North East Linguistics Society
Volume 18 Proceedings of NELS 18 - Volume 1 Article 11

1987

Positing Gaps in a Parallel Parser

Edward Gibson
Carnegie Mellon University

Robin Clark
Carnegie Mellon University

Follow this and additional works at: https://scholarworks.umass.edu/nels

b Part of the Linguistics Commons

Recommended Citation

Gibson, Edward and Clark, Robin (1987) "Positing Gaps in a Parallel Parser," North East Linguistics
Society. Vol. 18, Article 11.

Available at: https://scholarworks.umass.edu/nels/vol18/iss1/11

This Article is brought to you for free and open access by the Graduate Linguistics Students Association (GLSA) at
ScholarWorks@UMass Ambherst. It has been accepted for inclusion in North East Linguistics Society by an
authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/nels
https://scholarworks.umass.edu/nels/vol18
https://scholarworks.umass.edu/nels/vol18/iss1/11
https://scholarworks.umass.edu/nels?utm_source=scholarworks.umass.edu%2Fnels%2Fvol18%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarworks.umass.edu%2Fnels%2Fvol18%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/nels/vol18/iss1/11?utm_source=scholarworks.umass.edu%2Fnels%2Fvol18%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Gibson and Clark: Positing Gaps in a Parallel Parser

POSITING GAPS IN A PARALLEL PARSER

Edward Gibson and Robin Clark

Carnegie Mellon University

1. Introduction

Serial deterministic models of human sentence processing (e.g. Frazier, 1978; Frazier
and Fodor, 1978; Marcus, 1980; Berwick, 1985) have had a great intuitive appeal, especially
when contrasted with unlimited parallel processing. A serial deterministic parser, for ex-
ample, provides a straight-forward account of why people often fail to perceive ambiguity
and report a strongly favoured interpretation for sentences which are technically ambiguous.
Serial deterministic processing, furthermore, gives a very plausible account of how people
are misled into a garden-path parse for certain strings, e.g.:

(1) The horse raced past the barn fell.

By virtue of returning all possible grammatical parses for an input sentence, an
unlimited parallel parser, by itself, gives us no reason to prefer one parse over another, and,
hence, fails to account for why people prefer certain readings of ambiguous input. Since
the non-preferred analysis of a garden-path input can be carried along by the parallelism, a
parallel parser cannot be misled. Hence, a fully parallel parser provides no obvious account
of garden-path phenomena.

Serial deterministic parsers, however, have always had difficulty positing gaps (Fodor,
1979; Clifton and Frazier, forthcoming). A number of strategies for handling gaps have
been proposed, none of which have provided a completely satisfactory account. Two early
strategies, for example, were First Resort and Last Resort positing. Roughly, the First
Resort strategy posits gaps as soon as possible, while the Last Resort strategy waits until

Published by ScholarWorks@UMass Amherst, 1987

North East Linguistics Society, Vol. 18 [1987], Art. 11
142

GIBSON AND CLARK

as much of the string has been parsed as possible. Neither strategy can account for all of
the sentences in (2):

(2) a. What; does the man paint [el; ?
b. What; does the man paint with [e]; 7
c. What; does the man paint [e]; with his brush ?

Since there is no evidence that any of these sentences is a garden-path, the serial
deterministic parser must posit a gap in a certain position if and only if a gap appears in
that position in the final parse. No backtracking may take place during the execution of the
algorithm.

First, let us assume that the serial parsing model posits gaps as a first resort. If the
serial model posits the gap correctly in (2a) then it must posit a gap in (2b) following the
word paint, since at that point precisely the same words have been processed. A garden
path effect results, since the gap belongs after the word with. Since sentence (2b) is not a
garden-path, this model cannot be psycholinguistically adequate.

To posit gaps correctly in both (2a) and (2b) the serial deterministic parser without
look-ahead must choose to posit gaps as a last resort. That is, gaps are only posited when
the input sentence is complete and the parser knows that a gap is necessary (by the presence
of a wh-word, for instance). However, this strategy will not suffice for sentence (2¢). Since
the last resort parser is successful in parsing sentence (2b), the parse for (2¢) can not
include a gap following the word paint. This is the very place that a gap must occur in
sentence (2c). As a result the last resort parser fails to parse (2¢) correctly.!

While one may be able to imagine various elaborations on the basic serial deterministic
algorithm (e.g. look-ahead, lexical expectation), we would like to entertain a different
hypothesis. Unconstrained parallelism certainly fails to account for a good deal of the
basic empirical data. In this paper we will discuss a highly constrained version of parallel
processing which accounts for preferred interpretations of structurally ambiguous input and
breaks down on garden-path sentences, but which circumvents many of the problems with
positing gaps in serial parsers.

The Constrained Parallel Parser (CPP) is a parsing model based on the principles
of Government-Binding Theory (Chomsky, 1981); crucially, CPP has no separate grammar
rule module containing language-particular rules. Using the CPP model, a separate lexical
entry exists for each different argument structure of a word. When a word is input, tree
structures for each of its lexical entries are built and placed in the buffer, a one cell data
structure that holds a parallel list of these trees. CPP contains a second data structure,
the stack, which contains tree structures as in the buffer. The stack, however, may be more
than one cell deep. The parser builds trees in parallel based on possible attachments made
between the buffer and the top of the stack.

The parallelism in CPP is controlled by two constraints; the Exclusive Attachment

1The parse that posits the gap as in (2d):
(2d) What; does the man paint with his brush [el; ?

is taken to be an incorrect parse, since the chain consisting of (what;,[e];) cannot receive Case, because
of the adjacency requirement on Case assignment (Stowell, 1981).

https://scholarworks.umass.edu/nels/vol18/iss1/11

Gibson and Clark: Positing Gaps in a Parallel Parser
143

POSITING GAPS IN A PARALLEL PARSER

Constraint and the Ranked Attachment Constraint. The Exclusive Attachment Constraint
requires that if an attachment is possible between two nodes (one on the stack, one in the
buffer), then it is made, and all nodes in parallel that did not take part in attachment, either
on the stack or in the buffer, are pruned. The Ranked Attachment Constraint prefers some
types of attachments over others. As a result of these constraints, garden path effects occur
(see Clark, 1987; Gibson, 1987).

The method of positing gaps in the constrained parallel architecture just described is
quite simple. Positing an argument or adjunct gap in a given representation takes place if
two conditions are met. First, the current representation must contain a nearby constituent
in a non-thematic A-position or an A-bar position, where “nearby” is defined in terms of
subjacency bounding nodes.2 Second, the category of the antecedent must match that of
the gap (Kayne, 1984). In addition, constraints such as the Extended Projection Principle,
the #-Criterion and the Empty Category Principle further limit the distribution of empty
categories. Given these conditions, gaps are posited fairly freely, but few survive the pruning
algorithm.

This paper will describe the CPP parsing algorithm, with demonstrations of resultant
garden-path effects. The formal gap-positing algorithm follows, with suitable examples. It
is hypothesized that the CPP model is both psycholinguistically plausible and simpler than
its serial counterparts, and is therefore a preferable model.

2. The Constrained Parallel Parser (CPP)

2.1. X Theory in CPP

The CPP model assumes X Theory as present in (Chomsky, 1986). X Theory has
two basic principles: first, each tree structure must have a head; and second, each structure
must have a maximal projection. As a result of these principles and other principles built
into the parser, (e.g., the 8—Criterion, the Extended Projection Principle, Case Theory), the
positions of arguments, specifiers and modifiers with respect to the head of a given structure
are limited. In particular, a specifier may only appear as a sister to the one-bar projection
below a maximal projection, and the head, along with its arguments, must appear below
the one-bar projection. The orders of the specifier and arguments relative to the head is
language dependent. For example, the structure of all categories for English is shown in
Figure 1. Modifiers are Chomsky-adjoined to the two-bar or one-bar levels, giving one
possible structure for a post-head modifier in Figure 2. If there were no specifier in Figure 2
the modifier could have Chomsky-adjoined to either the maximal projection or the one-bar
projection. These would be equivalent representations.

n
Specifier X’

X Arguments

Figure 1: The X-bar structure in English

2For simplicity we will assume the bounding node definition of subjacency. That is, two of the nodes
{IP, CP, NP} are bounding nodes ({IP, NP} in English), and successive links in a chain may be separated
by at most one bounding node (see Chomsky (1981) and the references cited there). See Chomsky (1986)
for an alternative approach to subjacency.

Published by ScholarWorks@UMass Amherst, 1987

North East Linguistics Society, Vol. 18 [1987], Art. 11
144

GIBSON AND CLARK

n

Specifier X'
! Modifier

X Arguments

Figure 2: Chomsky-Adjunction to the one-bar level

2.2. Lexical Entries for CPP

A lexical entry accessed by CPP consists of, among other things, a theta-grid. A
theta-grid is an unordered list of theta structures. Each theta structure consists of:

1. a thematic role
2. associated subcategorization information

One theta structure in a theta-grid may be marked as indirect to refer to its subject.
For example, the word shout might have the following theta-grid:3

((Subcat = NOUN, Thematic-Role
(Subcat = PREP, Thematic-Role
(Subcat COMP, Thematic-Role

AGENT, INDIRECT)
GOAL)
PROPOSITION))

When the word skout (or a morphological variant of shout) is encountered in an input
phrase, the thematic role agent will be assigned to its subject, as long as this subject is a
noun phrase. The direct thematic roles goal and proposition will be assigned to prepositional
and complementizer phrases respectively, as long as each is present. Since the order of theta
structures in a theta-grid is not relevant to its use in parsing, the above theta-grid for shout
will be sufficient to parse both sentences (3) and (4).

(3) The man shouts to the woman that Ernie sees the rock
(4) The man shouts that Ernie sees the rock to the woman.

2.3. The CPP Algorithm

The Constrained Parallel Parser parses input by using the buffer and stack data
structures along with a simple attachment algorithm. Since CPP has no separate grammar
containing language-specific rules, an attachment between a structure in the buffer and a
structure on the stack is based on the values associated with parameters of the parser. The
parser contains:

1. Constants that are independent of the language being parsed.
2. Parameters that depend on the language being parsed.

For example, the ability to attach structures of one category to structures of another is
assumed to be part of unparameterized Universal Grammar. Whether these attachments
take place from stack to buffer or from buffer to stack varies according to the type of
attachment and the language being considered, however. For example, a determiner phrase,
if it exists in a given language, is universally allowable as a specifier of a noun phrase.

3In a more complete theory, a syntactic category would be determined from the thematic role.

https://scholarworks.umass.edu/nels/vol18/iss1/11

Gibson and Clark: Positing Gaps in a Parallel Parser
145

POSITING GAPS IN A PARALLEL PARSER

Whether this attachment is from stack to buffer or from buffer to stack depends on the
word order facts concerning specifier attachment for the language being parsed. In English,
specifier attachment takes place from stack to buffer, indicating that specifiers occur before
the head. As a result, a parameter is set for parsing English which indicates that specifier
attachment occurs from stack to buffer. Arguments, on the other hand, are attached from
buffer to stack. Hence, English is head-first with respect to arguments. As with the case of
Specifiers, this order is the result of setting a parameter which dictates the direction of the
attachment of complements with respect to the head.

The formal CPP algorithm is given below, with parameters for attachment set to
parse English.

1. (Initializations) Set the STACK to NIL. Set the BUFFER to NIL.

2. (Ending Condition) If the input string is finished and the BUFFER is empty then
return the contents of the STACK and stop.

3. If the BUFFER is empty then for each lexical entry corresponding to the next word in
the input string, build a maximal projection and put this list of maximal projections
into the BUFFER.

4. Make all possible attachments between the STACK and the BUFFER, subject to the
attachment constraints. Put the attached structures in the BUFFER. If no attach-
ments are possible, then put the contents of the BUFFER on top of the STACK.

5. Go to 2.
Possible Attachments (parameterized for English):

e Argument Attachment: (BUFFER to STACK) If a structure B in the BUFFER is
compatible with the lexical requirements of a structure A, on top of the STACK, then
attach B to A as an argument.

e Specifier Attachment: (STACK to BUFFER) If a structure A, on top of the STACK,
is compatible as a specifier of a structure B, in the BUFFER, then attach A to B as
a specifier.

e Pre-Head Adjunct Attachment: (STACK to BUFFER) If a structure A, on top of the
STACK, is compatible as a modifier of a structure B, in the BUFFER, then attach A
to B as a modifier.

o Post-Head Adjunct Attachment: (BUFFER to STACK) If a structure B in the BUFFER

is compatible as a modifier of a structure A, on top of the STACK, then attach B to
A as an modifier.

Attachment Constraints:

o Exclusive Attachment Constraint: If an attachment is possible between two struc-
tures (one on the stack, one in the buffer), then it is made. All nodes in parallel that
did not take part in attachment, either on the stack or in the buffer, are pruned.

e Ranked Attachment Constraint: Attachment to on-adjunction positions are pre-
ferred over attachments to adjunction positions. That is, attachments to specifier and
complement positions are preferred to attachments to modifier positions.

Note that the above algorithm has two attachment constraints that limit the par-
allelism of the algorithm. Without these constraints, the parser would be parallel in an

Published by ScholarWorks@UMass Amherst, 1987

North East Linguistics Society, Vol. 18 [1987], Art. 11
146

GIBSON AND CLARK

unlimited sense, and, as a result, would not be a viable psychological model. It will be
shown later in the paper that these universal attachment constraints cause garden-path
effects during parses of garden-path sentences, as desired.

To illustrate the algorithm in action, consider the input noun phrase the man on the
rock. First, a maximal projection for the determiner the is placed in the buffer, as seen
in Figure 3. Since there is nothing in the stack, no attachments can be made, and as a
result, the determiner phrase simply moves to the stack. The second word, man, is then
read from the input string. Since man has both noun and verb entries in the lexicon, a
maximal projection for each reading enters the buffer, as shown in Figure 4. Now that both
the stack and buffer are non-empty, attachments may be tried. Argument attachment fails,
since the structure on top of the stack, the determiner phrase representing the, has no lexical
requirements. Pre-head modifier attachment fails, since a determiner is not a legal modifier
of a noun or a verb. Post-head modifier attachment also fails, since neither a noun nor a verb
may modify a determiner. Specifier attachment fails between the determiner and the verb
since a determiner may not be the specifier of a verb phrase. Specifier attachment succeeds
between the determiner and the noun, however, since a determiner is a possible specifier for
a noun phrase.* So the determiner phrase representing the is attached to the noun phrase
representing man, the attachment taking place from stack to buffer. The attached structure
is then placed in the buffer. Since the verb phrase reading of man did not take place in

the attachment, it is pruned from the parse by the Exclusive Attachment Constraint. The
result is shown in Figure 5.

BUFFER STACK
D t"
th'
Det

the

Figure 3: Parse State 1. Input: the man on the rock

BUFFER STACK
Noulm" Verb’! Dit"
Noun’ Verb’ Det’
N l Ve rb DT

un T et

L |

man man the

Figure 4: Parse State 3. Input: the man on the rock

Since there is now nothing on the stack, the contents of the buffer are moved onto
the stack and a maximal projection of the next input word, the preposition on, is placed
in the buffer. Argument attachment fails, since the noun phrase the man has no lexical
requirements. Specifier attachment also fails, since a noun phrase is not a legal specifier of
a prepositional phrase. Similarly, pre-head modifier attachment fails. Post-head modifier

4This is presumably a theorem of Universal Grammar. That is, a determiner may be attached as the
Specifier of a noun phrase. Thus, provided that a language has determiners, they will be attached as [Spec,

N]. We assume, furthermore, that UG allows only this role for determiners; they cannot be modifiers of VP
for example.

https://scholarworks.umass.edu/nels/vol18/iss1/11

Gibson and Clark: Positing Gaps in a Parallel Parser
147

POSITING GAPS IN A PARALLEL PARSER

BUFFER STACK
Noyn”’

Det’’ Noun’

DTt' N:1un

Det man

|

the

Figure 5: Parse State 4. Input: the man on the rock

attachment succeeds, however, since a prepositional phrase is a legal modifier of a noun
phrase. This attachment takes place and the the attached structure is dropped in the
buffer. Since there is nothing on the stack, this structure is then moved to the stack, as
shown in Figure 6.

A maximal projection for the word the is then put into the buffer, representing the
next word in the input. The tree structure on the stack, representing the input string the
man on, needs a noun phrase to satisfy its lexical requirements. But argument attachment
fails here, since a determiner does not satisfy these requirements. Specifier and modifier
attachments also fail in this case and the determiner phrase is put on the stack.

The final word in the input, rock, is now read and maximal projections for its lexical
entries (assumed to be a noun and a verb) are placed in the buffer (see Figure 7). Neither
argument nor modifier attachment is viable here, but specifier attachment succeeds for the
determiner and noun yielding a noun phrase the rock. The Exclusive Attachment Constraint
prunes the verb phrase reading of rock since it does not take part in any attachment. As a
result, the noun phrase the rock ends up in the buffer, with only the noun phrase the man on
left on the stack. Both specifier and modifier attachments fail at this point, but argument
attachment succeeds, since a noun phrase is needed to satisfy the lexical requirements of
the preposition on. Hence buffer to stack attachment occurs with the result dropped back
into the buffer. Since there is now nothing on the stack, this structure moves to the stack
and the completed parse for the input the man on the rock is returned (see Figure 8).

BUFFER STACK

Figure 6: Parse State 8. Input: the man on the rock

Published by ScholarWorks@UMass Amherst, 1987

North East Linguistics Society, Vol. 18 [1987], Art. 11
148

GIBSON AND CLARK
BUFFER STACK
NoTn" Verb”’ Delt"
Noun’ Verb' DTt’
Nciun VT'b Det
|
rock rock the
DTt“ %
Di:t' Noim' Per"
Dlet Nolun Prrp'
the man Prep

Figure 7: Parse State 11. Input: the man on the rock

BUFFER STACK
Det” Noun’
DTtI N A "
T olun Per
Dlet Noun Prep’
the man Prep Noun”

on Det” Noun’

th' Noun
Det rock
the

Figure 8: Parse State 14. (Final State) Input: the man on the rock

https://scholarworks.umass.edu/nels/vol18/iss1/11

Gibson and Clark: Positing Gaps in a Parallel Parser
149

POSITING GAPS IN A PARALLEL PARSER

3. Positing Gaps in CPP

There are two distinct kinds of gaps in standard Government-Binding theory: gaps
that are base-generated and gaps that appear as a result of movement in the transition
from D-structure to S-structure.’> An example of a gap that is base-generated is PRO, while
a gap resulting from movement is known either as a Wh-trace or a NP-trace. PRO and
gaps resulting from movement are quite different in nature. For example, PRO cannot be
governed, while gaps resulting from movement must be properly governed. As a result of
the differences, it is reasonable to deal with the two kinds of gaps separately.

In this paper we will consider only gaps that are a result of movement in the transi-
tion from D-structure to S-structure.® We will further restrict our attention to those gaps
that are caused by movement from argument position. As dictated by the 6—Criterion, all
constituents that require thematic roles directly receive these theta-roles at D-structure. A
constituent may move from its D-structure position in the transition to S-structure for any
of a number of reasons; for example, a lexical noun phrase may move to a Case-marked
position to satisfy the Case Filter. Depending on the language in question, wh constituents
may or may not move in the transition from D-structure to S-structure. If a language al-
lows wh movement, then gaps result in positions that are directly assigned both Case and
thematic roles.

The moved constituent, along with the gaps coindexed with it, make up a chain,
which, because of the 6-Criterion, must have exactly one thematic role. If the head of the
chain is a lexical noun phrase then the chain must also have Case.

Intuitively, gap-positing should be initiated if, after an attachment takes place, a
constituent that needs a thematic role has none associated with it. When looking for a
constituent that lacks a thematic role, the gap—positing algorithm does not need to consider
argument positions, since the the §-Criterion disallows movement to f-governed (comple-
ment) positions. For simplification purposes, we will assume that gaps may only be posited
in argument and specifier positions, and that specifier gaps may only be posited in non-
lexical categories (Infl and Comp). These assumptions are made so that examples will be
less complicated; they are not true in general. The first assumption, for instance, is false,
since gaps need to be posited in adjunct positions so that sentence (5) may be interpreted
as ambiguous. The assumptions, however, simplify examples that do not need adjunct gaps.

(8) When; [;p did John say [;p Bill left ([el;) 1 ([el;) 17

5In Barriers Chomsky (1986) also postulates that two types of movement are possible: movement of a
head (as in verb movement) and movement of an entire constituent (as in NP or Wh movement). In this
paper we will consider only movement of full constituents, because of space limitations. Head movement
is compatible with the algorithm presented here; see Gibson and Clark, forthcoming, for the application of
this algorithm to structures resulting from head movement.

8See Gibson and Clark, forthcoming, for a treatment of gaps including PRO.

Published by ScholarWorks@UMass Amherst, 1987

North East Linguistics Society, Vol. 18 [1987], Art. 11
150

GIBSON AND CLARK

As a result of these assumptions, gap-positing is initiated in structure (S1) if con-
stituent C has no thematic role, after some attachment occurs to constituent A”:

A/l
N
C 1T'

A

Structure (S1)

Suppose, for example, that constituent B” attaches as a sister to A. (In the general
case, it is possible that arguments of A have already been attached and that B” is attached
somewhere below one of these arguments.) Since C has no thematic role, gaps are posited
everywhere possible in B”. That is, for each position in B” that is compatible with the
syntactic category of C and is subjacent to C, the tree structure A” is copied, and a trace
coindexed with C is posited in that position. This procedure is repeated recursively on each
tree structure that is produced. The procedure is terminated for a given tree structure if
either a posited gap receives a thematic role, thus completing a chain, or there is no further
position in which to posit a gap. If a representation, A, still has a constituent in a G-position
after gap—positing has terminated, then gap—positing will need to be re-initiated on A later
in the parse in order to find a thematic role for the 8-constituent in A. For example, each
of the structures below might result from this gap—positing algorithm.

AII AII AII
C; A’ C; A C; A’
A B/I A B/I A B/I
N | |
€; B’ B’ B’
/\ /\
B € B D"
/\
€; D’
Structure (S2) Structure (S3) Structure (S4)

Structure (S2) contains a Wh-trace in the subject position of B”; this is essentially
the structure associated with (6a). Structure (S3) contains a Wh-trace in object position.
Sentence (6b) is an example of a sentence having such a structure. Structure (S4) contains

an NP-trace in subject position. This case represents examples of subject raising, as in
(6c), and traces in the specifier of Comp as in (6d).

(6) a. Who; [e]; saw the man ?
b. What; did the man eat [el; ?
c. The man; seems [el; to enjoy the meal.
d. Who; did the man think [cp [el; [Mary liked [e]; 1] 7

https://scholarworks.umass.edu/nels/vol18/iss1/11

Gibson and Clark: Positing Gaps in a Parallel Parser

POSITING GAPS IN A PARALLEL PARSER

To illustrate gap-positing in the CPP algorithm, consider sentences (2a-c) once
again.

(2) a. What; does the man paint [el; ?
b. What; does the man paint with [e]; 7
c. What; does the man paint [e]; with his brush 7

Assume that paint subcategorizes for an optional noun phrase (object thematic role),
and an optional prepositional phrase (instrument thematic role). Four distinct structures
are possible based on this theta-grid: one that has both the noun phrase and prepositional
phrase complements (sentence (2c)), two that have only one complement (sentences (2a)
and (2b)), and one with no complements.

In parsing one of sentences (2a-c), we will assume for simplicity that the input what
did the man paint has already been parsed, before gap-positing. The verb phrase paint has
Just been attached to the Comp phrase what did the man leaving the structure (S5) in the
buffer:

Comp”
/\
Noun” Comp’
% Comp Infl”
/\
dildj Noun” Infl/
tﬁ Infl Verb”
te Velrb’
Vlrb
pa|int

Structure (S5)

Since the noun phrase what is in a @-position, gap—positing is initiated. The only
possible place to posit a gap is as the object of the verb paint. Once this gap is placed,
no further gaps can be posited, since the object position receives a thematic role, thus
completing the chain. After gap—positing, therefore, two structures remain. Structure (S5)
remains (the bottom of which is depicted in structure (S6)) along with a structure having
a gap posited in object position of the verb (structure (S7)).

Published by ScholarWorks@UMass Amherst, 1987

151

11

North East Linguistics Society, Vol. 18 [1987], Art. 11

152

GIBSON AND CLARK

Verb'’

Verb

paint

Structure (S6)

Verb/

PN

Verb Noun”

paint €

Structure (S7)

If the input finishes at this point, then structure (S6) is pruned for a number of
reasons. The wh-operator fails to bind a gap, and the noun phrase what has no thematic
role or Case. Structure (S7), however, remains as a successful parse.

Suppose, on the other hand, that the input is not exhausted, and that the next word
in the stream is with. Structures (S6) and (S7) move to the stack and a maximal projection
for with enters the buffer. This prepositional phrase attaches to both structures (S6) and
(s7). Gap-positing ensues and structures (S8), (S9) and (S10) result.

Verb/ Verb’ Verb/
Ve{\Prep" Verb/Nm]m”\Prep” Verb Prep”
U O T P

Prlep Prlep Prep Noun”
i o SR

Structure (S8) Structure (S9) Structure (S10)

If the input finishes at this point, then structures (S8) and (S9) are pruned, since
both fail the Extended Projection Principle and 6—Criterion. (Structure (S8) has additional
problems: the wh-operator fails to bind a gap, and the noun phrase what lacks both a

thematic role and Case.) Structure (S10) remains as a successful parse.

Suppose, however, that the noun phrase the brush follows in the input. Then this
noun phrase attaches to all structures formed so far and gap-positing is applied, resulting
in the following structures:

Verb’ Verb’
Verb Prep” Verb Prep” Noun”
paint with the brush paint with the brush €

Structure (S11)

https://scholarworks.umass.edu/nels/vol18/iss1/11

Structure (S12)

12

Gibson and Clark: Positing Gaps in a Parallel Parser
153

POSITING GAPS IN A PARALLEL PARSER

Verb’ Verb’
T el
Verb Noun” Prep” Verb Prep” Noun”
N
pa!int el,- with the brush palint {it}> @
Structure (S13) Structure (S14)

Structure (S12) is pruned since it contains a noun phrase chain that lacks Case.
Structure (S14) is also pruned since the noun phrase the brush lacks Case. If the input
finishes at this point, then structure (S11) is pruned, since the wh-operator fails to bind a
gap, and the noun phrase what lacks a thematic role and Case. Structure (S13) remains as
a successful parse.

Sentences (2a-c) are all parsed successfully using this simple parallel gap-positing
algorithm. Hence positing gaps in a parallel parser does not have the problems of positing
gaps in a serial deterministic parser. The advantage that a serial deterministic parsing
architecture had over a parallel one was that it more easily explained classic psycholinguistic
effects such as garden-path effects. We will now demonstrate, however, that the CPP
model also obtains garden-path effects, thus re-establishing parallel models as plausible
psychological models.

4. Garden-Path Effects and CPP
Consider the following sentence:
(7) The woman walked to the station ate the cake.
This is a garden-path sentence because walked to the station is misanalyzed as matrix
level verb phrase. In order to obtain a grammatical sentence, walked to the station must be

analyzed as a reduced relative clause modifying the woman. Consider the state of the parse
after the input the woman walked in sentence (7) (shown below):

BUFFER STACK
Infl” Verb” Noun”
walked walked the woman

The buffer contains a noun phrase representing the input the woman. The stack
contains a verb phrase representing the passive participle walked, as well as an Infl phrase
representing the tensed verb walked. Argument attachment fails in this situation, since
the noun phrase in the buffer has no lexical requirements. Specifier attachment succeeds
between the Infl phrase and the noun phrase, as well as between the verb phrase and the
noun phrase. This verb phrase attachment results in small clause formation, but this parse is
pruned because the noun phrase the woman cannot receive case in this configuration. Crucial
to the garden-path effect, modifier attachment fails, because of the Ranked Attachment
Constraint. The Ranked Attachment Constraint prefers non-adjunction attachments to
adjunction attachments. Since Specifier attachment succeeds in this parse configuration,

Published by ScholarWorks@UMass Amherst, 1987 13

154

North East Linguistics Society, Vol. 18 [1987], Art. 11

GIBSON AND CLARK

modifier attachment (an adjunction) cannot. As a result, the passive participle reading of
walked, which would result in the reduced relative clause walked to the store, is ignored,
resulting in the following parse state:

BUFFER STACK
Infi”

the woman walked

A garden-path sentence eventually results, since the tensed Infl phrase representing
ate cannot attach to the Infl phrase representing the woman walked to the station and the
Extended Projection Principle is violated.

Because of the two attachment constraints, the CPP model obtains garden-path ef-
fects. For further exposition, see (Gibson, 1987). In addition, it will be shown in (Gibson
and Clark, forthcoming) that the CPP model obtains Minimal Attachment and Late Closure
effects. As a result, a parallel architecture alleviates difficulties of gap—positing, while still
capturing classic psycholinguistic effects.

5. Conclusions

We have described a parallel parsing model that, unlike serial deterministic models,
has no difficulty positing gaps. The design of the parser follows from current work in
syntactic theory. The representations posited by the parser must obey certain constraints
(the Case Filter, 6—Criterion, etc.). Furthermore, in keeping with the spirit of recent work
in Government-Binding theory (Chomsky, 1985), the parser makes no use of language-
particular grammar rules. Given the parser’s ability to replicate phenomena like garden-path
effects and preferred analyses of ambiguous input, we feel that research along these lines can
do much to illuminate the relationship between syntactic knowledge and its use. Finally, we
note that the Constrained Parallel Parser is a genuinely parallel parser. Although unlimited
parallel parsers can also posit gaps easily, they cannot obtain classic psycholinguistic effects
such as those from garden-path data. The CPP model, since it is severely constrained, does
not suffer this defect; it obtains garden-path as well as other psycholinguistic effects. Hence,
psycholinguists, while correct in rejecting unconstrained parallelism, were too hasty in their
outright rejection of parallel algorithms.

https://scholarworks.umass.edu/nels/vol18/iss1/11

14

Gibson and Clark: Positing Gaps in a Parallel Parser

POSITING GAPS IN A PARALLEL PARSER

Acknowledgements

We would like to acknowledge Rick Kazman, Maryellen Macdonald and Eric Nyberg
for their helpful commments on earlier drafts of this paper.

References

Berwick, R., The Acquisition of Syntactic Knowledge, MIT Press, Cambridge, MA, 1985.

Bever, T., and McElree, B., Empty Categories Access Their Antecedents during Com-
prekension, Linguistic Inquiry 19, pp. 34-44, 1988.

Chomsky, N., Lectures on Government and Binding, Foris, Dordrecht, The Netherlands,
1981.

Chomsky, N., Knowledge of Language: Its Nature, Origin and Use, Praeger Publishers,
New York, NY, 1985.

Chomsky, N., Barriers, Linguistic Inquiry Monograph 13, The MIT Press, Cambridge,
Mass., 1986.

Clark, R., Rules and Parsing, Talk presented at Massachusetts Institute of Technology,
Spring 1987.

Clifton, C., and Frazier, L., Comprehending Sentences with Long-Distance Dependen-
cies, to appear in Tanenhaus, M., and Carlson, G., (eds.), Linguistic Structure in Language
Processing, Reidel.

Fodor, J.D., Superstrategy, from Cooper, W., and Walker, E. (eds.), Sentence Process-
ing: Studies Presented to Merrill Garrett, Lawrence Erlbaum and Assoc., 1979.

Frazier, L., and Fodor, J.D., The Sausage Machine: A New Two-stage Parsing Model,
Cognition 6, pp. 291-325, 1978.

Frazier, L., On Comprehending Sentences: Syntactic Parsing Strategies, University of
Massachusetts Ph.D. dissertation, 1978. Frazier, L., Syntactic Complezity, from Dowty,
Karttunen and Zwicky (eds.), Natural Language Parsing, Cambridge University Press, 1985

Gibson, E.A.F., Garden-Path Effects in a Parser with Parallel Architecture, Eastern
States Conference on Linguistics, 1987.

Jackendoff, R., X-bar Syntaz: A Study of Phrase Structure, Linguistic Inquiry Mono-
graph 2, The MIT Press, Cambridge, Mass., 1977.

Kayne, R., Connectedness and Binary Branching, Foris, Dordrecht, The Netherlands,
1984.

MacDonald, M., Processing Binding in Passive Sentences, Eastern States Conference
on Linguistics, 1987.

Marcus, M., A Theory of Syntactic Recognition for Natural Language, MIT Press, Cam-
bridge, MA, 1980.

Stowell, T., Origins of Phrase Structure, Massachusetts Institute of Technology Ph.D.
dissertation, 1981.

Published by ScholarWorks@UMass Amherst, 1987

155

15

	Positing Gaps in a Parallel Parser
	Recommended Citation

	tmp.1600306718.pdf.cQWLq

