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0. Introduction

One source of difficulty in language learning is the hidden structure presumed to be
present in full structural descriptions but not directly perceivable in the overt signal available
to the learner (Dresher (1996) calls this problem the ‘Epistemological Problem’). The hidden
structure problem can be illustrated by foot structure in metrical stress theory. Consider a
trisyllabic word with stress on the middle syllable, [0 1 0]. While the stress levels of the
syllables are overtly apparent, the foot structure is not. The overt information, termed the
overt form, is ambiguous between two full structural descriptions: [0 (1 0)], a right-aligned
trochaic foot, and [(0 1) 0], a left-aligned iambic foot. A structural description with an overt
portion that matches an overt form is called an interpretation of that overt form. The hidden
structure in this case is the footing of the syllables. A fully competent speaker of a language,
possessing the correct grammar for the language, is able to use that grammar to correctly
analyze overt forms, assigning them the correct structural description in the process of
interpreting them. The difficulty occurs in language learning; the learner needs to infer, on the
basis of the overt information, the very grammar that the competent speaker makes use of.

Hidden structure need not be a problem for learning if it is easily reconstructed from
the overt information. Hidden structure is more of a problem when overt forms are
ambiguous. An overt form is ambiguous when it supports more than one interpretation, as
illustrated above with the overt form [0 1 0]. Such ambiguity frequently cannot be resolved
on the basis of the overt form alone'; other information, presumably from other overt forms,

'"The elimination of an interpretation independent of other overt forms is possible if the interpretation can
be shown to be suboptimal under any ranking of the constraints.
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is necessary to determine which interpretation is correct for the language being learned. One
approach is to simply insist on only learning from unambiguous overt forms. Within the
principles and parameters framework (Chomsky 1981), this kind of approach has been
proposed, relativized to individual parameters, in the form of an independence principle on
the overt effects of parameter settings (Wexler & Manzini 1987), and later in the requirement
of the existence of forms, called triggers, that indicate the value of a single parameter (Gibson
& Wexler 1993). However, it has proven extremely difficult to find plausible analyses with
such unambiguous forms, and the desirability of such analyses is questionable with respect to
linguistic theory. A related approach, also within the principles and parameters framework,
is to analyze a parametric system and attempt to uncover an ordered series of cues (Dresher
& Kaye 1990, Dresher 1996). This approach relaxes the independence requirement
somewhat: the first parameter should be unambiguously represented overtly, but then the cue
for the second parameter may rely on the setting of the first parameter, the cue for the third
on the setting of the second, and so forth. This locates the principles of learning squarely
within the full substantive detail of a particular analysis, with each domain requiring its own
ordered set of cues. Further, any change in the parametric system can potentially invalidate
the system of cues.

Tesar & Smolensky (1996) have proposed that the learning problem of going from
overt forms to a grammar be decomposed into two subproblems: (1) the assignment of full
structural descriptions to overt forms; and (2) the determination of the grammar from full
structural descriptions. They pursued this approach within the framework of Optimality
Theory (Prince & Smolensky 1993), and developed an algorithm which solves the second
subproblem, Recursive Constraint Demotion (Tesar & Smolensky, 1995).

In this paper, I will present a learning algorithm that makes use of Recursive
Constraint Demotion (RCD) as a solution to the second part of Tesar & Smolensky’s
decomposition. In comparison to the other approaches just discussed, the algorithm presented
here makes no attempt to identify in advance necessarily unambiguous configurations within
any single overt form. This is not surprising given that the algorithm is couched within
Optimality Theory, where the learned part of a grammar is the ranking imposed upon the
universal constraints; it is unclear what a cue would even be a cue for, since there is nothing
to be learned about any constraint in isolation. In fact, the algorithm will correctly learn a
constraint ranking even when every single overt form in the language is ambiguous, as is the
case with the languages used in the simulations described in Section 4.

This paper makes two proposals concerning language learning. The first proposal is
an algorithm called multi-recursive constraint demotion (MRCD). This algorithm uses a data
structure, separate from the hypothesized constraint ranking, to record information obtained
from observed data. Specifically, the learner constructs a list of mark-data pairs; the form and
role of mark-data pairs is explained in Section 1. MRCD, described in Section 2, is able to
obtain a constraint ranking from this list, but by keeping the list itself information is retained
that would otherwise be lost if only the generated constraint ranking were retained. The
retained information makes it easier for the learner to take account of multiple overt forms
simultaneously.
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The second proposal, explained in Section 3, is an algorithm for making use of the
retained information to contend with ambiguity. When confronted with an ambiguous overt
form, this algorithm generates the possible interpretations of the overt form, and then
attempts to reconcile each one with the information stored in the mark-data pairs. If an
interpretation is inconsistent with one or more of the structural descriptions used in
constructing the mark-data pair list, the offending interpretation can be eliminated; if enough
information has already been gathered, all interpretations but the correct one will be
eliminated due to inconsistency, and the ambiguity will be completely overcome. This
algorithm, which makes use of MRCD, is guaranteed to find a correct ranking on the basis
of only overt forms, even if every single overt form is ambiguous. Further, the necessary size
of the mark-data pair list is quite reasonable; the learner is not required to store an
unreasonable amount of data as part of any ranking hypothesis.

Section 4 presents the results of some simulations run to test the efficiency of this
algorithm. The simulations apply the algorithm to an optimality theoretic system of grammars
for metrical stress, which has 12 constraints, and a respectable degree of ambiguity among
the overt forms of the possible languages (every overt form is ambiguous between at least 2
interpretations, and some overt forms support as many as 21 distinct interpretations). The
simulations show that the learning algorithm can be extremely efficient, even in the face of a
very large hypothesis space and significantly ambiguous forms.

1. Learning in Optimality Theory

Optimality Theory is inherently comparative. When presented with a grammatical
structural description, the learner must determine what properties must hold of the constraint
ranking such that the grammatical description is more harmonic than any of its competitors.
The base unit of data is the pairing of the constraint violations of a grammatical structural
description with the constraint violations of a competitor. Such a pairing is called a mark-data
pair (Tesar & Smolensky 1995, 1998). The grammatical description is termed the winner, and
the competitor is termed the Joser, alluding to the learner’s goal of finding a constraint
ranking such that the winner beats out (is more harmonic than) the loser (mark-data pairs are
sometimes called loser/winner pairs).

Consider the pair of descriptions shown in the tableau in (1).

MAIN- ALL- MAIN- ALL- TROCHAIC | IAMBIC
RIGHT FEET- LEFT FEET-
RiGHT LEFT
winner | [0 (1 0)] * * *
loser [(10)0] * * *

(D) Tableau of the winner and loser of a mark-data pair.

The loser and winner have identical violations of IAMBIC, so those marks will cancel. The
information contained in this mark-data pair is summarized in (2):
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2 (MAIN-RIGHT or ALL-FEET-RIGHT) » (MAIN-LEFT and ALL-FEET-LEFT)

At least one of the constraints violated more by the loser must dominate all of the constraints
violated more by the winner. This pair alone will not indicate which, if not both, of the
constraints violated more by the loser must so dominate. RCD is an algorithm for efficiently
finding a constraint ranking consistent with a set of such mark-data pairs.

RCD will be illustrated with the following list of mark-data pairs.

Loser Marks Winner Marks

ALL-FEET-RIGHT MAIN-RIGHT | ALL-FEET-LEFT MAIN-LEFT

TROCHAIC IAMBIC
PARSE ALL-FEET-RIGHT IAMBIC
ALL-FEET-RIGHT ALL-FEET-LEFT

3) The starting list of mark-data pairs.

The learner begins with all of the constraints unranked. First, the constraints that can
possibly be ranked highest are identified, by determining which constraints do not appear in
the Winner Marks column. Those constraints are placed in the first stratum. The mark-data
pairs with one of the now-ranked constraints in the Loser Marks column are now removed
from the list, as they cannot provide any further information. The result of this first pass is
shown in (4).

Stratum 1 Loser Marks | Winner Marks
PARSE ALL-FEET-RIGHT | ALL-FEET-LEFT

MAIN-RIGHT

TROCHAIC

4) Ranking and remaining mark-data pairs after the first pass.

The second pass performs the same procedure, but now upon the remaining, still
unranked constraints and the remaining mark-data pairs. Of the four remaining constraints,
only ALL-FEET-LEFT appears in the Winner Marks column; the other three may be placed
into the second stratum. That includes ALL-FEET-RIGHT, so the remaining mark-data pair can
be eliminated. Thus, on the third pass, no mark-data pairs remain, so the remaining constraint
may be placed in the third and final stratum. The result is the constraint ranking shown in (5).
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Tesar: Using the Mutual Inconsistency of Structural Descriptions to Over

Using the Mutual Inconsistency of Structural... 473
Stratum 1 Stratum 2 Stratum 3
PARSE » | ALL-FEET-RIGHT | y | ALL-FEET-LEFT
MAIN-RIGHT MAIN-LEFT
TROCHAIC IAMBIC

(5)  The final constraint hierarchy.

Note that the ranking in (5) is not total; the three constraints in the first stratum are not
ranked relative to each other. This is common, frequently occurring when some constraints
do not crucially interact with each other in a language. In general, the learning algorithms
discussed here use such rankings as hypotheses, which are sometimes referred to as constraint
hierarchies. When a correct constraint hierarchy has been obtained for a language, it is the
case that any ordering of the constraints in a stratum relative to each other will yield the same
outcome (the resulting ranking will generate the same language). The typological predictions
of Optimality Theory remain intact; only languages consistent with at least one total ranking
of the constraints are learnable by this learner.

RCD has the ability to detect inconsistencies in the data it is given. This property,
illustrated here, will be of particular significance in the solution to overt form ambiguity
presented later on. The data are inconsistent when there does not exist any ranking of the
constraints which can simultaneously satisfy all of the mark-data pairs in the list. When such
a list is given as input to RCD, the algorithm does not continue processing endlessly, nor does
it return an incorrect constraint hierarchy; it instead returns a code indicating that no ranking
exists which is consistent with all of the mark-data pairs in the list.

To see how, consider the list of mark-data pairs in (6).

Loser Marks Winner Marks
MAIN-RIGHT TROCHAIC MAIN-LEFT IAMBIC
MAIN-LEFT 1AMBIC MAIN-RIGHT TROCHAIC

(6)  Aninconsistent list of mark-data pairs.

Focusing on just the four constraints depicted, RCD starts by checking for constraints
that do not appear in the Winner Marks column. Unfortunately, there are none; all four
constraints appear there. This means that each of the four constraints is required to be
dominated by one of the other constraints, an impossible state of affairs for a grammar
generated by a strict dominance ranking. At this point, RCD stops processing mark-data pairs
and returns an indication that an inconsistency has been detected. The property of
inconsistency is a property of the set of mark-data pairs; in general, there is no way to
attribute the inconsistency to any one mark-data pair in the set. Fortunately, no such
attribution is necessary, and the learning algorithm presented here succeeds by detecting the
inconsistency of full sets.
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2. Multi-Recursive Constraint Demotion

Multi-recursive constraint demotion (MRCD) is an error-driven learning algorithm
based upon RCD. It takes as input a full structural description and a grammar hypothesis, and
returns a grammar hypothesis which is altered (if necessary) to accommodate the structural
description. For MRCD, a grammar hypothesis consists of a constraint hierarchy and an
associated list of mark-data pairs. The two are directly related: the constraint hierarchy is the
one which results from applying RCD to the list of mark-data pairs. The list consists of the
informative mark-data pairs used during learning.

At any given time, the learner has a grammar hypothesis; initially, the mark-data pair
list is empty, so the associated hierarchy has all constraints in a single stratum. When
presented with a new grammatical structural description, the learner extracts the underlying
form of that description, and then parses that underlying form according to the constraint
hierarchy of its current grammar hypothesis. If the currently optimal structural description
matches the observed grammatical one, the learner simply keeps its current grammar
hypothesis. If, however, the currently optimal structural description does not match, then an
error has occurred. The learner then constructs a new mark-data pair, using the description
which is optimal according to the current ranking hypothesis as the loser, and using the
grammatical structural description as the winner. This new mark-data pair is then added to
the list of mark-data pairs in the grammar hypothesis. RCD is then applied to this new list, and
the resulting hierarchy, along with the new list of mark-data pairs, is adopted as the learner’s
new grammar hypothesis. The process is then repeated with the same structural description
and the new grammar hypothesis, continuing until either a grammar hypothesis is reached
which makes optimal a description consistent with the overt form, or an inconsistency is
detected.

MRCD takes as input a ranking hypothesis and a new interpretation (a full structural
description of some overt form). MRCD returns as output either a new ranking hypothesis
(which may or may not be identical to the old one), or an indication that the new
interpretation is inconsistent with the given ranking hypothesis. MRCD is formally given in

).

MRCD is an on-line algorithm, accepting a single structural description (the
interpretation) and (possibly) performing learning in response, before the next structural
description is processed. This is contrasted with batch algorithms, which require all the input
data to be collected in advance, before any learning takes place. MRCD is an on-line
algorithm which can still take advantage of RCD’s ability to detect data inconsistencies.
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Start: the mark-data pair list L is initially empty (before any interpretations are processed)
Given: hierarchy H with mark-data pair list L, and interpretation I with underlying form U
begin
compute the optimal description D assigned by H to U
while (D#I) and (L is consistent)
create a new mark-data pair with D the loser and I the winner
add the new mark-data pair to L
apply RCD to L, getting a new hierarchy H or an inconsistency code
if (L is still consistent)
compute the optimal description D assigned by H to U
end-if
end-while
if (L is inconsistent)
return (the inconsistency code)
else
return (H, L)
end-if
end
(7)  The Multi-Recursive Constraint Demotion Algorithm

3. Using Inconsistency Detection to Overcome Ambiguity

Now we turn to the problem of reconstructing the correct structural descriptions for
overt forms. The overt form [0 1 0], a trisyllabic word with stress on the middle syllable, has
several possible interpretations, two of them being [(0 1) 0] and [0 (1 0)]. These
interpretations are full structural descriptions (the footform is fully specified), and their overt
portions match the overt form [0 1 0]. This distinguishes the interpretations of [0 1 0] from
other candidate structural descriptions of a trisyllabic word, such as [(1 0) 0] or [0 (0 1)],
whose overt portions do not match [0 1 0]. The difficulty arises when an overt form is
ambiguous. The overt form itself provides no basis for choosing among the possible
interpretations. The learner must combine the information provided by other overt forms in
order to determine the correct interpretation.

First, it is worth considering the nature of the set of possible interpretations. Among
the information included in an interpretation but not necessarily included in the overt form is
the underlying form. The present work abstracts away from the learning of underlying forms,
and we will assume that the correct underlying form is apparent from the surface form (for
example, the system will not account for syllable lengthening and shortening processes). This
is not an unreasonable strategy for basic metrical stress: the overt form is a string of syllables
and their stress levels, while the underlying form is simply the same string of syllables with the
stress levels removed. The set of interpretations of an overt form (for example, [0 1 0])
consists of those structural descriptions, out of the set of structural descriptions generated by
GEN for the underlying form (for example, three light syllables), whose overt portion matches
that overt form. In the case of the system discussed in Section 4, the overt form [0 1 0] has
three possible interpretations: [(0 1) 0], [0 (1 0)], and [0 (1) O].
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How can the information from different overt forms be used to mutually constrain
their interpretations? The correct interpretations for a set of overt forms must have the
property that there exists a constraint ranking holding all of the correct interpretations
simultaneously optimal. Suppose, for example, that a language has three overt forms, Overt-
X, Overt-Y, and Overt-Z. Each of these forms has two interpretations: the interpretations of
Overt-X are Interp-X1 and Interp-X2, the interpretations of Overt-Y are Interp-Y1 and
Interp-Y2, and similarly Interp-Z1 and Interp-Z2 for Overt-Z. There are 2 * 2 * 2 = 8 possible
combinations of the interpretations, as shown in (8).

Interp-X1 Interp-Y1 Interp-Z1

Interp-X1 Interp-Y1 Interp-Z2

Interp-X1 Interp-Y2 Interp-Z1

Interp-X1 Interp-Y2 Interp-Z2

Interp-X2 Interp-Y1 Interp-Z1

Interp-X2 Interp-Y1 Interp-Z2

Interp-X2 Interp-Y2 Interp-Z1

Interp-X2 Interp-Y2 Interp-Z2
®) The eight possible combinations of interpretations for Overt-X, -Y, and -Z.

The learner’s task can now be characterized as the task of finding, for a given set of overt
forms, which combinations of interpretations are consistent, and which are inconsistent. If the
three forms Overt-X, Overt-Y, and Overt-Z collectively have enough information to
determine the constraint ranking, then only one of the 8 possible combinations listed in (8)
should be consistent (assuming that two distinct interpretations of the same overt form do not
have identical constraint violations).

This is where RCD’s capacity to detect inconsistencies becomes important. The
learner can test out different combinations of interpretations for a set of overt forms. Testing
out a combination of interpretations means trying to find a constraint ranking which holds all
of them optimal. This can be done by applying MRCD to each of the interpretations of the
combination in succession, building up the list of mark-data pairs along the way. If the
interpretations are inconsistent, MRCD will find that out and report the inconsistency (ruling
out that combination), while if the interpretations are consistent, MRCD will return a
constraint hierarchy holding all of the interpretations optimal.

The most obvious way to apply MRCD would be to take a set of overt forms, and
generate all possible combinations of interpretations of the overt forms, applying MRCD to
each one to determine which combination was consistent. There is a problem for this
approach, however, due to the rapid growth of the number of possible combinations of
interpretations. The number of possible combinations will be the product of the numbers of
possible interpretations of all of the overt forms. For languages with even a very modest
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degree of ambiguity in overt forms, the set of possible combinations of interpretations will be
far too large to search exhaustively.

Fortunately, there is a better way to apply MRCD. The idea is to consider all possible
interpretations of overt forms not across the entire language at once, but on a form by form
basis. When a grammatical overt form is received, the underlying form for the overt form is
extracted, and parsed using the constraint ranking of the learner’s current grammar
hypothesis. If the overt portion of the currently optimal structural description matches the
grammatical overt form, then no modification is made to the grammar hypothesis. In this way,
the algorithm is error-driven, an error being diagnosed by a mismatch between the
grammatical overt form and the overt portion of the currently optimal structural description.

When an error is detected, the grammar hypothesis needs to be modified. To use
MRCD to modify the hypothesis requires a full structural description, not just an overt form.
It is here that the learner generates all possible interpretations for the current overt form. For
each possible interpretation, the learner separately applies MRCD to that interpretation along
with their current grammar hypothesis. If MRCD determines that a particular interpretation
is inconsistent with the list of mark-data pairs determining learner’s current grammar
hypothesis, then that interpretation is discarded. Determining that an interpretation is
consistent will result in one or more additional mark-data pairs being added to the list; this
new list then determines the new, modified grammar hypothesis.

This procedure can leave the learner with more than one tenable grammar hypothesis
after the processing of an overt form. It may be that the learner does not yet have enough
information to rule out all but one interpretation of that overt form. In this case, the learner
keeps all of the tenable grammar hypotheses. On the next overt form, the learner separately
checks for an error between the new overt form and each of its grammar hypotheses. Each
hypothesis detecting an error on the new overt form is processed along with each possible
interpretation of the new overt form by applying MRCD as described above.

The amount of computational effort required by such a learner is dependent on the
interrestrictiveness of the overt forms of the language. If the consistent combinations of
interpretations are relatively few, then for each overt form causing an error, most of its
interpretations will be eliminated due to inconsistency on the spot, and thus will not generate
new grammar hypotheses to be carried along.
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Start: the list of grammar hypotheses G is initially an empty list
Given: a list of grammar hypotheses G and an overt form V with underlying form U
begin
for (each hypothesis (H,L) in G, consisting of hierarchy H and mark-data list L)
remove (H,L) from G
compute the optimal description D assigned by H to U
if (the overt portion of D does not match V)
compute the set I-SET of possible interpretations of V
for each interpretation I in I-SET
apply MRCD to I and L, getting (H-NEW, L-NEW)
if (MRCD did not return an inconsistency code)
insert (H-NEW, L-NEW) into G-NEW
end-if
end-for
else
insert (H,L) into G-NEW
end-if
end-for
return (G-NEW)
end
(9)  The “Try All Interpretations” Procedure for Using MRCD

4. Simulation Results

By design, the “try all interpretations” algorithm for applying MRCD as described in
the previous section is guaranteed to find a correct constraint ranking for a language
realizable by an optimality theoretic system, provided that (a) the learner is provided with a
representative sample of overt forms from the language, (b) each overt form has only a finite
number of possible interpretations, and (c) each underlying form is apparent from its
corresponding overt form. The interesting question for this algorithm concerns the amount
of work required to obtain a correct ranking. The efficiency of the algorithm was tested
empirically on a optimality theoretic system for metrical stress.

Metrical stress theory has been a domain of focus for several learning investigations
(Daelemans, Gillis & Durieux 1994, Gupta & Touretzky 1994, Dresher & Kaye 1990).
Metrical stress is an appealing domain because a lot is known about it, and because it can be
treated somewhat in isolation from other aspects of phonology. It was selected for the current
investigation because it permits the issue of input/output faithfulness to be set aside. In the
present analysis, underlying forms are strings of syllables, and structural descriptions assign
stresses to the syllables without any deletion or insertion of syllables. For discussion of the
learning of underlying forms see (Tesar & Smolensky 1998, Smolensky 1996, Hale & Reiss
1996) and works cited therein.

The optimality theoretic analysis of stress described here includes ideas from several
sources (McCarthy & Prince 1993, Prince & Smolensky 1993, Prince 1990, Kager 1994,
Hammond 1990, Hayes 1995, Hayes 1980). The system has as possible inputs words
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consisting of strings of syllables, each labeled for weight (light or heavy). A candidate
structural description for an input is a grouping of the syllables of the input into feet, under
the following conditions: (a) a foot contains either one or two syllables; (b) each foot assigns
stress to exactly one of its syllables; (c) each candidate has exactly one head foot assigning
main stress, with any other feet assigning secondary stress. The system has 12 constraints,
listed in (10).

PARSE a syllable must be footed

MAIN-RIGHT the head-foot must be aligned with the word, on the right edge
MAIN-LEFT the head-foot must be aligned with the word, on the left edge
ALL-FEET-RIGHT a foot must be aligned with the word, on the right edge
ALL-FEET-LEFT a foot must be aligned with the word, on the left edge
IAMBIC a head syllable must be aligned with its foot, on the right edge

FOOT-NON-FINAL a head syllable must not be rightmost in its foot
WORD-FOOT-LEFT  the word must be aligned with some foot, on the left edge
WORD-FOOT-RIGHT the word must be aligned with some foot, on the right edge

NON-FINAL the right-most syllable must not be footed
FOOT-BINARITY a foot must have two moras or two syllables
WSP a heavy syllable must be stressed

(10)  The constraints of the Metrical Stress System

Because the primary interest is in how well the algorithm contends with the number
of combinations of interpretations, the measure of effort used here is the number of times,
during the course of learning, that a learner adds a mark-data pair to a mark-data pair list and
applies RCD to the list, referred to as the number of applications of RCD. This includes all
of the additions made to lists that are ultimately discarded; an important part of the measure
of work is the amount required to test and eliminate inconsistent combinations.

For each tested language, 62 forms were used: all combinations of light and heavy
syllables for words of length 2 to 5 syllables, and words of 6 and 7 light syllables. 124 of the
possible languages in the system were tested, meaning that for each tested language, the
optimal descriptions for all 62 underlying forms were generated, and the overt forms were
extracted; a test presented the 62 overt forms of a language to the learner, starting with the
shortest (bisyllabic words) and proceeding in order of increasing size to the longest.

To appreciate the results presented below, it is worth examining the magnitude of the
problem. With 12 constraints, a simple exhaustive search of all possible rankings of the
constraints would have to examine 12! = 479,001,600 rankings. As large and implausible as
that is, it pales in comparison to an enumeration of all possible combinations of interpretations
of the 62 overt forms for a language. Different overt forms have differing degrees of
ambiguity, but every possible overt form in the system has at least 2 possible interpretations.
Many have more: the overt form [1 0 2 0 0] has 5 interpretations, and [0 1 0 2 0 2 0] has 21
distinct interpretations. Even if every form were limited to just two interpretations, the
number of combinations would still be 25 = 5 x 10"®. For most of the tested languages, the
number of possible combinations is much, much larger than that. If the learner cannot
completely escape the combinatorial growth of the number of combinations of interpretations,
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then this approach is hopeless.

Fortunately, the simulations show that the algorithm is quite successful in overcoming
the combinatorical challenge posed.

Number of Languages | Number of RCD Applications

Median | Minimum | Maximum

124 50 8 160
(11)  Simulation Results.

The longest case took only 160 applications of RCD to arrive at a correct constraint
hierarchy, and the median was 50 applications.

5. Discussion

Multi-recursive constraint demotion, the use of lists of mark-data pairs to represent
grammatical hypotheses, allows a learner to retain information that is not recoverable from
a constraint hierarchy alone. MRCD can in principle be used in conjunction with a variety of
strategies for hypothesizing interpretations of overt forms. The strategy presented in this
paper is to consider all possible interpretations for an overt form, whenever learning is
necessitated by an error. This approach is guaranteed to learn correctly for any optimality
theoretic system for which each overt form has a finite number of interpretations, and permits
the direct inference of its underlying form. The direct inference of underlying forms from
overt forms is an idealization that must eventually be removed for an approach to overall
language learning.

Assuming each overt form to have only a finite number of interpretations, while an
idealization, is not likely to be problematic. In work on algorithms for production-directed
parsing (Tesar, 1995), it has been shown that in optimality theoretic systems where each
underlying form has an infinite number of candidate structural descriptions, the optimal
candidate can be efficiently calculated. Part of the reason for this is that the infinity of
candidates comes from the possibility of the insertion (epenthesis) of arbitrary amounts of
material. The amount of insertion possible in an optimal candidate is necessarily limited as a
consequence of the faithfulness constraints, so the computation never need consider
candidates with enough insertion to ensure suboptimality. The same principle applies to robust
interpretive parsing: if an overt form has an infinite number of possible interpretations, only
some finite subset will be possibly optimal. Thus, the learner will be able to restrict itself on
principled grounds to only the finite set of ‘plausible’ interpretations. As is the case for work
on parsing algorithms, the primary challenge for learning with ambiguous overt forms lies not
with the infinity of the space of candidates provided by the system’s formal definitions, but
with the structure of the candidate space.

The performance of the algorithm is a consequence of several factors. The use of
error-driven constraint demotion limits the length of the lists of mark-data pairs underlying
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the ranking hypotheses (Tesar 1995, Tesar & Smolensky 1998). Any list of mark-data pairs
assembled with error-driven constraint demotion will either fully determine the correct
grammar or reach an inconsistency by the time the list reaches N(N-1)/2 pairs, where N is the
number of constraints in the system. This number is an upper bound, and in practice it is
generally a large overestimate. It does guarantee that the length of the lists for individual
hypotheses will be reasonable, relative to the size of the grammar being learned.

The use of error-driven learning helps in a second way as well. When a new overt
form is paired with a ranking hypothesis, learning takes place only if the grammar’s optimal
description does not match the overt form. If one of the possible interpretations of the overt
form is optimal with respect to that ranking hypothesis, the learner does not bother to try
other interpretations of that overt form in combination with that ranking hypothesis.

Sources of complexity include the degree of ambiguity of the overt forms and the
degree of interdependence of the structural descriptions across different forms. Both are
clearly dependent on the particular optimality theoretic system involved. With respect to the
degree of ambiguity, the simulations reported here benefitted from a strategy that likely has
general application. The algorithm worked through the overt forms in order of increasing
length, examining the forms of length two syllables, then those of length three, and so forth.
Not surprisingly, shorter forms tend to have a lower degree of ambiguity. Working with forms
of low ambiguity early on permits the learner to obtain a significant amount of information
without having to consider large numbers of possible interpretations. When the forms of
greater ambiguity are reached, and an error occurs, the learner often will have enough
information to eliminate the majority of possible interpretations on the spot, because most will
be inconsistent with the information obtained earlier from the shorter forms. In some cases,
it is possible to learn the correct grammar entirely from the shorter forms, so that no errors
ever occur with respect to the longer forms, completely eliminating any effect of the
ambiguity of the longer forms. This suggests a more general strategy: the learner should focus
on forms with low ambiguity early on. Note that this strategy does not require anything like
the existence of completely unambiguous forms.

The entire MRCD approach is motivated by the idea that a great deal of
interrestrictiveness exists among the forms of a language. Even if two forms are both highly
ambiguous, the expectation is that only a small number of combinations of interpretations of
the two forms should be consistent (simultaneously optimal). It is not necessary for any one
form to give a full specification of the position of any one constraint, so long as a modest
number of forms combine to determine the entire ranking. The greater the interdependence
of the forms, the more quickly the learner can detect and eliminate incorrect interpretations
of overt forms, thus avoiding having to consider combinations of those (incorrect)
interpretations with possible interpretations of later forms. Thus, this approach to learning not
only tolerates, but is in fact enhanced by, linguistic analyses in which every single form is the
result of interactions among a number of constraints. This is clearly a benefit, given that
constraints which each play a role in the explanation of a variety of forms are independently
desirable with respect to the concerns of linguistic theory.
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