
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Chemical Engineering Faculty Publication 
Series Chemical Engineering 

2020 

Protein Encapsulation Using Complex Coacervates: What Nature Protein Encapsulation Using Complex Coacervates: What Nature 

Has to Teach Us Has to Teach Us 

Whitney C. Blocher McTigue 

Sarah L. Perry 

Follow this and additional works at: https://scholarworks.umass.edu/che_faculty_pubs 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/che_faculty_pubs
https://scholarworks.umass.edu/che_faculty_pubs
https://scholarworks.umass.edu/che
https://scholarworks.umass.edu/che_faculty_pubs?utm_source=scholarworks.umass.edu%2Fche_faculty_pubs%2F889&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

Protein	Encapsulation	using	Complex	Coacervates:	What	Nature	has	
to	Teach	Us	

 
Whitney C. Blocher McTigue and Sarah L. Perry* 

Department of Chemical Engineering, University of Massachusetts Amherst 
*Correspondence: perrys@engin.umass.edu 

 

Abstract 
Protein encapsulation is a growing area of interest, particularly in the fields of food science and 

medicine. The sequestration of protein cargoes has been achieved using a variety of methods, each with 
benefits and drawbacks. One of the most significant challenges associated with protein encapsulation has 
been achieving high loading while maintaining protein viability. This difficulty has been exacerbated 
because many encapsulant systems require the use of organic solvents. In contrast, nature has optimized 
strategies to compartmentalize and protect proteins inside the cell – a purely aqueous environment. 
Although the mechanisms whereby aspects of the cytosol is able to stabilize proteins are unknown, the 
crowded nature of many newly discovered, liquid phase separated ‘membraneless organelles’ that 
achieve protein compartmentalization suggests that the material environment surrounding the protein 
may be critical in determining stability. Here, we focus on encapsulation strategies based on liquid-liquid 
phase separation, and complex coacervation in particular, which has many of the key features of the 
cytoplasm as a material. We review the literature on protein encapsulation via coacervation and discuss 
the parameters relevant to creating protein-containing coacervate formulations. Additionally, we highlight 
potential opportunities associated with the creation of tailored materials to better facilitate protein 
encapsulation and stabilization. 
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Introduction 
Most formulations of proteins, whether for laboratory use or for applications such as biocatalysis or 

medicine, could likely be described as relatively dilute in the protein of interest,[1,2] and have a dramatically 
different material context compared with the natural intracellular environment. In the cell, despite close 
interactions with a range of other biomacromolecules (i.e., the cytosol is ~30% protein by mass),[3-5] 
proteins remain in their folded native state. This difference in environment may explain why proteins are 
stable in the body, but not as kinetically stable (in terms of shelf life) in formulations. Even under optimal 
solution conditions, this storage stability varies widely and often still requires refrigeration.[6,7] While a 
number of parallels can be drawn directly between strategies for encapsulation and naturally occurring 
features in cells,[8-12] efforts to date have largely focused on compartmentalization to protect protein cargo 
from degradation due to external factors rather than formulation to enhance the stability of the protein 
itself.  

As research to develop new strategies for protein encapsulation and delivery has accelerated in 
recent years, there have been a number of separate and unrelated efforts to understand the ways in 
which cells are able to selectively compartmentalize and store proteins.[13,14] In particular, there has been 
tremendous excitement surrounding the discovery of liquid-liquid phase separation as a mechanism for 
localizing specific proteins, RNA, and other biomolecules.[15-17] Many of these liquid granules (also termed 
‘membraneless organelles’ and ‘biomolecular condensates’)[18] have been shown to act as a locus for 
specific catalytic reactions, or as a compartment to store specific enzymes during times of stress.[19-23] 
Phase separation enables preferential partitioning of specific molecules, as well as the potential 
stabilization of guest proteins by modulating the material context of the environment. Furthermore, liquid-
liquid phase separation enables preferential compartmentalization while avoiding the challenges of an 
impermeable boundary, such as a lipid bilayer.  

Here, we will briefly review a range of different encapsulation strategies used for the separation, 
purification, and delivery of proteins, before focusing more specifically on the use of liquid-liquid phase 
separation, and particularly complex coacervation for these applications. We will discuss the formulation 
of coacervate-based materials, including strategies for achieving efficient uptake of proteins. We will also 
discuss experimental strategies for characterizing the uptake of proteins into coacervate-based 
formulations, and how these types of complex formulations might better imitate the natural intracellular 
environment to improve protein stability. 

The Challenge of Protein Encapsulation 

A wide variety of methods have been described in the literature for the encapsulation of proteins. 
These strategies have included oil-and-water emulsions, physical and/or chemical entrapment in solid 
nano- or microparticle systems, engulfment into liposomes/vesicles/polymerosomes, and partitioning or 
entrapment into phase separated materials such as polymer microparticles, nano- or microgels, 
segregative aqueous two-phase systems (ATPS), and associative complex coacervates (Figure 1).[24-27] 
However, a majority of these methods that do not use ATPS, particularly liposomes, gels, and particle 
systems, tend to suffer from low loading efficiencies and typically require the use of organic solvents that 
may destabilize the protein cargo. We will briefly introduce disadvantages that can be overcome using 
complex coacervation with these methods below, but refer the reader to the listed references for a more 
complete discussion. 
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Figure 1. Different encapsulation methods for proteins. From the top, moving clockwise: 
complex coacervates, coacervate-core micelles, water-in-oil-in-water (W/O/W) emulsions, 
oil-in-water (O/W) emulsions, polymer microspheres, liposomes, and nanogels. 

Two main concerns for many of the protein encapsulation methods are: use of organic solvents, and 
the low protein encapsulation efficiencies and loading. For example, emulsion and nanogel methods 
utilize the immiscibility of oil and water phases to achieve compartmentalization. Proteins would generally 
be prepared in an oil or aqueous solution for emulsification, depending on their solubility, and then mixed 
with an aqueous or organic phase, respectively, to achieve compartmentalization.[24,25,28-30]  Similarly, 
many of the methods to prepare polymer microspheres also utilize organic solvents.[31] The most 
prominent utilize emulsions techniques or solvent extraction with polymers such as poly(lactic acid) and 
poly(lactic-co-glycolic acid).[31,32] Although protein encapsulation efficiency can be tuned with polymer 
microspheres, the use of organic solvents can lead to protein denaturation. Proteins encapsulated by 
these types of methods are vulnerable to aggregation, denaturation, and cleavage,[33] particularly at the 
interface between aqueous and organic solvent phases.  

Additionally, many of these techniques can suffer from low encapsulation efficiencies and loadings. 
Vesicular structures such as liposomes and polymersomes take inspiration from the lipid bilayers that 
define cells. These structures are created using amphiphilic lipids or polymers to create a bilayer structure 
that can encapsulate hydrophilic substances within the aqueous lumen and amphiphilic or lipophilic 
substances within the bilayer shell.[24,34,35] However, because these types of structures rely on engulfment 
of an aqueous phase, these systems tend to have very low encapsulation efficiencies (i.e., mass recovery 
of protein). The limitations of engulfment can be overcome through the use of droplet microfluidics, where 
oil-in-oil and water-in-oil techniques can be used to generate vesicular structures with near 100% 
encapsulation efficiency.[36-38] Additionally, as with emulsion strategies, the overall level protein loading is 
limited by the concentration of the aqueous phase that can be used during formulation. 

The concept of physical partitioning of cargo has commonly been used in systems that undergo 
macroscale aqueous two-phase separation (ATPS). This type of phase behavior could be the result of 
segregative phase separation (e.g., poly(ethylene glycol) (PEG)/dextran),[39-41] polymers that undergo 
either a lower critical solution temperature (LCST) or an upper critical solution temperature (UCST) 
transition based on interactions with water,[42] such as elastin-like polypeptides (ELPs),[43,44] or complex 
coacervates that form due to associative interactions between polymers. These types of materials have 
the advantage of allowing for fully-aqueous processing, and have been used broadly for protein 
purification, with coacervates finding particular utility in delivery.[45-50] Furthermore, the phase-separated 
nature of these materials allows for strong partitioning of proteins into the polymeric phase, allowing for 
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the easy preparation formulations with a high encapsulation and/or loading of protein. [12,51-53] These high 
levels of incorporation are mainly due to the electrostatics and entropic gains associated with phase 
separation, but also take advantage of differences in the overall polarity of the coacervate environment 
compared to pure water.[54-57] To the best of our knowledge, there are only a few instances of ELPs and 
PEG/dextran delivery systems reported in the literature.[58-60] Here we will focus on complex coacervation 
as a platform for protein encapsulation.  

Complex Coacervation, Phase Behavior, and Biomimicry 
 Complex coacervation, [49,51,52,56,57,61-73] whose characteristics mimic the characteristics of cells, is 
a simple, purely aqueous strategy for encapsulating proteins. Complex coacervation is a liquid-liquid 
phase separation phenomenon resulting from the association of two oppositely charged macro-ions (e.g., 
polymer, protein, surfactant micelles). Coacervation results in the formation of a dense, macromolecule 
rich coacervate phase in equilibrium with a macromolecule-poor supernatant (Figure 2).[52,74-84] The 
coacervate phase retains both water and salt in addition to the polyelectrolytes, with typical compositions 
ranging between 65 and 85% water.[85-88] This phase separation is highly dependent on the relative 
amount and identity of the polyelectrolytes present, as well as pH, ionic strength, ion identity, 
temperature, and other such factors.[76,80,81,83,87,89-93]  
 

 
Figure 2. Generic depiction of a coacervation phase diagram showing the binodal phase 
boundary as a function of salt and polymer concentration at a specified polymer charge 
ratio, pH, and temperature. Samples prepared in the two-phase region beneath the 
binodal curve (red dot) will phase separate into the polymer-poor supernatant and 
polymer-rich coacervate phases along a tie-line (dashed line). Above the binodal curve is 
the single-phase region where no phase separation is observed.  

If we think of the width of the two-phase region as an indicator of the stability of the coacervate, 
various factors such as the stoichiometry, pH, salt, and temperature, as well as the length and patterning 
of charges along the polyelectrolytes selected, and the chemistry of the polyelectrolytes can affect the 
phase behavior. Increasing the length of the polyelectrolytes used will increase the width of the two-phase 
region,[51,81,83,94,95] as will increasing the polymer charge density,[96,97] and/or the blockiness of charged 
segments.[95,98-100] Additionally, increasing the hydrophobicity of a polymer,[101,102] the polarity,[103] and/or 
incorporating orthogonal associative interactions (e.g., hydrogen bonding,[74,104,105] cation-π 
interactions,[106] etc.) can also stabilize the coacervate, although these effects are more complex to 
predict.  

The Effect of Charge Stoichiometry and Ionic Strength 

While the vast chemical diversity of polymers, proteins, and other macro-ions creates a near infinite 
number of possible interactions to consider, the majority of coacervate experiments focus on two 
parameters, charge stoichiometry and ionic strength. For the simple case of two oppositely-charged 
polymers, maximum coacervation will be achieved under conditions where an equal number of positive 
and negatively charged polymer groups are present. Shifting the charge stoichiometry of the mixture, 
either by changing the composition or altering the solution pH will lead to an excess of one of the species, 



5 

and thus a smaller number of complexing chains. Phenomenologically, these trends are commonly 
observed via turbidity measurements, either as a function of the fraction of one of the charged species 
present, or as a function of pH (Figure 3).[76,107] However, it is important to note that turbidity is only a 
measure of the amount of surface area present in the sample. Thus, a higher turbidity signal could 
correlate with more smaller droplets or fewer larger droplets, and care should be taken not to over-
interpret such data.  

 
Figure 3. (a) A plot of turbidity as a function of the charge fraction of the polycation at pH 
6.5 and 8.5. All samples were prepared at 1 mM total monomer concentration, 50/50 
mol% poly(acrylic acid sodium salt) (pAA)/poly(allylamine hydrochloride) (pAH). 
Complexes were prepared by adding pAA to a solution containing pAH. (Reprinted with 
permission from Ref. 76. Copyright 2014 Open Access from Polymers.) (b) pH 
dependence of the turbidity and system state for hyaluronic acid (0.1 g/L) and β-
lactoglobulin (1 g/L) mixture with respect to pH in 25 mM NaCl, upon addition of acid. 
(Reproduced from Ref. 107, with permission from The Royal Society of Chemistry.) 

While nearly all of the parameters that we have discussed thus far with respect to coacervate stability 
can be explained using our intuition of electrostatics, the effects of salt are often the easiest to 
misinterpret. The addition of salt has been shown to weaken the electrostatic interactions between 
complexing macro-ions. In this sense, ionic strength plays a role similar to that of temperature. Thus, it 
would be easy to assume that the addition of salt merely “screens” the electrostatic interactions between 
the two polymers. While the effects of charge screening may be true for coacervate systems that 
destabilize in the range of physiological levels of saline, where the Debye length approaches the length 
scale of atoms (Figure 4a), there are a significant number of example systems which show salt resistance 
up to several molars of salt (Figure 4b). Thus, while electrostatic interactions are behind many of the 
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interactions driving coacervation, the energetic driving force ultimately comes from the large amount of 
entropy gained by the release of small counterions when two oppositely-charged polyelectrolytes form a 
complex. Therefore, the concentration of salt above which phase separation is no longer observed (i.e., 
the salt resistance) corresponds to the point where the concentration of ions in solution has disfavored 
the entropic release of those counterions localized around the polymers. In addition to valence, the 
identity of the salt can also have a dramatic effect on coacervate stability. To a first approximation, the 
trends in salt resistance scale with ionic strength.[76] However, important secondary effects related to the 
interaction of the salt ions with water can also be very significant (Figure 4b). 

 
Figure 4. (a) Calculated values of the Debye length as a function of ionic strength. (b) A 
plot of turbidity as a function of ionic strength for a series of chloride salts, investigating 
the effects of various cations. All samples were prepared at 1 mM total monomer 
concentration, 50/50 mol% poly(acrylic acid sodium salt) (pAA)/poly(allylamine 
hydrochloride) (pAH) ratio at pH 6.5. Complexes were prepared by adding pAA to a 
solution containing a mixture of pAH and the desired quantity of salt. (Reprinted with 
permission from Ref. 76. Copyright 2014 Open Access from Polymers.)  

Charge Patterning 

As we look to push our understanding of complex coacervation towards more bioinspired materials 
based on the intrinsically disordered proteins (IDPs) that form liquid-liquid phase separated granules in 
cells, chemical sequence becomes a critical parameter. Recent studies by Perry and Sing and coworkers 
using sequence-controlled polypeptides have elucidated the way in which patterns of charge affect 
coacervate phase behavior (Figure 5).[95,98-100,108,109] Intuition might have suggested that the most 
important factor dictating phase behavior would be matching of charge sequence (i.e., optimization of the 
attractive electrostatic interactions between the two polymers). However, experimental and computational 
results highlighted the critical role of charge sequence in structuring counterions along each individual 
polyelectrolyte before complexation takes place. Consider sequence-controlled polymers with a regular 
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pattern of charged and neutral monomers in solution. While oppositely-charged counterions will tend to 
localize around a polymer to neutralize its charge, the effect of sequence can be dramatic. For a polymer 
with a relatively small charged block, there is little electrostatic difference for the counterion to localize 
directly on a charged monomer vs. on a neighboring residue. However, for the case of a very blocky 
structure, there would be a tremendous electrostatic penalty for counterions to localize in the middle of a 
neutral block (Figure 5d). In this way, the sequence of the polymer dictates the entropic benefit gained 
from the release of these small counterions upon complexation by determining their initial state. Similar 
effects were also observed for the self-coacervation of polyampholytes composed of patterns of positive 
and negative charges.[95] However, in this case the entropic effects of counterion clustering are further 
convoluted by the presence of charge-sign interfaces where neighboring oppositely-charged monomers 
are able to self-neutralize and obviate the need for condensed counterions (Figure 5e).  

 
Figure 5. (a) Plot of salt resistance vs. charge fraction using poly(glutamate) with 
patterned cationic poly(lysine-co-glycine), as described in (b). (Reprinted with permission 
from Ref. 99. Copyright 2019 Open Access from ACS Central Science.) (c) Entropic 
gains as a function of charged block size determined using isothermal titration 
calorimetry. Schematic depiction of the differences in counterion localization for different 
patterns of charge for (d) polyelectrolytes (Reprinted with permission from Ref. 98. 
Copyright 2017 Open Access from Nature Communications.) and (e) polyampholytes. 
(Ref. 95, Madinya, et al., Sequence-dependent self-coacervation in high charge-density 
polyampholytes. Mol. Syst. Des. Eng. 2020, Advance Article , DOI: 
10.1039/C9ME00074G - Reproduced by permission of The Royal Society of Chemistry.) 

Hierarchical Structure  

While the results to date have focused on complex coacervates that undergo macrophase separation, 
it is also possible to take advantage of block copolymer architectures to facilitate hierarchical microphase 
separation. In particular, a majority of efforts have coupled a water soluble polymer block, such as 
poly(ethylene glycol) (PEG)[69,110] or poly(oligoethylene glycol methacrylate) (POEGMA)[91] to one or both 
of the oppositely-charged polymers. This block copolymer structure creates an interface that drives 
microphase separation, with the relative length of the two blocks dictating the resulting structure. 
Generally speaking, a longer hydrophilic polymer block will lead to the formation of spherical coacervate- 
or polyion complex core micelles (CCMs or PIC micelles) typically in the range of ~30 nm in 
diameter,[68,111,112] while a shorter hydrophilic block will allow for the formation of lower curvature 
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structures, such as polyion-complex vesicles, or PICsomes that can be significantly larger (Figure 
6).[61,113-116] The size of CCMs, however, can be larger with the inclusion of cargo.[64,67,91] While more 
complex morphologies, including coacervate-corona micelles, cross-linked hydrogels, arrays of spheres, 
and hexagonal rods can also be formed, they are beyond the scope of the current review.[117-122] 

Generally speaking, the same design rules apply in terms of charge stoichiometry, pH, etc. for these 
hierarchical coacervate-based structures as for bulk materials, although the overall stability tends to be 
slightly lower due to the added constraint of the interface.[91] However, the true utility of micellar or 
vesicular structures comes in the context of stable formulations, particularly for delivery. Bulk coacervates 
have the tendency to coalesce over time, forming a bulk coacervate liquid, rather than a dispersion of 
droplets.[123,124] In contrast, micelles allow for encapsulation of cargo in the coacervate core, while the 
presence of the neutral polymer corona prevents coalescence and can facilitate stealth properties for 
intravenous delivery applications.[47,64,67,68,125,126] 

 
Figure 6. Representations of (a) bulk coacervates, (b) coacervate-core micelles (CCMs 
or PIC micelles), and (c) coacervate-core vesicles (PICsomes). Bulk coacervates 
typically utilize homopolymers or random copolymers, while coacervate-core micelles and 
vesicles more typically use diblock copolymers. 

While the general trends described thus far provide a useful guide to understanding of the phase 
behavior of coacervate-based materials, this intuition does not necessarily extend to cases where 
proteins are involved. In these cases, the more complex chemical nature of proteins can lead to 
seemingly incongruent results that require molecular-level inspection to understand. 

Complex Coacervates Incorporating Proteins 
A variety of different types of complex coacervate-based strategies have been studied and used for 

the incorporation and/or encapsulation of proteins. Coacervation has the benefit of purely aqueous 
processing and has the ability to achieve high concentrations of the cargo molecule of interest. The 
application for such protein-containing materials has dictated the type of coacervate architecture, the 
selection of polyelectrolytes, and the environmental factors of the system. 

Electrostatics: The Role of Protein Charge 

Complex coacervation is highly dependent on electrostatics as a driving force to achieve net 
neutrality. This is both fortuitous and a drawback. Proteins are made up of diverse amino acids, 
specifically those that are neutral, negatively charged and positively charged. Thus, these 
biomacromolecules are almost always charged in some capacity with respect to pH, though they may not 
have a net charge. However, this electrostatic nature in and of itself does not differentiate between 
charged species, so multiple cargoes may be encapsulated at once if each species has sufficient charge. 
We will discuss the possibility of modulating protein charge to enable purification later on. 

Much of the early work involving coacervation focused on the formation of these materials from milk-
derived proteins for applications in the food industry.[127-129] Here, the goal was not necessarily the 
encapsulation or stabilization of a specific enzyme, but the creation of protein and/or polysaccharide 
dispersions for the modification of food texture and/or the delivery of flavor additives, nutraceuticals, 
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etc.[130-133] In these studies, because the role of the protein was more structural, studies typically focused 
on the effect of pH and/or temperature to drive phase separation (see Figure 3b). Thus, various 
combinations of proteins and/or polysaccharides could be chosen to fit the application of interest. 

These studies on protein-based complex coacervates emphasized the importance of solution pH as a 
strategy for controlling the net charge of the various species present. Thus, the solution pH could 
generally be compared with the isoelectric point (i.e., the pI defines the solution pH at which the net 
charge of a protein is zero, not that no charges are present) to predict conditions where coacervation 
would occur. The pI of a protein can be estimated theoretically through the Henderson-Hasselbalch 
equation, and has been incorporated into a range of online tools such as ProtParam,[134] or can be 
determined experimentally via titration. At solution pH conditions below the pI, a protein carries a net-
positive charge, while above the pI the protein is net negative (Figures 10a,d). However, a series of 
reports highlighted instances where coacervation was observed “on the wrong side of the pI.”[135-148] 
These studies determined that this unintuitive result was a consequence of charge anisotropy, or 
clustering of charges on the globular proteins. Thus, as in the case of charge patterning on linear 
polymers,[95,98,99] the clustering of charges can lead to entropic counterion condensation/release effects 
that can dominate over “pure” electrostatic interactions, dictated by the net protein charge.  

In an attempt to better quantify the importance of protein charge on the ability of a protein to undergo 
complex coacervation with an oppositely-charged polymer, Obermeyer and co-workers took advantage of 
both chemical ligation and mutagenesis strategies to create “supercharged” proteins. This approach 
allowed for modification of the charged state of a single protein without changing its overall structure, thus 
avoiding the complication of trying to compare results from different proteins. Obermeyer et al., 
demonstrated that a threshold level of net charge is needed to enable coacervation of anionic proteins 
with a strong cationic polymer.[11,12,91] To observe complex coacervation, a charge ratio (i.e., number of 
negative charges to positive charges on the protein) greater than 1.1 – 1.2 was required (Figure 7).[91] 
While methods such as chemical ligation or point mutations could be used to modify the net charge of a 
protein without altering solution conditions, there are numerous targets that might be inaccessible to such 
an approach.  

In a later report, Obermeyer and co-workers explored the potential of adding a charged protein tag to 
onto globular proteins to promote liquid-liquid phase separation.[12] Their report, which used green 
fluorescent protein (GFP) as a model system, demonstrated that the presence of a terminal sequence of 
charged residues was able to drive phase separation when the same protein with an isotropic distribution 
of charges was not observed to coacervate. Thus, the addition of a terminal ionic tag could be used to 
facilitate phase separation for reasons of purification as well as formulation.  

While bulk phase separation allows for the straightforward characterization of protein-polyelectrolyte 
complex coacervates, different morphologies, such as CCMs, allow for control of the final complex size 
and avoid the issue of droplet coalescence. Several reports have focused on the use of a target protein 
and an oppositely-charged polyelectrolyte to form CCMs.[64,91,110,149,150] The CCM size in these systems 
were shown to be tunable based on protein and solution conditions, such as solvent and salt 
concentration.[64,91,110,149] However, because of the geometric constraints of the micelle, the stability of a 
micellar system was typically somewhat lower than the equivalent macrophase separated system.[91] 
Interestingly, work by Harada and Kataoka incorporating lysozyme into CCMs via complexation with a 
poly(ethylene glycol)-b-poly(aspartate) showed an enhancement in enzyme activity upon 
incorporation,[151] supporting the idea of using the material environment to enhance protein activity. 
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Figure 7. Identification of predictive parameters for globular protein coacervation. Plot of 
changes in turbidity as a function of the ratio of negative-to-positive residues on the 
protein. Variation in charge ratio was achieved by acetylation of protein surface residues. 
The grey shaded region corresponds to proteins that do not phase separate (α < 1.1). 
The other proteins tested include: trypsin, α-amylase, β-lactoglobulin, bovine serum 
albumin, cytochrome P450BM3, and mCherry. Open triangle data from Blocher McTigue 
and Perry for lysozyme in a ternary system.[51] (Reprinted and adapted with permission 
from Ref. 91. Copyright 2016 Soft Matter.)  

For applications where high loadings of protein in the coacervate are desired, pairing a protein with a 
single, oppositely-charged polymer would be expected to lead to the most efficient formulation (i.e., 
highest per mass incorporation of protein). However, the complexity of proteins and enzymes is such that 
the solution conditions that might be optimal for coacervation might not be favorable for activity or 
stability. However, naturally occurring membraneless organelles in cells,[8,18,42,152-160] which are typically 
formed from a mixture of intrinsically disordered proteins and RNA, indicate that a multi-component 
system may be more amenable to the incorporation of specific globular proteins without the need for 
external pH control. Some of these membraneless organelles have been shown to form via complex 
coacervation.[15-17] 

Work by Tirrell and co-workers, demonstrated the ability to achieve high levels of protein 
incorporation through the use of a ternary system where the protein of interest is complexed with a 
mixture of cationic and anionic polymers (Figure 8).[52] Additionally, work by the same group showed that 
complexation over a broader range of polymer compositions than would be expected with traditional 
binary systems by using coacervates formed from a ternary system.[77] Further experiments by multiple 
groups explored the potential of this approach for the encapsulation various polymer/protein systems. 
[3,10,24,33,51,56,57,110,161] 

 
Figure 8. Schematic depiction of complex coacervation in a ternary system with two 
oppositely charged polyelectrolytes and a protein of interest. 

While two-polymer coacervate systems have been shown to enable the incorporation of weakly 
charged proteins, optimization of coacervation parameters remains critical for efficient protein 
incorporation. For the case of charge stoichiometry, the introduction of a protein as a third charged 
species complicates the formulation of design rules. The coacervate system will always reach a charge 
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neutral composition, but the large differences in charge content and charge density between the polymers 
and a guest protein can lead to competitive interactions between the various species.[162] The effect of this 
competition can be observed by comparing results for the incorporation of a cationic protein lysozyme into 
two different coacervate systems (Figure 9). In recent work by Blocher McTigue and Perry, the effect of 
charge stoichiometry on protein incorporation was tested at conditions of constant total polymer 
concentration while varying the relative amount of polycation to polyanion.[51] The results of this 
experiment showed only a slight shift in the optimum 1:1 ratio of polyanion and polycation, commensurate 
with the presence of a small amount of a cationic protein (Figure 9a). In contrast, work by Lindhoud and 
co-workers determined an optimum polymer ratio by holding the amount of the protein and polyanion 
constant and varying the concentration of the polycation.[10,57] Their results also showed a shift in the 
optimum charge stoichiometry towards net negative conditions, albeit a much more dramatic one (Figure 
9b). While the difference in these results is subtle, and could be attributable to parameters such as 
differences in protein concentration or the various polymer systems used, Lindhoud and co-workers also 
reported results for the incorporation of succinylated lysozyme as an equal and oppositely-charged model 
for comparison (Figure 9b). Interestingly, the optimum condition for the negatively-charged succinylated 
lysozyme did not occur at the net positive charge stoichiometry that intuition would predict. This 
combination of results highlights the need for more in-depth studies of the effect of varying all three 
components (polycation, polyanion, and protein), as well as the net charge and charge distribution on the 
protein in order to establish design rules guiding protein incorporation. 

 
Figure 9. (a) Plot of the concentration of hen egg white lysozyme in the supernatant 
(dashed black) and coacervate (solid blue) as a function of the charge fraction of the 
polycation. (Ref. 51, Blocher McTigue and Perry, Design Rules for Encapsulating 
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Proteins into Complex Coacervates. Soft Matter 2019, 15, 3089–3103 – Reproduced by 
permission of The Royal Society of Chemistry.) (b) Plot of the concentration of protein in 
the supernatant (expressed as a percentage of the control system without 
polyelectrolytes) as a function of the charge fraction of the polyanion F− for positively-
charged lysozyme (net charge of +7) and anionic lysozyme created by succinylation (net 
charge of -7) in complex with poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) 
(PAH) at pH in the range of 7.0 – 7.4. The optimum values of F- for each protein can be 
identified from the minima on the graph. Fopt

- = 0.65 for lysozyme and Fopt
- = 0.55 for 

succinylated lysozyme. (Reprinted with permission from Ref. 10. Copyright 2019 Open 
Access from Biomacromolecules.) 

Beyond the challenge of charge stoichiometry, other parameters such as solution pH, ionic strength, 
and the charge density of the complexing polymers can also play a key role. As might be expected based 
on intuition, changing the solution pH to modulate the net charge on the protein (assuming no significant 
change in the charge state of the two polymers) can dramatically affect the level of protein 
incorporation.[51,142] For proteins such as bovine serum albumin (BSA) that have an acidic pI, increasing 
the solution pH allows the protein to become more negatively charged, and increases protein uptake 
(Figure 10b). Conversely, a protein like lysozyme that has a basic pI will become more positively charged 
at lower pH (Figure 10e).  

Despite the similarity in the trends of increasing protein encapsulation with changes in pH away from 
the pI, these two proteins show dramatically different levels of uptake. The authors hypothesized that the 
relatively low levels of BSA incorporation were a consequence of the relatively isotropic distribution of 
charges on the surface of the protein (Figure 10a), while the uptake of lysozyme was enhanced by the 
presence of a cluster of cationic residues (Figure 10d).[51] While this information is useful from a 
formulation standpoint, it also highlights the original function of these two proteins. As a serum protein, 
BSA has likely evolved to present a surface that does not favor binding or aggregation. In contrast, the 
charge patch on lysozyme is involved in substrate binding.[163-165] Thus, the molecular level features that 
help to define protein function may also help to inform the formulation of systems for encapsulation and 
potentially stabilization. 

As in the case of simple two-polymer coacervates, increasing the ionic strength of the system will 
serve to weaken the electrostatic interactions and disfavor the entropic driving force for coacervate 
formation. However, for the case of complex coacervates formed from two polymers as well as a protein, 
the addition of salt will first disfavor complexation of the most-weakly charged species. Thus, increasing 
ionic strength can decrease or even eliminate the incorporation of protein into the coacervate before 
phase separation itself is eliminated.[51,57]  

Lastly, the effect of polymer chemistry on protein incorporation remains an open question. However, 
Blocher McTigue and Perry reported on the general effect of varying the charge density of the complexing 
polymers.[51] In this study, protein uptake was quantified using “fully charged” polypeptides of poly(lysine) 
and poly(glutamate). These results were then compared when one or both of the polypeptides was 
replaced with a “half-charged” polypeptide with an alternating sequence of the charged residue and 
neutral glycine. Consistent with electrostatic intuition, decreasing the charge density of the polypeptide 
with the same charge as the protein increased encapsulation efficiency by mitigating competition between 
the two species. Similarly, decreasing the charge density of the oppositely-charged polypeptide 
decreased uptake by intensifying this competition (Figures 10c,f). While these trends are interesting, 
more in-depth studies of the overall phase behavior of such systems is needed as a function of charge 
density, polymer chemistry, or perhaps even the specific sequence of charges on a polymer, to better 
understand the ways in which molecular-level details affect protein incorporation. 
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Figure 10. Theoretical charge calculations of (a) BSA and (d) lysozyme. Calculated 
values for the isoelectric point (pI) for each protein is indicated with filled circles, 
experimental data shown with open diamonds. The insets show 3D renderings of 
molecular models of BSA and lysozyme showing the distribution of positive (blue) and 
negative (red) charges on the protein surface. Encapsulation efficiency of (b) BSA and 
(e) lysozyme with increasing pH from 6 to 8. Encapsulation efficiency of (c) BSA and (f) 
lysozyme for different charged patterned peptides. (++) or (--) indicates a fully charged 
polycation or anion, respecitvely, with a total length of 50 charged amino acids while a 
single (+) or (-) indicates a half charged polycation or polyanion, respectively, as an 
alternating copolymer of charged or neutral amino acids. (Ref. 51, Blocher McTigue and 
Perry, Design Rules for Encapsulating Proteins into Complex Coacervates. Soft Matter 
2019, 15, 3089–3103 – Reproduced by permission of The Royal Society of Chemistry.) 

Although two-polymer systems have been shown to assist in protein encapsulation in bulk 
coacervates,[51] micellar morphologies that will not coalesce over time are desirable for delivery. Lindhoud 
and colleagues used oppositely charged block copolymers and homopolymers to encapsulate proteins in 
CCMs.[166-168] In the case of lysozyme, poly(acrylic acid)-b-poly(acrylamide) and poly(N,N- 
dimethylaminoethyl methacrylate) were used to form these micelles, sequestering lysozyme in the 
coacervate core.[167,168] Similar experiments were conducted with lipase using poly(acrylic acid) and 
poly(2-methylvinyl pyridinium)-b-poly(ethylene oxide).[166]  

Protein Encapsulation and Release 

Protein encapsulation is often a stepping-stone for another applications, and depending on the role of 
the protein, a specified release profile might be desired. Certain cases desire burst release, where all the 
protein cargo is released, while other applications require release over a specific, and possibly extended, 
amount of time. In the case of applications for drug delivery, controlled release is often desired. Complex 
coacervation has illustrated its ability to be tuned for these specific release parameters.[48,169,170] For 
example, Gao and co-workers encapsulated lysozyme and monitored its release at physiological ionic 
strength. They found a linear release of lysozyme over a 128 h period.[169] Additional work by Nishida et 
al. explored release of encapsulated proteins as a function of pH. For β-galactosidase, they observed 
higher activity at pH 5.0 than 7.4 and found a higher level of release at the more acidic pH over 24 h.[48] 
All of this work together suggests a complex interplay between the environment and the release of the 
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protein cargo. However, a more in depth discussion of drug delivery and release profiles are beyond the 
scope of this review. 

Measuring Protein Concentration  

While the discussion thus far has focused on the parameters associated with complex coacervation 
and phase behavior, the detection and quantification of the encapsulated proteins can also be a 
significant challenge. This challenge is particularly difficult because of the small volumes typical of many 
protein-containing coacervate samples. Unless high concentrations and volumes of polyelectrolyte are 
used, the coacervate phase is often very small (microliters) in volume. This can lead to difficulties in 
obtaining accurate concentrations and measureable volumes of the coacervate phase. Many systems 
utilize measurements of the protein concentration in the supernatant and an estimate of the coacervate 
volume to back calculate the amount of protein in the dense phase, as well as parameters such as the 
partitioning and encapsulation efficiency.  

Traditional methods of determining protein concentration include indirect measurements using dye-
based colorimetric readouts, such as the Bradford,[51,52] BCA,[171] and Lowry assays,[171] titration methods 
such as enzyme-linked immunosorbent assays (ELISA), and direct quantification via UV/Vis[56] or 
fluorescence spectrophotometry.[11,53,68,172] However, the choice of assay depends on the relevant 
concentration of protein in your sample, the ability to use or prepare a fluorescently-tagged protein, and 
the compatibility of the assay with the polymer materials present in the coacervate itself. 

Colorimetric assays are a useful and relatively generic strategy for quantifying the concentration of 
proteins that do not have a unique spectroscopic signal, or are present at low concentrations in solution. 
Colorimetric assays detect proteins based on the presence of certain amino acids, but are typically 
unable to differentiate between multiple proteins. The reagents in the BCA (or bicinchoninic acid) assay 
react in the presence of cysteine, tyrosine, and tryptophan.[171] The Lowry assay works with the same 
amino acids as the BCA, as well as histidine and asparagine. The Coomassie brilliant blue G-250 dye 
associated with the Bradford assay is typically described as interacting with basic amino acids in 
hydrophobic pockets, but primarily responds to arginine residues, as well as histidine, tryptophan, 
tyrosine, and phenylalanine to a lesser extent.[171] The different assays each have varying strengths and 
weaknesses, particularly with regards to their compatibility with various reagents that might be present. 
However, to the best of our knowledge, only the Bradford and BCA assays have been used in the context 
of quantifying proteins in complex coacervates.[51,52,72,91] Although the coacervating polypeptides 
poly(lysine) and poly(glutamate) have been shown to work for the Bradford assay,[51,52] these same 
materials are not compatible with the BCA reagents, and more typical synthetic polymers such as 
poly(styrene sulfonate), poly(diallyldimethylammonium chloride), and other methacrylate based polymers 
have strong interactions with the assay reagents that overwhelm the ability of an experiment to detect 
protein. For a more detailed overview of these assays, we refer the reader to Ref. [162].  

Outside of traditional colorimetric assays, the remaining reports that have quantified protein uptake 
into coacervates have largely used either UV/Vis spectroscopy to detect the protein directly via the 
signals from tyrosine and tryptophan residues at 280 nm,[56,57] or have taken advantage of a fluorescent 
signal (either natural as in the case of green fluorescent protein (GFP),[11] or synthetically 
conjugated).[52,91] UV/Vis measurements have the advantage of enabling quantification up to the very high 
concentrations (e.g., 3,000 µg/mL),[173] but have relatively poor sensitivity at low concentrations. In 
contrast, fluorescence measurements are very sensitive at low concentrations, and are particularly useful 
for visualizing the presence of a protein. As with the use of colorimetric assays, the quantity of coacervate 
sample available for measurement can be limiting in many experiments. However, these limitations can 
be somewhat overcome through the use of microliter-scale drop-based methods that are becoming more 
common. Additionally, Brangwynne and co-workers have developed a method based on fluorescence 
correlation spectroscopy and confocal microscopy to infer information on protein concentration from 
microscopy samples.[13] 

In the case of micellar systems, it can be difficult to detect the cargo, as it is hard to separate the 
micelles from free protein in solution. In these cases it might be useful to use similar bulk coacervates 
systems to determine concentration and then use a micellar system, though rigorous purification 
strategies might still be needed to validate micellar results. Lindhoud and co-workers have utilized small-
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angle-neutron-scattering (SANS) to obtain information about the size, shape, and structure of micelle 
cores with and without protein.[166-168] However, it is difficult to obtain direct information concerning the 
number of protein molecules present without making assumptions about encapsulation efficiency.[166] 
Another potential method is to take advantage of fluorescence correlation spectroscopy, though the 
background fluorescence may hamper quantitative results.[64] 

Encapsulation Efficiency, Partitioning, and Loading 

Encapsulation efficiency (EE) is the percentage of cargo (by mass) sequestered, in this case, by 
complex coacervates: 

𝐸𝐸 = !!"#!.,!"#$%

!!"!#$ !"#$%
𝑥100% (1) 

A partition coefficient, on the other hand, is typically defined as the ratio of the concentration of the cargo 
in the dense coacervate phase over the concentration of the cargo in the dilute phase, written as: 

𝐾 = [!"#$%!"#!.]
[!"#$%!"#$%.]

 (2) 

Finally, loading or loading capacity is the amount of cargo in the coacervate compared to everything else 
in the coacervate, i.e., it describes what fraction of the coacervate phase is comprised of the cargo: 

𝐿𝐶 = !!"#!.,!"#$%

!!"#!.
𝑥100% (3) 

All three parameters can be useful in describing the system. Encapsulation efficiency describes the 
amount of cargo that was sequestered into the dense phase, while loading capacity determines how 
much of the dense phase is made up of the cargo, and the partition coefficient describes the distribution 
of cargo between the two phases. In this sense, the encapsulation efficiency is effectively a function of 
the total amount of protein and polymer present in the system, and thus the relative volume of coacervate 
generated. In contrast, loading capacity and partitioning describe the thermodynamic distribution of 
protein in the various phases and are insensitive to coacervate volume. Thus, a combination of two of 
these parameters provides a fuller picture when determining the capacity of a system to incorporate 
protein cargo. 

Experimentally, loading capacity and encapsulation efficiency can be very difficult to calculate when 
using low volumes as a direct measure of the coacervate mass is required and such small volumes are 
within noise for gravimetric balances. For this reason, these parameters are generally back-calculated 
based on the total protein content and the amount of protein remaining in the supernatant. In contrast, the 
concentration of protein in both the coacervate and supernatant can usually be measured, whether 
directly or via dissolution and dilution of the coacervate phase by the addition of salt, for instance. This 
means that the partition coefficient can be calculated directly.  

Table 1 details papers that list encapsulation efficiency, along with corresponding protein cargo and 
polyelectrolytes chosen to make complex coacervates. Several additional papers discuss the 
encapsulation of proteins, but do not elaborate on the encapsulation efficiency. 

 

Table 1. List of encapsulated proteins, the polyelectrolyte(s) used, the reported 
encapsulation efficiency (EE), and citation. 

Protein Polyanion/Polycation	 EE (%) Reference	

β-galactosidase 
poly(ethylene glycol)-block-poly(α,β-aspartate acid), homo-([5-aminopentyl]-α, β-
aspartamide)  0.9 [115] 

Methylated β-cyclodextrins-threaded acid-labile polyrotaxanes 15.5 – 24.4 [48] 

Bovine serum 
albumin (BSA) 

Chitosan 32.5 – 40.37 [72] 
poly(lysine), poly(glutamate) 100 [52] 
poly(allylamine hydrochloride), poly(acrylic aid) 15 – 50 [56] 
poly(L-lysine), poly(D/L-glutamate) 2.9 – 34.0 [51] 
Polyestersa 8.3 – 85.3 [71] 
Methylated β-cyclodextrins-threaded acid-labile polyrotaxanes 5.6 – 8.2 [48] 

C. botulinum Chitosan 41.03 [72] 
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type C toxoid 
C. botulinum 
type D toxoid Chitosan 32.30 [72] 

Curcumin Bovine serum albumin, poly(D-lysine) 46.7 – 60.6 [66] 
Ergosterol Chitosan, whey protein 1.1 – 99.4 [174] 
Fluorescent 
proteins poly(2-methyl-vinyl-pyridinium)n-block-poly(ethylene-oxide)m 50 – 100 [67] 

Green 
fluorescent 
protein 

poly(styrenesulfonate), poly(acrylic acid), DNA, RNA 30 – >90  [11] 

Human 
hemoglobin poly(L-lysine), poly(D/L-glutamate) 0 – 25.5 [51] 

Insulin poly(ethylene glycol)-block-poly(L-lysine) 35 – 70 [110] 
Histidine-rich beak peptide ~100 [53] 

Lysozyme 
poly(2-methyl-vinyl-pyridinium)128-block-poly(ethylene-oxide)477 ~100 [68] 
poly(L-lysine), poly(D/L-glutamate) 3.3 – 92.0 [51] 
Methylated β-cyclodextrins-threaded acid-labile polyrotaxanes 4.9 – 8.0 [48] 

Zein Chitosan 0.79 – 94.67 [175] 
a Two of the thermoresponsive-polyesters were based on succinic acid/glutamic acid and 
N-substituted diols giving them a 12.5 or 15% positive charge on their repeat units. 

Defining Protein Stability 
In many cases, the encapsulation of proteins stems from a need to stabilize or protect the cargo. 

Applications that take advantage of proteins are particularly interested in the shelf life of the product, and 
how the protein responds to environmental changes such as temperature, humidity, light, etc. However, 
experiments often report information on two different types of stability: thermodynamic stability and kinetic 
stability. 

Measuring Protein Stability 

The use of the term “thermodynamic stability” can often lead to confusion as it is often conflated with 
“thermal stability,” which might or might not correspond to the shelf life of the protein at a given 
temperature. One reason for this confusion is that the thermodynamic stability is often characterized by 
the melting temperature (Tm) of a protein. However, other methods of determining stability include the 
addition of denaturing agents. The general premise of all of these methods is to identify a condition where 
half of the proteins are folded, and half of the proteins are unfolded, and thus the Gibbs free energy of 
unfolding ΔGu = 0.  

In contrast with thermodynamic measures of the intrinsic stability of a molecule, kinetic stability refers 
to the “shelf life” of a protein, or the length of time over which a protein remains functional at a given set of 
conditions. Thus, for a majority of applications, shelf life might in fact be the preferred characteristic. 
However, determination of kinetic stability requires a time course of experiments that track changes in the 
folded structure and/or activity of the encapsulated protein. These experiments are more time and 
material intensive than thermodynamic measurements, as well as being less fundamental in nature, and 
are thus less common in the literature. Various correlations have been established to try and relate 
results from an accelerated aging experiment performed under harsher conditions. For instance, protein 
stability typically decreases with increasing temperature. Thus, one might be interested in the stability of a 
protein at 4°C, but instead of performing a three year experiment at refrigeration conditions, accelerated 
aging studies at a higher temperature could be used.[6] However, these types of correlations do not 
provide a guarantee of stability, and ultimately longer-term testing will be required. 

Here, we will briefly introduce two methods, differential scanning calorimetry (DSC) and circular 
dichroism (CD) spectroscopy that have been used to characterize the thermodynamic stability of proteins 
encapsulated in complex coacervate-based materials. This discussion is not intended to be 
comprehensive, and other methods, such as differential scanning fluorimetry,[176-178] nuclear magnetic 
resonance (NMR) spectroscopy,[2,179] and hydrogen-deuterium exchange coupled with either 
NMR[23,179,180] or mass spectrometry (MS)[181,182] have also been used to characterize the stability of 
proteins generally. However, to the best of our knowledge these methods have not been used in the 
context of proteins encapsulated in coacervate materials to date. We will then compare the observed 
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trends in thermodynamic stability with those reported for kinetic stability based on direct measurements of 
protein activity over time.  

Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) measures the difference in the absorption of heat between a 
sample cell and a reference cell as a function of temperature. Changes in the sample such as melting, 
boiling, or protein unfolding can then be detected because of the latent energy involved, and subsequent 
analysis allows for determination of thermodynamic data, such as the enthalpy and heat capacity of the 
protein.[183,184] In the context of protein unfolding, the melting temperature (Tm) is defined as the midpoint 
of the transition, where half of the protein is denatured and can be found as the peak in a thermogram of 
the heat flux or heat capacity versus temperature (Figure 11a).  

 
Figure 11. (a) Schematic depiction of a DSC thermogram. The dashed line represents 
the midpoint of the curve, which is used to determine the Tm. (b) CD spectra as a function 
of wavelength for BSA in solution and encapsulated in a complex coacervate of 
poly(lysine) and poly(glutamate) at a ratio of 0.05 BSA to total polypeptide. (Reprinted 
with permission from Ref. 52, Black, et al., Protein encapsulation via polypeptide complex 
coacervation. ACS Macro Lett. 2014, 3 (10). Copyright 2014 from the American Chemical 
Society.) (c) CD signal at 222 nm corresponding to the α-helical structure of lysozyme in 
solution and encapsulated in poly(lysine)/poly(glutamate) coacervates as a function of 
temperature. The dashed line represents the approximate midpoint of the curve, which 
corresponds to the Tm. 

A variety of reports have utilized DSC to monitor how the thermodynamic stability of basic (i.e., 
positively charged) proteins changed upon complexation with various polyanions.[185-187] Generally, the 
results showed that a decrease in the melting temperature was found upon complexation – meaning that 
the protein was less thermodynamically stable. This loss in thermodynamic stability may be caused by 
changes in the conformation of the cationic protein when complexed with a polyanion, as compared to its 
structure in solution. However, these measurements of thermodynamic stability were not correlated with 
shelf life measurements. Thus, it is not known whether or not complexation improves storage stability. 
Furthermore, it is not known whether complexation of these proteins with all polyanions might lead to a 
decrease in stability, or if a correctly tailored material environment with defined choice of polymer 
chemistry, sequence, and/or a mixture of polycations and polyanions might lead to a stabilizing result, as 
in the case of membraneless organelles in cells.  

Circular Dichroism (CD) Spectroscopy 

Another method to look at the secondary structure and stability of proteins is circular dichroism (CD) 
spectroscopy. This technique uses absorbance measurements from circularly polarized light to detect 
signals related to the secondary structure of proteins, typically in the range of 190 – 260 nm.[188,189] Details 
of secondary structure can be extracted through the use of basis spectra that describe typical protein 
conformations, such as α-helix, β-sheet, and random coil. Each of these prototypical secondary structure 
elements can be described by characteristic minima and/or maxima, and fitting procedures can be used 
to calculate the amount of each structure in a given protein, and potentially the change in that structure. 
Figure 11b shows the CD spectra for the primarily α-helical protein BSA, showing the characteristic 
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double minima at 208 nm and 222 nm, as well as the large increase in absorbance at low wavelength.[52] 
Additionally, because CD relies on the absorbance of light, it can also be used to simultaneously measure 
protein concentration and stability.[190] For more information on CD, we refer the reader to Ref. [181]. 

For determination of thermodynamic stability, the absorbance at a single characteristic wavelength is 
typically monitored as a function of temperature or denaturant, although full characterization of the 
spectra can also be performed. Similar to DSC, the melting temperature would then be defined as the 
midpoint in the unfolding curve (Figure 11c). It should be noted that for DSC, CD, or any other method, 
the melting temperature is only a true measure of thermodynamic stability if the protein can be first 
reversibly unfolded, and then refolded, as the analysis described here assumes a single step reaction 
coordinate where the protein converts from its native state to an unfolded state. Nevertheless, the single 
(irreversible) heating curves typical of most studies will still provide information about protein stability. 

Several groups have utilized CD as a means of detecting conformational changes of proteins with 
complex coacervates.[52,91,142,149,151,191] Full spectral analysis has often been used to validate that complex 
coacervation did not change the secondary structure of the encapsulated cargo (Figure 11b).[52,172] 
Mazzaferro and colleagues used CD to determine whether the melting point (Tm) changed for a series of 
acidic and basic proteins of lactate dehydrogenase, human serum albumin (HSA), cutinase, human 
recombinant growth hormone, lysozyme, and ribonuclease A when complexed with polyethyleneimine 
(PEI) or sorbitol.[192] Interestingly, the authors found that in some instances the Tm decreased, while in 
others it was increased, indicating that the specific protein and polyelectrolyte play crucial roles in 
determining stability. For instance, when HSA was complexed with PEI, the Tm decreased from 81°C to 
72°C; however, the Tm increased (>95°C) when HSA complexed with sorbitol.[192] When HSA was 
complexed with both PEI and sorbitol at the same time, the Tm only had a slight increase to 86°C, which 
is between the Tm reported for each system individually. 

Lastly, it should be noted that both DSC and CD require that the measurement not be affected by the 
presence of the coacervate materials. Thus, absorbance signals from protein or polypeptide-based 
polymers could interfere with CD measurements, as could melting or restructuring phenomena associated 
with the polymers. However, these considerations can easily be tested with a control sample lacking 
protein. Unique to the case of polypeptide-based coacervates, the use of racemic (i.e., a mixture of D and 
L enantiomers) peptides results in equal right- and left-handed contributions to the CD spectrum, thus 
eliminating signal from the background matrix.[74] 

Determining Kinetic Stability 

Rather than focusing on the structure of a protein, studies of the kinetic stability of a protein require a 
readout that demonstrates the activity or efficacy of the protein. Several groups have utilized enzymatic 
and other assays to determine the stability of proteins at certain temperatures with respect to time. For 
example, Shaddel and co-workers used complex coacervation to improve stability of anthocyanins at 
37°C for two months with gelatin and gum Arabic.[193] A large number of studies have also been 
performed for proteins incorporated into polyion complex vesicles, or PICsomes. Tang and co-workers 
incubated the complexes at 37°C, 4°C, and -20°C for 24 h and found that enzyme stability was increased 
at 37°C with high enzyme concentration compared to being in solution.[61] Additionally, the co-
encapsulation of dextran allowed for an improved shelf life at -20°C as shown with increased stability after 
7 days. Sueyoshi and colleagues also utilized PICsomes and found enzyme to remain active after 24 h at 
37°C.[194] Longer studies conducted by Filatova and co-workers illustrated the ability for phage K 
endolysin to be stable at 37°C, 22°C, and 4°C for several hours, days, and months, respectively, 
improving upon the native stability.[195]  

It is interesting to see that in the case of thermal stability, as defined above, there have been reports 
describing decrease in stability with Tm, but an increase in stability in terms of storage. Filatova and co-
workers see this with an endolysin of the staphylococcal bacteriophage phage K.[195] This is an interesting 
dynamic between thermodynamic and storage stabilities that could play large roles in formulation for and 
use of protein encapsulation in various applications. The use of either metric of temperature stability can 
give insight to the nature of the protein. Comparison of these measurements can detect if coacervate 
formulations negatively affect the cargo and if such systems are useful for long-term storage at specific 
temperatures. For both types of stability, the environment can have profound effects.  
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Learning from Nature 

Tuning the Environment for Protein Uptake 

The changing of the local milieu heavily affects the electrostatic driving force for complex 
coacervation, but may not necessarily lead to the uptake of a specific protein. Incorporation will likely be 
heavily determined by the charge nature of the polyelectrolytes used, the charge level and distribution of 
charge on the protein, as well as the relative concentrations of all the various species present. Just as 
membraneless organelles have evolved to facilitate uptake of specific proteins and/or RNAs,[19,20,156,196-200] 
variety of reports have described the use of complex coacervation to separate or purify 
proteins.[10,51,137,142,201,202] 

Probably the most dramatic example of selective protein uptake is the coacervation-based separation 
of two isoforms of β-lactoglobulin (BLG-A and BLG-B).[142,201] These two isoforms vary only with the amino 
acid content at positions 64 and 118. In BLG-A these residues are aspartate (D) and valine (V), 
respectively, and glycine (G) and alanine (A), respectively, for BLG-B. These amino acids translate to a 
difference of only a single negative charge (from the aspartate), corresponding to a change in the pI by 
0.1 pH units (Figure 12a,b). The authors took advantage of this very slight difference in the charge state, 
forming a coacervate with the addition of a polycation such as poly(diallyldimethylammonium chloride) 
(PDADMAC)[142] or lactoferrin[201] that was enriched in the slightly more negative isoform, BLG-A (Figure 
12c).  

 
Figure 12. Theoretical charge calculations for two isoforms of β-lactoglobulin, (a) BLG-A 
and (b) BLG-B. The calculated value of the pI for BLG-A and BLG-B was 4.6 and 4.7, 
respectively (filled circles). Experimental values of the pI from the literature reported 5.1 
and 5.2, respectively (open diamonds). (c) Proportion of BLG-A (red) and BLG-B (blue) 
into the coacervte phase mixing lacftoferrin and BLG-A + B at pH 5.50 and 5.75. 
(Reprinted from Ref. 201, Tavares, et al., Selective coacervation between lactoferrin and 
the two isoforms of beta-lactoglobulin. Food Hydrocolloids 2015, 48, 238–247,with 
permission from Elsevier.) 

Dubin and co-workers also demonstrated that protein affinity for complex coacervation could be 
changed with respect to pH and ionic strength between two different proteins, β-lactoglobulin (BLG) and 
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bovine serum albumin (BSA) in complex with poly(diallyldimethylammonium chloride) (PDADMAC).[142] 
BLG preferentially coacervates at ionic strength above 50 mM, whereas the affinity of PDADMAC for BSA 
decreases above 50 mM. At high salt (>5 mM) BSA does not coacervate with PDADMAC until a pH 
above 7, unlike BLG, which can coacervate with PDADMAC just above pH 6 with a wide range of salt. 
The differences in the behavior of these two proteins was attributed to differences in the distribution of 
charge. BSA has charges distributed across its surface with a reported pI of 4.9, whereas BLG has a 
distinct charge patch (Figure 13). The authors demonstrated that the charge patch present on BLG 
allowed most of the protein to preferentially go into the coacervate phase via electrostatic attraction, while 
the majority of BSA remained in the supernatant (i.e., at 100 mM ionic strength and pH 7, 90% of the BLG 
was incorporated into the dense phase with 85% of the BSA remaining in the supernatant phase). Salt 
and pH were chosen based on the region of these data highlight the important role that chemical 
sequence and charge patches play in defining protein interactions. However, more comprehensive, 
broader efforts are needed to understand the subtle, molecular-level strategies that nature has developed 
to control protein localization. 

 
Figure 13. Electrostatic potential contours (-0.5 (red) and +0.5 (blue) kT/e) for BSA 
(upper) at pH 5.6 and BLG dimer (lower) at pH 5.0. The charges are distributed around 
BSA, while BLG has a distinct negatively charged patch on the top and positive patch on 
the bottom. (Reprinted with permission from Ref. 142, Xu, et al., Protein Purification by 
Polyelectrolyte Coacervation: Influence of Protein Charge Anisotropy on Selectivity. 
Biomacromolecules 2011, 12 (5), 1512–1522. Copyright 2011 from the American 
Chemical Society.) 

Summary and Outlook 
There is a growing recognition of the potential for using complex coacervates as an all-aqueous, 

bioinspired strategy for protein encapsulation. The phase behavior of complex coacervates is broadly 
tunable through changes in polymer chemistry, length, charge density, and charge sequence, as well as 
solution conditions. This flexibility, along with parallel examples of liquid-liquid phase separated 
organelles in cells has the potential to allow for the incorporation of many of the (presumably stabilizing) 
qualities of the native protein environment. Furthermore, these materials have been shown to concentrate 
proteins, potentially for use in the formulation of therapeutics, as well as for wide-ranging applications in 
purification and beyond.  
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Here, we have attempted to summarize current knowledge in the field with regards to complex 
coacervation alone, as well as the added complications associated with proteins as more complex 
charged species. However, from this discussion we would also argue that more fundamental studies are 
needed to understand how the subtle molecular-level details that natural systems have evolved to use 
can be harnessed in synthetic systems to enhance protein incorporation and potentially stability or 
activity. In particular, we would like to highlight potential areas where this type of nature-inspired 
complexity could have a dramatic effect. Firstly, reports on the formation of membraneless organelles and 
have begun to explore the ways in which chemical sequence on both the protein and on the coacervating 
IDPs (polymers) can be used to selectively uptake specific targets out of the complex mixture of the 
cytosol. Such knowledge could be harnessed to improve protein purification efforts, as well as enhancing 
protein loading for drug delivery applications. Secondly, very little is known about the ways in which 
complex, multi-species mixtures interact. The potential to identify strategies to selectively and 
simultaneously sequester different proteins and/or their substrates/products could have significant 
ramifications for the development of protein-based nanobioreactors. Lastly, the formulation questions that 
we have raised here can be brought to the drug delivery field, allowing for the selective delivery and 
release of cargo through a variety of mechanisms. 

Because the breadth of this potential experimental space is vast, these types of questions may best 
be answered by collaborative efforts that use experimental data to validate predictive models based on 
fundamental physics and/or machine learning strategies to sift through large quantities of data to extract 
trends.  
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