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Purpose: This study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in 

breast cancer radiotherapy treatments under a variety of conditions.  

Methods: Using EBT2 radiochromic film, both electron and photon beam dose distribution measurements were 

made for different phantoms, and beam geometries. This was done to establish a more comprehensive 

understanding of the implant’s perturbation effects under a wider variety of conditions.  

Results: The magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a 

photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects 

of the silicon elastomer are also much more apparent in an electron beam than a photon beam  

Conclusions: Evidently, each component of the TTE attenuates the radiation beam to different degrees. This 

study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is 

influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose 

distributions establishes the importance of an accurately modelled high-density implant in the treatment 

planning system for post-mastectomy patients. 
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I. INTRODUCTION 

This study examines the dosimetric effects of temporary tissue expanders (TTEs) on 

radiotherapy treatments. TTEs are used in post-mastectomy breast reconstructions for 

selected breast cancer patients. Since radiotherapy treatment is usually started 4 to 8 weeks 

after the mastectomy surgery, some patients undergo radiotherapy with the TTE present. 
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These TTEs are made of a membrane composed of silicone elastomer, a chemically inert and 

mechanically robust material. The silicone membrane needs to be periodically filled with a 

saline solution until the desired expansion is reached. A magnetic disk allows the position of 

the implant’s valve to be determined inside the patient’s body. This high-density disk has the 

potential to seriously compromise the accuracy of radiotherapy treatment planning dose 

calculations, and hence delivery [1].  

 

Several studies have been reported examining the effects of tissue expanders on radiotherapy 

dosimetry. Moni et. al. [2] completed measurements around the magnetic valve of a McGhan 

(Inamed/Allergan) tissue expander using film and thermoluminescent dosimeters (TLD) for a 

6 MV photon beam. These measurements were designed to look for increased dose around 

the port, due to scatter from the high density metal, and found that there was no increased 

dose in the region of the metallic port. However, the results showed a decrease in the dose 

measured directly under the metallic port of around 25% in a region of 1.7 to 3.7 cm 

downstream. Damast et. al. [3] also investigated the effect of a McGhan Style 133 

(Inamed/Allergan) tissue expander in a radiotherapy treatment using films and TLDs. Similar 

underdosing was identified but the authors concluded that this was not clinically significant 

due to the small volume of tissue underdosed. Chatzigiannis et. al. [4] performed Monte 

Carlo simulations using CT images of a patient implanted with a McGhan Style 133 

(Inamed/Allergan) tissue expander. The magnet of the valve was simulated as being 

composed by Neodymium-iron-boron. Attenuation of 6–13% was found through all the area 

in the shadow of the magnetic valve and a dose enhancement around 10% was found near the 

metallic structure. Thompson and Morgan’s [5] diode measurements described an 11% dose 

enhancement in a region of 5 mm around the valve and an underdosing of 10% to the 

radiation target when tangential photon beams were used.  
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Notably, all of these studies [2–5] examined the effects of only one type of tissue expander 

(McGhan Inamed/Allergan) on photon-beam dose distributions. Their findings showed 

conflicting reports on backscatter measurements and differing magnitudes of dose reduction. 

Finally, since breast-cancer patients with tissue expanders continue to be treated with both 

photon and electron-beam radiotherapy, there is an obvious need for a thorough examination 

of the effects of these implants on the doses delivered by both tangential photon fields and 

electron boost fields.  

 

A recently published study by Srivastava et. al. [6] compared ion chamber measurements 

with treatment planning system (TPS) calculations and concluded that high-Z materials 

should be avoided due to their poor modeling in TPS algorithms. This failure to accurately 

calculate dose distributions could be attributed to incorrect CT density assignments for high-

Z materials [7]. Irrespective of TPS inaccuracies, the avoidance of a high-density port is not a 

practical option in post-mastectomy radiotherapy and may result in sub-optimal treatments 

being delivered to the patient. Therefore, in the present study we experimentally examine the 

effects of a Mentor TTE (Mentor, Magna-Site disk, Santa Clara, CA, USA) on electron and 

photon beam dose distributions. Exploring different phantoms and beam geometries will 

provide a more comprehensive understanding of the effects of tissue expanders in post-

mastectomy radiotherapy. 

 

II. METHODS 

In this study, dose distribution measurements around a Mentor TTE were performed using 

EBT2 radiochromic film. The implant was partially filled with 250 cm
3
 of a 0.9% saline 

solution, and then placed atop a planar phantom composed of an arrangement of water and 
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lung equivalent materials, illustrated in Figure 1. Additionally, a 1.5 cm layer of bolus was 

placed over the top of the implant such that the phantom set-up models the subcutaneous 

implantation of the expander in a patient. Pieces of film were then positioned 0 cm and 2 cm 

downstream of the implant as well as one piece of film immediately upstream to measure any 

backscatter caused by the high-Z material. The TTE was irradiated isocentrically (98.5cm 

SSD) using a 15x15 cm
2
 field of 6 MV photons, as well as 12 MeV electrons, at incidences 

perpendicular to the heterogeneity. 

 

Figure 1 Illustration of the planar phantom arrangement, TTE placement, and film locations (thick black lines) 

during photon and electron beam irradiations (bolus not shown). 

Measurements were also made using a CIRS IMRT thorax phantom, this time with the TTE 

filled with 400 cm
3
 of the saline solution. Once again, a 15x15 cm

2
, 6 MV photon field was 

delivered at an incidence perpendicular to the heterogeneity (gantry angle of 340
o
). Once 

more, film was placed above and below the implant. An additional piece was placed running 

parallel to the incident beam between slices of the thorax phantom. Fig. 2 demonstrates the 

alignment of our experimental conditions to a clinical case with a CT slice of the thorax /TTE 

phantom and overlying bolus compared to an image slice of a patient with the subcutaneous 

implantation of a tissue expander. 

Beam Direction 

1 cm solid water 

1 cm solid water 

6 cm foam (lung equivalent) 

2 cm solid water 
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Figure 2 (a) CT slice of the thorax phantom indicating beam angles and TTE placement. (b) Image slice of a 

patient with implanted tissue expander. 

 

Finally, a beam arrangement was adopted from a clinical plan where photon tangents were 

modulated using a forward-planned IMRT (field-in-field) technique [8,9]. This involved 

delivering segmented, tangent photon fields (dynamic wedged fields) at angles of 70
o 

and 

250
o
 with film placed immediately upstream and downstream of the implant. The technique 

has been shown to provide more homogeneous dose distributions in the planning target 

volume (PTV) and reduced doses in the organs at risk (OAR) [10].  

 

The film was scanned and evaluated as per the protocol outlined in Kairn et. al. [11] and 

Aland et. al. [12] which minimised the effects of film heterogeneity and scanner output 

variations. Finally, the dose reduction values presented in this work were calculated as the 

percentage difference between the average doses outside the shadow of the magnet, relative 

to the doses in the region directly under the magnet. Measurement uncertainties were taken as 

the standard deviation of doses in each region. 

 

340
o
 

70
o
 

250
o
 

(a) (b) 
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III. RESULTS AND DISCUSSION 

Fig. 3 shows the dose profile of the implant at two different depths, downstream of the breast 

implant in the planar phantom for a 6 MV photon beam at 0
o
 gantry. At 0 cm, in the region 

directly below the magnetic valve, the dose is reduced by as much as 15 ± 3 %. This figure 

also reports a 12 ± 2 % dose reduction at 2 cm below the bottom edge of the implant. No 

backscatter dose enhancements were reported in the radiochromic film and were therefore not 

included in Fig. 1.  

 

Figure 3 Dose profiles of a 6 MV photon beam at different depths downstream of the implant. Inset indicates 

beam direction, film locations (thick black lines), and profile positions. 

 

The qualitative data, displayed in Fig. 4 (a), clearly illustrates the perturbation effects the 

high-density magnetic port, as well as the silicone elastomer in the 12 MeV electron beam at 

different depths. Increased bremsstrahlung around the edges of the implant is also visible. 

 

6 MV Photon 

Beam Direction 
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Figure 4 (a) Images of scanned EBT2 film showing attenuation of the 12 MeV electron beam through the 

temporary tissue expander at 0 cm (left) and 2 cm (right) downstream. (b) Corresponding central-axis profile 

plots at different depths downstream of the tissue expander. Inset indicates beam direction and film locations 

(thick black lines). 

 

12 MeV Electron 

Beam Direction 

(b) 

(a) 



8 
 

Fig. 4 (b) shows the dose profile of the TTE in a 12 MeV electron boost field at two distances 

downstream of the implant in a planar phantom. At 0 cm a substantial dose reduction of 

approximately 56 ± 6 % is reported compared to the dose recorded outside the magnet’s field 

shadow. It should be noted that the at the location of the profile taken outside of the magnet’s 

shadow there is a slight difference of overlaying tissue thickness compared to that taken in 

the magnet’s shadow due to the curvature of the implant surface, however the difference to 

the dose profile is negligible in comparison to the effect of the metallic port.  Given that boost 

fields are typically delivered as per this experimental setup, electron treatments of post-

mastectomy patients with TTEs would be compromised by the presence of this high-Z 

material. The effects of the silicon elastomer are also much more apparent in the electron 

beam than the photon beam.  

 

Photon beam measurements in the CIRS IMRT thorax phantom illustrate the perturbation 

effects of each component of the implant and are shown in Fig. 5. Moving averages have 

been applied to smooth the data which helps illustrate the magnitude of each component’s 

attenuation. 
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Figure 5 6 MV photon depth dose profiles in the CIRS thorax phantom downstream of different components in 

the implant with filled volume. Insets indicate approximate profile locations and beam direction. 

 

From Fig. 5, it was determined that profiles downstream of the silicone elastomer/saline 

interface averaged doses around 8% lower when compared to profiles taken outside the 

implant’s shadow. Differences for profiles taken under the titanium case, titanium ring and 

neodymium magnet were approximately 12%, 15% and 19% respectively. These results 

agree with what is expected when considering the scaled depth of each implant component 

and its density. It should be noted that there are slight differences in depth caused by the 

curved shape of the implant; however, this would have no effect on the order of which 

components attenuate the most. This highlights the importance for an accurately modelled 

high-density implant in the treatment planning system. 

 

340
o
 



10 
 

Photon tangent fields were also delivered to the thorax phantom and the results in Fig. 6 

illustrate a combined dose reduction of 20% caused by the high-density magnet in both 

treatment directions, calculated once again using the percentage difference between the 

average dose values outside the shadow of the magnet, relative to the dose value in the region 

directly downstream of the magnetic port.  Given that post-mastectomy treatments are 

typically delivered as per this experimental setup, the impact of the TTE on photon dose 

distributions would be significant if it’s not accurately accounted for in planning. The insets 

indicate in Fig. 6 indicate the approximate profile locations as well as pictographically 

demonstrating the perturbation caused by the TTE’s internal magnet and silicone elastomer 

shell. 

 

Figure 6 Dose profiles of a 6 MV photon treatment for two beam tangents at gantry angles of 70o and 250o. The 

data has been smoothed with the application of a moving average filter. Insets indicate beam directions and 

approximate profile locations/directions on downstream film pieces. 

70
o
 

250
o
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IV. CONCLUSIONS 

This work indicates that the magnetic disk present in a tissue expander causes an average 

dose reduction of approximately 20% in photon tangent fields and 56% in electron boost 

fields immediately downstream of the implant. The silicone elastomer shell of the Mentor 

implant has also been shown to reduce the dose to a section of the target volume by as much 

as 8% in a 6 MV photon field, which in turn reduces the probability of tumour control. 

Evidently, each component of the TTE attenuates the radiation beam to different degrees. 

This highlights the importance for an accurately modelled high-density implant in the 

treatment planning system for post-mastectomy patients.  
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