North East Linguistics Society

Volume 21 Proceedings of the North East :
Linguistic Society 21 Article 22

1991

A Limited Non-Deterministic Parameter-Setting Model

Eric H. Nyberg 3rd
Carnegie Mellon University

Follow this and additional works at: https://scholarworks.umass.edu/nels

b Part of the Linguistics Commons

Recommended Citation

Nyberg, Eric H. 3rd (1991) "A Limited Non-Deterministic Parameter-Setting Model," North East Linguistics
Society. Vol. 21, Article 22.

Available at: https://scholarworks.umass.edu/nels/vol21/iss1/22

This Article is brought to you for free and open access by the Graduate Linguistics Students Association (GLSA) at
ScholarWorks@UMass Ambherst. It has been accepted for inclusion in North East Linguistics Society by an
authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.


https://scholarworks.umass.edu/nels
https://scholarworks.umass.edu/nels/vol21
https://scholarworks.umass.edu/nels/vol21
https://scholarworks.umass.edu/nels/vol21/iss1/22
https://scholarworks.umass.edu/nels?utm_source=scholarworks.umass.edu%2Fnels%2Fvol21%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarworks.umass.edu%2Fnels%2Fvol21%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/nels/vol21/iss1/22?utm_source=scholarworks.umass.edu%2Fnels%2Fvol21%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Nyberg: A Limited Non-Deterministic Parameter-Setting Model

A LIMITED NON-DETERMINISTIC PARAMETER-SETTING MODEL

Eric H. Nyberg, 3rd

Carnegie Mellon University

1. Introduction

In Chomsky’s Principles and Parameters model, Universal Grammar is represented as a set of
principles, or constraints on the form of possible grammars (Chomsky 1981, 1985). Cross-linguistic
variation is captured by parameterized differences in the definitions of principles. For example, the
binding domain for anaphoric referring expressions seems to vary in certain ways across languages,
and has been analyzed as a type of parametric variation (Borer and Wexler, 1987). Other work
on the parameterization of Universal Grammar includes various proposals concerning word order
(Koopman, 1983; Travis, 1984), null subjects (Hyams, 1986; Jaeggli and Safir, 1989), second
language acquisition (Flynn, 1987) and metrical phonology (Halle and Vergnaud, 1987; Dresher and
Kaye, 1990).

If cross-linguistic variation is captured by a set of parameter values for each principle which
can vary across languages, then the goal of the language learner must be to attain the correct adult
settings for each of the parameters of Universal Grammar in response to early linguistic experience.
A particular model of the acquisition process shall be judged not only by what grammar ‘it attains
when presented with certain data, but also by how well its process of acquisition reflects empirical
facts about limitations on child memory, attention, etc. (Pinker, 1979), as well as the observed stages
of child acquisition (Brown, 1973).

As an illustration of how parameters can capture cross-linguistic variation, consider just three
of the parameters in the model proposed by Dresher and Kaye (1990):

® Boundedness of Constituents (P1). If Py is 0, then constituents (feet) are bounded (binary); if
P, is 1, then constituents are unbounded in size;
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o Direction of Constituent Construction (P3). If P, is 0, then metrical feet are constructed from
left to right; if P, is 1, feet are constructed from right to left;

¢ Headedness of Constituents (P3). If Py is 0, then constituents (feet) are left-headed; if Pyis1,
they are right-headed.

These parameters work together to produce the 8 basic 5-syllable word types shown in Figure
1. Each entry in the table shows the metrical constituent structure produced for a 5-syllable word
given each of the possible combined settings of the three parameters!:

LL TR P P | Metrical Feet ]
L]0 0 0 [((A*B)(C*D)E")
2]1 0 0 [(A*BCDE)

3.0 0 1 [(AB®H(CD* E*)
411 0 1 [(ABCDE¥®)
510 1 0 ]((A%(B*C)(D*E)
6.1 1 0 [((A*BCDE))
.10 1 1 [((A%(BC* DE%)
8.]1 1 1 [((ABCDE*)

Figure 1: Examples of Metrical Constituent Structure

This example illustrates two important points about parameterized models. First, note that
changing the value of a single parameter can change the nature of the resulting language in a pro-
found way. For example, the language in row 7 differs from the lan guage in row 8 by the value of a
single parameter, but the two languages have dramatically different stress patterns: language 7 has a
right-headed, binary stress pattern, while language 8 has an unbounded, right-headed stress pattern,
The second thing to note is that two different sets of parameters values may produce the same stress
pattern for a single word. For example, both language 2 and language 6 produce the same stress
pattern for the example word.

The implication for parameter setting learning models is that it is difficult to formulate simple
patterns that determine the language being learned on the basis of a few example words or sentences.
It is necessary for the learner to consider the overall effects of all the parameters and the stress
patterns of many words of different lengths to differentiate between sets of parameter values. For
this reason, it is difficult to formulate a coherent and unambiguous set of deterministic learning cues
without imposing strict constraints on the developmental course of learning and the type of data
available, which can lead to incorrect predictions about the nature of child language learning. For
example, the deterministic learner YOUPIE developed by Dresher and Kaye can successfully learn
parameters in metrical phonology, but must set the parameters in a predetermined, rigid order that
is based on the learning cues themselves. YOUPIE also makes cross-word comparisons over the
entire set of data, which requires significant amounts of memory and processing which may not be
available to the child (Dresher and Kaye, 1990; Pinker, 1979).

In this paper, I will focus on two particular problems with deterministic, error-driven learnin g
algorithms, and present a limited non-deterministic parameter-setting model that addresses these

1For the sake of illustration, I abstract away from extrametricality, quantity-sensitivity, etc. in this example. The head of
each foot (which is marked with secondary stress) is indicated by an asterisk.
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problems in a system for learning stress assignment parameters in metrical phonology.

2. Problems with Deterministic Error-Driven Learning

Most of the learning algorithms that have been proposed as models of language learning are deter-
ministic, error-driven systems. For example, in the early model proposed by Wexler and Culicover
(1980), the learner maintained a single hypothesis, consisting of a set of transformation rules, that
changed only when the current example sentence (surface structure) could not be derived from
the example base structure using the existing set of transformations. In Berwick’s model (1985),
the learner maintained a single hypothesis, consisting of a set of phrase-structure rules, which was
modified only when the current example sentence could not be parsed with the current grammar. In
the YOUPIE model, the learner maintains a single hypothesis, and sets its parameters one by one as
the learner’s cues either match or fail to be matched by the words in the input sample. In general,
deterministic error-driven parameter learners are characterized by the following attributes?:

e The learner maintains a single active hypothesis h, initially the least-marked hypothesis (all
parameters are set to 0);

o If the learner encounters an example s ¢ L(h), then it changes the value of a single parameter
fromOto 1;

¢ The learner cannot set a parameter from 1 to 0 (backtracking is not allowed);

¢ Each hypothesis selected by the learner obeys the Subset Principle?.

In the remainder of this section, I shall focus on two characteristics of this type of model that cause
undesirable behavior and can lead to unrecoverable errors:

o Parameter Flipping. Deterministic models that “flip” a parameter when a single example
s & L(h) is encountered in the input sample are sensitive to the presence of ungrammatical
examples in the data. As a result, they can fluctuate between incorrect hypotheses without
converging to the correct grammar,

e Single Hypothesis. Strictly deterministic systems maintain only a single hypothesis during
learning, and do not allow backtracking (resetting a parameter to 0 once it has been set to
1). Since learning situations arise where the learner must choose between more than one
possible hypothesis based on local evidence, changing the wrong parameter can lead to an
unrecoverable error when backtracking is not allowed.

2.1 Parameter Flipping

Consider a learning algorithm that flips a parameter when some example sentence s ¢ L(h) is seen
in the input. Such an algorithm will always choose a new hypothesis when it encounters a sentence
outside its hypothesized language. If we assume that the input data contain only grammatical
example sentences from the target language, then the learner can safely assume that the presence of
some s ¢ L(h) in the input means that the current hypothesis & is incorrect and that L(k) is not the
target language. In reality, the problem faced by child language learners is not so ideal. The input
data processed by children contain at least occasional performance errors, restarts, ungrammatical
sentences, etc. It is unlikely that an algorithm that always flips a parameter in the presence of some
s ¢ L(h) will be able to converge to the correct hypothesis.

2In this paper, I will use s to denote an input word or sentence presented to the leamer, 4 to denote a hypothesis held by
the leamer (a set of parameter values), and L to denote the language generated by a particular hypothesis.
3Note that this is vacuous, if the the least-marked value of a subset parameter is always the #ubset value,

Published by ScholarWorks@UMass Amherst, 1991



North East Linguistics Society, Vol. 21 [1991], Art. 22

312 ERICNYBERG

| Input Example | Hypothesis ||

Sm € Ltarget Liarget
Sm+1 € Ltaryet Ltar_qet
Sn é Ltaryet L]

Sn+1 € Ltarget Ly

Sn42 € Ltarget

Figure 2: Fluctuation Between Incorrect Hypotheses

An example learning scenario is illustrated in Figure 2. At some time m, the learner encoun-
ters a piece of data s, that is in the target language, and hypothesizes the target language, Ligrget.
At this point it will maintain the correct hypothesis for any number of subsequent input examples
that are in Lyarge:. However, suppose that at time n the learner encounters some ungrammatical
example sentence S, that is not in the target language Ltarger. Since the learning algorithm flips
a parameter whenever it sees some s ¢ L(k), it must change its hypothesis away from the correct
hypothesis. Suppose that the learner chooses some hypothesis L;. Since backtracking isn’t allowed,
the learner will never regain the correct hypothesis once it has abandoned it. Even if backtracking
were allowed, the learner would fluctuate between the correct hypothesis and some other hypotheses,
since every s ¢ Liarge: Would cause it to select some L' # Liarget.

2.2 Strict Determinism

In a strictly deterministic learning system, the learner may hold only a single hypothesis at any one
time (corresponding to a single set of parameter values), and it may not backtrack by unsetting a
parameter that it has already set. In such a system, changing the value of the wrong parameter can
lead to an unrecoverable error in certain situations. As a result, the learner converges to an incorrect
hypothesis.

The example learning scenario illustrated in Figure 3 contains just two parameters, and there-
fore the learner must choose between 4 possible hypotheses®. Let us assume that the first parameter
is a subset parameter; as a result, L(H;) C L(Hs) and L(H,) C L(Hy). Suppose that the learner
starts with Hy, the least-marked hypothesis (both parameters are set to 0), and that L(H,) is the
target language. Since L(H\) is not the target language, the learner will soon encounter some
s & L(Hy). It will then flip one of its parameters. The question is, which one? There are two
possibilities; setting the first one will yield (1,0), or L(H,), and setting the second one will yield
(0,1), or L(Hs). A strictly deterministic learner must pick just one of the two possibilities, since
it can hold only a single hypothesis at one time. Suppose that the learner picks not Hj, but Hs. It
will soon encounter example sentences not in L(H3). Since backtracking is not allowed, the learner
must then set the second parameter, yielding (1,1), or L(Ha). Note that since L(H,) C L(H,),
there is no way for the learner to reach the correct hypothesis without backtracking. However, even
if backtracking were allowed, the learner would never encounter data that would prompt it to select

“This example is drawn from Clark’s discussion of the Causality Problem (Clark, 1988).
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H4: <1,1>

@,
Syé \H3: <1, 0>
H2: <0,?>\ /O
subset
O

Hl: <0,0>

Figure 3: A Simple Hypothesis Ordering Problem

L(H,) once L(Hy) is selected. Since all subsequent input examples s € L(H3) are also in L(H,),
the superset language, the learner would (falsely) assume that it had converged to the correct language.

A successful learning algorithm must avoid “traps” like these and converge to the correct
target language, even when there are occasional ungrammatical examples in the input or when the
learner must choose between more than one hypothesis at a given time. It seems that a learner
which picks the smallest language that “fits” the data (i.e., minimizes s ¢ L(H )) would be able to
avoid both of these problems. Unfortunately, a learning model that “remembers” all the example
sentences is cognitively implausible, and therefore not of interest to us (Pinker, 1979). However,
it is of interest for us to explore learning algorithms that show similar behavior, in particular, the
ability to “ignore” infrequent ungrammatical examples that might otherwise deceive the learner and
cause it to abandon the correct hypothesis.

The model described below uses a method of weighing evidence for or against particular
hypotheses. Without “remembering” all the input data, it can avoid the parameter flipping problem.
In addition, the model makes use of limited non-determinism in order to avoid hypothesis ordering
problems like the one previously discussed.

3. A Uniform Hypothesis Weighting Mechanism

In this model, each hypothesis held by the learner has two components: a string of 0’s and 1’s
indicating a particular set of parameter values, and a weight, a numerical value which indicates the
level of confidence in that particular hypothesis. Intuitively, a higher weight indicates that there is
more evidence for a particular hypothesis than one with a lower weight. This notion is made concrete
by the following definitions:

1. The set DAT A, is the set of example sentences encountered by the learner up to time ;
2. The set POS; = s € L(h),s € DAT Ay;

3. Theset NEG; = s ¢ L(h),s € DAT Ay;

4. The value of NPE;(h) = |POS; (k)| — |NEGy(h)|.

In other words, the net positive evidence (N PE) in support of a particular hypothesis can be calcu-
lated by counting the number of examples sentences in L(h) and subtracting the number of example
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sentences not in L(h). For example, if at time ¢, DAT A, = {s1, 55,53}, 51,52 € L(hi), s3 & L(h;),
then NPEt(hi) = I{Sl, Sz}l - I{S3}l =2-1=1.

The weight associated with each active hypothesis at time ¢ is a function of N PE,;(h). The
particular family of functions used for weighting in this model is the set of sigmoid functions,
y = SIG(z) =2/(1+e~*) — 1, where k is a damping factor that controls the slope of the curve
(see Figure 4)°.

Figure 4: The Sigmoid Function y = 2/(1 + ¢~%) — 1.

This weighting function has two desirable characteristics:

¢ The curve approaches -1 as N PE gets more and more negative, and +1 as N PE gets more
and more positive; hence weights of -1 and +1 represent our intuitive notions of complete lack
of confidence in a hypothesis vs. complete confidence in a hypothesis;

¢ Because the slope of the curve becomes more and more shallow as it approaches its asymptotes,
fluctuations in N P E(h) near the asymptotes will have little effect on the weight of h.

The learner checks each active hypothesis h against each new piece of data s; if s € L(h), then
h receives positive weight, otherwise A receives negative weight as determined by the sigmoid
function. When many examples are encountered that are not in L(h), the weight of h will get closer
and closer to -1. If the weight of a hypothesis gets close enough to -1, it will be removed from
the list of active hypotheses. If the weight of a hypothesis gets close enough to +1, the learner has
converged to that hypothesis. To formalize the notion of “close enough,” I assume the existence of
some threshold e, such that hypotheses with weights less than (e — 1) are removed from the active
list and hypotheses with weights higher than (1 — ) are selected by the learner as final hypotheses.
For example, if € = .1, then hypotheses with weights less than -.9 will be removed from the active
list, and hypotheses with weights greater than .9 will be selected as final.

Consider the learning scenario illustrated in Figure 5. At some time m, the learner encounters
Sm € Liarget, and begins to accumulate positive weight for h;grge:. After many more examples
are processed, the weight of hya,g.: Will approach +1, as observed here at time n. Suppose that
at time n + 1 the learner encounters s, 4; ¢ Liarger. Using the weighting mechanism sketched

S5There are certainly other types of weighting functions that one might consider; this is only one such function that has the
desired characteristics.
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| Input Example | Hypothesis ||

Sm e Ltarget W(htarget) = .001
3m+1 e Ltarget W(htarget) = .025

Sp € Ltarget W(htarget) = .898
Sn+1 ¢ Ltar_qet W(htarget) = .887
Sn+2 e Ltarget W(Htarget) = .898

Figure 5: Uniform Weighting and Ungrammatical Examples

above, the learner will subtract only a small amount of weight from A4, get, Since on the whole the
data support A and it has accumulated much positive weight. The learner does not therefore flip a
parameter (change its hypothesis) on the basis of a single example; rather, it is the cumulative effect
of larger amounts of data that tend to confirm or disconfirm particular hypotheses over time, making
the learner much more resilient to the presence of infrequent ungrammatical examples.

The uniform weighting strategy was tested on a small learnin g problem containing two word
order parameters and four hypotheses corresponding to the basic word orders (SOV, OVS, SVO,
VOS) (Nyberg, 1987, 1989). An experiment was conducted in which 200 grammatical examples of
SVO sentences were presented to the learner. The weight associated with the correct hypothesis is
shown in the graph in Figure 6.

Figure 6: Weight Assigned to Word Order SVO Over 200 Examples

As predicted, the learner’s confidence in that hypothesis grows steadily and approaches 1 (complete
belief). Another experiment was conducted, in which another 200 examples were presented to the
learner, but this time with a 10% error rate (roughly 1 out of every 10 examples was ungrammatical,
i.e., it could not be parsed successfully into an SVO sentence). The weight associated with the SVO
hypothesis is shown in Figure 7. The learner was still able to converge to the correct hypothesis, but
the level of weight assigned to the SVO hypothesis after 200 examples is somewhat less than when
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learning without errors, and the learner’s belief in the SVO hypothesis can be seen to fluctuate near
the origin more in Figure 7 than in Figure 6. Hence the model predicts that the learner should still be
able to set parameters correctly when ungrammatical examples are present, but that it may require
more data before converging to the correct hypothesis.

Figure 7: Weight Assigned to Word Order SVO Over 200 Examples, 10% Error Rate

4. Limited Non-Determinism

In order to avoid the hypothesis ordering problem shown earlier in Flgure 3, the model relaxes the
assumption of strictly deterministic learning. In particular, the learner may hold more than one
local hypothesis while resetting parameters. In a deterministic (sin gle-hypothesis) learner, changing
the current hypothesis can be achieved by “flipping” a value or values in the string of 0’s and 1’s
encoding the current hypothesis. For example, 0101 can be derived from 0000 by flipping the second
and fourth parameter values. In the type of non-deterministic learner described here, more than one
hypothesis may be active at a given time. Adding new hypotheses can be achieved by copying one
of the current hypotheses, and then flipping some of its values. For example, {0000,0101} can be
derived from {0000} by making a copy of 0000, flipping its second and fourth parameter values,
and then storing it with the original hypothesis (thus indicating that both are active).

It should be clear from the foregoing discussion that there are no a priori limitations on how
a learner may select new hypotheses or add to the current set of active hypotheses. It is the case,
however, that child language learners do not fluctuate wildly in their choice of grammar (though they
may experiment with certain ungrammatical ways of building sentences). In fact, their grammatical
development seems to move smoothly through several well-defined stages. For this reason, I will
adopt the following constraint on hypothesis selection:

The Single-Value Constraint. Atany time ¢, if the learner holds some hypothesis A, then
it may activate only hypotheses that differ from h by the value of a single parameter
(Clark, 1990).

Intuitively, the Single-Value Constraintlimits the learner to only those hypotheses that can be derived
by flipping a single parameter. This has two desirable effects:

¢ The learner cannot jump between hypotheses that are completely unrelated;
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¢ To derive a particular parameter setting, the learner must pass through a number of intermediate
stages.

The Single-Value Constraint limits the search performed by the learner in a way that makes it more
plausible as a cognitive model of acquisition than an unconstrained non-deterministic learner, I will
adopt the notion of I-adjacency to describe two hypotheses that meet the Single Value Constraint;
e.g., h; is 1-adjacent to h; iff h; is identical to k; except for the value of a single parameter.

I will assume that the learner begins with the least-marked hypothesis, a string of parameter
values containing only 0’s. For example, in a system with 4 parameters, the initial hypothesis would
be 0000. This hypothesis is the only member of the initial set of active hypotheses maintained by
the learner. The goal of the learner is to search the set of possible hypotheses in order to locate the
correct hypothesis. This is accomplished by weighting hypotheses as described in the previous sec-
tion, checking each active hypothesis against the current input datum and weighting it accordingly.
This process continues until either 1) one of the hypotheses attains a weight > (1 — ¢), in which
case the learner has converged to that hypothesis as its final grammar, or 2) there are no more active
hypotheses (the weights of all active hypotheses are < (e — 1)). In the former case, the learner stops
processing and returns the hypothesis it has selected. In the latter case, the learner activates new hy-
potheses according to the Single-Value Constraint. When the last active hypothesis is removed from
the active list, all hypotheses that are 1-adjacent to it are activated and placed into the active list, and
processing continues. For example, if 0000 is not the correct hypothesis, sooner or later the learner
will accumulate enough evidence against it, and its weight will dip below (¢ — 1), causing it to be
removed from the active list. Since it is the only active hypothesis initially, this would in turn cause
all 1-adjacent hypotheses to be activated, e.g., 1000,0100, 0010, and 0001 (cf. Figure 8). The learner
continues to activate and prune hypotheses in this fashion until it converges to the correct hypothesis.

1000 0100

o
FE

Figure 8: Limited Non-Deterministic Search

Although the learning algorithm is non-deterministic, the activation of new hypotheses is
tightly constrained. The learner activates new hypotheses only when all of its current hypotheses
are pruned. When new hypotheses are activated, the learner obeys the Single-Value Constraint,
activating only those hypotheses that are 1-adjacent to the last active hypothesis. This implies that
there are at most n hypotheses active at any given time, where n is the number of parameters to be
learned.

Returning to the learning problem presented in Figure 3, we can see how limited non-
determinism can solve the hypothesis ordering problem. When the learner decides that H; cannot
account for the input data, it need not limit itself to picking either H, or Hs; since both are local to
Hp, it can activate both and assume that the evidence provided by subsequent input examples will
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serve to discriminate between them.

5. Learning Parameters in Metrical Phonology

In order to test the learning algorithm described above, I have replicated the parameter model pre-
sented in (Dresher and Kaye, 1990) by creating a computer program that builds metrical constituents
and assigns word stress based on the current set of parameter values. This program also incorporates
both the uniform weighting mechanism and limited non-determinism I have described. The set of
parameters learned by the model is shown in Figure 9.

[| Parameter | Principle |

PO The word-tree is strong on the [Left/Right]
P1 Feet are [Binary/Unbounded]

P2 Feet are built from the [Left/Right]

P3 Feet are strong on the [Left/Right]

P4 Feet are quantity sensitive (QS) [No/Yes]
P5 Feet are QS to the [Rime/Nucleus]

P6 A strong branch of a foot must itself branch [No/Yes]
P7 There is an extrametrical syllable [No/Yes]
P8 It is extrametrical on the [Left/Right]

P9 A weak foot is defooted in clash [No/Yes]
P10 Feet are noniterative [No/Yes]

Figure 9: Metrical Parameters from (Dresher & Kaye, 1990)

The example shown in Figure 10 serves to illustrate how the metrical processor assigns stress
to an input example based on the current set of parameter values. The example word yangarmata
is from Maranungku, which has a left-headed, binary stress pattern. First the processor groups
the syllables in the word into binary feet, as shown in the first layer or processing; then it assigns
word-level stress, as shown in the second layer. Here stress devolves on the head of the left-most foot.

The stress processor is integrated with the learning algorithm in a learning system for metrical
parameters, as shown in Figure 11. The stress processor passes two pieces of information to the
learning algorithm: the observed stress pattern associated with the input word, and the stress pattern
output by the metrical processor for the same syllables (like YOUPIE, the metrical processor strips
off the stress markings from the input word and stores them for comparison with the pattern assigned
by the current parameter settings). In addition, the learning algorithm also has access to the current
set of parameter values, which it can modify during learning.

It is important to note that the amount of processing performed on the two stress patterns
(input and output) is minimal: they are simply checked to see if they match. If not, the learner will
subtract weight from the current hypothesis. If the patterns do match, then the current hypothesis
successfully accounts for the current piece of data, and receives additional weight.

For the purposes of testing the learner, I have used words of length 3, 4 and 5 syllables. A
set of data for the learner contains equal numbers of words of length 3, 4, and 5 for each language
tested, with the appropriate stress pattern for that language assigned to the each word. In the test
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Input segments: #([YAN]<O0> [GAR]<0> [MA]<0> [TA]<0>)
Metrical constituents (LEFT-headed, BINARY feet built from the LEFT) :

[ 1 0 101 0 1
/\ /\ /\ /\
Y * G * Moo* T
/' \ /\ /\ /\
A N A R A A

Word tree (strong on the LEFT):

[ 2+ 0 10 1 0 ]
/ N\ / \ /\ / \
Yy x G * M * T x
/ A\ / \ /\ 7/ \
A N A R A A

((YANZ2) (GARO) (MA 1) (T A 0))

Figure 10: Example Output of Metrical Processor

samples used so far, 3, 4 and 5-syllable words appear with equal frequency. Since the Dresher and
Kaye model being replicated can recognize four different basic syllable types, there are 4° = 64
3-syllable words, 4* = 256 4-syllable words, and 45 = 1024 5-syllable words. In order to create
a data file with equal numbers of words of each length, the 3-syllable words were duplicated 16
times and the 4-syllable words were duplicated 4 times. These words were mixed together with the
5-syllable words and the file was randomly scrambled. Such a file containing 3072 input words was

created for each of the languages tested.
Parameter
Values

Raw Metrical nput .
Word —_— Stress — Stress —_— Learning
String Processor Pattern Algorithm

Output

Stress

Pattern

Figure 11: Parameter-Setting Architecture for Metrical Learner
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6. Results

The learner has been tested on data from five languages: French, Maranungku, Warao, Latvian, and
Lakota. This set of languages contains a mix of different stress patterns. To test the learner, 100
trials were conducted with each language. A file of 3072 randomly-ordered 3, 4, and 5-syllable
words from each language was presented to the learner 100 times, and the number of input words
actually processed before the learner converged to the correct hypothesis was counted. The results
of testing are shown in Figure 12.

[ Language | Hypothesis | Average No. Examples |

French 01011000000 105
Maranungku | 00000000000 31

Warao 10100000010 211
Latvian 01001000000 128
Lakota 01001001000 284

Figure 12: Test Results. Language, parameter values, and average number of examples required
for the learner to pick the correct language.

The easiest language to learn was Maranungku; because all the parameters are set to their
default values in Maranungku, the initial hypothesis held by the learner (00000000000) describes
the Maranungku stress pattern. The learner therefore does not need to explore any other hypotheses,
and converges quickly to the initial hypothesis after 31 input examples.

French is somewhat more difficult for the learner to process, since three parameters must be
set in to reach the correct hypothesis. The learner required 105 input examples to learn the fixed
final stress pattern of French.

Latvian is similar to French, having fixed initial stress. Therefore it is not surprising that the
learner required on average about the same number of examples (128) to learn Latvian.

Like Maranungku, Warao has a binary stress pattern; however, its otherwise smooth stress
pattern is disrupted by the stress-clash avoidance rule, which changes the binary stress pattern in
some cases. Since presumably stress clash does not occur in every word, it takes more examples
before the learner gathers enough evidence that the stress-clash avoidance parameter () has the
value 1. As a result, the learner required on average 211 examples to learn Warao. The prediction
made by the model is that the presence of a stress-clash avoidance rule makes the stress pattern of a
language more difficult to learn.

Of the 5 languages tested, the language that required the most examples to learn was Lakota.
Lakota is like Latvian, having unbounded, left-headed feet, but with one crucial difference — in
Lakota, the Extrametricality parameter (P) has the value 1. The left-most syllable in Lakota words
is extrametrical, resulting in fixed second-syllable stress rather than fixed initial stress. The learner
required 284 examples on average to learn this stress pattern. The model therefore predicts that
extrametricality is hard to learn.
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As implemented in this model, the 11 parameters shown in Figure 9 describe 432 possible
stress systems. The learning algorithm is currently being tested on examples from more of these
systems, in order to gather more empirical data about the learner’s performance on a wide range of
natural language data.

7. Discussion

One inherent problem in evaluating the empirical validity of phonological learners is that so little data
is available on the developmental stages in phonological acquisition. Itis therefore difficult to judge
the relative merits of this model versus the Dresher and Kaye model, beyond stating that a model that
does not enforce a rigid, predetermined order of acquisition has better hope of predicting different
courses of acquisition, should they arise in further exploration of child acquisition of phonology.

The model presented here represents a number of improvements on the YOUPIE model pro-
posed by Dresher and Kaye. The learner is incremental, i.e., it processes the input words one at a
time and does not make cross-word comparisions across the entire set of data, as does YOUPIE. As
a result, the learner can process large amounts of data without requiring larger and larger amounts of
memory. It is therefore more plausible from a cognitive point of view, given the known limitations
on child memory capacity and access to indirect negative evidence (Pinker, 1979). In addition, the
complete lack of learning cues in this model implies that a) extension of the model to new formula-
tions of UG does not require a complete reformulation and reordering of learning cues, and b) the
learner does not have to perform complicated pattern matching operations on the metrical structures
produced by the stress module during learning. It is also the case that YOUPIE was not exposed to
ungrammatical examples during learning; in fact, the presence of ungrammatical examples example
could confound the operation of the learning cues (Dresher, personal communication).

The purpose of this paper has been to show how relaxing some of the assumptions of previous
parameter-setting models leads to improved behavior in certain learning situations. In particular, I
presented a learning model that makes use of a uniform hypothesis weighting strategy and limited
non-determinism to overcome the problems that strictly deterministic, error-driven models encounter
in the presence of ungrammatical examples or when hypothesis ordering is crucial. The learning
algorithm has been implemented in a system that replicates the parameters from (Dresher and Kaye,
1990) and learns the parameters of metrical phonology when presented with sets of example words.
The learner has been tested on 5 languages and makes certain plausible predictions about the lan-
guages it learns. The learner also has certain desirable characteristics that make it more plausible as
a cognitive model than previously proposed models of parameter setting.
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