 
"types" projected from these skeletons, then the relevant part of G~n plus the entire 
constraint system can be expressed by means of regular languages and regular relations. 
TIlls means that one can effectively apply the idea of a lenient cas<:ade of precompiled 
constraints also in syntax. Note that the language generated by the overall system is not 
restricted to the class of regulae languages. The recursive structure of tbe input f-structure 
and tbe well-formedness principles applying on f-structure can enforce that the string 
language generated is contained in a higher class. 

As with OT phonology, the resulting compiled grammar can be applied in both 
directions, using standard techniques; no special "backward generation" step is required. 
The overall complexity is reduced to the complexity of processing a single input with a 
classical (not comparison-based) grammar (solution to problem A.). One and the same 
compiled grammar can be used in comprehension and production--nevertheless 
ambiguous surface forms receive mUltiple analyses (solution to B.). Finally, the compiled 
cascade of constraints constitUles an implementation of the conception of the "inventory 
view" that Legendre et al. (1996) adopt. LF-unfaithful winners will playa role only 
locally within extended projections and only during compilation (preliminaries for a 
solution to C.). 

6. Conclusion 

I proposed the central parts of a formalization of Bresnan's (1998) OT-LFG model, 
arguing for some formal restrictions. The restrictions required to guarantee decidability 
seem to be quite plausible from the linguistic point of view. 

In a model with global candidate generation, the parsing task requires an extra 
backward generation step. The resulting system will avoid the ambiguity problem, but the 
construction of global candidate analyses goes along with an immense complexity. Tbe 
relative locality of constraint interaction can be exploited in a model interpreting 
constraint violability always local to the domain of an extended projection. 

Based. on this restriction one could even devise a model that compiles the entire 
OT competition offline, avoiding the complexity problem. Such a model would at the 
same time provide a very elegant manifestation of the "inventory view" on OT 
competition. 
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