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ABSTRACT

INVESTIGATING THE TRANSCRIPTIONAL REGULATION OF SECONDARY
CELL WALL SYNTHESIS AND THIGMOMORPHOGENESIS IN THE MODEL

GRASS BRACHYPODIUM DISTACHYON

MAY 2020

JOSHUA H. COOMEY, B.S. UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D. UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Samuel P. Hazen

A key aspect of plant growth is the synthesis and deposition of cell walls. In specific 

tissues and cell types including xylem and fiber, a thick secondary wall composed of 

cellulose, hemicellulose, and lignin is deposited. Secondary cell walls provide a physical 

barrier that protects plants from pathogens, promotes tolerance to abiotic stresses, and 

fortifies cells to withstand the forces associated with water transport and the physical 

weight of plant structures. Grasses have numerous cell wall features that are distinct from

eudicots and other plants. Study of the model species Brachypodium distachyon has 

helped us begin to understand the internal and external cues that regulate the synthesis of 

grass secondary cell walls. In this dissertation, I investigate the function of two 

transcription factors in regulating cell wall biosynthesis, SWIZ and KNOB7. SWIZ 

controls wall synthesis and plant growth in response to external mechanical force. In 

response to touch, SWIZ protein moves into the nucleus, a translocation that is modulated

by the level of bioactive gibberellic acid in the cell. Positive and negative perturbation of 

SWIZ results in shorter plants with thicker fiber cell walls, phenotypes that are enhanced 

v



in plants treated with regular mechanical stimulus during growth. KNOB7 is orthologous 

to the characterized cell wall regulator AtKNAT7 in Arabidopsis thaliana. KNOB7 

negatively regulates fiber wall thickness and lignification, as is observed in AtKNAT7, 

but KNOB7 shows unique control of lignin composition, hydroxycinnamic acid content, 

and cell wall polysaccharide content. These observations may reflect control of grass 

specific cell wall characteristics not present in eudicots, such as high levels of wall bound

hydroxycinnamic acids and the prevalence of heteroxylan polysaccharides. Together, 

these insights from SWIZ and KNOB7 function further our understanding of how grasses

regulate their growth and secondary cell wall synthesis. 
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CHAPTER 1

TANSLEY REVIEWS: GRASS SECONDARY CELL WALLS, BRACHYPODIUM
DISTACHYON AS A MODEL FOR DISCOVERY.

1.1 Introduction to the secondary cell wall

The secondary plant cell wall provides mechanical strength that allows plants to stand 

upright, resist pest and pathogen invasion, and transport water over long distances. Both 

plants and humans have found this abundant matrix of crosslinked polymers useful as 

durable building material, with timber featuring in human construction around the world 

for generations. The secondary wall is distinct from other cell wall types in composition 

as well as the developmental timing and tissue types where it is deposited. Secondary 

walls form in thick layers, rich in cellulose, hemicelluloses, and lignin. Cellulose 

microfibrils have a tensile strength rivaling steel, and form crystalline structures. 

Hemicelluloses include a variety of polysaccharides, but in grass secondary walls these 

are mostly mixed linkage glucans and heteroxylans, a defining aspect of this plant 

lineage. Finally, lignin is a recalcitrant and heterogeneous mixture of randomly 

polymerized phenolic monolignols that is interspersed and cross linked with wall 

polysaccharide polymers. Lignification is a hallmark of secondary walls, and unique 

chemistry and synthesis of this polymer continues to be uncovered (Fig. 1.1).

Following cell expansion of cells surrounded by a primary wall, secondary walls are 

deposited in a highly specific spatio-temporal manner in certain cell types over 

development. Unlike eudicots, grass stem growth is a result of iterative division and 
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elongation events from stacked intercalary meristems called nodes (Esau, 1977; Langer, 

1979). New cells generated from the node elongate, pushing up the nodes above with the 

final node transitioning to the flowering meristem. Thus, the internode regions are most 

mature at the bottom of the stem, while cells within an internode are most mature at the 

top of that region, just before the next node (Langer, 1979). Secondary wall deposition 

occurs between cell elongation and senescence, with cellulose, lignin, and hemicellulose 

content increasing with maturity (Rancour et al., 2012; Matos et al., 2013; Kapp et al., 

2015). Grass stems account for the majority of secondary wall forming sclerenchyma 

tissues. The interfascicular fibers develop thick secondary walls and provide mechanical 

strength for the upright stem. Grasses form discrete vasculature with the xylem and 

phloem contained by bundle sheath cells, unlike eudicots where a cambium separates 

colateral xylem and phloem (Fig. 2). Depending on the species, stem vascular bundles 

can be arranged in peripheral rings or dispersed throughout the stem (Esau, 1977). Xylem

develops strong secondary walls that can tolerate the high pressures caused by 

evapotranspiration. Phloem cells do not have secondary walls. Besides phloem, grass 

stem parenchyma tissue can be found in the pith and in cortex pockets, which have been 

shown to function as carbon storage tissues during development (Jensen & Wilkerson, 

2017). While this review focuses on secondary cell walls in B. distachyon and other 

grasses, wall synthesis has also been investigated using B. distachyon as a model system 

for callus tissue, young vegetative growth, and endosperm development  (Christensen et 

al., 2010; Guillon et al., 2011a; Liu et al., 2016; Betekhtin et al., 2018; Francin-Allami et

al., 2019). 
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Figure 1.1. General schematic of grass secondary cell wall matrix. The grass 
secondary cell wall matrix is made up of cellulose microfibrils, mixed-linkage 
glucans, heteroxylans, and lignins. (a) A generalized cartoon of grass secondary wall
polymer interactions. (b) Schematic fine structure of the pink circled region in (a). 
Cellulose microfibrils consist of multiple, organized, β(1,4)-linked glucose chains. 
Mixed-linkage glucans are also glucose chains, but include β(1,3) linkages. 
Heteroxylan has a xylose backbone that is decorated with sugar and phenolic side 
chains of xylose, arabinose, glucuronic acid, and hydroxycinnamates (FA and pCA). 
These polysaccharides can be interwoven with lignins, branched phenolic polymers 
made of three main lignin units , syringyl (S), guaiacyl (G), and p-hydroxyphenyl 
(H). Lignins can also contain ferulic and p-coumaric acids.

1.2 Brachypodium distachyon, a model grass system.

B. distachyon is a model for cereal crops and temperate grasses because of its small 

stature, simple growth requirements, short life cycle, relatively small and sequenced 

genome, and close phylogenetic relation to those species (Scholthof et al., 2018). B. 

distachyon has a ‘finished’ reference genome with the only ambiguity being the 

placement of some centromeric repeats 
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(https://phytozome-next.jgi.doe.gov/info/Bdistachyon_v3_1). In addition, there is a 

growing atlas of gene expression profiles (Trabucco et al., 2013b; Sibout et al., 2017; 

MacKinnon et al., 2020). It is also remarkable in terms of the resources available for 

experimental molecular genetics. Genetic transformation protocols are well-developed; 

current efficiency makes B. distachyon a grass highly amenable to transformation (Bragg 

et al., 2012). Mutant resources consist of 23,000 T-DNA mutants and 1,200 sequenced 

chemical mutants (Bragg et al., 2012; Granier et al., 2015). Given that these mutations 

are more-or-less randomly distributed across the genome and chemical mutagenesis 

typically induces multiple mutations per mutant line, this large collection likely includes 

loss-of-function mutations in the majority of B. distachyon genes and multiple 

nonsynonymous mutations in virtually every gene (Dalmais et al., 2013). This latter 

category of mutations may be particularly interesting because it can help elucidate the 

function of cell wall genes, as well as the importance of specific amino acids and protein 

domains, information that cannot be inferred from knock-out mutants. A large natural 

variation population exists for B. distachyon, with sequenced genomes for many 

accessions. These resources have been applied in several studies on growth and biomass 

related traits (Lee et al., 2012; Tyler et al., 2014; Kapp et al., 2015; Gordon et al., 2017)  

Thus, B. distachyon is well positioned for gaining fundamental insights into cell wall 

biosynthesis (Coomey & Hazen, 2015). This knowledge can then be leveraged for 

agronomic gains in more experimentally recalcitrant grass species.
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Figure 1.2. Transverse section of B. distachyon and A. thaliana stems. Transverse 
stem cross sections of A. thaliana (a) and B. distachyon (b) stained with 
phloroglucinol-HCl, a general stain for lignified tissues. Most eudicots, such as A. 
thaliana, have vascular bundles of xylem separated from phloem by cambium 
layers, and flanked by interfascicular fibers. In B. distachyon, the stem vascular 
bundles also contain xylem and phloem, but there is no cambial layer, and the 
vasculature is encased by a lignified bundle sheath layer of mestome cells and 
surrounded by interfascicular fiber cells. In both species, a cortex region of less 
lignified cells separates the interfascicular region from the epidermis. 
Abbreviations: vascular bundles (VB), epidermis (Ep), cortex (Co), cambium area 
(Ca), interfascicular fibers (IF), phloem (Ph), mestome (Mes), metaxylem (MX), 
protoxylem (PX), parenchyma (P). Scale bar = 100 µm.

1.3 Cellulose

Cellulose is perhaps the most abundant polymer in the world, found in the walls of every 

plant cell. It is made of β-1-4 linked glucose monomers, and these glucan chains are 

synthesized at the plasma membrane by the cellulose synthase complex (Fig. 1). Extruded

cellulose chains form organized microfibrils with crystalline structure; the degree of this 

organization impacts wall mechanics, with greater crystallinity resulting in stiffer walls.  
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The cellulose synthase complex consists of multiple Cellulose Synthase A (CesA) 

subunits and associated proteins (Pear et al., 1996; Polko & Kieber, 2019). CesA genes 

are a subclade of the cellulose synthase superfamily, along with the Cellulose Synthase-

like (Csl) clades. Across plant species, seven major lineages have been identified in the 

CesA genes, which separate into the CesAs associated with primary or secondary wall 

synthesis (Little et al., 2018). This distinction between primary and secondary wall 

synthesis is conserved across most vascular plants. In B. distachyon, BdCesA4, 7, and 8 

have been shown to function in secondary wall synthesis, and these proteins are highly 

similar to those characterized in other species for secondary wall function, such as 

Arabidopsis thaliana and rice (Oryza sativa) (Handakumbura et al., 2013). In B. 

distachyon, loss-of-function in the secondary CesAs results in reduced crystalline 

cellulose content, compromised wall integrity, and reduced plant growth (Handakumbura 

et al., 2013; Petrik et al., 2016). Interestingly, the secondary CesA lineage contains a 

Poacea-specific clade, which in B. distachyon is represented by BdCesA10. This CesA10 

group does not contain the canonical UDP-glucose binding motif (D,D,D,QxxRW) found

in glucosyltransferases (Handakumbura et al., 2013). While phylogenetic analysis clearly

places these proteins in the CesA clade, it is not clear what role they play, if any, in cell 

wall synthesis. 

Mutants in maize (Zea mays), barley (Hordeum vulgare), and rice with defects in 

cellulose synthesis have been identified through brittle stem phenotypes, aptly named 

brittle stalk, fragile stem, and brittle culm respectively (Tanaka et al., 2003; Sindhu et al.,
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2007; Burton et al., 2010b; Kotake et al., 2011). These mutants have been mapped both 

to genes encoding CesAs and other associated proteins, such as the COBRA-like family 

of glycosylphosphatidylinositol anchored proteins. While the precise function of these 

anchored proteins is not fully understood, they may play a role in properly orienting 

cellulose synthesis.

Cellulose synthase complex dynamics have been studied primarily in A. thaliana, but 

recent work in B. distachyon has added to our understanding of the conserved functions 

of this system. The complex moves along cortical microtubules, depositing cellulose 

microfibrils perpendicular to the axis of elongation (Paredez et al., 2006). This has been 

observed in real time for primary CesAs in both A. thaliana and B. distachyon, which 

showed similar speeds in B. distachyon mesocotyl and root, as in A. thaliana hypocotyl. 

This motility was not affected by latrunculin B treatment, which destabilized actin 

filaments, but was dampened in both species when microtubules were disrupted (Liu et 

al., 2017). Missense mutation in Bdcesa1, a primary wall cellulose synthase, showed 

reduced cellulose content and crystallinity , as do A. thaliana AtcesA1 mutants (Arioli et 

al., 1998; Persson et al., 2007; Brabham et al., 2019). Unlike Atcesa1 mutants, Bdcesa1 

did not show reduced plant height. Rather, the Bdcesa1 mutant had more internodes, 

giving rise to a plant with normal height despite reduced cellular elongation from 

compromised cellulose synthesis (Brabham et al., 2019). Overall, the process of cellulose

biosynthesis appears to be somewhat conserved between eudicots and grasses.

1.4 Mixed-linkage glucans

One of the salient differences that defines grass secondary cell walls is the composition 
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and utilization of non-cellulosic polysaccharides. These can generally be thought of as 

pectins and hemicellulose, but discussion of these polymers is often better suited to 

classification by backbone structure (Scheller & Ulvskov, 2010; Atmodjo et al., 2013).  

In eudicots, the predominant polysaccharide polymer after cellulose is xyloglucans, β-1-

4-linked glucose chains that contain numerous 1-6 xylose substitutions. The xylose side 

chains can be further decorated with other sugars such as galactose or fucose (Bauer et 

al., 1973; Fry, 1989; Scheller & Ulvskov, 2010). In grasses, the role of xyloglucans is 

largely replaced by mixed-linkage glucans (MLGs) and heteroxylans.

Mixed-linkage glucans are, as their name suggests, β-1-4 linked glucose chains that are 

interrupted with β-1-3 linkages (Fig. 1 & 3). (1,3)-β-glucans are typically separated either

by two or three (1,4)-β-glucans, forming oligosaccharide units of β-cellotriosyl or β-

cellotetraosyl (Fig. 3), although longer chains of (1,4)-β-glucans are also observed 

(Bulone et al., 2019). Almost no evidence of adjacent (1,3)-β-glucan bonds has been 

found (Buliga et al., 1986). These altered linkages result in the polymer having kinks and 

bends, unlike the linear glucan chains that form cellulose. As a result, MLG does not 

form crystalline structures. The relative amounts of β-cellotriosyl and β-cellotetraosyl 

units strongly relate to the solubility of the overall polymer and are expressed as ratios of 

degrees of polymerization of tri- and tetrasaccharides (DP3:DP4). Solubility of the 

polymer decreases at either end of the ratio spectrum. Longer stretches of either β-

cellotriosyl or β-cellotetraosyl units increases the overall order of the polymer with more 

undisturbed regions of (1,4)-β-glucan linkages, and thus decreases solubility. Greater 

solubility occurs with DP3:DP4 ratios that range from 1:1 to 2.5:1 (Lazaridou & 
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Biliaderis, 2007; Burton et al., 2010a). 

MLGs were once thought to be unique to grass cell walls, but several examples have now

been observed outside of the commelinid monocots, and indeed outside of green plants. 

Polysaccharides containing (1,3;1,4)-β-glucans have been observed in green, red, and 

brown algae, lichens, fungi, bryophytes, and the monophyletic genus Equisetum (Bulone 

et al., 2019). Genomic data further supports the idea that MLGs are not specific to the 

Poaceae, with enzymes capable of synthesizing (1,3;1,4)-β-glucan linkages identified 

across monocots and in isolated cases in other species. MLG has been shown to be 

synthesized by members of the CslF, CslH, and CslJ families (Bulone et al., 2019). All 

three of these groups have co-evolved independently in monocots from sister Csl clades 

(Little et al., 2018). Members of CslF/H/J clades have been shown to be capable of 

synthesizing (1,3;1,4)-β-glucan when heterologously expressed, but it is not clear 

whether all of these groups are responsible for native MLG synthesis. By far the best 

characterized enzyme in MLG synthesis is CslF6, which has been studied in barley, 

wheat (Triticum aestivum), rice, maize, and B. distachyon (Nemeth et al., 2010; Vega-

Sanchez et al., 2012; Kim et al., 2015, 2018).  BdCslF6 protein is localized to the Golgi 

membrane, with an external catalytic domain (Kim et al., 2015, 2018). Antibody 

detection of (1,3;1,4)-β-glucan in maize also supports a Golgi localized synthesis of MLG

(Carpita & McCann, 2010). However, evidence in other grasses suggests that MLG 

synthesis occurs at the plasma membrane. In barley and wheat, antibody detection of 

MLG showed localization at the plasma membrane and cell wall, as did antibody 

detection of HvCslF6 and TaCslF6 (Trethewey & Harris, 2002; Trethewey et al., 2005; 
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Wilson et al., 2006, 2015). The N-terminus region of the CslF6 protein in barley, maize, 

and sorghum (Sorghum bicolor) influence total MLG synthesis activity and the C-

terminal region appears to influence the ratio of DP3:DP4 linkages (Jobling, 2015; 

Dimitroff et al., 2016)

The evolution of MLG appears to have been followed by the evolution of hydrolytic 

enzymes specific to (1,3;1,4)-β-glucan polymers (Høj & Fincher, 1995; Fincher, 2009). 

Both (1,4)-β-glucan and (1,3)-β-glucan endohydrolases exist across land plant lineages, 

capable of cleaving (1,4)-β-glucan bonds in both cellulose and MLG. Specific (1,3;1,4)-

β-glucan endohydrolases have been well characterized in the metabolism of MLG, and 

analysis of their amino acid sequence and crystal structure show strong similarity with 

barley (1,3)-β-glucan endohydrolases, indicating that the ability to cleave (1,3;1,4)-β-

glucan polymers was achieved through a modification of (1,3)-β-glucan endohydrolase 

function (Varghese et al. 1994). 

The utility of increased MLG as a bioenergy source and the effect of increased MLG on 

wall content and plant health has been explored in studies overexpressing MLG synthesis

in barley and A. thaliana. Excess MLG synthesis under constitutive promoters was 

detrimental to plant health, but tissue or developmentally specific promoters driving 

MLG synthesis resulted in plants with higher MLG content in grain or stem without such 

deleterious effects (Burton et al., 2011; Vega-Sánchez et al., 2015)  In barley, MLG and 

starch levels have been shown to be inversely related in the developing coleoptile (Roulin

et al., 2002), and MLG levels have been shown to dynamically rise and fall over the 

course of development in vegetative tissue (Gibeaut et al., 2005). The grain cell walls of 
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B. distachyon differ from cultivated cereals with exceptionally high levels of MLG and 

relatively lower starch levels (Guillon et al., 2011b; Opanowicz et al., 2011; Trafford et 

al., 2013; Burton & Fincher, 2014). This shift in carbon storage suggests that B. 

distachyon may rely on MLG to a greater extent than starch for endosperm carbon 

storage (Trafford et al., 2013; Burton & Fincher, 2014). It has been suggested that MLG 

metabolism is enzymatically simpler than starch metabolism, requiring fewer enzymes in 

more available cellular spaces than the multi-step, amyloplast specific process of starch 

metabolism (Roulin et al., 2002; Burton & Fincher, 2012; Trafford et al., 2013; Bulone 

et al., 2019). While this has yet to be explored experimentally, it has been noted that a 

fast, alternative glucose storage pathway from (1,3;1,4)-β-glucan metabolism may confer 

an advantage to the grasses, as evidenced by the development of this mechanism in a 

group with such widespread success. 

Figure 1.3. Mixed-linkage glucan structure. A) Fine structure of mixed linkage 
glucan. Glucose monomers (yellow) linked by β(1,4) bonds (purple) are occasionally 
interrupted by β(1,3) linkages (pink). The β(1,3) bonds do not occur sequentially, 
but rather separate (1,4)-β-glucans into β-cellotriosyl or β-cellotetraosyl segments. 
The relative degree of β-cellotriosyl to β-cellotetraosyl units relates to the solubility 
of the overall polymer. (1,3;1,4)-β-glucans are synthesized by Cellulose synthase-like
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F6, a Golgi membrane bound protein with cytoplasmically active catalytic sites. (b) 
Miniature of Fig 1a cell wall schematic highlighting the mixed linkage glucan 
component.

1.5 Grass heteroxylans

After glucans, xylans are the most abundant polysaccharide in plants. Although present 

across angiosperms, heteroxylans play a more prominent role in the grasses as the major 

hemicellulose (Scheller & Ulvskov, 2010). This class of polysaccharide is based on a 

(1,4)-β-D-xylopyranosyl backbone, with side-chains of arabinose, xylose, glucuronic 

acid, and hydroxycinnamates (Fig. 1 & 4). The nature and patterning of these side-chains 

have major impacts on cell wall integrity, mediating xylan-cellulose and xylan-lignin 

polymer interactions (Simmons et al., 2016; Martínez-Abad et al., 2017). The β-(1,4)-

xylan backbone has been shown to be synthesized by members of glycosyltransferase 43 

(GT43) and GT47 family proteins in both eudicots and monocots. The A. thaliana 

irregular xylem mutants (irx) were some of the first identified xylan synthesis mutants, 

including irx9, irx14, and irx10, all encoding GT43 and GT47 enzymes in wildtype 

plants (Brown et al., 2005a, 2009; Lee et al., 2007; Peña et al., 2007). In B. distachyon, 

recent work has shown that a member of the GT43 family is in part responsible for 

heteroxylan backbone synthesis. Genetic linkage mapping of saccharification rate in a 

recombinant inbred population identified a QTL (quantitative trait locus) interval 

containing a BdGT43A ortholog of A. thaliana IRX14 (Whitehead et al., 2018). Allelic 

variation in BdGT34A between parental accessions Bd3-1 and Bd21 showed that the Bd3-

1 allele encodes an alanine to threonine (A80T) shift that was associated with reduced 

Bd3-1 saccharification. Knockdown of BdGT43A resulted in reduced xylose, arabinose, 

and ferulic acid deposition in stem tissue. Rice GT43 proteins have similarly been shown 
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to mediate xylan synthesis, with OsGT43A and OsGT43E complimenting A. thaliana 

irx9 mutant phenotypes, and OsGT34J complimenting irx14 (Lee et al., 2014).

The addition of side chains to the xylan backbone differentiates the various types of 

heteroxylans. In eudicots, glucuronoxylan is the most prevalent form, in which the 

side chain is formed by the addition of ⍺-(1,2)-GlcA side chains, sometimes 

amended with 4-O-Me groups (Scheller & Ulvskov, 2010). Grass cell walls differ from 

those of eudicots in their abundance of arabinoxylans and glucuronoarabinoxylan. 

Arabinoxylans have monomer side chains of -(1,3)-Ara⍺-(1,3)-Ara f and β-(1,2)-Xylp, or dimer side

chains of  -(1,3)-Ara⍺-(1,3)-Ara f- -(1,2)-Ara⍺-(1,3)-Ara f, -(1,3)-Ara⍺-(1,3)-Ara f-β-(1,2)-Xylp, or -(1,3)-Ara⍺-(1,3)-Ara f-ferulic 

acid. Glucuronoarabinoxylans contain the same side chains as arabinoxylans, but also 

include -(1,2-)GlcA-4-O-Me additions. Arabinoxylans are the more prevalent form ⍺-(1,3)-Ara

found in endosperm cell walls, while glucuronoarabinoxylan is more common in 

vegetative tissue. The addition of these sugar side chains to heteoxylans is mediated by 

xylan arabinosyltransferases (XAT) which are members of the GT61 family. They 

function in the Golgi to add -(1,3)-Ara⍺-(1,3)-Ara f substitutions to the xylan backbone. Two XATs 

in wheat (TaXAT1, TaXAT2) and rice (OsXAT2, OsXAT3) have been characterized both 

natively and in heterologous systems for arabinosyltransferase activity (Anders et al., 

2012; Zhong et al., 2018b). Other GT61 members possess xylosyltransferase activity. 

Rice xylosyl arabinosyl substitution of xylan 1 (OsXAX1) mediates the addition of 

xylose to arabinose units (Xylp-1,2-β-Araf) (Chiniquy et al., 2012), while rice xylan 

xylosyltransferase 1 (OsXYXT1) adds xylose sidechains to the xylan backbone (Xylp-

1,2-β-Xylp)(Zhong et al., 2018b). While much of our understanding of heteroxylan 
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synthesis comes from rice, a number of B. distachyon saccharification mutants identified 

from a sodium azide mutant population are candidates for characterizing heteroxylan 

synthesis (Dalmais et al., 2013). The sac1 GT61 mutant in B. distachyon has a phenotype

similar to rice mutant OsXAX1 (Marriott et al., 2014). In sac1, plants have reduced xylose

content, suggesting that the GT61 candidate, like OsXAX, mediates the incorporation of 

this saccharide component into the wall. 

The presence of glucuronic acid (GlcA) side chains differentiates heteroxylans into 

glucuronoarabinoxylans and arabinoxylans. In A. thaliana, GlucUronic acid substitution 

of Xylan (AtGUX)-1 adds GlcA at evenly spaced intervals of 8-10 xylose residues, 

although greater spacing has been observed. AtGUX2 appears to preferentially add GlcA 

more frequently, at 5-7 residue intervals without regard for even spacing (Bromley et al., 

2013). The evenly spaced xylan regions form the major xylan domain, and the less 

organized GlcA spacing populates the minor domain. The major domain has been shown 

to interact with cellulose microfibrils, an interaction that is also mediated by xylan 

acetylation.  Similar GUX function has yet to be observed in grasses, but presumably a 

mechanism for adding GlcA to heteroxylan exists. Additionally, 4-O-methylation of 

GlcA by AtGXMT (glucuronoxylan methyltransferase), a DUF579 protein, has been 

characterized in A. thaliana, but not in any grasses to date (Urbanowicz et al., 2012). The

addition of GlcA and its methylation have been implicated in eudicots in mediating xylan

interaction with other wall polymers, and this phenomenon is ripe for investigation in 

grasses. 
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1.6 Xylan acetylation

Xylan acetylation has long been observed, but only recently has the role of these 

modifications been revealed. In A. thaliana, recent work has shown that acetylation 

pattern influences xylans-cellulose interaction. Regularly spaced acetylation on every 

other xylose monomer in regions of the xylan backbone results in the polymer forming a 

two-fold helix that closely bonds with the hydrophilic side of cellulose microfibrils 

(Busse-Wicher et al., 2014). The modification of xylan with acetate has strong 

implications for the solubility of the polymer, as well as the strength of xylan-cellulose 

interactions. Xylan-O-acetyltransferases (XOATs) are DUF231 family proteins, and carry

out 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation (Fig. 1.4). In A. thaliana, 9 

XOATs have been identified and genetically characterized, including the Trichome 

Birefringence protein, TBR-like proteins, and ESKIMO1(Zhong et al., 2017). In grasses, 

there has been an expansion of the DUF231 XOATs, with rice containing 14 members. 

OsXOAT1 and OsXOAT7 complement the A. thaliana esk1 xylan acetylation mutant, and 

all 14 rice XOATs can acetylate xylohexose in vitro (Zhong et al., 2018a)

While the degree of xylan acetylation has been shown to play a critical role in wall 

integrity,  evidence of deacetylation activity has not yet been shown in eudicots. 

However, rice brittle sheath 1 (OsBS1) encodes a GDSL lipase/esterase that functions as 

an acetylesterase in the Golgi, removing acetyl groups from xylans (Zhang et al., 2017). 

Mutation in OsBS1 results in greater 2-O and 3-O-acetylation, which compromises 

secondary wall patterning and integrity. 
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Figure 1.4. Grass heteroxylan structure. (a) Fine structure of heteroxylan and 
biosynthetic enzymes. The major non-cellulosic polysaccharides in grasses are 
xylans. A xylose (blue) backbone is decorated with side chains of xylose, arabinose 
(green), glucuronic acid (teal), and ferulic acid (purple). The enzymes responsible 
for forming certain linkages on the heteroxylan polymer are depicted in either 
yellow, pink, or both, having been characterized respectively in grass systems, 
eudicots, or showing conserved function. (b) Miniature of Fig 1a cell wall schematic 
highlighting the heteroxylan component.

1.7 Lignins

Lignins are large phenolic polymers mainly deposited in the primary and the secondary 

cell wall of xylem and sclerenchyma cells.  These polymers provide the hydrophobicity 

and mechanical properties necessary for the development of land plant vasculature. 

Lignins embed polysaccharides in the cell wall and are a major barrier for biomass usages

such as saccharification for biofuel production (Marriott et al., 2014). Unlike other wall 

polymers, lignins contain many types of inter-unit bonds (aryl beta-aryl ether, phenyl 

coumaran, resinol, biphenyl) randomly formed during polymerization, some being more 

(C-C) or less (C-O-C) resistant to degradation (Mnich et al., 2020). Consequently, lignin 

structure is not predictable, although the abundance of each monomer seems to influence 

the occurrence of certain linkages (Stewart et al., 2009).
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Lignins are synthesized from three monolignols, p-coumaryl alcohol, coniferyl alcohol, 

and sinapyl alcohol, that differ by their degree of methoxylation. Once incorporated into 

lignin polymers, these phenolics give rise to p-hydroxyphenyl (H), guaiacyl (G), and 

syringyl (S) units, respectively. In B. distachyon stems, lignin content accounts for 18-

25% of the dry cell wall residue, and in the wild-type Bd21-3 accession, stem lignin is 

comprised of about 62% S, 34 % G, and 4 % H units (Bouvier d’Yvoire et al., 2013; 

Trabucco et al., 2013b). Within the grasses, B. distachyon has one of the highest 

proportions of S units reported (Clarke et al., 1933; Méchin et al., 2014; Herbaut et al., 

2018).

Lignin biosynthesis results from a branch of the phenylpropanoid pathway and has long 

been thought to rely on the aromatic amino acid L-phenylalanine (L-Phe) as a starting 

substrate (Fig. 5). The standard convention in most studied plant systems has been that L-

Phe is first deaminated by phenylalanine ammonia lyase (PAL), yielding cinnamate, 

which is then C4-hydroxylated by coumarate-4-hydroxylase (C4H) to make coumarate. 

Coumarate is a common branch point for all three main monolignols. However, this 

conventional pathway has recently been challenged by work in B. distachyon 

demonstrating that L-tyrosine (L-Tyr) can also serve as an initial substrate for lignin 

synthesis as it already contains a C4 hydroxylation. Indeed, tyrosine ammonia lyase 

(TAL) activity in grasses (Higuchi et al., 1967) suggests that C4H activity can be by-

passed to produce coumarate (Fig. 1.5). In grasses, PAL and TAL activities are controlled

by the same protein, but clear evidence for a genuine PTAL activity in the phenolic 

pathway was poorly documented until recently. In plants expressing a BdPAL RNAi 
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hairpin construct to knock down expression of multiple BdPAL genes, both PAL and 

TAL activities were affected and plants contained 43% less lignin (Cass et al., 2015; 

Barros et al., 2016). Only one predicted PTAL (PTAL1) was identified in this family and 

nearly half of the total lignin deposited in B. distachyon occurs via TAL activity (Barros 

et al. 2016). Interestingly, BdPTAL1 is mainly involved in the biosynthesis of S units and 

cell wall linked coumarates, with less effect on G units as revealed by plants fed with 

C13-labelled L-Phe or L-Tyr. A biological role for PTAL has only been shown in B. 

distachyon to date, but putative orthologs to BdPTAL1 have been identified in several 

other grasses (Barros et al. 2016). Further characterization is needed to confirm whether 

this alternate initiation of lignin synthesis is shared broadly amongst grasses, or indeed 

present in other groups.

Other recent discoveries are further changing our understanding of lignin biosynthesis in 

grasses. Very recently, (Barros et al., 2019) proposed that a cytosolic ascorbate 

peroxidase with genuine 4-coumarate 3-hydroxylase (C3H) activity oxidizes coumarate 

into caffeate in the phenylpropanoid pathway. Decreased expression of this novel C3H in 

B. distachyon results in significantly reduced lignin content and structure. This “acid” 

route to caffeic acid and thus to caffeoyl CoA through the activity of 4-

hydroxycinnamate:CoA ligase (4CL) would be complementary to the C3’H pathway 

where 4CL, 4-hydroxycinnamoyl CoA:shikimate / quinate hydroxycinnamoyltransferase 

(HCT), 4-coumaroyl shikimate/quinate 3’-hydroxylase (C3’H), function sequentially to 

convert coumarate to caffeoyl CoA (Fig. 5). Feruloyl-CoA produced by the 

methoxylation of caffeoyl CoA by Caffeoyl CoA O-methyl transferase (CCoAOMT) is a 
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substrate of cinnamoyl-CoA reductase (CCR). The proposition of an alternate “acid” 

route to monolignol synthesis is not new, and but the discovery of a cytosolic ascorbate 

peroxidase with 4-coumarate 3-hydroxylase activity in planta was lacking until now. 

Interestingly, Barros et al. 2019 showed this is not unique to grasses, as the null allele of 

the Arabidopsis C3H ortholog is lethal. The lignin pathway that involves the membrane 

bounded C3'H also plays a critical role in grass lignin synthesis. Indeed, C3′H‐knockout 

rice mutants were severely affected in their development and displayed typical C3’H 

phenotypes with lignins largely enriched in H units at the expense of G and S units 

(Takeda et al., 2018). Interestingly, caffeoyl shikimate esterase (CSE) activity was not 

detected in B. distachyon stem crude extract and this result is supported by the absence of

close orthologs of AtCSE in B. distachyon (Ha et al., 2016). CCR is a cornerstone step to 

monolignol biosynthesis. CCR activity converts CoA-conjugated intermediaries into the 

aldehyde precursors of monolignols. While ccr mutants with decreased lignin and 

increased monolignol conjugates were studied in maize there are no reports on cell wall 

properties of CCR deficient lines in B. distachyon (Tamasloukht et al., 2011; Cass et al., 

2015).

The last enzyme in the monolignol pathway, the cinnamyl alcohol dehydrogenase (CAD) 

reduces cinnamaldehyde into alcohols. Mutants and transgenics lines affected in CAD 

have been well characterized in B. distachyon (Bouvier d’Yvoire et al., 2013; Trabucco 

et al., 2013b). Lignin content of Bdcad1 mutants was drastically enriched in aryl β-aryl 

ether and diaryl ether-coupled S units, as well as resistant inter-unit bonds and free 

phenolic groups, a result previously observed in maize and sorghum brown-midrib 

19

https://paperpile.com/c/qhgQF1/aM7hp+LL0bj
https://paperpile.com/c/qhgQF1/aM7hp+LL0bj
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/cR8Hp
https://paperpile.com/c/qhgQF1/DEI7f
https://paperpile.com/c/qhgQF1/aM7hp+LL0bj
https://paperpile.com/c/qhgQF1/aM7hp+LL0bj
https://paperpile.com/c/qhgQF1/aM7hp+LL0bj
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/wWkmM+06FQm
https://paperpile.com/c/qhgQF1/cR8Hp
https://paperpile.com/c/qhgQF1/cR8Hp
https://paperpile.com/c/qhgQF1/DEI7f
https://paperpile.com/c/qhgQF1/DEI7f


mutants (Pillonel et al., 1991; Barriere et al., 2004). By contrast, there was little increase 

in coniferaldehyde-end groups in the Bdcad1, suggesting that another CAD gene specific 

to coniferyl alcohol is involved in lignification. As observed in CAD-deficient eudicot 

plants, sinapic acid esters linked to the cell wall were detected in Bdcad1 (Bouvier 

d’Yvoire et al., 2013). 

As stated above B. distachyon lignin is relatively enriched in S units. Their precursor, 

sinapyl alcohol is produced through the C5 hydroxylation of coniferaldehyde by the P450

enzyme ferulate-5-hydroxylase (F5H) and methoxylation by caffeyl-O-methyl transferase

(COMT). When F5H was overexpressed in B. distachyon, cell wall analysis revealed an 

average increase of 25% in the content of S units in these lines, leading to an increase in 

S/G ratio from 2.3 in wild type to 8.1, with a modest increase of 5‐hydroxy‐guaiacyl 

units and 30% higher saccharification yield (Sibout et al., 2017). Several B. distachyon 

mutants affected in COMT activity were identified in a sodium azide-induced mutant 

collection by TILLING (Dalmais et al., 2013). As observed in maize comt mutants, B. 

distachyon mutants showed the accumulation of 5-OH-G units in their lignin and 

significantly altered lignin content, (Piquemal et al., 2002; Bouvier d’Yvoire et al., 2013; 

Dalmais et al., 2013; Trabucco et al., 2013b). 

Once exported into the apoplast by an unknown mechanism, monolignols are oxidized by

peroxidases and/or laccases (Vanholme et al., 2012; Wang et al., 2013; Perkins et al., 

2019; Vermaas et al., 2019). Laccases are multi-copper oxidases that use oxygen as an 

electron acceptor, while peroxidases use H2O2. Once oxidized, the monolignols radically 
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polymerize into the branched lignin polymer with multiple bond types resulting from the 

various positions of the oxygen radical on the monolignol subunit. There are 17 laccases 

in A. thaliana and 29 in B. distachyon (Berthet et al., 2011; Le Bris et al., 2019). B. 

distachyon LACCASE 5 and 8 were identified as orthologs of AtLAC17 and were shown 

to be responsible for lignification in interfascicular fibers (Wang et al., 2015; Le Bris et 

al., 2019). A laccase gene from sugarcane (SofLAC) also genetically complemented an A.

thaliana lac17 mutant (Cesarino et al., 2013). Lignin content decreased by 30% in the 

double lac5lac8 mutant, and saccharification increased by 140% compared to the wild 

type. Lignin deposition was less affected in vascular bundles compared with fibers 

suggesting that different laccases or peroxidases are recruited for lignification of these 

tissues. 

1.8 Hydroxycinnamic acids

The presence of hydroxycinnamic acids, namely ferulic acid (FA) and p-coumaric acid 

(pCA), in the cell wall is a defining feature of grass secondary cell walls (Ralph et al., 

1994; Hatfield et al., 2009). FA is predominantly linked to heteroxylan through an ester 

bond. The oxidation of FA in the cell wall, probably by peroxidases, generates esterified 

dehydrodiferulates which serve as linkages between two arabinoxylan polymers. In 

lignified tissues, xylan-esterified ferulates can be etherified to G units of lignin and thus 

serve as a covalent linkage between hemicelluloses and lignins (Hatfield et al., 2016; 

Lapierre et al., 2019). An esterified ferulate on arabinoxylan is considered as a nucleation

site of lignification in grasses and thus an important mechanism for cell wall 

reinforcement (Ralph et al., 1995, 1998). pCA is esterified on arabinoxylan to a lesser 
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extent than FA and tends to be found esterified to S units in B. distachyon lignins. Plant-

specific acyl-CoA dependent acyltransferases of the BAHD (BEAT, AHCT, HCBT, and 

DAT) family are the enzymes responsible for the acylation of the arabinose side chains of

heteroxylans and monolignols with hydroxycinnamates (D’Auria, 2006; Mitchell et al., 

2007). An expanded grass-specific BAHD clade (also called the “Mitchell clade”) was 

identified by bioinformatic analysis in rice as candidates for hydroxycinnamate transfer 

(D’Auria, 2006; Mitchell et al., 2007; Bartley et al., 2013).  Consequently, BAHD 

enzymes with feruloyl transferase activity were first explored in rice and have also been 

investigated in B. distachyon (Piston et al., 2010; Bartley et al., 2013). BAHD01 in B. 

distachyon and Setaria viridis appear to be involved in feruloylation of arabinoxylans (de

Souza et al., 2018). Downregulation of SvBAHD01 significantly reduced FA on 

arabinoxylan, with an increase in pCA-Araf acylation and no substantial change in lignin 

content while in B. distachyon only a moderate decrease in FA-arabinoxylan was 

observed (de Souza et al., 2018). Interestingly, BdBAHD01 downregulation lines showed 

increased saccharification efficiency, despite unchanged lignin content, highlighting the 

role of FA in maintaining cell wall integrity. Overexpression of BdBAHD05 (also called 

BdAT1) caused a moderate increase in FA content and downregulation showed a 

moderate decrease (Buanafina et al., 2016; de Souza et al., 2018). Analysis in sugarcane 

revealed six BAHD genes, one of which is homologous to SvBAHD01, and 

downregulation of SacBAHD01 similarly reduced stem FA content and increased 

biomass digestibility (de Souza et al., 2019). 

FA acylated monolignols were detected in several species, including willow (Salix sp.) 

and poplar (Populus trichocarpa), although in much lower amounts than pCA acylated 
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monolignols in grasses (Karlen et al., 2016). In rice, feruloyl monolignol transferase 

(OsFMT) was identified through homology with other BAHD acyltransferases that act on

monolignols (Wilkerson et al., 2014; Karlen et al., 2016). OsFMT overexpression 

resulted in higher levels of FA on lignin. FA from heteroxylan, released through mild 

alkaline hydrolysis, was unchanged by altered OsFMT expression. Furthermore, there 

was no change in the levels of pCA acylated monolignols, suggesting specificity of this 

enzyme for monolignol feruoylation.

In B. distachyon, p-coumaryl-CoA:monolignol transferase (PMT) acylates lignin with 

pCA, but not heteroxylan (Petrik et al., 2014). While OsPMT has a high affinity for 

coumaryl alcohol in vitro, BdPMT preferentially acylates sinapyl alcohol with pCA in 

planta (Withers et al., 2012; Sibout et al., 2016). Lines overexpressing BdPMT showed 

lower total lignin despite an increase of pCA content (Petrik et al., 2014). This may be a 

consequence of redirecting p-coumaric acid CoA for acylation rather than monolignol 

synthesis, or the inhibition of the monolignol polymerization by excessive p-

coumaroylation (Sibout et al., 2016). Interestingly, when BdPMT was overexpressed in 

A. thaliana, which does not natively produce pCA acylated lignin, a significant amount of

pCA was found on lignins (Karlen et al., 2016). More surprising, when BdPMT was 

expressed under a specific C4H promoter in a ccr deficient A. thaliana mutant 

background, lignin was esterified with both pCA and FA. Mutants in CCR accumulate 

high levels of feruloyl CoA, and BdPMT activity in this mutant suggests that not only is 

BdPMT functional in eudicots, but it is also able to use feruloyl-CoA as a substrate when 

available in sufficient quantities (Withers et al., 2012; Sibout et al., 2016). In maize, 

ZmPMT loss-of-function lines had less pCA and modified lignin structure, but not 
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reduced total lignin content (Marita et al., 2014). Overall, BAHD proteins have a related 

set of functions in decorating cell wall components; feruloylation of arabinoxylan 

(BAHD01), feruloylation of lignins (FMT), and coumaroylation of lignins (PMT). An 

enzyme responsible for the coumaroylation of arabinoxylan remains to be discovered. 

1.9 Tricin

As evidenced by their pCA and FA content, grasses are remarkable in their capacity to 

incorporate phenolic compounds other than the typical coumaryl, coniferyl, and sinapyl 

alcohols into lignin. Tricin, an O-methylated flavone, was first characterized in wheat 

straw lignin (del Río et al., 2012). Tricin is incorporated into grass lignin in varying 

amounts across grass species, with oat (Avena sativa), wheat, and B. distachyon straw 

being particularly enriched in this compound (Lan et al., 2016). Tricin is incorporated in 

lignin polymers via 4’-O-β coupling (Lan et al., 2018). Biomimetic radical coupling 

reactions give evidence that tricin may serve as a possible nucleation site for lignification,

as has been suggested for ferulate (Ralph et al., 1995, 1998; Lan et al., 2015). Tricin and 

monolignols come from two different branches of the phenylpropanoid pathway, and 

consequently their synthesis shares some common enzymes. This is particularly true for 

enzymes involved in the metabolic flux upstream of p-coumaric acid synthesis. 

CHALCONE SYNTHASE, a pivotal enzyme for flavonoids production, uses malonyl-

CoA and p-coumaryl-CoA as substrates. Silencing this enzyme in maize resulted in 

strongly reduced levels of apigenin- and tricin-related flavonoids, and also strongly 

reduced incorporation of tricin into the lignin polymer (Eloy et al., 2017). The impact of 

the flavonoid pathway on the production of cell wall tricin content was also demonstrated

in rice (Lam et al., 2017, 2019). It is also possible that some of the cell wall changes 
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observed in BdPMT overexpression lines may stem from the depletion of p-coumaroyl-

CoA pool, as both chalcone synthase and PMT act on this substrate. O-methyltransferases

involved in the O-methylation of 5-hydroxy-coniferaldehyde to produce sinapyl alcohol 

were also shown to be involved in the methylation of tricin in rice, maize, and sorghum 

(Fornalé et al., 2017; Eudes et al., 2017; Lam et al., 2019). The bi-functionality of 

COMT in the lignin and flavonoid pathways is not unexpected since an COMT involved 

in lignification of A. thaliana stems also O-methylates isorhamnetin, a flavonoid 

structurally similar to tricin (Do et al., 2007). There is now abundant evidence that other 

molecules, called “nontraditional monomers” like tricin or hydroxycinnamic acids, can be

incorporated into the lignin polymer (del Río et al., 2018; Vanholme et al., 2019).  The 

biological role of these novel lignin components remains to be determined.
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Figure 1.5. Alternative routes to lignin biosynthesis. (a) In some grasses, 
phenylalanine tyrosine ammonia lyase (PTAL) can bypass cinnamic acid 4-
hydroxylase (C4H) activity and thus directly produce p-coumarate from tyrosine. 
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An ascorbate peroxidase-like gene with coumarate 3-hydroxylase (C3H) activity can
directly synthesize caffeate from coumarate. Red arrows illustrate a grass specific 
lignin pathway unique from other lignin pathways identified in most studied 
eudicots. Green arrows show routes potentially bypassed or absent in B. distachyon,
such as caffeoyl shikimate esterase (CSE). Blue arrows are paths believed to be 
common to eudicots and grasses. Asterisks highlight enzymes characterized in B. 
distachyon. The mechanism for monolignol export across the plasma membrane 
remains unclear. Phenylalanine ammonia lyase (PAL), , 4-hydroxycinnamoyl CoA 
ligase (4CL), hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase 
(HCT), p-coumaroyl shikimate 3΄-hydroxylase (C3’H), , caffeoyl CoA O-
methyltransferase (CCoAOMT), hydroxycinnamoyl CoA reductase (CCR), ferulic 
acid 5-hydroxylase (F5H), caffeic acid/5-hydroxyferulic acid O-methyltransferase 
(COMT), cinnamyl alcohol dehydrogenase (CAD), laccase (LAC), peroxidase 
(PRX). R- in the monolignol hydroxycinnamics could be substituted by a hydrogen 
or methyl group. (b) Miniature of Fig 1a cell wall schematic highlighting the lignin 
component.

1.10 Silicon

Poaceae accumulate high quantities of silicon in the cell wall of their shoots. This 

phenomenon is particularly remarkable in rice (Ma & Yamaji, 2006). The main role of 

silicon is to provide plant resistance to many biotic and abiotic stresses (Hattori et al., 

2005; Deshmukh et al., 2017). However, silicon may interact with polysaccharides, 

which consequently impact plant biomass processing in biorefineries (Perry & Lu, 1992; 

Kido et al., 2015). For biofuel production, there is a tradeoff between soil amendment 

with silicon that can increase polysaccharide yield with a negative effect on the 

conversion of biomass into biofuels (Głazowska et al., 2018b). Silicon content in rice and

maize can be modulated by changing the expression of silicon transporters (Ma et al., 

2007; Mitani-Ueno et al., 2016; Bokor et al., 2017). The analysis of different silicon 

transporter mutants showed that silicon availability may impact the morphology and 

patterning of stem and leaf macrohairs (Głazowska et al., 2018b). The Bd low silicon 1 

(Bdlsi1) mutant is impaired in silicon transporter function and has reduced silicon uptake,

with 93% less silicon present in the shoot. Mixed-linkage glucan content is drastically 
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modified in Bdlsi1 ((Kido et al., 2015; Głazowska et al., 2018a). This result is in 

agreement with previous studies suggesting that (1;3,1;4)-β-glucan is involved in silicon-

dependent strengthening of the rice cell wall (Kido et al., 2015). The Bdsi1 mutant also 

displayed an altered degree and pattern of homogalacturonan methyl esterification. 

Despite the relatively low amount of pectins found in grasses, this change in 

homogalacturonan represents a significant alteration to the wall matrix. Lastly, Bdlsi1 

mutant FA extrability was lower with only minor changes in lignin content (Kido et al., 

2015; Głazowska et al., 2018a). These data highlight the important role silicon plays in 

cell wall integrity in B. distachyon and grasses in general, and presents interesting 

avenues for further study.

1.11 Transcriptional regulation of secondary cell wall thickening

Canonical transcription factors that directly bind DNA play a prominent role in the 

regulation of plant secondary cell wall thickening. The cis-regulatory regions of genes 

associated with cellulose, hemicellulose, and lignin biosynthesis interact directly with 

numerous MYB and NAC family transcription factors (Fig. 6)(Nakano et al., 2015). 

Many of the R2R3-MYB protein family subgroups appear to bind a similar sequence 

motif, the AC element, also known as the M46RE (MYB46 responsive cis-regulatory 

element) and the SMRE (secondary wall MYB-responsive element) (Kim et al., 2012; 

Zhong & Ye, 2012; Zhao & Bartley, 2014; Handakumbura et al., 2018). In A. thaliana, 

AtMYB46 and the close paralog AtMYB86 activate the expression of cellulose, 

hemicellulose, and lignin biosynthetic genes, as well as other MYBs capable of activating

secondary cell wall related genes (Zhong et al., 2007b; Zhong & Ye, 2007). Some of the 
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downstream MYB activators, among them AtMYB58/63 and AtAtMYB42/85, activate 

only lignin genes (Rao & Dixon, 2018; Zhang et al., 2018a). However, in sorghum, rice, 

and switchgrass (Panicum virgatum), ectopic expression of OsMYB58/63, PvMYB58/63, 

and the sorghum ortholog SbMYB60 results in the activation of cellulose and 

hemicellulose genes as well as lignin (Noda et al., 2015; Scully et al., 2016; Rao et al., 

2019). A potential ortholog to OsMYB42/85, ZmMYB167, was overexpressed in maize 

and heterologously in B. distachyon to similar effect (Bhatia et al., 2019). Similar 

functions have been resolved for the A. thaliana and rice orthologs AtMYB61 and 

OsMYB61 as well as AtMYB103 and OsMYB103 (Hirano et al., 2013; Huang et al., 2015;

O’Malley et al., 2016; Zhao et al., 2019). These downstream MYBs bind the AC element

and activate both lignin and wall polysaccharide biosynthesis genes. Overall, there are 

few distinctions in the transcription factor targets for these genes between grasses and A. 

thaliana. Those that have been observed may be the outcome of low-resolution 

experimental designs that sample one tissue type at one time point for a limited number 

of outputs.

The expression of cell wall associated genes is often highly correlated (Brown et al., 

2005a; Persson et al., 2005). Co-expression analysis of a B. distachyon gene expression 

atlas resolved a cluster of 96 genes that is enriched for cell wall biosynthetic processes 

with numerous cellulose, hemicellulose, and lignin associated genes (Sibout et al., 2017).

Among the identified genes, two primary and two secondary wall CESAs, as well as 

COBRA, KORRIGAN, CSI1, CSLF2, numerous glycosyltransferases and 

glycosylhydrolases, fasciclin-like family, and numerous lignin associated genes. The 
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MYB transcription factor SECONDARY WALL ASSOCIATED MYB 1 (SWAM1) is one of

two canonical transcription factors that are part of the wall gene enriched cluster, making 

it a candidate for a regulator of genes in the cluster (Fig. 6). Similarly, analysis of B. 

distachyon leaf, root, and stem microarray gene expression data identified SWAM1/2/3 

and MYBs that are part of six other prominent subgroups orthologous to AtMYB46/83, 

AtMYB103, AtMYB58/63, AtMYB52/54, AtMYB42/85, and AtMYB4/32 that are highly 

correlated with secondary CESA and lignin biosynthetic gene transcriptional targets 

(Handakumbura et al., 2018). Interestingly, the SWAM1 gene and its two closest 

homologs, SWAM2 and SWAM3, are conspicuously absent from genomes in the A. 

thaliana family Brassicaceae but present in other eudicots and monocots (Handakumbura

et al., 2018). Like the other described secondary cell wall regulating R2R3-MYBs, 

SWAM1 interacts with the AC element and is an activator of secondary cell wall genes. 

Based on amino acid similarity with characterized genes in other systems and their 

expression pattern, all of the B. distachyon identified MYBs are excellent candidates for a

role in cell wall biosynthesis.

The same promoters that interact with the secondary cell wall regulating MYB 

transcription factors often interact with NAC transcription factors collectively referred to 

as the SWN (SECONDARY WALL NACs) or the VNS (VND, NST/SND, SMB related) 

(Ohtani et al., 2011; Zhong et al., 2011). This group of proteins are generally classified 

into four clades, all binding the similarly named VNS element in in vitro assays 

(O’Malley et al., 2016; Olins et al., 2018), which is consistent with independently 

identified TERE and SNBE binding sites for the same proteins (Pyo et al., 2007; Valdivia
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et al., 2013). In A. thaliana, three of the clades that include the VASCULAR-RELATED 

NAC-DOMAINs (VNDs), activate cell wall thickening directly and by activating the 

previously described downstream MYBs (Kubo et al., 2005). The VNDs can induce 

vascular cells differentiation, induce further thickening, and initiate programmed cell 

death (Kubo et al., 2005; Zhong et al., 2008b). They function in xylem rather than fibers 

where thickening is activated by the clade IV NACs: NAC SECONDARY WALL 

THICKENING FACTOR 1 (NST1), NST2, and NST3 (also known as SECONDARY 

WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1 (SND1) (Zhong et al., 2006a; Mitsuda

et al., 2007). Uniquely, programmed cell death is not activated by clade IV NACs. Such 

cell type specific functions have not been resolved in grasses. The function of the SWNs 

is well conserved between A. thaliana and grasses where grass genes can complement 

mutants in A. thaliana (Zhong et al., 2011, 2015; Rao et al., 2019). In B. distachyon, 

members of all four clades induced the formation of secondary walls when ectopically 

expressed in tobacco leaves and the VND-type SWNs also activated programed cell death

(Valdivia et al., 2013). Together with the MYBs, the NACs form feed-forward loops 

(Nakano et al., 2015; Taylor-Teeples et al., 2015). In general, all of the transcription 

factor proteins can bind to genes that encode cell wall structural enzymes and they also 

have the function of activating other activating transcription factors.

The finger like protuberance formed by a zinc-finger protein domain can interact with 

DNA, RNA, and proteins. Tandem CCCH zinc finger (TZF) proteins modulate gene 

expression transcriptionally by interactions with DNA or post-transcriptionally by 

interactions with mRNA (Bogamuwa & Jang, 2014). A. thaliana C3H14 is a direct 
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activator of lignin, cellulose, and hemicellulose biosynthesis genes and may be a 

repressor of MYB cell wall activators (Ko et al., 2009; Kim et al., 2012) . On the other 

hand, the INDETERMINATE family C2H2-type zinc finger transcription factor in rice, 

OsIDD2, interacts with the ID motif to repress the expression of lignin associated genes 

(Huang et al., 2018). Analysis of mutants and transgenic plants suggests that OsIDD2 

directly represses lignin associated gene expression and indirectly secondary wall CESA 

genes. By yet another possible mechanism of gene regulation, the rice TZF protein ILA1-

interacting protein 4 (IIP4) functions as a repressor of secondary wall thickening through 

protein-protein interaction with OsSWN2 (NAC29) and SWN3 (NAC31) (Zhang et al., 

2018b). The association with the SWNs is attenuated by phosphorylation of IIP4 protein, 

which results in translocation to the cytosol. Thus, zinc-finger proteins influence the 

thickening of grass secondary walls through multiple mechanisms.

While the regulatory network is dominated in number by MYB and NAC transcription 

activators, several repressors have also been described; namely TALE (Three Amino acid

Loop Extension), zinc-fingers, HD-ZIP III, WRKY, LATERAL ORGAN BOUNDARY 

(LBDs) and some MYBs. Among the many types of cells that do not have secondary cell 

walls are pith, which reside inside the stem and among the cells in the plant with the 

thickest walls. A WRKY transcription factor, WRKY12, is a repressor of wall thickening 

in pith and other cells. It can directly bind the promoters of AtNST2 and poplar C4H and 

broadly repress wall thickening in A. thaliana, poplar, and switchgrass (Wang et al., 

2010; Yang et al., 2016; Rao et al., 2019). The five class III HD-ZIPs in A. thaliana 

(REVOLUTA, PHABULOSA, PHAVOLUTA, CORONA, and HB8) and some orthologs in 
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poplar have been shown to play a role in cambium cell initiation and vascular bundle 

organization (Floyd & Bowman, 2006). However, to our knowledge, there are no reports 

describing a function for this group of genes in grasses. Several LBD family transcription

factors, AtLBD15/18/30, can activate the expression of AtVND7 and induce wall 

thickening and differentiation into tracheary cells (Soyano et al., 2008; Ohashi-Ito et al., 

2018). AtLBD29, on the other hand, is a repressor of stem secondary wall thickening and 

is activated by the phytohormone auxin (Lee et al., 2019a). Repression is also supplied 

by the MYB G4 clade and are the best characterized in grasses. These include 

ZmMYB11/31/42, PvMYB4/32, and OsMYB108, which are orthologous to AtMYB4/32 

(Zhao & Bartley, 2014; Rao & Dixon, 2018; Miyamoto et al., 2019). These were first 

described in a grass as direct repressors of lignin gene expression (Fornalé et al., 2006; 

Sonbol et al., 2009). In switchgrass, PvMYB4 is a direct repressor of lignin associated 

genes (Shen et al., 2012; Rao et al., 2019). The MYB31/42 MYBs in sorghum, rice, and 

maize directly bind to the cis-regulatiry regions of various lignin biosynthetic gene, but 

there appears to be variation in phenylpropanoid gene expression and protein-DNA 

interactions across species (Agarwal et al., 2016). Wounding induced lignification occurs

in maize by the degradation of ZmMYB11/31/42 protein and a protein interacting partner

ZML2 (Vélez-Bermúdez et al., 2015). Thus, wounding and the subsequent activation of 

MeJA signaling will remove MYB G4 clade repression in maize and induce lignin gene 

expression. The repressing MYB G4 clade interacts with AC-like sequence motifs, 

similar to the wall activating MYBs (Fornalé et al., 2010; Shen et al., 2012; Agarwal et 

al., 2016). The exact targets of the phenylpropanoid pathway vary across system and 

study, which suggests there may be some transcription factor sub-functionalization.
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Members of two different classes of the TALE super family, KNOX and BEL, have been 

shown to regulate secondary wall synthesis. The class II KNOX gene KNOTTED OF 

ARABIDOPSIS THALIANA 7 (AtKNAT7) was initially identified as an irregular xylem 

mutant (irx11)(Brown et al., 2005a). KNAT7 orthologs are generally described in the 

literature as repressors, and while there is substantial evidence for this, there are also 

some outstanding issues raised by data indicating a role as an activator of wall deposition.

Atknat7 mutants have thicker interfascicular fiber walls, as expected for a repressor 

mutant, but this mutant also shows collapsed xylem (Brown et al., 2005a; Li et al., 2012).

Atknat7 mutants have greater lignin content, but reduced xylan, suggesting that AtKNAT7

may differentially regulate aspects of wall polymer synthesis. In conflicting reports, one 

group has shown xylan biosynthetic genes upregulated in Atknat7 lines, while another 

shows downregulation (Li et al., 2012; He et al., 2018). AtKNAT7 protein can bind to 

the AtIRX9 promoter, a gene responsible for xylan backbone synthesis. 

The rice ortholog of KNAT7, OsKNOR1 (also known as OsKNAT7), can negatively 

regulate cell wall synthesis in interfascicular fiber cells (Zhao et al., 2019; Wang et al., 

2019). Osknor1 mutants have thicker interfascicular fiber walls, with no reported xylem 

phenotype. However, OsKNOR1 analysis revealed other functions unique to AtKNAT7 

(Wang et al., 2019). OsKNOR1 protein interacts with OsSWN3 (also known as OsVND7

and OsNAC31) and OsGRF4 proteins and transient gene expression analysis showed that

OsKNOR1-OsSWN3 jointly regulated OsMYB61 and OsMYB103 expression, with the 

addition of OsKNOR1 reducing the positive regulation of OsSWN3 targets. Similarly, 
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OsGRF4 is known to activate expression of expansin genes OsEXPB3, OsEXPB17, and 

OsEXPA6, and addition of OsKNOR1 also repressed that effect. This suggests that 

OsKNOR1 regulates wall thickening and cell expansion by decreasing the transcriptional 

activation of OsSWN3 and OsGRF4, respectively. This was validated by the observation 

of wall thickening in stem internodes and cell elongation along the panicle in relation to 

the expression of OsKNOR1, OsSWN3, and OsGRF4 (Wang et al., 2019). 

Among the genes co-expressed with B. distachyon CSLF6, a predominant MLG synthase,

was a trihelix family transcription factor (BdTHX1)(Kim et al., 2018; Fan et al., 2018). 

This is the first THX protein associated with cell wall biosynthesis and the first shown to 

bind directly to a CSLF gene. In planta and in vitro assays showed that BdTHX1 protein 

binds to the GT element in the second intron of BdCSLF6 and the 3’ region of  glycoside 

hydrolase family 61 endotransglucosylase/hydrolase 8 (BdXTH8), a grass-specific 

enzyme that uses MLG as a substrate (Fan et al., 2018). Attempts to recover viable 

transgenic plants were unsuccessful and suggest a strong selection against the 

perturbation of BdTHX1; thus, it is uncertain if it is a transcriptional activator or 

repressor.

The presence of phytohormone gibberellin results in the induction of secondary wall 

CESA genes in rice, and OsMYB103 is necessary for that activation (Ye et al., 2015). 

Similarly, the function of OsSWN2 (also known as OsNAC29) and OsSWN3 protein can 

be activated by gibberellins. The mechanism for activation is to degrade a protein 

interaction with the rice DELLA protein SLENDER RICE1 (SLR1) (Huang et al., 2015). 
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SLR1 protein is degraded in the presence of gibberellins and subsequently, wall gene 

expression is activated (Fig. 5). A similar mechanism for gibberellin signaling in eudicots

has not been reported and the role of hormone in the regulation of wall thickening is not 

well resolved.

There is nearly complete overlap between the regulatory network components between 

eudicots and grasses. The distinctions between grass and eudicot walls are difficult to 

assign to differences in  varying functions or members of the regulatory network. While 

no LBD, BLH, or HD-ZIP III have been described as regulators of cell wall biosynthesis 

in grasses, it is possible that they have simply not been studied or reported. Additionally, 

THX1 is likely unique to grasses since it regulates a hemicellulose gene not present in 

eudicots. Meta-analysis of microarray gene expression data, to make a combined mutual 

ranked network for rice and A. thaliana, has revealed differences in the relative 

importance or each regulator (Zhao et al., 2019). The degree of connectivity among 

genes, which is the number of edges for each network node, can suggest the importance 

of each transcription factor. Some highly connected genes in A. thaliana, including 

VND1/2/6/7 and AtMYB46/83 have a two to five-fold decrease in connectivity in rice. On 

the other hand, transcription factors with considerably more connections in rice than A. 

thaliana are OsSND2/3, the rice ortholog of KNAT7, KNOR1 as well as OsSWN1, the 

ortholog of AtNST1. 
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Figure 1.6. Transcriptional regulation of secondary cell wall deposition. Secondary 
cell wall transcription regulatory network in A. thaliana (a) and grasses (b). Bean 
shape indicates DNA binding transcription factors. Ovals indicate protein 
interactors. Circles are hormones. Orthology between A. thaliana and grasses is 
denoted by color. Blue, red, and green arrows indicate regulation of cellulose, lignin,
and hemicellulose, respectively. Arrows indicate activation and bars repression. 
Grey shaded items have not been described in both systems.
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1.12 Conclusions

Much progress has been made in recent years to better understand grass cell wall 

composition and regulation, in large part thanks to the numerous genetic and genomic 

resources that have been developed. A case in point, B. distachyon as a model grass 

system has been central to these efforts, and provides fertile ground for future studies. 

The unique features of grass cell walls, such as MLG synthesis and the integration of 

hydroxycinnamates into lignin and xylan are beginning to be uncovered in detail. 

Elements that were thought to be more common between grasses and eudicots, such as 

lignin synthesis, continue to show evidence that there is yet unexplored diversity in plant 

cell wall chemistry, with alternate lignin biosynthetic pathways and atypical monomers 

components. Regulation remains an area of much overlap, but rather than playing catch-

up with eudicots, grass networks now offer new insights of their own that expand the cell 

wall network. Uncovering grass specific functions, such as BdTHX1 regulation of MLG,  

highlight the opportunities to advance this important area of plant biology. 
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CHAPTER 2 

SECONDARY WALL INTERACTING BZIP (SWIZ) IS A TOUCH-SENSITIVE
REGULATOR OF PLANT HEIGHT AND CELL WALL THICKENING 

2.1 Introduction

2.1.1 Mechanosensing and thigmomorphogenesis

Forces both internal and external to a cell influence growth. Turgor pressure in 

conjunction with anisotropic cell wall dynamics maintain a cell’s physical shape and 

direction of growth. Force perception between neighboring cells plays a critical role in 

the development and maintenance of tissue form and function, such as in the lobed, 

interlocking pavement cells on the leaf epidermis, or the developmental hotpots in the 

apical meristem (Hamant et al., 2008; Uyttewaal et al., 2012; Bidhendi et al., 2019). 

Specific inter-cell forces result in dynamic remodelling of the cortical cytoskeleton, with 

subsequent changes in cellulose microfibril alignment and alterations to other cell wall 

components such as pectin methyl esterification (Hamant et al., 2008; Uyttewaal et al., 

2012; Bidhendi & Geitmann, 2018; Bidhendi et al., 2019; Altartouri et al., 2019). 

Beyond cell to cell response to force, whole plants perceive and respond to mechanical 

force through thigmomorphogenesis(Jaffe, 1973; Jaffe et al., 1980, 2002). The classic 

hallmarks of touch responsive growth include reduced plant height, increased radial 

growth in plants with a cambial meristem, increased branching, and delayed flowering 

time (Jaffe, 1973; Braam, 2004). These attributes have been leveraged by farmers for 

hundreds of years, with the mugifumi tradition documented in Japan in 1680. Farmers 

tread on young wheat and barley seedlings to elicit increased branching and seedset, 

along with stronger roots, a practice that still continues today with mechanized rollers 
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(Iida, 2014). The molecular and genetic mechanisms in plants that perceive and translate 

force into remain somewhat poorly understood. Touch induced gene expression has been 

studied for some time, identifying numerous transcripts upregulated by mechanical 

stimulation. The first touch-induced (TCH) genes identified in A. thaliana were found to 

encode calmodulin (AtTCH1 / AtCaM2), calmodulin -like proteins (AtTCH2 / AtCML24, 

AtTCH3 / CML12), and a xyloglucan endotransglucosylase/hydrolase (AtTCH4 / AtXTH) 

(Braam & Davis, 1990). Subsequent studies identified numerous other genes with touch 

responsive expression, often showing overlap with induction from other stimuli such as 

dark, cold, and hormones (Polisensky & Braam, 1996; Lee et al., 2005). Together, around

600 genes were found to be upregulated by touch, primarily coding for proteins involved 

in calcium binding and signaling, cell wall modification, and a variety of transcription 

factors and kinases. The nucleus plays a key physical role in mechanoperception (Fal et 

al., 2017). In animal cells, the nucleus participates in force perception through 

interactions between the cytoskeleton and nucleoskeleton. Microtubules and actin 

filaments interact with nuclear membrane Linker of Nucleoskeleton and Cytoskeleton 

(LINC) complexes, composed of Klarsicht/ANC-1/Syne-1 homology (KASH), and 

Sad1p and UNc-84 (SUN) domain proteins that internalize force applied to the 

cytoskeleton to the lamin protein nucleoskeleton  (Chambliss et al., 2013; Fal et al., 

2017). In this way, forces applied to the exterior of the cell are translated to the nucleus, 

where modulation of nuclear shape and chromatin structure are related to gene expression

events. In plants, similar molecular players have been implicated, but fewer have been 

experimentally validated. KASH and SUN domain complexes exist in plants, similarly 

connecting the cytoskeleton and nucleoskeleton (Graumann et al., 2014; Fal et al., 2017).
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Mechano-sensitive ion channels are capable of cellular mechanoperception (Monshausen 

& Haswell, 2013; Leblanc-Fournier et al., 2014; Basu & Haswell, 2017). These 

membrane embedded complexes dynamically open and close in response to lateral 

membrane tension, allowing ions to flow across the membrane. When force is applied to 

a cell, such as through tissue bending or cell expansion, the membrane tension increases 

and opens the ion channel. These types of mechanically gated signalling events have been

best described in animal and bacterial systems, but plants also contain genes encoding 

similar channels, AtMCA1&2 and AtMsl1-10, that have been implicated in sensing 

mechanical signals such as gravity, osmotic pressure, pathogen invasion, and touch 

(Haswell et al., 2008; Peyronnet et al., 2008; Leblanc-Fournier et al., 2014; Hamilton et 

al., 2015b). AtMsl family proteins are localized not only to the plasma membrane, but to 

mitochondrial and chloroplast membranes as well, and these organelles have been shown 

to function in mechanoperception signaling and osmotic shock protection (Hamilton et 

al., 2015a; Lee et al., 2016, 2019b; Basu et al., 2019). The function of these membrane 

channels strongly implies that ions play a role as mechano-signalling molecules, of which

calcium is at the forefront. Cytosolic Ca2+ fluxes have been observed in roots following 

mechanical bending (Monshausen et al., 2009), is required for lateral root formation 

(Richter et al., 2009), and a maize calcium dependent protein kinase, ZmCPK11, has 

been shown to be activated rapidly following mechanical stimulation (Szczegielniak et 

al., 2012). Additionally, AtTCH1, 2, and 3 are all calmodulin and calmodulin like 

proteins, rapidly upregulated in expression following touch (Braam & Davis, 1990; 

Braam, 2004; Lee et al., 2005). Despite these many observations, it is not yet known 

where Ca2+ fluxes originate from or by what mechanism they cross the membrane. The 
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dynamic control of bioactive cellular gibberellic acid (GA) has been linked to 

mechanoperception as well as cytosolic calcium levels. GA has also recently been shown 

to control the cytosolic accumulation of Ca2+ following mechanical stress, and perhaps 

more interestingly, that this Ca2+ accumulation occurred even in a della quintuple mutant

line (Okada et al., 2017). This suggests that GA levels mediate cytosolic calcium flux in 

response to mechanical stress independent of DELLA mediated pathways. Furthermore, 

it has been demonstrated in A. thaliana that mechanical force application inactivates 

cellular GA (Lange & Lange, 2015). The addition of exogenous bioactive GA to 

mechanically stressed plants remediates their height phenotype, and mutants in Atga20ox,

an enzyme that inactivates cellular GA, do not show thigmomorphogenic phenotypes 

under mechanical stress treatment (Lange & Lange, 2015). Recent work studying the 

translocation dynamics of several bZIP family transcription factors has provided new 

links for calcium and GA signalling in mechanoperception signalling.

2.1.2 bZIPS

In plants, the basic leucine zipper (bZIP) proteins family is a relatively large group of 

transcription factors. In B. distachyon there are 96 bZIPs, divided into 9 groups, 

compared to A. thaliana with 78 bZIPs placed into 13 groups (Jakoby et al., 2002; Liu & 

Chu, 2015; Dröge-Laser et al., 2018). Group I bZIPs in A. thaliana function 

pleiotropically in aspects of biotic and abiotic reponses, as well as plant development. 

The best characterized Group I bZIP is A. thaliana VirE2-interacting protein 1 (AtVIP1), 

which was identified for its role in agrobacterium mediated T-DNA transfer (Djamei et 

al., 2007). AtVIP1 also regulates leaf growth, as does bZIP29 and 30 (Van Leene et al., 

2016; Lozano-Sotomayor et al., 2016). Other Group I bZIPs have been shown to play 
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roles in anthocyanin synthesis in response to abiotic stress, pollen fertility, and vascular 

development (Torres-Schumann et al., 1996; Yin et al., 1997; Ringli & Keller, 1998; Dai 

et al., 2004, 2008; Van Oosten et al., 2013; Gibalová et al., 2017). All of these bZIPs are 

also implicated in mechanosensing, in the form of osmosensing. AtVIP1 and other Group

I bZIPs have been shown to translocate from the cytoplasm to the nucleus in response to 

a variety of biotic and abiotic stimuli, including hypoosmotic conditions (Tsugama et al., 

2012, 2014, 2016). This translocation appears to be dependent on protein 

phosphorylation, either from mitogen activated protein kinase 3 (MPK3) during pathogen

invasion, or via calcium dependent protein kinase (CDPK). AtVIP1 has recently been 

shown to interact with calmodulins, the calcium binding proteins involved in many 

calcium signalling events. Calcium dynamics have long been implicated in touch 

response signalling, but as mentioned above, the connection between stimulus, calcium 

fluctuation, and biological response has remained elusive. AtVIP1 translocation was 

found to depend on cytosolic calcium levels. Treatment with ion scavengers such as 

EDTA and EGTA strongly limited AtVIP1 nuclear translocation (Tsugama et al., 2018). 

Looking further upstream in the touch signalling cascade, calcium ion flux across the 

membrane may be controlled by membrane pore complexes, a number of which have 

been shown to be mechanically responsive. AtMCA1 and AtMCA2 mutants were tested 

for impact on AtVIP1 translocation, but no effect was shown, indicating that other ion 

channels may be responsible for touch mediated Ca2+ import (Tsugama et al., 2018). 

The Group I bZIP Nt REPRESSOR OF SHOOT GROWTH (NtRSG) in tobacco has been 

implicated in playing a GA homeostasis maintenance role and has been shown to 

translocate from the cytoplasm to the nucleus in response to cellular GA levels. When 
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GA levels are nominal, NtRSG is largely in the cytoplasm, and to some extent in the 

nucleus. At nominal GA levels when NtRSG was partially localized to the nucleus, it 

directly activates expression of NtEnt-kaurene oxidase (NtKO), an enzyme at an early 

step in the GA biosynthesis pathway. After cellular GA levels were reduced, NtRSG 

translocated to the nucleus and also activated NtGA20oxidase1 (NtGA20ox1), an enzyme 

further down the GA biosynthesis pathway that is in part responsible for converting GA 

species to their bioactive form (Fukazawa et al., 2010, 2011). This suggests that NtRSG 

acts to promote bioactive GA synthesis in response to low GA conditions. As with 

AtVIP1, NtRSG translocation relies on CDPK mediated phosphorylation (Ishida et al., 

2008; Ito et al., 2017). Both AtVIP1 and NtRSG associate with 14-3-3 proteins in the 

cytoplasm while phosphorylated (Ishida et al., 2004; Ito et al., 2014, 2017; Tsugama et 

al., 2018). Phosphatase activity causes NtRSG to dissociate from the 14-3-3 protein and 

enters the nucleus, with PP2A complexes implicated in this process for AtbZIP29 in (Van

Leene et al., 2016). NtRSG is named due to the dwarf phenotype observed when a 

dominant negative form of the protein is over expressed. In the dwarf plants, there are 

reduced levels of bioactive GA and reduced elongation of stem internode cells (Fukazawa

et al., 2000). These phenotypes were later explained by the work described above on 

NtRSG positive regulation of GA synthesis. Transverse sections of the NtRSG dominant 

negative mutant do not show obvious cell wall phenotypes (Fukazawa et al., 2000). Two 

rice bZIP genes, OsRF2a and OsRF2b, have also been shown to regulate GA levels and 

impact elements of cell wall synthesis and vascular development. The role of these genes 

in vascular development has been described in the context of rice tungro bacilliform 

virus. This double stranded DNA badnavirus contains a promoter region with vascular 
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tissue-specific cis-elements, particularlry phloem-specifc elements, that OsRF2a/b were 

found to bind and active (Yin et al., 1997; Dai et al., 2003, 2004, 2008). Similar to 

NtRSG, dominant negative forms of OsRF2a/b cause stunted growth. A OsRF2a 

dominant negative transgene in tobacco is reported to have altered phloem development 

and reduced xylem lignification (Dai et al., 2003). In rice leaf vasculature, 

overexpression and knockdown of OsRF2a resulted in more sclerenchyma development 

around the vascular bundle, and the presence of large air pockets flanking the vascular 

bundle. The vasculature itself was somewhat smaller in both cases (Yin et al., 1997).

2.1.3 Summary

Thigmomorphogenesis is a widely observed phenomenon that results in reduced height, 

increased radial growth, and increased branching. The mechanisms behind this form of 

growth are not yet fully understood, but involve aspects of hormone regulation, Ca2+ 

signalling, Group I bZIP intracellular translocation, and changes in gene expression. Here

I describe the function of a B. distachyon bZIP transcription factor, SECONDARY 

WALL ASSOCIATED bZIP and its role in touch response and cell wall biosynthesis.

2.2 Methods

2.2.1. Plasmid construction

Overexpression constructs were built using the Invitrogen Gateway cloning system. PCR 

amplified coding sequences were cloned into the pENR-D-TOPO or appropriate pDONR 

vector for multisite recombination, and further subcloned into a modified pOl001 

destination vector (Vogel et al., 2006). Artificial microRNA constructs were built by 

sequential PCR amplification from the pNW55 plasmid, replacing the native rice 

microRNA osaMIR528 with the target sequence of interest, and later subcloned into a 
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modified pOL001 destination vector (Vogel et al., 2006; Warthmann et al., 2008). Target

sequences were derived from the Web MicroRNA Designer platform 

(http://wmd3.weigelworld.org).

Sequence confirmed clones for all destination vectors were electroporated into 

Agrbacterium tumefaciens strain AGL-1.

2.2.2. Plant transformation

Transformation was performed according to Vogel & Hill 2008 (Vogel & Hill, 2008). 

Immature seeds were collected from ~6 week old plants, deglumed, and surface sterilized

with a solution of 1.3% NaClO and 0.01% Triton-X100 for four min. Sterilized seeds 

were rinsed three times in sterile water. Embryos were dissected from the seeds and 

placed on callus initiation media (CIM) for four weeks, then subcultured to fresh CIM for

two more weeks, the subcultured a final time onto fresh CIM for one week. Seven week 

old calli were co-cultivated in a suspension of A. tumefaciens for ~5 min, then thoroughly

dried on sterile filter paper for 3-5 days at 22C in the dark. Calli were moved onto CIM 

media containing 50 mg/L hygromycin B and 150 mg/L timentin, where they were grown

for 3-5 weeks with selective subculture of healthy callus at week 4. After selection, 

healthy calli were moved to Linsmaier and Skoog media supplemented with 50 mg/L 

hygromycin B, 150 mg/L timentin, and kinetin to promote shoot growth. Calli that 

produced green tissue within 3-5 weeks were moved to Murashige and Skoog media 

supplemented with 50 mg/L hygromycin B and 150 mg/L timentin to allow root growth. 

After 1-3 weeks, calli that established roots were transplanted to soil and grown as 

described below.
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2.2.3. Plant growth

Brachypodium distachyon line Bd21-3 was used for all experiments. Seeds were stratified

on wet paper towel wrapped in foil to exclude light for 10 days at 4°C before being 

planted in Promix BX potting mix in SC10 Ray Leach Cone-tainers (Stuewe & Sons Inc, 

https://www.stuewe.com/products/rayleach.php). Plants were grown in a Percival PGC-

15 growth chamber with day/night conditions of 20h light at 24°C and 4h dark at 18°C 

respectively.

2.2.4. Transverse stem sections, histology

The main stem of senesced plants was taken and the internode of interest removed and 

embedded in 8% agarose. Samples were sectioned using a Leica VT1000 Vibratome, 

making 55um thick sections. Multiple sections of each internode were collected and 

stored in water at 4°C. Histochemical staining was carried out using toluidine blue, 

phloroglucinol-HCl, and Maule reagent as described in Mitra & Loque (2014)(Pradhan 

Mitra & Loqué, 2014). Images were obtained at 4, 10, and 20x using a Nikon Eclipse 

E200MV R light microscope and PixeLINK 3 MP camera.

2.2.5 Measuring cell wall thickness

Transverse sections imaged at 20x were used for cell wall thickness measurements. 

Interfascicular fiber cells separated by one cell layer from the mestome cells on the 

phloem side of major vascular bundles were targeted for measurement. Using ImageJ, 

lines were drawn across two walls of adjoining cells. The resulting line length was 

divided by two to give one cell wall width. ~15 measurements were made for each plant.
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2.2.6. Translocation assay

2.2.6.1. Plant growth

Seeds were deglumed and surface sterilized in an aqueous solution of 1.3% NaClO and 

0.1% Triton-X100 for 4 min with agitation. The sterilization solution was removed and 

seeds were washed three times in aseptic conditions with sterile water. Using sterile 

forceps, the seeds were placed on agar containing 1X MS salts, pH 5.7, without sucrose. 

The seeds were placed in a row across the upper third of the plate, convex side up, with 

the embryo oriented down when the plates were held vertically. 8-12 seeds were placed 

per plate. The plates were wrapped in foil to exclude all light and incubated vertically at 

28°C for 6 d.

2.2.6.2. Pharmacology treatments

After the 6 day growth period, seedlings were moved to segmented petri plates with four 

quadrants. Each quadrant contained 1x MS media, pH 5.7, without sucrose, plus a 

different concentration of the pharmacological agent being tested, including a no-

treatment control quadrant. GA4 and paclobutrazol treatment concentrations of 10 mM, 

50 mM, and 100 mM were used. After transfer to the treatment media, roots were gently 

pressed into the media so that they were completely covered, and positioned close to the 

bottom of the plate in an even plane for better imaging. Plants were left in the treatment 

media for 6h to acclimate from the touch stimulus of movement, and to allow for 

chemical update of the treatment compound.

2.2.6.3. Confocal microscopy

All observations were made on a Nikon A1R scanning confocal microscope using a 10x 

objective. Plates were fixed to the microscope stage with tape and their lid removed. Root
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areas to be observed were located by eye and then confirmed under confocal conditions. 

The coordinate stage locations of each region were programmed into the Nikon NIS 

Elements Advanced Research V6 software package for automated imaging. After all 

target regions were programmed, 30 min of imaging began pre-treatment, with images 

captured every 2 min.

2.2.6.4. Touch treatment

To elicit the touch response, the time lapse capture program was paused and the 

microscope switched back to the eyeport. Each observed root region was gently probed 

for 5 sec with a blunt metal probe while observing through the eyepiece, as one would 

with a dissecting scope. After all regions were probed, each field of view was quickly 

refocused under confocal to assure the root had not moved in the x, y, z planes, 

repositioning the stage and reencoding the location if necessary, and then resuming time 

lapse capture every 2 min. From start to finish, the touch treatment takes no more than 5 

min. Images are captured for 60-90 min post treatment. For experiments with multiple 

stimulus events, the timelapse sequence was paused and roots were probed as described 

for the relevant stimulus events.

2.2.6.5. Analysis

Analysis of GFP signal was done using the Nikon NIS Elements Advanced Research V5 

software package. For each time series of images for one root, the frame showing 

maximal nuclear signal was selected and used as a reference point. Using the General 

Analysis tool, a channel for GPF signal was established and thresholded for intensity and 

particle size to identify the nuclear regions. These regions were added to the timelapse 

image series as a binary layer and then converted to static regions of interest (ROIs) for 
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quantification. The GFP intensity under each nuclear ROI was calculated for the course 

of the timelapse and the average signal from each nucleus was plotted for intensity over 

time.

2.2.7. Cell wall material insoluble in alcohol (MIA)

The main stem of mature, senesced plants was collected and cut into small pieces (~2cm) 

into a 2ml tube. Two metal beads were added and the stem was ground to a fine powder 

using a Retsch 440 bead beater. Ground material was transferred to a glass screw cap 

tube. Cell wall material was washed with 5ml of water in an 80°C water bath for 10 min 

with agitation. The cell wall material was pelleted by centrifugation at 3700 rpm for 10 

min and the supernatant aspirated by vacuum. This was repeated for a second water wash.

The cell wall material was then washed three times with 100% ethanol at 80°C for 15 min

per wash, with collection by centrifugation and aspiration of the supernatant between 

washes as described above.  The cell wall material was then washed twice with acetone 

for 15 min per wash at room temperature, then left to dry under a fume hood overnight. 

Modified from INARE protocols.

2.2.8. ABSL quantification

Beginning with dry cell wall MIA samples, 4.5-5.5mg of each sample was weighed into a

2mL glass vial using a precision balance. 1ml of acetyl bromide solution(25% acetyl 

bromide, 75% acetic acid) was carefully added to each vial under a fume hood. The vials 

were capped and inverted several times to mix. Samples were incubated in a drying oven 

at 55°C for 2h 30 min, with mixing by gentle inversion every 30 min to ensure full 

sample solubilization. The samples were cooled to room temperature before proceeding. 

0.1 ml of sample was diluted into 1.2ml of acidified 2M NaOH, then mixed with 0.3ml of
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0.5M hydroxylamine chlorhydrate and 1.4ml of acetic acid. Using a glass pipette, air was 

bubbled through the sample to ensure full homogenization of the reaction mixture. 

Absorbance at 280nm was measured on a SpectraMaX M6 plate reader, and the lignin 

content was calculated using the following equation: %lignin= 100 x (A280 x Vol 

reaction x Vol dilution) / (20 x Vol sample solution x Mass sample (mg)). Modified from 

INARE protocols.

2.2.9. Thigmomatic construction and operation

The Thigmomatic is a very basic robotic device that sweeps a flat of plants with a metal 

bar at regular intervals to elich a touch response (Fig 2.1). The device was constructed 

from aluminum V-Slot linear rail (https://openbuildspartstore.com/linear-rail/) and 

bracket joints for the upright supports (20x20 mm), cross bars (20x20 mm), and tracks 

(20x40mm).

Two gantry carts (https://openbuildspartstore.com/v-slot-gantry-kit-20mm/) ride along 

the 20x40mm V-Slot linear rails, connected by a metal rod bolted to the carts. Their 

movement is powered by a belt driven linear actuator system using a NEMA 17 stepper 

motor (https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-

driven/) with a 12V 18W AC/DC power supply (https://www.digikey.com/product-detail/

en/triad-magnetics/WSU120-1500/237-1393-ND/3094919).

The stepper motor provides fine spatial control over the gantry cart position with bi-

directional motion. Motor function is controlled by a Raspberry Pi 3B microcomputer 

equipped with a stepper motor HAT (https://www.adafruit.com/product/2348). The 

Thigmomatic was programmed to cover a specified distance in one direction once every 

90 min.
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Figure 2.1 Thigmomatic. (A) Overview of Thigmomatic setup inside a Percival 
PGC-15 growth chamber, showing linear rail based frame (1), gantry carts (2), 
NEMA17 stepper motor (3), 12V 18W AC/DC power supply (4), and Raspberry Pi 
3b microcomputer (5). (B) Thigmomatic in action, making contact with B. 
distachyon. 

2.2.10. DAP-seq

DNA affinity purification was carried out by collaborators at the JGI according to the 

protocol established by O’Malley et al 2016 (O’Malley et al., 2016). In brief, 

transcription factor coding sequences were HALO tagged and mixed with Bd21 genomic 

DNA for in vitro binding. Protein-DNA was crosslinked, fragmented, 

immunoprecipitated using the HALO tag, barcoded, and sequenced. Reads were mapped 
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back to the Bd21 genome to identify binding target loci. The nearest annotated gene to a 

bound peak was used for GO analysis.

2.2.11. HOMER identification of motifs

HOMER v4.10 (Heinz et al., 2010) was used to compute enrichment scores for 

transcription factor binding motifs previously identified using DNA-affinity-purified 

sequencing (DAP-seq) (O’Malley et al., 2016) among each group of cycling transcripts. 

Motif enrichment was calculated against the hypergeometric distribution; the significance

threshold was set to p < 0.05. Similar motifs were determined using the compareMotifs.pl

function of HOMER against the global list of known motifs with the default threshold 

cutoff of 0.6. Modified from MacKinnon et al 2020 (MacKinnon et al., 2020).

2.2.12. GO analysis

NCBI BLAST and Phytozome (Altschul et al., 1990; Goodstein et al., 2011) were used to

find orthologs for all B. distachyon v3.1 genes as the reciprocal best match to A. thaliana 

TAIRv10 protein sequences. Genes that did not significantly match a corresponding gene

in A. thaliana were discarded from this analysis. Arabidopsis thaliana biological process 

gene ontology (GO) annotations were obtained from http://ge-lab.org/gskb/. For Kuiper’s

test, the distribution of GO terms was compared with an empirically-determined 

background distribution. Gene identifiers were submitted to g:Profiler (Raudvere et al., 

2019) for KEGG and Wiki pathway enrichment analysis. Modified from MacKinnon et al

2020 (MacKinnon et al., 2020).

2.2.13. Yeast one-hybrid assay for protein DNA interaction

In a yeast one-hybrid assay, the interaction between a transcription factor (TF) of interest 
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and a DNA sequence of interest are assayed by measuring the activation of a reporter 

gene in a heterologous yeast system.

The DNA sequence of interest is usually the promoter region of a gene representing 

approximately 1kb of sequence upstream from the gene’s start codon. This sequence is 

cloned and tested in three overlapping fragments for approximately 400bp each. The 

promoter sequence fragment is cloned upstream of a reporter gene, in this case encoding 

a B-galactosidase reporter. The finished vector is linearized by restriction digest, and then

stably transformed into YM4271 yeast to generate reporter lines. Homologous 

recombination of the linearized vector targets the insertion to a specific locus in the yeast 

genome, controlling for transcriptional effects based on insertion point. A number of 

these lines are grown on selective media and then tested for reporter activity. Lines that 

do not show reporter activity without an effector added are selected for use in testing 

protein-DNA interaction.

The coding sequence for the TF of interest is cloned into the pDEST22 expression vector 

in frame with the Gal4 activation domain (Gal4AD), which induces transcriptional 

activity when bound to DNA. This vector is then transformed into the yeast reporter lines.

If the Gal4AD:TF fusion protein binds to the promoter fragment being tested, the 

Gal4AD will activate transcription of the luciferase gene. B-galactosidase activity is 

measured by adding ONPG, a substrate that the B-galactosidase enzyme cleaves, causing 

a colorimetric change from clear to yellow. Protein-DNA interactions were tested in 

triplicate, with  a positive/negative determination made for colorimetric change after a 3 h

incubation period.
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2.2.14. Genomic DNA Extraction

Tissue samples were collected in 1.5ml tubes with two metal beads and flash frozen in 

liquid nitrogen. They were ground to a fine powder in frozen blocks in  Retsch 440 bead 

beater. 600ul of DNA extraction buffer (100mM NaCl, 50mM Tris, 25mM EDTA pH8, 

1% SDS, a 10mM 2-mercaptoethanol) was added to each sample while still frozen, then 

vortexed vigorously to mix. Samples were incubated at 65°C for 10 min. 250ul of 

potassium acetate was added,the samples were mixed by inversion and then incubated on 

ice for 20 min. Tubes were centrifuged at 12,000 rpm for 10 min and the supernatant was 

carefully removed and placed in a new tube containing 600ul of isopropanol. The 

samples were incubated on ice for 20 min to precipitate the nucleic acids, then 

centrifuged at 10,000rpm. The supernatant was removed and the pellet was washed once 

with 300ul of 70% ethanol followed by a centrifugation at 15,000rpm for 1 min. The 

supernatant was removed and the pellet was dried under a fume hood for 1h before 

resuspending in 30ul of DNase free water. 

2.2.15 RNA extraction and RT-qPCR

RNA was extracted from the main stem of plants one day after flowering using the 

Qiagen RNeasy Plant Mini Kit with on-column DNA digestion with RNase-free DNase I 

(Qiagen). First strand cDNA synthesis was performed using 500ng of total RNA with the 

Invitrogen SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR. cDNA 

samples were diluted by a factor of 10 with Rnase-free water. Quantitative PCR was done

in 10ul reactions with 1ul of diluted cDNA using the Qiagen QuantiFast SYBR Green 

PCR Kit. Reactions were run in triplicate on an Eppendorf RealPlex2 Mastercycler. 
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2.3 Results

2.3.1 SWIZ is a Group I bZIP transcription factor and candidate cell wall regulator.

To identify genes potentially involved in cell wall regulation, microarray analysis of 

transcript abundance was conducted on RNA extracted from B. distachyon leaf, root, and 

stem tissue (Trabucco et al., 2013a). A gene annotated as a bZIP transcription factor, 

Bradi1g17700 was highly expressed in root and stem relative to leaf (Fig 2.2). 

Additionally, expression was highly correlated with other genes associated with wall 

biosynthesis, including secondary wall cellulose synthases and members of the lignin 

biosynthesis pathway. Phylogenetic analysis of the Bradi1g17700, henceforth referred to 

as SECONDARY WALL INTERACTING bZIP (SWIZ), amino acid sequence shows it to 

be an ortholog of the A. thaliana Group I bZIPs (Jakoby et al., 2002; Dröge-Laser et al., 

2018), and most closely related to AtbZIP18/52 (Figure 2.3).

Figure 2.2. SWIZ is highly expressed in maturing stem and root. SWIZ transcript 
measured by microarray from Brachypodium distachyon leaf, root, and stem tissue. 
Mean +/- standard deviation of three biological replicates.
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Figure 2.3 SWIZ phylogeny. Comparison of amino acids sequences from B. 
distachyon, O. sativa, A. thaliana, N. tabacum, and L. solanum shows SWIZ (blue) is 
similar to A. thaliana Group I bZIPs.

To further support the candidacy of SWIZ as a potential secondary cell wall regulator, it 

was screened for interaction with cell wall gene promoters by a yeast one-hybrid assay. 

Regulatory regions ~1000 bp upstream of the start codon of genes involved with cell wall

biosynthesis were divided into three ~400 bp overlapping fragments. These regions were 

cloned upstream of the B-galactosidase reporter gene and stably integrated into yeast. 

The SWIZ coding sequence was cloned in frame with a Gal4 activation domain and 

transformed into the reporter lines. Interaction of SWIZ protein with the DNA region 
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being tested would allow the Gal4 activation domain to promote transcription of the 

reporter gene. B-galactosidase activity was determined by colorimetric assay as either a 

positive or negative interaction (Fig 2.4A). SWIZ interacted positively with one fragment

of CAFFEIC ACID 3-O-METHYLTRANSFERASE 6 (COMT6) promoter, two fragments 

of CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1) promoter, and one frangement

of CELLULOSE SYNTHASE A4 (CESA4) promoter (Fig 2.4B, full sequences listed in 

Appendix). CAD1 and COMT6 are members of the lignin biosynthetic pathway, while 

CESA4 is a secondary cell wall cellulose synthase.

Figure 2.4. SWIZ protein interacts with cell wall gene regulatory regions. Yeast one-
hybrid assay of protein-DNA interaction using a B-galactosidase colormetric 
reporter. SWIZ coding sequence fused with the Gal4 activation domain was 
transformed into yeast lines containing promoter:reporter constructs of cell wall 
promoter fragments driving B-galactosidase expression. A) Schematic of the yeast 
one-hybrid assay. Reporter lines were tested for self activity prior to screening, with
two non-self active lines of each construct chosen for assay. Activation of the 
reporter was measured in triplicate, with positive/negative determination for 
colorimetric change. B) Schematic showing SWIZ positive interactions with 
promoter regions from CAD1, COMT6, and CESA4.

58



2.3.2 SWIZ binds a conserved motif

In determining the direct and indirect effects of transcription factor activity, assaying the 

targets directly bound by the protein of interest is of immense value. DNA affinity 

purification sequencing (DAP-seq) is an in vitro approach to identifying genome wide 

binding sites of a protein of interest. Collaborators at the Joint Genome Institute 

performed DAP-seq for SWIZ protein with Bd21 genomic DNA. Based on statistically 

significant enrichment of sequences purified with SWIZ protein, we identified 3,302 loci 

across the genome. The genes downstream of the binding sites were identified for further 

analysis (Supplemental File 1). From the bound DNA sequences, the HOMER program 

was used to identify binding motif sequences enriched in these fragments compared to 

the genomic background. From de novo analysis, nine sequence motifs were identified as 

significantly enriched above the background. The two most significant motifs were found

in 24% and 17% of the enriched regions, and strongly resemble an A. thaliana Group I 

bZIP binding motifs (O’Malley et al., 2016) (Table 1). Gene ontology (GO) analysis was 

performed on both the full set of binding targets identified genome wide(Table A1), as 

well as the subset of 812 genes containing the top two binding motifs (Supplemental File 

2), essentially CAGNCTG and CAGCTG (Table A2).
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Table 1. SWIZ binding motifs identified by DNA affinity purified sequencing. Motif 
analysis using the HOMER program identified conserved sequences between 
regions interacting with SWIZ. Motif column displays the binding motif logo with 
nucleotide size depicting conservation at that position. p-value represents 
significance of enrichment in bound sites compared to the genomic background

2.3.3 SWIZ genetic reagents

To investigate the role of SWIZ in plant growth and secondary cell wall development, 

transgenic lines with enhanced or perturbed SWIZ function were generated. 

Overexpression lines were created using the maize ubiquitin promoter to drive expression

of the SWIZ coding sequence as well as the SWIZ coding sequence fused with engineered 

green fluorescent protein (GPF), hereafter referred to as SWIZ-OE or SWIZ:GFP-OE 

(Figure 2.5A). Two independent events of SWIZ-OE and three independent events of 

SWIZ:GFP-OE were isolated and analyzed. Knockdown of SWIZ transcript abundance 

was done by expressing an artificial microRNA construct with homology to the first exon

of the SWIZ mRNA, hereafter referred to as swiz-amiRNA (Fig 2.5B). Two independent 

events were isolated and analyzed. Transcript abundance analysis by RT-qPCR showed 

that SWIZ was significantly over expressed in the SWIZ-OE lines compared to wildtype 

(p < 0.05, Fig 2.5C). SWIZ expression was reduced in the swiz-amiRNA line, but not 

significantly at the p < 0.05 threshold (p=0.065, Fig 2.5D).
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Figure 2.5. Diagram of SWIZ transgenic reagents. A) Constructs for SWIZ 
overexpression. The maize ubiquitin promoter was used to drive expression of the 
SWIZ coding sequence, either alone or fused in frame with eGFP. B) Artificial 
microRNA construct for SWIZ knockdown. The SWIZ mRNA schematic (exons - 
yellow blocks, introns - grey lines, UTR - gray blocks) shows the target site for 
amiRNA interference, indicated by the arrow in the first exon. Below is a diagram 
of the amiRNA construct used for SWIZ knockdown. The maize ubiquitin promoter
was used to drive expression of an amiRNA that has homology with SWIZ exon 1, 
and forms a hairpin after transcription. The 21-mer nucleotide sequence used for 
target specificity is listed, with red postions showing hairpin mismatches that are 
predicted to interact with the DICER complex. C) and D) Relative level of SWIZ 
gene expression measured by RT-qPCR in SWIZ-OE (C) and swiz-amiRNA (D) lines.
Whole stem tissue was collected 1 day after inflorescence emergence. LB, left 
border; ZmUbi prom, maize ubiquitin promoter; Hyg, hygromycin 
phosphotransferase gene; NOS, nopaline synthase terminator; RB, right border. ns:
p>0,05, : *: p<=0.05.
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2.3.4 SWIZ effects cell wall thickness, lignification, and plant morphology

Wildtype, SWIZ-OE, and swiz-amiRNA plants were grown and phenotyped for plant 

morphology, stem biology, and cell wall deposition. Transverse sections were taken from

the second elongated internode of the main stem and stained for lignin using 

phloroglucinol-HCl. SWIZ-OE and swiz-amiRNA plants had dramatic interfascicular fiber

phenotypes (Fig 2.6A-C). Compared to wildtype, (Fig 2.6A), SWIZ-OE plants (Fig 2.6B) 

had comparable intensity of phloroglucinol staining, but with an uneven distribution of 

color between neighboring fiber cells. The walls also appeared to be thicker than those of 

wildtype, again with an uneven pattern of thickening among cells. Some epidermal cells 

in the SWIZ-OE lines were also aberrantly thickened. The swiz-amiRNA plants (Fig 2.6C)

also showed thicker interfascicular fiber walls, but in a more even distribution. These 

fiber cells also stained far more lightly for lignin compared to wildtype (Fig 2.6C). 

Interfascicular fiber wall thickness was quantified in fiber cells, two layers distal from the

major vascular bundle sheath layer, and showed significantly thicker walls in both SWIZ-

OE and swiz-amiRNA compared to wildtype (Fig 2.6D). Lignin content was measured by 

the acetyl bromide soluble lignin (ABSL) method, which showed no change in lignin 

between wildtype and SWIZ-OE, but a significant reduction in swiz-amiRNA plants (Fig 

2.6E). This quantification is in agreement with the visual measure of lignification 

observed by phloroglucinol-HCl staining, which showed lighter staining and thus less 

lignin in swiz-amiRNA plants. Additionally, both SWIZ-OE and swiz-amiRNA lines were 

significantly shorter in height than wildtype plants (Fig 2.6F).
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Figure 2.6. SWIZ reagent phenotypes. Plants were grown in standard long day 
conditions without consideration for mechanical stimuli. Wildtype Bd21-3 (A), 
SWIZ-OE (B), and swiz-amiRNA (C) stems were sectioned in the second elongated 
internode after senescence and stained with phloroglucinol-HCl to show lignin 
deposition in pink-red hues. (D) Cell wall thickness was quantified for 
interfascicular fiber cells. (E) Acetyl bromide soluble lignin measured in extractive 
free cell wall material prepared from the main stem after senescence. (F) Plant 
height measured at senescence.  Scale bar = 100µm. ns: p>0,05, *: p<=0.05. n=4-6 
plants per genotype.
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2.3.5 SWIZ translocates into the nucleus in response to mechanical stimulus and 
cellular GA levels

Some Group I bZIP proteins have been described as mechano- and osmosensing 

(Tsugama et al., 2014, 2016). I hypothesized that SWIZ protein may translocate within 

the cell in response to mechanical force. To test this, SWIZ:GFP-OE and GFP-OE plants 

were grown on tilted MS plates for 6 d in the dark and GFP localization was observed in 

their roots following a mechanical stimulus. The nuclear localized GFP signal was 

tracked and quantified over a 75 min period following the application of mechanical 

force with a metal probe (Fig 2.7A). GFP-OE signal was present in both the cytosol and 

nucleus, and nuclear accumulation remained static over the imaging period. The GFP 

protein was mostly observed in the cytosol in SWIZ:GFP-OE plants, but following 

mechanical force treatment, nuclear GFP signal increased substantially, reaching a peak 

around 30 min post stimulus (Fig 2.7B). The nuclear signal then decreased, returning to 

near starting levels by the end of imaging period (Fig 2.7A).
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Figure 2.7. SWIZ translocates to the nucleus in response to mechanical stress. (A) 
Roots of SWIZ:GFP-OE and GFP-OE were observed after mechanical stress 
application. Images were taken every 2 min. Nuclear GFP signal was quantified in 
selected nuclei at each time point. The average nuclear GFP signal is represented by
the trend line, with error bars indicating standard deviation of the mean. (B) Still 
image of SWIZ:GFP-OE and GFP -OE roots at 0 min (pre-stimulus) and 30 min 
(post stimulus). n=14-20 nuclei.

The dynamics and repeatability of SWIZ nuclear translocation were further investigated 

by sequential stimulus events. Touch response to stimulus can saturate at a certain 

number of treatments (Martin et al., 2010; Leblanc-Fournier et al., 2014; Moulia et al., 

2015). To see if SWIZ translocation dynamics varied after repeated treatments, I applied 

mechanical force to SWIZ:GFP-OE roots as described above. A second stimulus was 

given 80 min after the first stimulus was applied, and again at 160 min. Following each 

mechanical stimulation, SWIZ translocated from cytoplasm to nucleus with maximum 

nuclear signal achieved in about 30 min post stimulus (Fig 2.8). The maximum intensity 

of each of these three translocation events did not differ significantly from each other, nor

did the time between reaching maximum intensity or returning to pre-stimulus levels. 
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This suggests that SWIZ translocation dynamics are not impacted by repeated stimulus 

events, at least not over ~3 h.

Figure 2.8. SWIZ translocation dynamics are similar in amplitude and timing 
following repeated stimuli. SWIZ:GFP -OE roots were imaged by confocal 
microscopy with stimulus applied to the field of view at 0, 90, and 180 min. Images 
were taken every 2 min. Nuclear GFP signal was quantified in selected nuclei at 
each time point. The average nuclear GFP signal is represented by the trend line, 
with error bars indicating standard error of the mean. n=124 nuclei.

When conducting these translocation assays, root in the field of view was treated with 

mechanical force and all nuclei in that region were tracked and quantified for 

fluorescence. To determine if the mechanically stimulated SWIZ translocation signal is 

transferable to regions outside of the specific tissue that receives the force, two regions of

the same SWIZ:GFP-OE root were imaged over the same timespan. The two regions 

were separated by 3 cm of undisturbed tissue. After a 45 min acclimation period, where 

nuclear GFP signal was static, the upper root region was given a mechanical stimulus 

(Fig 2.9A). The upper stimulated region showed typical SWIZ:GFP nuclear signal 

accumulation. At the same time, the lower root region was also imaged, and no 

translocation was observed (Fig 2.9B). The nuclear signal in the lower region remained 
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constant at the acclimation period levels. At 120 min, the treatments were reversed, with 

the lower root region receiving a stimulus while the upper region was unperturbed. The 

lower region showed the expected SWIZ:GFP nuclear translocation while the upper 

region did not. These results suggest that the signal that triggers SWIZ nuclear 

translocation following a mechanical force event is localized to the cells that directly 

receive that stimulus.
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Figure 2.9 SWIZ translocation is localized to the region of tissue that experiences 
mechanical stimulus. SWIZ:GFP -OE roots were imaged by confocal microscopy 
with stimulus applied to the field of view at 30 and 120 min. At 30 min, stimulus was
applied to the upper section of the root, while at 120 min it was applied to the lower 
section. SWIZ:GFP translocation was monitored in the upper section in (A) and the 
lower section in (B). Upper and lower regions were separated by ~3 cm of root 
tissue. Images were taken every 2 min. Nuclear GFP signal was quantified in 
selected nuclei at each time point. The average nuclear GFP signal is represented by
the trend line, with error bars indicating standard error of the mean. n=109, 184 
nuclei respectively for upper and lower regions.
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SWIZ translocation dynamics were further investigated in response to cellular gibberellic

acid (GA) levels. Mechanical forces have been shown to inactive cellular GA, and that 

cellular GA levels dictate cytosolic versus nuclear localizations of A. thaliana Group I 

bZIPs similar to SWIZ in amino acid sequence (Fukazawa et al., 2010; Lange & Lange, 

2015). To test if SWIZ translocation following mechanical force application was 

dependent on bioactive GA levels, SWIZ:GFP-OE roots were grown on MS media for 6 

d before being transferred to GA treatment plates. Seedlings were transferred to media 

plates containing MS + 0 mM (control), 10 mM, 50 mM, or 100 mM bioactive GA 

(GA4) and were incubated on this media for 6 h prior to imaging. After a 10 min 

acclimation period, in which no nuclear translocation was observed, a mechanical force 

was applied and nuclear signal tracked. SWIZ:GFP signal amplitude was reduced in roots

treated with GA, particularly at the 50 and 100 mM level. After 60 min the nuclear signal

had returned to near pre-stimulus levels, and a second stimulus was applied (Fig 2.10). 

This time all the GA treated roots showed a similar reduction in nuclear signal, nearly 

half of the untreated control. These results suggest that the addition of exogenous GA4 

reduces SWIZ translocation to the nucleus following mechanical force application.
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Figure 2.10.SWIZ translocation to the nucleus is dampened by the addition of 
exogenous GA4. SWIZ:GFP-OE roots were grown on MS media for 6 d then moved 
to media supplemented with 10, 50, or 100 mM of GA4. Plants were left on 
supplemented media for 6 h then imaged following stimulus at 10 and 60 min. 
Images were taken every 2 min. Nuclear GFP signal was quantified in selected 
nuclei at each time point. The average nuclear GFP signal is represented by the 
trend line, with error bars indicating standard deviation of the mean. n= 85-125 
nuclei per treatment

The effect of reduced GA levels on SWIZ translocation was also investigated. 

Paclobutrazol is an inhibitor of GA synthesis, and is known to reduce the level of 

bioactive GA in treated cells. SWIZ:GFP-OE roots were grown on MS media for 6 d 

before being transferred to GA treatment plates. Seedlings were transferred to media 

containing MS + 0 mM (control), 10, 50, or 100 mM paclobutrazol and were incubated 

on this media for 6 h prior to imaging. After a 10 min acclimation period, in which no 

nuclear translocation was observed, a mechanical force was applied and nuclear signal 

tracked. Roots treated with 10 mM of paclobutrazol did not show altered translocation 

dynamics compared to the untreated control, but roots treated with 50 or 100 mM 
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paclobutrazol showed greater SWIZ:GFP nuclear localization to begin with, even prior to

mechanical stimulus (Fig 2.11). Following stimulus, the nuclear GFP signal in the 100 

mM paclobutrazol treated roots did increase to a similar maximum as the control, 10, and

50 mM treated roots, but the net degree of translocation was far less. SWIZ:GFP signal in

the 100 mM paclobutrazol treated roots was high prior to treatment and remained high 

even after the other nuclear signals diminished. This suggests that pharmacological 

reduction of bioactive GA levels triggers SWIZ nuclear translocation even without the 

application of mechanical force.

Figure 2.11. SWIZ translocation to the nucleus is enhanced by the addition of 
paclobutrazol (PBZ), a GA synthesis inhibitor. SWIZ:GFP-OE roots were grown on 
MS media for 6 d, then moved to media supplemented with 10, 50, or 100 mM of 
PBZ. Plants were left on supplemented media for 6 h, then imaged by confocal 
microscopy with stimulus at 10 and 60 min. Images were taken every 2 min. Nuclear
GFP signal was quantified in selected nuclei at each time point, and then normalized
to their value at t=0 min. The average normalized nuclear GFP signal is represented
by the trend line, with error bars indicating standard deviation of the mean. n= 64-
142 nuclei per treatment
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2.3.6 Thigmomorphogenesis in B. distachyon

The thigmomorphogenic response in B. distachyon was assessed by treating plants with 

regular mechanical force for two or three weeks during development. Wildtype Bd21-3 

plants were grown for 7 d and then either grown without mechanical perturbation as 

controls or brushed with a metal bar once every 90 min for two or three weeks. After two 

weeks, a subset of the treated plants were removed from stress and allowed to recover. 

Another set of plants remained under the treatment for an additional week, totalling three 

weeks of mechanical force application (Fig 2.12A). After the stress period, all plants 

were allowed to recover and grow without intentional mechanical perturbation until 

senescence, after which they were phenotyped. Two week stressed plants were 

significantly shorter than controls, and three week stressed plants were shorter still (Fig 

2.12B). Despite this difference in height, there was not a significant difference between 

the groups in terms of aboveground biomass (Fig 2.12C). Three week stressed plants had 

significantly more branches, with an increase also observed in two week stressed plants 

that was not statistically significant (Fig 2.12D).
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Figure 2.12. B. distachyon displays classic thigmomorphogenic phenotypes. 
Wildtype Bd21-3 was grown for one week prior to treatment and then brushed once
every 90 min with a metal bar for two or three weeks, then allowed to grow without 
mechanical stimulus until senescence. (A) Left to right, no stress, two weeks stress, 
three weeks stress. Height (B), (C) aboveground non-grain biomass, and (D) branch 
number were measured at senescence. ns: p>0,05, *: p<=0.05. n=5 plants per 
treatment. n=5 plants per treatment.

The effect of repeated mechanical stress on stem biology and interfascicular fiber cell 

walls was assessed by making transverse sections of the peduncle (Fig. 2.3.13A-C) and 

the third internode (Fig. 2.3.13D-F) of control plants (Fig. 2.3.13A,D) or plants treated 

with two (Fig. 2.3.13B,E) or three weeks (Fig. 2.3.13C,F) of mechanical perturbation. 

Sections were stained with phloroglucinol HCl to detect secondary cell walls, with 

reddish-pink coloration identifying lignification. The degree of staining and stem 

morphology in the third internode did not appear to be impacted by mechanical 

treatments, but the peduncle showed distinct morphological changes in the three week 
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stressed plants (Fig 2.13C). Interfascicular fiber cell walls stained lighter for lignin, and 

large parenchyma pockets were evident around the stem periphery, between the minor 

bundles. These parenchyma pockets contain starch granules, as evidenced by staining 

with Lugol’s iodine (Fig 2.14). There was no significant difference in fiber wall thickness

between the internode regions or from differing touch treatments (Fig 2.13G).

Figure 2.13. B. distachyon stem biology under mechanical stress conditions. 
Wildtype Bd21-3 was grown for one week prior to treatment and then brushed once
every 90 min with a metal bar for two or three weeks. Transverse sections of the 
peduncle (A-C) or 3rd internode (D-F) were take from control (no stress) (A, D), 2 
week stressed (B, E), and 3 week stressed (C, F) plants and stained with 
phloroglucinol-HCL to identify lignin. (G) Quantification of interfascicular fiber 
wall thickness.  Scale bar = 100µm. ns: p>0,05, *: p<=0.05. n=3 plants per 
treatment.
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Figure 2.14. Stem parenchyma pockets contain starch granules.  Lugol's iodine 
staining of B. distachyon peduncles after three weeks of mechanical stress (Fig 15C) 
detects starch granules in parenchyma pockets around the stem periphery. Red 
arrow indicates an example starch granule. Scale bar = 100µm.

2.3.7 Thigmomorphogenesis in SWIZ genetic reagents

Given the nature of SWIZ translocation in response to mechanical stimulus, and the 

aberrant wall phenotypes observed in SWIZ-OE and swiz-amiRNA lines, I wanted to test 

the hypothesis that SWIZ translocation in response to mechanical stimulus was 

responsible for the observed cell wall and plant growth phenotypes. Wildtype Bd21-3, 

SWIZ-OE, and swiz-amiRNA were established for one week then placed under 

mechanical stress as described above for two weeks, or grown carefully without 

mechanical stimuli as a control group. After senescence, plant height (Fig 2.15A), 

branching (Fig 2.15B), and aboveground biomass (Fig 2.15C) were measured. In control 

conditions, there was no difference in these traits. In mechanically stressed conditions, 

both SWIZ-OE and swiz-amiRNA were significantly shorter than wildtype, and swiz-

amiRNA also showed a significant increase in branching.
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Figure 2.15. Thigmomorphogenic whole plant phenotypes are enhanced in SWIZ 
reagents under mechanical stress. Wildtype Bd21-3, SWIZ -OE, and swiz-amiRNA 
plants were grown for one week and then placed under control conditions or two 
weeks of mechanical stress with metal bar contact once every 90 min. After 
senescence, plants were phenotyped for (A) height (cm), (B) branch number, and 
(C) aboveground biomass (g). ns: p>0,05, *: p<=0.05. n=5 plants per treatment.
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Transverse sections of the stem were made in the third elongated internode and the 

peduncle for wildtype, SWIZ-OE, and swiz-amiRNA plants in control and touch 

conditions, and stained with phloroglucinol-HCl (Fig 2.16). The largest effect was seen in

the peduncle (Fig 2.16). Control SWIZ-OE and swiz-amiRNA plants showed lighter lignin

staining compared to wildtype. In mechanically stressed conditions, both showed an 

increase in phloroglucinol-HCl staining, particularly in swiz-amiRNA. SWIZ-OE 

interfascicular fiber walls also appear thicker in the stressed peduncle. In the third 

internode, SWIZ-OE and swiz-amiRNA both showed less lignin staining than wildtype in 

control and stressed conditions (Fig 2.16). Interfascicular fiber wall thickness was 

quantified, showing that thickness increased with mechanical stress treatment in the 

peduncle of SWIZ-OE compared to wildtype. In the third internode there was no 

difference in SWIZ-OE compared to wildtype, although SWIZ-OE walls were thicker in 

the touched plants compared to the control. swiz-amiRNA fiber cells did not show a 

significant difference in touched versus control conditions, or compared to wildtype. 
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Figure 2.16. Stem biology of SWIZ transgenic reagents under touched conditions. 
Wildtype Bd21-3, SWIZ-OE, and swiz-amiRNA plants were grown for one week and 
then placed under control conditions or two weeks of mechanical stress with metal 
bar contact once every 90 min. After senescence, the main stem was collected and 
transverse sections made of the peduncle and third elongated internode. Sections 
were stained with phloroglucinol-HCl. Scale bar = 100µm.
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Figure 2.17 Quantification of interfascicular fiber wall thickness under touch and 
control conditions in SWIZ genetic reagents. n=4-6 plants per genotype, per 
treatment. 

The changes observed in cell wall thickening and staining in SWIZ-OE and swiz-amiRNA 

lines under touched conditions, coupled with the protein binding of cell wall associated 

promoters in the yeast one hybrid prompted me to investigate cell wall gene expression in

SWIZ transgenic plants in response to touch stimulus. The entire main stem from 

wildtype, SWIZ-OE, and swiz-amiRNA plants in control and mechanically stimulated 

conditions was collected one day after flowering, and approximately 20 min following 

mechanical stimulus. Relative expression of cell wall biosynthesis genes was measured 

for CAD1, COMT6, and CESA4 (Fig 2.18). While not statistically significant, COMT6 

expression decreased in both SWIZ-OE and swiz-amiRNA with a larger decrease in swiz-

amiRNA when touched.
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Figure 2.18. Cell wall gene expression in SWIZ transgenic plants following 
mechanical stimulus. Wildtype Bd21-3, SWIZ-OE, and swiz-amiRNA plants were 
grown for one week and then placed under control conditions or two weeks of 
mechanical stress with metal bar contact once every 90 min. One day after 
flowering, the entire main stem was collected approximately 20 min after a touch 
stimulus event. Transcript abundance measured by RT-qPCR relative to ubiquitin 
conjugating enzyme 18 expression. ns: p>0,05, *: p<=0.05. n=3 plants per genotype.
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2.4 Discussion

2.4.1 SWIZ is a likely cell wall regulator

SWIZ was first identified as a candidate regulator of secondary wall synthesis based on 

gene expression pattern and subsequently by protein-DNA interactions with cell wall 

associated cis-regulatory regions. SWIZ is clearly a Group I bZIP transcription factor, and

is the closest B. distachyon ortholog to A. thaliana bZIP18/52 and O. sativa bZIP61, 

closely related to OsRF2b (Jakoby et al., 2002; Liu & Chu, 2015; Dröge-Laser et al., 

2018). Several families of transcription factors are known to directly regulate secondary 

wall thickening, chief among them are NAC and MYB proteins (Coomey et al., 2020). 

As with SWIZ, many of these genes were first identified based on their expression 

patterns being correlated with secondary wall biosynthetic enzymes. Recent studies in A. 

thaliana, B. distachyon, and O. sativa have shown protein-DNA interactions with the 

promoters of secondary wall associated genes, as I have demonstrated for SWIZ and 

CAD1, COMT6, and CESA4 (Zhong & Ye, 2007; Taylor-Teeples et al., 2015; 

Handakumbura et al., 2018).

Surprisingly, I observed a similar phenotypic response in both gain and loss of function 

lines with reduced height and thicker interfascicular fiber walls. SWIZ gain-of-function 

mutants were generated constitutively expressing SWIZ transcript and loss-of-function 

was achieved by knockdown of SWIZ expression using an artificial microRNA construct 

targeting SWIZ transcript. After confirming the presence and expression of the 

transgenes, SWIZ-OE and swiz-amiRNA were assayed for growth and cell wall defects. 

The swiz-amiRNA lines had lower lignin content in fiber cells compared to wildtype, 

while SWIZ-OE was unchanged. These data suggest a role for SWIZ in activating lignin 
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deposition. Furthermore, the decrease of lignin in swiz-amiRNA supports a role as a direct

regulator of CAD1 and COMT6. Given the unusual pattern of wall thickening seen in 

SWIZ-OE sections and the reports of Group I bZIPs translocating in response to hypo-

osmotic stress (Tsugama et al., 2014, 2016), I hypothesized that SWIZ may respond to 

mechanical stimuli to regulate aspects of growth and secondary wall deposition.

2.4.2 SWIZ translocation dynamics are consistent with reported bZIP dynamics in 
response to mechanical stimulus and GA

I began to test this hypothesis by investigating the cellular localization of SWIZ protein 

in response to mechanical stimulus. Consistent with reports of Group I bZIPs in root 

tissue (Tsugama et al., 2014, 2016), SWIZ translocated from the cytosol to the nucleus in

response to mechanical stimulus. In A. thaliana, translocation was stimulated by 

treatment with a hypo-osmotic solution, which proved technically challenging on our 

confocal microscope platform. Since hypo-osmotic pressure simulates external force on 

the cell, I opted to apply force directly to the root by light contact with a metal probe. 

Prior to touch, SWIZ was mostly localized to the cytosol, with some nuclear localization. 

Following touch, SWIZ translocated to the nucleus quite rapidly, with peak nuclear signal

intensity around 30 min after stimulus. By 75 min post-stimulus, the nuclear signal had 

returned to pre-stimulus levels. This timing is consistent with the observations made for 

A. thaliana Group I bZIPs (Tsugama et al., 2014, 2016), although those reports only 

provide information at 0, 30, and 120 min post-treatment, rather than the measurements 

taken every 2 min for SWIZ translocation. I also investigated the repeatability of SWIZ 

translocation following sequential stimuli. The timing of touch response has been 

investigated in various systems on the order of min to days, and have shown acclimation 

of the touch response to successive stimuli (Coutand et al., 2009; Martin et al., 2010; 
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Leblanc-Fournier et al., 2014). For SWIZ, the translocation dynamics are consistent at 

least over three successive cycles of stimulus and return to baseline. The dynamics 

observed in SWIZ-OE suggest that SWIZ translocation is not dampened by subsequent 

stimulus. While the kinetics of touch response acclimation have not been studied in B. 

distachyon, we may consider at least that input from SWIZ remains consistent for 

multiple stimulus events.

2.4.3 Thigmomorphogenesis in B. distachyon.

Before testing the idea that SWIZ functioned in touch responsive growth, I first wanted to

examine thigmomorphogenesis in B. distachyon to establish a mechanical stimulus assay 

and provide a baseline of phenotypic response in wildtype plants. In light of the timing 

and repeatability of SWIZ translocation dynamics, regular stimulus at 90 min intervals 

was chosen for the treatment. Touch stimulus is generally an inhibitor of plant elongation

growth, but promotes branching and radial growth (Jaffe, 1973; Braam, 2004; Chehab et 

al., 2009). In eudicots, this radial growth occurs in the cambium meristem, a cell type that

is not present in grasses. Therefore, they do not undergo such changes in radial growth. 

Our study of wildtype B. distachyon plants with two or three weeks of regular touch 

revealed a decrease in plant height similar to that previously reported (Gladala-Kostarz et

al., 2020). We also observed an increase in branching with increasing touch treatment. 

However, we did not observe a change in total biomass at senescence, perhaps due to 

compensation by increased branching.

2.4.4 SWIZ touch responsive phenotypes

SWIZ gain- and loss-of-function transgenic lines were subjected to two weeks of touch 

stimulus alongside control groups that were treated carefully to minimize possible 
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sources of mechanostimulation from watering and handling. In touch conditions, both 

SWIZ-OE and swiz-amiRNA plants were shorter than wildtype, while in control 

conditions they were not different. Total biomass was not affected by genotype or touch, 

but swiz-amiRNA did show increased branching under touched conditions. While the 

touch treatment did affect wildtype plants similar to control conditions, the influence of 

touch was greater in the SWIZ transgenics.

Under touched conditions, the peduncle of SWIZ-OE had thicker interfascicular fiber 

walls compared to wildtype, while in the control there was no difference. In the third 

internode there was no difference in fiber wall thickness between lines. The peduncle also

showed a difference in lignin staining in touched conditions compared to control, with 

SWIZ-OE and swiz-amiRNA showing an increase in staining intensity. The prevalence of 

phenotypic changes in the peduncle but not the third internode is attributed to the nature 

of the touch treatment. The metal bar passed over the plants at a set height that was above

the position of the third internode, but came into contact with the peduncle. Thus, the 

entire plant did not experience the mechanical stimulus evenly, and the touch induced 

response was limited to the contacted tissue. This is consistent with how SWIZ 

translocation is restricted to the stimulated region. In A. thaliana, AtVIP1 translocation 

was limited to just a few cells perturbed by contact with a pin (Tsugama et al., 2014). 

SWIZ translocation was similarly specific to the cells that experienced direct mechanical 

stimulus. Regions of the root 3 cm away from a touched section did not show 

translocation. Given this specificity, I assume that the peduncle cells of touched plants 

experienced SWIZ translocation while lower internodes did not.
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2.4.5 Bioactive GA status may act in SWIZ mechanosignaling and explain touch 
responsive height phenotypes.

Several lines of evidence implicate bioactive GA status as part of the mechanoperception 

pathway that modulates SWIZ translocation, and may help explain the SWIZ touch 

responsive phenotypes. Dominant negative NtRSG transgenic tobacco has a dwarf 

phenotype due to misregulation of GA synthesis that inhibits cell elongation (Fukazawa 

et al., 2000). In tobacco protoplasts, NtRSG translocates into the nucleus in response to 

low bioactive GA, where it then promotes the synthesis of bioactive GA (Ishida et al., 

2004; Fukazawa et al., 2010, 2011). Lange & Lange (2015) demonstrated that touch 

inactivates cellular GA (Lange & Lange, 2015). Together, these observations can provide

a model relating touch, GA, and cell elongation. Touch inactivates GA, a hormone that 

promotes elongation, and in response bZIP proteins translocate into the nucleus and act to

re-establish bioactive GA and elongation. SWIZ translocation is consistent with these 

observations. When SWIZ-OE roots were treated with exogenous bioactive GA, the 

nuclear translocation following touch was dampened. When SWIZ-OE roots were treated 

with paclobutrazol to chemically inhibit bioactive GA synthesis, SWIZ protein localized 

to the nucleus even in the absence of touch.

Applying this model to SWIZ-OE and swiz-amiRNA provides possible mechanisms for 

the reduction in height observed in both types of transgenic plant under touch treatment. 

If SWIZ is indeed an activator of wall synthesis, the large influx of protein to the nucleus 

following touch may trigger activation of cell wall thickening, resulting in reduced 

cellular elongation. If SWIZ regulates GA synthesis genes similarly to NtRSG, then the 

reduced SWIZ population in amiRNA lines may not be able to restore proper GA levels 

following touch, resulting in an inability to continue elongation. This sort of activity in 
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the swiz-amiRNA lines would be consistent with the dwarf phenotype observed in NtRSG 

dominant negative mutants (Fukazawa et al., 2000). Similar dwarfing is also seen from 

expression of an OsRF2a dominant negative mutant (Dai et al., 2003).

2.4.6 SWIZ touch responsive cell wall phenotypes may depend on interacting 
partners

In touched peduncles, SWIZ-OE and swiz-amiRNA showed increased lignin staining in 

interfascicular fiber cells compared to untouched controls, while the third internode of 

both mutants stained more lightly in both touched and control conditions. Gene 

expression analysis did not show a significant difference in COMT6, CAD1, or CESA4 

expression in stems of either SWIZ-OE or swiz-amiRNA in touched or control conditions. 

COMT6 expression did appear to be somewhat reduced in the SWIZ transgenics, which 

would be consistent with the lighter staining seen in the third internode. However, this 

experiment was conducted on whole stems prior to my understanding of the specific 

nature of SWIZ translocation in directly contacted regions. It is possible that the gene 

expression signal in the touched cells was diluted by homogenization with the entire 

stems, and thus we did not observe a change in touched conditions.

SWIZ may regulate wall thickening by directly binding upstream of genes associated 

with secondary wall biosynthesis. We identified a sequence motif commonly reported for

bZIP-DNA interactions (O’Malley et al., 2016). Yeast one-hybrid data shows SWIZ 

protein interacting with regulatory regions of CAD1, COMT6, and CESA4, yet none of 

these appear in the in vitro DAP-seq binding results. Interestingly, one of the top two 

binding motifs from DAP-seq is present in the overlapping region of two CAD1 promoter

fragments that SWIZ interacted in yeast. One explanation for why this and perhaps other 
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cell wall relevant genes do not appear in the DAP-seq results comes from the homo and 

heterodimerization of bZIP proteins. The leucine zipper domain of bZIPs has been shown

to dictate the interactions between dimerizing partners (Schütze et al., 2008), and in A. 

thaliana the combinatorial interactions of different bZIP groups has been fairly well 

defined (Deppmann et al., 2004; Grigoryan & Keating, 2006; Ehlert et al., 2006; 

Weltmeier et al., 2006; Schütze et al., 2008). Group I bZIPs are known to interact with 

one another as well as with Group E members (Schütze et al., 2008; Van Leene et al., 

2016). These interactions can have a synergistic effect on transcriptional activity, and can

result in unique binding interactions (Schütze et al., 2008; Van Leene et al., 2016). A 

study of AtbZIP29 showed heterodimerization specifically within a subset of seven 

Group I bZIPs that are orthologous to bZIPs implicated in cell wall synthesis and 

remodelling in other systems, including NtRSG, OsRF2a, OsRF2b, and SlVSF-1 (Yin et 

al., 1997; Ringli & Keller, 1998; Fukazawa et al., 2000; Dai et al., 2003, 2004; Van 

Leene et al., 2016). SWIZ is part of the same clade of protein, and SWIZ’s role in cell 

wall synthesis may also rely in part on interaction with other bZIP partners, a role that 

would not be identified through the in vitro DAP-seq assay.

2.4.7 SWIZ in vitro binding targets relate to hormone cross talk and 
mechanoperception pathways

Despite the caveats of biological relevance for bZIPs in in vitro binding assays, it is still 

tempting to speculate on the implications of the SWIZ binding targets identified from 

DAP-seq. Perhaps the most interesting avenue suggested from this data involves the 

crosstalk of auxin, gibberellin, and ethylene signaling. A number of these sites are 

associated with genes annotated as auxin response factors (ARFs) and small auxin 

upregulated RNA (SAUR) genes. Gibberellin metabolism and signalling genes in this 
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data set include GRAS family transcription factors and an ortholog of AtGA2OX2. 

Ethylene responsive binding proteins are implicated in touch response, and an annotated 

APETALA2/Ethylene responsive binding protein is present in the DAP-seq results. Cross

talk between these hormone signalling pathways is implicated in secondary wall 

development. In maize stems ethylene signalling controls auxin and GA, resulting in 

altered cell wall synthesis (Zhang et al., 2020),

Aspects of force perception and signalling such as wall associated kinases, receptor like 

kinases, mitogen activated protein kinases, calcium dependent protein kinases, 

calmodulin, and calmodulin-like genes. Calcium fluxes have been described in response 

to touch (Lee et al., 2005; Monshausen et al., 2009), and both calcium dependent protein 

kinases and mitogen activated protein kinases are known to phosphorylate bZIPs (Djamei

et al., 2007; Ishida et al., 2008; Pitzschke et al., 2009; Ito et al., 2014). Wall integrity 

sensors such as wall associated kinases and receptor like kinases have been suggested to 

play a role in force perception as well (Monshausen & Haswell, 2013; Leblanc-Fournier 

et al., 2014; Kohorn, 2016). These putative SWIZ regulatory targets suggest a scenario 

where SWIZ translocation and transcriptional activation may prime the cell for future 

sensing events by upregulating possible sensing and signalling components.

2.5 Conclusions

SWIZ is a bZIP family transcription factor orthologous to proteins in other species that 

have been implicated in cell wall development and remodelling. SWIZ appears to control 

elongation and cell wall thickening in response to mechanical stimuli, which regulates 

SWIZ translocation into the nucleus by acting on the cellular bioactive GA pool. Touch 

decreases cellular bioactive GA levels, which causes SWIZ to translocate from the 
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cytoplasm into the nucleus. This translocation can be reduced by supplementing with 

exogenous bioactive GA, or induced by chemically inhibiting GA synthesis. 
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CHAPTER 3

KNOTTED OF BRACHYPODIUM 7 (KNOB7) IS A CLASS II KNOX GENE AND
NEGATIVE REGULATOR OF INTERFASCICULAR FIBER SECONDARY

CELL WALLS

3.1 Introduction

The three-amino-acid-loop-extension (TALE) homeodomain family of transcription 

factors includes several well characterized regulators of growth and development in 

eudicots and grasses. The KNOTTED1 HOMEOBOX (KNOX) and BEL class TALEs have

been shown to regulate secondary wall synthesis. The founding member of the KNOX 

gene family is ZmKNOTTED1 (KN1), which was first identified in maize as the causative

gene in a gain of function mutant whose phenotype was of bumpy, or knotted looking 

leaves (Vollbrecht et al., 1991). KNOX genes include Class I and Class II types. Class I 

KNOX genes including KN1, SHOOT MERISTEMLESS, and GNARLY, regulate aspects 

of organ development and meristem maintenance (Hake et al., 2004; Hay & Tsiantis, 

2010). Class II KNOX genes are not as well characterized, with most work focusing on 

the function of KNOTTED OF ARABIDOPSIS THALIANA 7 (Zhong et al., 2008a; Li et 

al., 2012; Liu et al., 2014; He et al., 2018). AtKNAT7 was first identified as IRREGULAR

XYLEM 11 (IRX11) in a screen for transcripts co-expressed with secondary cell wall 

associated genes (Ehlting et al., 2005; Persson et al., 2005; Brown et al., 2005b). The 

irregular xylem (irx) phenotype, as the name implies, consists of collapsed xylem vessel 

cells. This phenotype can vary in severity, and has been associated primarily with 

cellulose defects, but also with altered hemicellulose and lignin biosynthesis (Turner & 

Somerville, 1997; Brown et al., 2005b). AtKNAT7 has been shown repeatedly to be a 
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target of the so called master regulators of cell wall biosynthesis; SND1, NST1, NST2, 

VND6, and VND7 all positively regulate AtKNAT7 expression (Zhong et al., 2006b, 

2007a, 2008a). MYB46, another target of SND1, has also been shown to be a positive 

regulator of KNAT7 expression (Zhong et al., 2007a; Zhong & Ye, 2007). All of these 

master regulators are known to be capable of activating the entire suite of cell wall 

biosynthetic enzymes, either directly or through other downstream regulators, such as 

AtKNAT7. AtKNAT7 and orthologs in other species, such as poplar (PtKNAT7) and cotton

(GhKNL1), are generally described in the literature as repressors of cell wall synthesis in 

fiber cells (Li et al., 2012; Ma et al., 2019). AtKNAT7 contains a canonical LxLxL EAR 

motif, known for its role in repressing gene expression. EAR containing proteins recruit 

histone modifying complexes to their DNA binding sites, resulting in condensation of the

chromatin and subsequent transcriptional repression (Kagale & Rozwadowski, 2011). 

While there is substantial evidence for AtKNAT7 repressor function, there is also data 

indicating a role in positive wall regulation. Atknat7 mutants have thicker interfascicular 

fiber walls, as expected for knocking out a repressor, but this mutant also shows 

collapsed xylem with thinner walls. Atknat7 mutants have greater lignin content, but 

reduced xylan, suggesting that AtKNAT7 may differentially regulate aspects of 

hemicelluloses compared to lignins. AtKNAT7 protein can bind to the promoter of 

AtIRX9, a gene responsible for xylan backbone synthesis as well as control the expression

of several enzymes in the lignin biosynthesis pathways (He et al., 2018). 

AtKNAT7 is known to interact with several other protein partners, including  another 

class II KNOX protein, AtKNAT3. The double mutant, knat7/knat3 has  more severe cell

wall phenotypes than Atknat7 alone, while the Atknat3 knockout has no reported 
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phenotype. AtKNAT7 is also involved in seed coat development through interaction with

AtMYB75 (Bhargava et al., 2010, 2013). In other systems such as alfalfa and peach, 

other class II KNOX genes not orthologous to AtKNAT7 play roles in leaf and seed coat 

development (Testone et al., 2009; Chai et al., 2016).

Another TALE transcription factor, BEL1-LIKE HOMEODOMAIN6 (BLH6), can 

repress secondary wall formation in interfascicular fiber cells. Similar to Atknat7, Atblh6 

mutants have collapsed xylems and thicker fiber cell walls,. Indeed, AtBLH6 and 

AtKNAT7 protein physically assiociate, and as a complex repress fiber wall thickening. 

Genetic analysis has shown that thiscomplex regulates fiber wall development by directly

binding the  AtREV promoter (Liu et al. 2014). The blh6/rev and knat7/rev double 

mutants exhibit the collapsed xylem phenotype similar to the single blh6 or knat7 

mutants, but the rev double mutants do not have thicker interfascicular fiber walls. This 

suggests that xylem wall regulation relies on distinct mechanism from interfascicular 

fibers, and that the direction of transcriptional action by known wall regulators may vary 

between these tissues.

In grasses, rice OsKNOR1 (also known as OsKNAT7) is the closest ortholog of AtKNAT7 

and has also been shown to negatively regulate cell wall synthesis in interfascicular fiber 

cells (Zhao et al., 2019; Wang et al., 2019). As in Atknat7, Osknor1 loss-of-function 

mutants have thicker interfascicular fiber walls, but no reported xylem phenotype. These 

plants also had an increase in grain size that was attributed to variation in cell size (Wang

et al., 2019). Gene similar to BLH6 have not been described as regulators of wall 

thickening in grasses. However, OsKNOR1 analysis revealed functions unique from 

AtKNAT7. It was shown to physically interact with OsNAC31 (also known as OsVND7/
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OsSWN3) and Os GROWTH REGULATING FACTOR 4 (OsGRF4). Transient gene 

expression analysis in protoplasts showed that OsKNOR1-OsNAC31 jointly regulated 

OsMYB61/103 expression, with OsKNOR1 mitigating the positive regulation by 

OsNAC31. Similarly, OsGRF4 is known to activate expression of cell expansions genes, 

and OsKNOR1 interaction reduces this expression (Wang et al., 2019).

3.2 Methods 

3.2.1. Plasmid construction

Overexpression constructs were built using the Invitrogen Gateway cloning system. PCR 

amplified coding sequences were cloned into the pENR-D-TOPO or appropriate pDONR 

vector for multi site recombination, and further subcloned into a modified pOl001 

destination vector (Vogel et al 2006). CRISPR-Cas9 guide RNA sequences were 

designed using the CRISPR-PLANT web resource 

(http://www.genome.arizona.edu/crispr/CRISPRsearch.html). The knob7-1 allele was 

targeted by the 5’-CCTGCAGCTGAAGCAAATCAAGA-’3 guide RNA. Guide RNA 

oligos were annealed by heating to 95C for 2 min followed by slowly cooling to 25C at 2 

degrees per minute. Annealed guide RNAs were cloned into the pENTR_OsU3B_sgRN 

vector by BsaI digestion and ligation. Sequence confirmed clones were recombined using

the Invitrogen Gateway cloning system into the pOs-cas9_RC_of_L destination vector.

Sequence confirmed clones for all destination vectors were electroporated into 

Agrbacterium tumefaciens strain AGL-1.

3.2.2 Identification of mutants

Sodium azide mutant population was generated by the Sibout lab at INRAE Versailles-
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Grignon (Dalmais et al 2013). Briefly, wildtype Bd21-3 seeds were treated with sodium 

azide to induce point mutations. Genomic DNA from M2 plants from each family was 

pooled and sequenced to identify mutation sites. To confirm specific mutations in 

subsequent generations, PCR primers were designed to flank the mapped mutation locus, 

and sequencing of the PCR product determined the presence of the mutation. The knob7-

3 allele was identified in line NaN451.

3.2.2. Plant transformation

Transformation was performed according to Vogel & Hill 2008. Immature seeds were 

collected from ~6 week old plants, deglumed, and surface sterilized with a solution of 

1.3% NaClO and 0.01% Triton-X100 for four min. Sterilized seeds were rinsed three 

times in sterile water. Embryos were dissected from the seeds and placed on callus 

initiation media (CIM) for four weeks, then subcultured to fresh CIM for two more 

weeks, the subcultured a final time onto fresh CIM for one week. Seven week old calli 

were co-cultivated in a suspension of A. tumefaciens for ~5 min, then thoroughly dried on

sterile filter paper for 3-5 days at 22C in the dark. Calli were moved ont CIM media 

containing 50 mg/L hygromycin B and 150 mg/L timentin, where they were grown for 3-

5 weeks with selective subculture of healthy callus at week 4. After selection, healthy 

calli were moved to Linsmaier and Skoog media supplemented with 50 mg/L hygromycin

B, 150 mg/L timentin, and kinetin to promote shoot growth. Calli that produced green 

tissue within 3-5 weeks were moved to Murashige and Skoog media supplemented with 

50 mg/L hygromycin B and 150 mg/L timentin to allow root growth. After 1-3 weeks, 

calli that established roots were transplanted to soil and grown as described below.
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3.2.3. Plant growth

Brachypodium distachyon line Bd21-3 was used for all experiments. Seeds were stratified

on wet paper towel wrapped in foil to exclude light for 10 days at 4C before being 

planted in Promix BX potting mix in SC10 Ray Leach Cone-tainers (Stuewe & Sons Inc, 

https://www.stuewe.com/products/rayleach.php). Plants were grown in a Percival PGC-

15 growth chamber with day/night conditions of 20h light at 22C and 4h dark at 18C 

respectively.

3.2.4. Transverse stem sections, histology

The main stem of senesced plants was taken and the internode of interest removed and 

embedded in 8% agarose. Samples were sectioned using a Leica VT1000 Vibratome, 

making 55um thick sections. Multiple sections of each internode were collected and 

stored in water at 4C. Histochemical staining was carried out using toluidine blue, 

phloroglucinol-HCl, and Maule reagent as described in Mitra & Loque (2014). Images 

were obtained at 4, 10, and 20x using a Nikon Eclipse E200MV R light microscope and 

PixeLINK 3 MP camera.

3.2.5 Measuring cell wall thickness

Transverse sections imaged at 20x were used for cell wall thickness measurements. 

Interfascicular fiber cells separated by one cell layer from the mestome cells on the 

phloem side of major vascular bundles were targeted for measurement. Using ImageJ, 

lines were drawn across two walls of adjoining cells. The resulting line length was 

divided by two to give one cell wall width. ~15 measurements were made for each plant.

3.2.6. Cell wall material insoluble in alcohol (MIA)

The main stem of mature, senesced plants was collected and cut into small pieces (~2 cm)
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into a 2 ml tube. Two metal beads were added and the stem was ground to a fine powder 

using a Retsch 440 bead beater. Ground material was transferred to a glass screw cap 

tube. Cell wall material was washed with 5ml of water in an 80°C water bath for 10 min 

with agitation. The cell wall material was pelleted by centrifugation at 3700 rpm for 10 

min and the supernatant aspirated by vacuum. This was repeated for a second water wash.

The cell wall material was then washed three times with 100% ethanol at 80°C for 15 min

per wash, with collection by centrifugation and aspiration of the supernatant between 

washes as described above. The cell wall material was then washed twice with acetone 

for 15 min per wash at room temperature, then left to dry under a fume hood overnight. 

Modified from INRAE protocols.

3.2.7. ABSL quantification

Beginning with dry cell wall MIA samples, 4.5-5.5 mg of each sample was weighed into 

a 2 mL glass vial using a precision balance. 1ml of acetyl bromide solution(25% acetyl 

bromide, 75% acetic acid) was carefully added to each vial under a fume hood. The vials 

were capped and inverted several times to mix. Samples were incubated in a drying oven 

at 55°C for 2 h 30 min, with mixing by gentle inversion every 30 min to ensure full 

sample solubilization. The samples were cooled to room temperature before proceeding. 

0.1 ml of sample was diluted into 1.2 ml of acidified 2MNaOH, then mixed with 0.3 ml 

of  0.5 M hydroxylamine chlorhydrate and 1.4 ml of acetic acid. Using a glass pipette, air

was bubbled through the sample to ensure full homogenization of the reaction mixture. 

Absorbance at 280 nm was measured on a SpectraMaX M6 plate reader, and the lignin 

content was calculated using the following equation: %lignin= 100 x (A280 x Vol 

reaction x Vol dilution) / (20 x Vol sample solution x Mass sample (mg)). Modified from 
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INRAE protocols.

3.2.8. Mild alkaline hydrolysis

Beginning with solvent free cell wall samples, 10mg  per sample was weighed out into 

tubes. 100 ul of o-coumaric acid (1mg/ml) was added to each sample as an internal 

control. 1ml of 1N NaOH was added to each sample and mixed well by inversion. The 

samples should turn a bright, fluorescent yellow. The tubes were wrapped in foil to 

protect them from light and placed on a rotating agitator overnight. The next day, samples

were removed from the agitator and acidified with 250 ul of 6M HCl.  Samples were 

centrifuged at 2000g for 5 min to remove any remaining cell wall debris, and the 

supernatant transferred to a clean tube. Hydroxycinnamate extraction was done on silica 

columns bound with C21 hydrocarbons. Columns were washed with methanol, then 

primed with 2 ml of acidic water (H2O + 0.1% formic acid). 0.5 ml of sample was run 

through the column. Excess salts were flushed out with 2 ml of acidic water, then the 

column was eluted into glass vials with 1ml of methanol. Eluted samples were chilled at -

20°C for 15 min to precipitate any insoluble components. Samples were analyzed by 

HPLC-MS with a diode array detector using a MacheryNagel - EC 50/2 (mm) nucloshell 

- RP (rev phase) C18, 2.7 mm granularity column. Modified from INARE protocols.

3.2.9 Thioacidolysis

Thioacidolysis reagent was carefully prepared in a chemical fume hood as previously 

described (Méchin et al., 2014), resulting in a 9:1 dioxane:ethanethiol mixture with 0.1M 

tetrafluoroboric acid dimethylether. For each sample, 10 mg of cell wall material 

insoluble in alcohol was weighed into screw cap tubes. 7 ml of thioacidolysis reagent was
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added, along with 2.5 mg/ml of heneicosane C21 as an internal standard. The tubes were 

incubated in a 100C oil bath for 4 h and then cooled in ice water. 0.2M NaHCO3 was 

added to each tube, followed by 0.1 ml of 6M HCl. 7 ml of dichloromethane was added 

and tubes were gently mixed. The lower organic fraction was taken and dried over 

anhydrous sodium sulfate, then concentrated by rotoevaporation to approximately 0.5 ml.

5 ul of the concentrated sample was taken for trimethylsilylation with 100ul N,O-

bis(trimethylsilyl)trifluoroacetamide and 10ul pyridine for 1h. Samples were analyzed by 

GC-MS. Modified from INARE protocols.

3.2.10. Neutral sugar analysis

Beginning with cell wall material insoluble in alcohol, 10 mg of each sample was 

hydrolized in 2.5M trifluoroacetic acid for 2h at 100°C, as described in (Harholt et al., 

2006). To determine the cellulose content, the residual pellet obtained after the 

monosaccharide analysis was rinsed twice with ten volumes of ethanol and once with 10 

volumes of acetone and hydrolysed with H2SO4 as described (Updegraff, 1969). The 

released monosaccharides of hemicellulose were diluted 500 times and the released 

glucose of cellulose was diluted 1000 times. Then the monosaccharides were quantified 

using an HPAEC-PAD chromatography as described in (Harholt et al., 2006). Modified 

from INARE protocols.

3.2.11. Yeast one-hybrid assay for protein DNA interaction

In a yeast one-hybrid assay, the interaction between a transcription factor (TF) of interest 

and a DNA sequence of interest are assayed by measuring the activation of a reporter 

gene in a heterologous yeast system.
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The DNA sequence of interest is usually the promoter region of a gene representing 

approximately 1kb of sequence upstream from the gene’s start codon. This sequence is 

cloned and tested in three overlapping fragments for approximately 400bp each. The 

promoter sequence fragment is cloned into the pLUC vector, just upstream from the 

luciferase reporter gene. The finished vector is linearized by restriction digest, and then 

stably transformed into YM4271 yeast to generate reporter lines. Homologous 

recombination of the linearized vector targets the insertion to a specific locus in the yeast 

genome, controlling for transcriptional effects based on insertion point. A number of 

these lines are grown on selective media and then tested for luciferase activity. Lines that 

are not “self active” are selected for use in testing protein-DNA interaction.

The coding sequence for the TF of interest is cloned into the pDEST22 expression vector 

in frame with the Gal4 activation domain (Gal4AD), which induces transcriptional 

activity when bound to DNA. This vector is then transformed into the yeast reporter lines.

If the Gal4AD:TF fusion protein binds to the promoter fragment being tested, the 

Gal4AD with activate transcription of the luciferase gene. Luciferase activity is measured

by adding coelenterazine, a substrate that the luciferase enzyme cleaves. This cleavage 

releases light, which is quantified on a plate reader. By normalizing the luminescent 

reading by the density of cells being tested, we generate a value for relative luciferase 

activity that indicates the degree of protein-DNA interaction. Protein-DNA interactions 

are tested in triplicate.

3.2.12. Genomic DNA Extraction
Tissue samples were collected in 1.5 ml tubes with two metal beads and flash frozen in 

liquid nitrogen. They were ground to a fine powder in frozen blocks in  Retsch 440 bead 
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beater. 600 ul of DNA extraction buffer (100 mM NaCl, 50 mM Tris, 25 mM EDTA 

pH8, 1% SDS, a 10mM 2-mercaptoethanol) was added to each sample while still frozen, 

then vortexed vigorously to mix. Samples were incubated at 65°C for 10 min. 250ul of 

potassium acetate was added,the samples were mixed by inversion and then incubated on 

ice for 20 min. Tubes were centrifuged at 12,000 rpm for 10 min and the supernatant was 

carefully removed and placed in a new tube containing 600 ul of isopropanol. The 

samples were incubated on ice for 20 min to precipitate the nucleic acids, then 

centrifuged at 10,000 rpm. The supernatant was removed and the pellet was washed once 

with 300ul of 70% ethanol followed by a centrifugation at 15,000 rpm for 1 min. The 

supernatant was removed and the pellet was dried under a fume hood for 1h before 

resuspending in 30 ul of DNase free water. 

3.2.13. RNA extraction and RT-qPCR

RNA was extracted from the main stem of plants one day after flowering using the 

Qiagen RNeasy Plant Mini Kit with on-column DNA digestion with RNase-free DNase I 

(Qiagen). First strand cDNA synthesis was performed using 500ng of total RNA with the 

Invitrogen SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR. cDNA 

samples were diluted by a factor of 10 with Rnase-free water. Quantitative PCR was done

in 10ul reactions with 1ul of diluted cDNA using the Qiagen QuantiFast SYBR Green 

PCR Kit. Reactions were run in triplicate on an Eppendorf RealPlex2 Mastercycler. 
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3.3 Results

3.3.1 KNOB7 is a candidate wall regulator and a Class II KNOX gene

To identify genes involved in cell wall regulation, microarray analysis of transcript 

abundance was measured in B. distachyon leaf, root, and stem tissue. The Bradi1g76970 

transcript was highly abundant in root and stem compared to leaf. Additionally, 

Bradi1g76970 expression was highly correlated with other genes known to function in 

cell wall biosynthesis, including secondary cellulose synthases and members of the lignin

biosynthesis pathway, as well as other known and candidate cell wall regulators such as 

SWAM1 and SWAM4. Phylogenetic analysis of Bradi1g76970, henceforth referred to as 

KNOTTED OF BRACHYPODIUM DISTACHYON 7 (KNOB7) showed it to be an 

ortholog of AtKNAT7, a Class II KNOX gene. 
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Figure 3.1 Bradi1g76970 is highly expressed in maturing stem and root. 
Bradi1g76970 transcript measured by microarray from Brachypodium distachyon 
leaf, root, and stem tissue. Mean +/- standard deviation of three biological 
replicates.
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Figure 3.2 KNOX protein phylogeny. Class I and II KNOX genes from B. 
distachyon, Z. mays, O. sativa, A. thaliana, and H. neglectus. KNOB7 (orange) falls 
in the Class II clade as an ortholog of AtKNAT7. Phylogeny is based on amino acid 
sequence, bootstrap values listed on branches.
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DNA binding data from a yeast one-hybrid assay further supported KNOB7 as a 

candidate cell wall regulator. From a panel of cell wall gene regulatory regions, KNOB7 

protein was found to interact with elements of the COMT6 and SWAM1 promoters. 

COMT6, as described in Chapter 1, is a biosynthetic enzyme involved in monolignol 

biosynthesis. SWAM1, also described in Chapter 1, is an R2R3 MYB transcription factor 

that activates secondary cell wall biosynthesis in B. distachyon interfascicular fiber cells 

(Handakumbura et al., 2018). Interestingly, when the KNOB7 promoter was screened 

against our transcription factor library, SWAM1 protein interacted with KNOB7 

regulatory sequences. This suggests that SWAM1 and KNOB7 may regulate each other 

through protein-DNA interactions.
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Figure 3.3 KNOB7 protein interacts with cell wall gene regulatory regions. Yeast 
one-hybrid assay of protein-DNA interaction using a luciferase reporter. KNOB7 
coding sequence fused with the Gal4 activation domain was transformed into yeast 
lines containing promoter:reporter constructs of cell wall promoter fragments 
driving luciferase expression. A) Schematic of three yeast one-hybrid assay. 
Reporter lines were tested for self activity prior to screening, with two non-self 
active lines of each construct chosen for assay. Activation of the reporter was 
measured in triplicate, with quantitative determination luciferase activity. B) 
Schematic showing KNOB7 positive interactions with promoter regions from 
COMT6 and SWAM1. SWAM1 protein was also found to interact with the KNOB7 
promoter.
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3.3.2 KNOB7 genetic reagents

To investigate the role of KNOB7 in plant growth and secondary cell wall development, 

transgenic lines with enhanced or perturbed KNOB7 function were generated (Figure 

3.4). Overexpression lines employed the maize ubiquitin promoter to drive expression of 

the KNOB7 coding sequence fused with engineered green fluorescent protein (GPF), 

hereafter referred to as KNOB7:GFP-OE. Three independent events were selected for 

analysis. Two mutant lines were isolated, knob7-1 and knob7-3. In knob7-1, CRISPR-

Cas9 was used to create a mutation in the DNA binding homeobox domain. This editing 

resulted in a single base pair insertion, causing a frameshift in the homeobox domain. 

knob7-3 was identified from a sodium azide (NaN) mutagenized population (Dalmais et 

al., 2013). Whole genome sequencing of mutants identified families with multiple 

mutations. PCR amplification of the mutation site in multiple individuals of those 

families followed by sequencing identified plants homozygous for the knob7-3 allele, 

which results in a change from a glycine to a serine.
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Figure 3.4 Diagram of KNOB7 genetic reagents. A) Schematic of the KNOB7 protein
showing domain annotation and position of mutations . Numbers represent amino 
acid position. knob7-1 contains a frameshift in the DNA binding homeobox domain 
(HB) caused by targeted mutagenesis with CRISPR/Cas9. knob7-3 is a sodium azide 
(NaN) induced point mutation causing a change from a wildtype glycine to a serine 
near the ELK domain. B) KNOB7 overexpression transgene. The maize ubiquitin 
promoter was used to drive expression of the KNOB7 coding sequence fused in 
frame with eGFP. LB, left border; ZmUbi prom, maize ubiquitin promoter; Hyg, 
hygromycin phosphotransferase gene; NOS, nopaline synthase terminator; RB, 
right border.
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In both knob7-1 and knob7-3 mutant lines, expression of KNOB7 transcript was not 

affected by the mutations. In KNOB7:GFP OE lines, the KNOB7 transcript was 

overexpressed compared to the wildtype (Fig 3.5.)

Figure 3.5 Expression of KNOB7 in mutant and overexpression lines. Relative level 
of KNOB7 gene expression measured by RT-qPCR in KNOB7 mutant (A) and 
KNOB- OE (B) lines. Whole stem tissue was collected 1 day after inflorescence 
emergence.
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3.3.3 KNOB7 localizes to the nucleus

KNOB7 localization was first examined by transient expression in Physcomitrella patens

(Figure 3.6A). Transformation with KNOB7:GFP-OE resulted in a localized GFP signal 

that resembles a nuclear localized GFP control (Ubi::NLS:GFP). Constitutive GFP 

lacking a nuclear localization signal (Ubi::GFP) was present throughout the cell, and 

overlapped with the constitutive mCherry control (Ubi::mCherry). KNOB7 localization 

was further confirmed in planta when analyzing transgenic plants regenerated from tissue

culture. KNOB7:GFP-OE plants showed nuclear localized GFP signal in leaf tissue, 

compared with wildtype non-transgenic controls (Figure 3.6B).

Figure 3.6 KNOB7 localizes to the nucleus. A) Transient expression of KNOB7:GFP 
in P. patens shows nuclear localization. Ubi:mCherry and Ubi::GFP are used as 
constitutively localized controls. Nuclear localized GFP (Ubi::NLS:GFP) showed the
same localization pattern as KNOB7:GFP. B) KNOB7:GFP-OE transgenics show 
nuclear localization in leaf epidermal cells. GFP nuclear signal is seen in 
KNOB7:GFP-OE leaf and not in wildtype. Red signal is chlorophyll 
autofluorescence.
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3.3.4 KNOB7 is a negative regulator of interfascicular fiber wall thickening and 
lignification

Cell wall deposition and stem biology was measured in the KNOB7 reagent panel. 

Transverse sections of the senesced second stem internode and stained with 

phloroglucinol-HCl and Toluidine blue (Figure 3.7). Phloroglucinol-HCl acts as a general

stain for lignin, causing a reddish-pink pigmentation when reacting with lignified 

cinnamyl aldehydes. Toluidine blue is a polychromatic stain that interacts with both 

lignin and polysaccharides. Lignin stains a blueish-green hue, while polysaccharide 

components such as cellulose and hemicelluloses stain a darker blue-purple. Compared to

wildtype, knob7-1 and knob7-3 appeared somewhat similar when stained with 

phloroglucinol, but both showed greater blue-green coloration when dyed with toluidine 

blue, indicating a higher lignin content in the interfascicular fiber walls. KNOB7:GFP-

OE plants showed almost no red coloration when stained with phloroglucinol, and 

toluidine blue staining resulted in a dark blue/purple coloration. Both of these 

observations indicate a relative lack of lignin in the interfascicular fiber walls. Lignin 

content was further measured by the acetyl bromide soluble lignin method (ABSL). 

Results quantitatively reflected what was observed by histology; that there was greater 

lignin content in knob7-1 and knob7-3 stems, with significantly less lignin in 

KNOB7:GFP OE (Figure 3.8).
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Figure 3.7 KNOB7 negatively regulates lignification in interfascicular fibers. (A-D) 
Second internode sections of senesced stems stained with phloroglucinol-HCL, with 
red coloration as a proxy for lignin. (E-H) Second internode sections of senesced 
stems stained with Toluidine blue, with blue-purple indicating polysaccharides and 
teal-green indicating lignin. Compared to wildtype Bd21-3 (A,E), knob7-1 (B,F) and 
knob7-3 (C,G) mutants have more lignin staining, particularly evident in the 
toluidine blue stained sections. KNOB7:GFP OE plants (D,F) have drastically less 
lignin, evident in both phloroglucinol and toluidine blue staining. Scale bar = 
100um.
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Figure 3.8 KNOB7 is a negative regulator of lignin. Acetyl bromide soluble lignin 
measured in extractive free cell wall material prepared from the main stem after 
senescence. ns: p>0,05, *: p<=0.05. n=8-12 plants per genotype.

Interfascicular fiber wall thickness was also quantified in the KNOB7 reagent panel. 

knob7-1 plants had thicker walls compared to wildtype, while knob7-3 and 

KNOB7:GFP-OE walls were not significantly different (Figure 3.9). 
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Figure 3.9 KNOB7 is a negative regulator of interfascicular fiber wall thickness. Cell
wall thickness was quantified for interfascicular fiber cells in transverse sections of 
the second elongated internode. ns: p>0,05, *: p<=0.05. n=5-8 plants per genotype.

3.3.5 KNOB7 alters lignin composition and levels of wall bound hydroxycinnamic 
acids

Other aspects of KNOB7 reagent secondary cell wall content was assessed. For knob7-1 

and knob7-3, measurements were made of hydroxycinnamic acid content by mild alkaline

hydrolysis followed by HPLC-MS. Ferulic acid (FA) and p-coumaric acid (pCA) content 

was measured, and both mutants showed significantly higher levels of FA compared to 

their respective wildtype controls. knob7-3 also showed significantly higher pCA levels, 

while knob7-1 showed a non-significant increase (Figure 3.10).
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Figure 3.10 Wall-bound hydroxycinnamic acids are increased in knob7-1 and 
knob7-3 mutant lines. Mild alkaline hydrolysis on extractive free cell wall material 
prepared from the main stem of knob7-1 plants one day after flowering (green 
tissue) or knob7-3 plants after senescence (dry) released ferulic acid (FA) p-
coumaric acid (pCA) from secondary cell wall polymers and quantified by HPLC-
MS. Mean comparison by pairwise t-test after ANOVA testing. ns: p>0,05, *: 
p<=0.05. n=4-7 plants per genotype.

Lignin composition was measured in wildtype and knob7-3 plants by thioacidolysis and 

GC-MS. This method allows quantification of the three main monolignol subunits, S, G, 

and H. Compared to wildtype, knob7-3 plants had more S lignin and less G lignin (Figure

3.11A). This was further reflected in the entire KNOB7 genetic reagent panel stained with

Maule reagent. This stain identifies S lignin units with a cherry red coloration (Figure 

3.11B). Compared to wildtype, knob7-1 and knob7-3 stems show brighter red color in the

interfascicular fibers, while KNOB7:GFP OE still stains red, but a duller hue than the 

mutants or wildtype.
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Figure 3.11 KNOB7 mutant alleles have increased S lignin content. Thioacidolysis of
extractive free cell wall material prepared from the main stem of knob7-3 plants 
after senescence released lignin monomer components (A-C), which were quantified 
by GC-MS. D) Transverse sections of the second elongated internode of the main 
stem after senescence were stained with Maule reagent to identify S lignin. Cherry-
red coloration represents greater quantities of S lignin. ns: p>0,05, *: p<=0.05. n=3 
plants per genotype.

3.3.6 KNOB7 alters cell wall polysaccharide content

In knob7-1 plants, neutral sugar analysis was conducted to look at the secondary cell wall

polysaccharide content. Compared to wildtype, knob7-1 plants had significantly more 

xylose (Figure 3.12). knob7-1 also showed a significant decrease in arabinose and 

rhamnose levels , with no change in glucose, non-cellulosic glucose, or galactose.
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Figure 3.12 Neutral sugar analysis of knob7-1. Hydrolysis of lyophilized, extractive 
free cell wall material prepared from the main stem of knob7-1 plants one day after 
flowering. Trifluoroacetic acid hydrolysis released cellulosic glucose, while sulfuric 
acid hydrolysis was employed to release arabinose, galactose, glucose, rhamnose, 
and xylose. Compounds were identified and quantified by HPLC. ns: p>0,05, *: 
p<=0.05. n=4-6 plants per genotype.
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3.4 Discussion

KNOB7 was identified as a candidate wall regulator based on homology with the well 

characterized ortholog in A. thaliana, AtKNAT7. As with AtKNAT7, KNOB7 is highly 

enriched for secondary cell walls. The KNOB7 protein interacted with the promoter of 

genes that encode the lignin pathway enzyme COMT6 in a yeast one-hybrid assay. 

AtKNAT7 is a known regulator of secondary cell wall synthesis, including regulation of 

lignin synthesis (Zhong et al., 2008a; Li et al., 2012; Liu et al., 2014; He et al., 2018). 

This evidence prompted us to further characterize KNOB7 function as a regulator of wall 

thickening.

KNOB7 overexpression and two mutant alleles did not display any overt growth or 

stature phenotypes, but stem cross section histology revealed distinct changes in cell wall 

composition and morphology. Histo-chemical staining of KNOB7-OE plants showed a 

drastic decrease in interfascicular fiber lignin content, while knob7-1 and knob7-3 

showed an increase. These observations were further substantiated by measuring lignin 

content in mature stems. KNOB7-OE showed significantly less lignin content, while 

knob7-1 showed significantly more, supporting the histochemical staining. knob7-3 did 

not show a significant difference, possibly due to large variance among the replicates. 

These data support the role of KNOB7 as a negative regulator of lignin deposition in 

interfascicular fiber cells. Similarly, AtKNAT7 and PoptrKNAT7 mutants exhibited an 

increase in lignin accumulation (Li et al., 2012; Wang et al., 2020). A lignin phenotype 

was not observed in mutants of KNOB7 the rice ortholog OsKNOR1 (Wang et al., 2019). 

Yeast data also substantiates KNOB7’s role in regulating lignin synthesis. KNOB7 bound
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the COMT6 promoter, a key enzyme in the final steps of lignin synthesis. Repression of 

COMT6 would be consistent with the observed changes in lignin quantity in the KNOB7 

reagents, with less accumulation in the KNOB7-OE and more in knob7-1. COMT6 

regulation is also consistent with the observed increase in S lignin in knob7-1 and knob7-

3 by Maule staining and thioacidolysis. COMT6 mediates the conversion of 

coniferaldehyde to sinapaldehyde, and de-repression of this activity in knob7-1 and 

knob7-3 could result in more S lignin derived from sinapaldehyde.

Cell wall thickness is another hallmark trait impacted by AtKNAT7 and orthologs in other

species (Zhong et al., 2008a; Li et al., 2012; Wang et al., 2020). Interestingly, AtKNAT7 

appears to have an opposite effect on interfascicular fibers and xylem. Xylem cells have 

thin walls and some will collapse, while the interfascicular fibers are significantly thicker.

We did not observe a collapsed xylem phenotype in either knob7-1 or knob7-3 mutant 

lines. However, while collapsed or irregular xylem is a common feature of wall mutants 

in A. thaliana and a trait used to identify cell wall mutants, it has only been reported once

in a grass to my knowledge, in the B. distachyon spaghetti 1 (spa1) mutant. (Turner & 

Somerville, 1997; Ehlting et al., 2005; Persson et al., 2005; Brown et al., 2005b; 

Timpano et al., 2015). The causative gene behind the spa1 phenotype has yet to be 

determined (Timpano et al., 2015). OsKNOR1 mutants do not have irregular xylem 

(Wang et al., 2019). There may be differences in grass vasculature such as a surrounding 

layer of mestome and bundle sheath cells or differences in xylem physical properties 

(Coomey et al., 2020). Fiber wall thickness is impacted in knob7-1 plants, with thicker 

walls than wild type. This is consistent with the observation in both AtKNAT7 and 

OsKNOR1 mutants (Zhong et al., 2008a; Li et al., 2012; Wang et al., 2020). 
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Overexpression of AtKNAT7 or OsKNOR1 resulted in thinner fiber cell walls. In my 

study, KNOB7-OE fiber walls are not significantly thinner.

Other aspects of cell wall chemistry were also assayed in KNOB7 mutants. The 

hydroxycinnamates pCA and FA are derivatives of the lignin biosynthetic pathway and in

grass secondary cell walls they can be linked to either heteroxylans and lignins (Bartley 

et al., 2013; Petrik et al., 2014; Smith et al., 2017). Both knob7-1 and knob7-3 had a 

significant increase in cell wall bound FA, and knob7-3 also had a significant increase in 

pCA. These measurements were not made in OsKNOR1 or AtKNAT7. There was also a 

shift in lignin chemistry observed in KNOB7 reagents. The proportions of each main 

monolignol, S, G, and H, was measured in knob7-3, to reveal an increase in S lignin with 

a commensurate decrease in G lignin. Maule staining detects S lignin, and both knob7-1 

and knob7-3 showed increased Maule staining intensity while KNOB7:GFP-OE showed 

less. This is the opposite phenotype that was described in AtKNAT7 mutants, where an 

increase in G lignin was observed (Wang et al., 2020). Together with the increase in FA 

and pCA, the shift towards S lignin in KNOB7 mutants suggests a somewhat different 

mechanism for lignin regulation in grasses. Several aspects of grass lignin biosynthesis 

are distinct from eudicots and the difference in KNOB7 mutant phenotypes may reflect 

such differences (Lan et al., 2015; Barros et al., 2016, 2019; Coomey et al., 2020).

Polysaccharide content was also measured by trifluoroacetic acid and sulfuric acid 

hydrolysis to release neutral sugars. knob7-1 showed a significant increase in xylose 

content, and a significant decrease in arabinose and rhamnose. As with S and G lignin 

content, these measures of xylose and arabinose show the opposite trend reported for 

AtKNAT7 mutants. In A. thaliana, AtKNAT7 activates xylan biosynthesis, and mutants 
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had less xylose and more arabinose (He et al., 2018). Again, this may be a result of the 

fundamental difference in grass secondary cell walls compared to eudicots such as a 

xylose backbone decorated with side chains of xylose, arabinose, and glucuronic acid in 

grasses and xyloglucan in eudicots (Coomey et al., 2020). The decrease in arabinose and 

increase in pCA is noteworthy, as the addition of pCA to heteroxylans is through 

arabinose linkage, which may suggest that the increased pCA in knob7-3 may be 

associated with lignin (Petrik et al., 2014).

Reciprocal binding between KNOB7 and SWAM1 in yeast one-hybrid assays raises the 

interesting question of negative feedback regulation. SWAM1 is a characterized activator 

of interfascicular fiber secondary cell walls (Handakumbura et al., 2018), and my data 

suggests that KNOB7 is a repressor in this tissue. In SWAM1-OE plants KNOB7 is 

upregulated, and similarly down regulated in the SWAM1 dominant repressor lines 

(Hazen lab unpublished data), further suggesting KNOB7 is a direct target of SWAM1 

regulation. I would expect to find an increase in SWAM1 expression in KNOB7 mutants, 

and a decrease in KNOB7-OE, although these measurements have not yet been made. It 

would be interesting to investigate the SWAM1-KNOB7 relationship over time to better 

understand how these two transcription factors with similar expression patterns, 

reciprocal binding, but opposite transcriptional polarities may act in a feedback loop to 

fine tune fiber wall synthesis.
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CHAPTER 4

CONCLUSIONS

The focus of my research was to better understand the factors that regulate growth in 

grasses. While we have uncovered many aspects of growth dynamics in eudicot systems, 

grasses represent an understudied region of the plant kingdom that is of great ecological, 

agricultural, and economic importance. I chose to study the genetic regulation of 

secondary cell wall synthesis. Grasses have distinct secondary cell wall properties from 

eudicots, and are critical to proper growth and development, and as such drew my interest

to better understand this aspect of growth. To this end, I chose two candidate cell wall 

regulators, SWIZ and KNOB7, to characterize for their roles in the regulation of 

secondary cell wall synthesis.

SWIZ is a Group I bZIP that is highly expressed in root and stem tissue. Gain of function 

and loss of function lines both had reduced height and thick fiber cell walls. Like other 

characterid Group I bZIPs, SWIZ translocates within the cell in response to mechanical 

stimuli and cellular bioactive GA levels. This mode of action prompted me to look at the 

connection between SWIZ function and touch responsive growth. B. distachyon shows 

classic thigmomorphogenic traits such as reduced height and increased branching in 

response to mechanical stimulus. SWIZ appears to play a role in regulating cell wall 

thickening in response to touch, specifically the touch induced inactivation of cellular 

GA. Under touched conditions, SWIZ-OE lines had thicker cell walls in the touched 

portion of their stems. The direct genetic targets of SWIZ regulation that are responsible 

for these phenotypic outputs have yet to be identified, but components of lignin and 
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cellulose biosynthesis identified in yeast as binding targets are likely candidates. I found 

SWIZ to bind a motif similar to close orthologs in A. thaliana, and in vitro protein-DNA 

binding has identified a number of regulatory candidates with suggestive roles in other 

aspects thigmomorphogenesis. 

KNOB7 is the ortholog of AtKNAT7, a known regulator of cell wall thickening and 

lignification in A. thaliana. The role of similar genes in cell wall synthesis have been 

shown in other species such as rice and poplar, and KNOB7 phenotypes are largely 

consistent with these reports. I generated gain of function lines overexpressing KNOB7 

and loss of function lines with a frameshift in the DNA binding domain and a non-

synonymous point mutation. I showed distinct and reciprocal changes in interfascicular 

fiber cell wall thickness and lignification in these lines, as well as changes in lignin and 

polysaccharide chemistry that are all consistent with the role of KNOB7 as a negative 

regulator of secondary cell wall synthesis in interfascicular fiber cells.  

In summary, I characterized SWIZ, a novel component of thigmomorphogenic signalling 

that impacts stem elongation and fiber wall thickening, as well as KNOB7, an ortholog of 

an established negative regulator of cell wall synthesis and lignification. These findings 

contribute to our growing understanding of secondary cell wall synthesis and growth 

dynamics in grasses. 
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APPENDIX 1.

SUPPLEMENTAL DATA

Table A1. GO terms from BdSWIZ DAP-seq, all peaks. BP: biological process, CC: 
cellular compartment, MF: molecular function 

term_name p_value source

cellular process 0.0000000 GO:BP

cellular metabolic process 0.0000000 GO:BP

primary metabolic process 0.0000000 GO:BP

metabolic process 0.0000000 GO:BP

organic substance metabolic process 0.0000000 GO:BP

macromolecule metabolic process 0.0000000 GO:BP

developmental process 0.0000000 GO:BP

anatomical structure development 0.0000000 GO:BP

nitrogen compound metabolic process 0.0000000 GO:BP

cellular macromolecule metabolic process 0.0000000 GO:BP

system development 0.0000000 GO:BP

multicellular organism development 0.0000000 GO:BP

multicellular organismal process 0.0000000 GO:BP

organic cyclic compound metabolic process 0.0000000 GO:BP

nucleobase-containing compound metabolic process 0.0000000 GO:BP

nucleic acid metabolic process 0.0000001 GO:BP

heterocycle metabolic process 0.0000001 GO:BP

cellular nitrogen compound metabolic process 0.0000002 GO:BP

gene expression 0.0000002 GO:BP
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reproductive structure development 0.0000004 GO:BP

cellular biosynthetic process 0.0000005 GO:BP

reproductive system development 0.0000005 GO:BP

cellular aromatic compound metabolic process 0.0000006 GO:BP

organic substance biosynthetic process 0.0000010 GO:BP

biosynthetic process 0.0000012 GO:BP

RNA metabolic process 0.0000015 GO:BP

post-embryonic development 0.0000015 GO:BP

shoot system development 0.0000026 GO:BP

cellular nitrogen compound biosynthetic process 0.0000031 GO:BP

plant organ development 0.0000036 GO:BP

developmental process involved in reproduction 0.0000060 GO:BP

biological regulation 0.0000067 GO:BP

organic cyclic compound biosynthetic process 0.0000068 GO:BP

heterocycle biosynthetic process 0.0000073 GO:BP

cellular macromolecule biosynthetic process 0.0000107 GO:BP

nucleobase-containing compound biosynthetic process 0.0000213 GO:BP

macromolecule biosynthetic process 0.0000247 GO:BP

aromatic compound biosynthetic process 0.0000463 GO:BP

regulation of biological process 0.0000564 GO:BP

regulation of gene expression 0.0000936 GO:BP

reproductive process 0.0001303 GO:BP

reproduction 0.0001868 GO:BP

regulation of cellular biosynthetic process 0.0005636 GO:BP

124



regulation of metabolic process 0.0005645 GO:BP

response to chemical 0.0006048 GO:BP

regulation of biosynthetic process 0.0006053 GO:BP

flower development 0.0008218 GO:BP

response to hormone 0.0008666 GO:BP

reproductive shoot system development 0.0009754 GO:BP

regulation of macromolecule metabolic process 0.0012356 GO:BP

phyllome development 0.0013152 GO:BP

regulation of macromolecule biosynthetic process 0.0013204 GO:BP

response to endogenous stimulus 0.0014990 GO:BP

transcription, DNA-templated 0.0019793 GO:BP

nucleic acid-templated transcription 0.0020197 GO:BP

regulation of cellular process 0.0020463 GO:BP

RNA biosynthetic process 0.0021665 GO:BP

regulation of cellular macromolecule biosynthetic 
process

0.0026062 GO:BP

gene silencing by RNA 0.0027765 GO:BP

organelle organization 0.0030782 GO:BP

regulation of biological quality 0.0033614 GO:BP

cellular component organization or biogenesis 0.0033679 GO:BP

plant organ senescence 0.0041155 GO:BP

response to organic substance 0.0051848 GO:BP

leaf senescence 0.0052706 GO:BP

aging 0.0084409 GO:BP

regulation of cellular metabolic process 0.0090811 GO:BP
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response to abiotic stimulus 0.0101369 GO:BP

leaf development 0.0110133 GO:BP

negative regulation of biological process 0.0127206 GO:BP

macromolecule modification 0.0127621 GO:BP

regulation of RNA biosynthetic process 0.0130470 GO:BP

regulation of nucleic acid-templated transcription 0.0130470 GO:BP

regulation of multicellular organismal development 0.0130605 GO:BP

cellular component organization 0.0182790 GO:BP

response to stimulus 0.0195774 GO:BP

regulation of nucleobase-containing compound 
metabolic process

0.0217206 GO:BP

regulation of transcription, DNA-templated 0.0232153 GO:BP

response to acid chemical 0.0250820 GO:BP

regulation of RNA metabolic process 0.0255394 GO:BP

regulation of primary metabolic process 0.0269112 GO:BP

regulation of nitrogen compound metabolic process 0.0290404 GO:BP

root system development 0.0301771 GO:BP

response to oxygen-containing compound 0.0343170 GO:BP

negative regulation of gene expression 0.0383999 GO:BP

chromosome organization 0.0397219 GO:BP

transport 0.0443506 GO:BP

regulation of developmental process 0.0461319 GO:BP

cellular response to auxin stimulus 0.0462899 GO:BP

intracellular membrane-bounded organelle 0.0000000 GO:CC

intracellular 0.0000000 GO:CC
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membrane-bounded organelle 0.0000000 GO:CC

intracellular organelle 0.0000000 GO:CC

organelle 0.0000000 GO:CC

cellular anatomical entity 0.0000000 GO:CC

cytoplasm 0.0000001 GO:CC

nucleus 0.0000439 GO:CC

chloroplast 0.0092619 GO:CC

plastid 0.0100642 GO:CC

phragmoplast 0.0456189 GO:CC

binding 0.0000016 GO:MF

heterocyclic compound binding 0.0002803 GO:MF

organic cyclic compound binding 0.0003742 GO:MF

nucleic acid binding 0.0015161 GO:MF

quinone binding 0.0024166 GO:MF

NADH dehydrogenase (quinone) activity 0.0183459 GO:MF

NADH dehydrogenase (ubiquinone) activity 0.0183459 GO:MF

DNA binding 0.0232223 GO:MF

purine ribonucleoside triphosphate binding 0.0326870 GO:MF

regulatory region nucleic acid binding 0.0446473 GO:MF

transcription regulatory region DNA binding 0.0446473 GO:MF

Flower Development (Initiation) 0.0499796 WP

Table A2. GO terms from BdSWIZ DAP-seq, filtered for those containing the 
conserved bZIPS binding motif. BP: biological process, CC: cellular compartment, 
MF: molecular function

term_name p_value source
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macromolecule metabolic 
process

0.0000035 GO:BP

cellular process 0.0000045 GO:BP

nitrogen compound 
metabolic process

0.0000122 GO:BP

primary metabolic process 0.0000156 GO:BP

developmental process 0.0000163 GO:BP

organic substance 
metabolic process

0.0000360 GO:BP

anatomical structure 
development

0.0000890 GO:BP

cellular macromolecule 
metabolic process

0.0001476 GO:BP

cellular metabolic process 0.0002232 GO:BP

metabolic process 0.0005963 GO:BP

macromolecule 
modification

0.0006115 GO:BP

system development 0.0010455 GO:BP

nucleic acid metabolic 
process

0.0014878 GO:BP

regulation of biological 
process

0.0015938 GO:BP

biological regulation 0.0016184 GO:BP

multicellular organism 
development

0.0017097 GO:BP

organelle organization 0.0026917 GO:BP

cellular protein 
modification process

0.0028097 GO:BP

protein modification 
process

0.0028097 GO:BP

regulation of cellular 
process

0.0041738 GO:BP

multicellular organismal 
process

0.0065802 GO:BP

regulation of metabolic 
process

0.0079294 GO:BP
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peptidyl-amino acid 
modification

0.0094872 GO:BP

organic cyclic compound 
metabolic process

0.0139963 GO:BP

RNA metabolic process 0.0158412 GO:BP

chromosome organization 0.0183656 GO:BP

regulation of cellular 
metabolic process

0.0200114 GO:BP

gene expression 0.0263629 GO:BP

heterocycle metabolic 
process

0.0285357 GO:BP

protein phosphorylation 0.0341980 GO:BP

intracellular 0.0000001 GO:CC

cellular anatomical entity 0.0000184 GO:CC

intracellular organelle 0.0000208 GO:CC

intracellular membrane-
bounded organelle

0.0000215 GO:CC

membrane-bounded 
organelle

0.0000341 GO:CC

organelle 0.0000435 GO:CC

nucleus 0.0250913 GO:CC

cytoplasm 0.0262437 GO:CC

H4 histone 
acetyltransferase complex

0.0443973 GO:CC

tubulin complex 0.0499389 GO:CC

heterocyclic compound 
binding

0.0000009 GO:MF

organic cyclic compound 
binding

0.0000013 GO:MF

purine ribonucleoside 
triphosphate binding

0.0000030 GO:MF

binding 0.0000143 GO:MF

purine ribonucleotide 
binding

0.0000168 GO:MF

purine nucleotide binding 0.0000192 GO:MF

drug binding 0.0000197 GO:MF

ribonucleotide binding 0.0000290 GO:MF

ATP binding 0.0000314 GO:MF
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carbohydrate derivative 
binding

0.0000627 GO:MF

adenyl ribonucleotide 
binding

0.0001601 GO:MF

small molecule binding 0.0001660 GO:MF

adenyl nucleotide binding 0.0001788 GO:MF

nucleotide binding 0.0002200 GO:MF

nucleoside phosphate 
binding

0.0002200 GO:MF

anion binding 0.0004213 GO:MF

ion binding 0.0034454 GO:MF

phosphotransferase 
activity, alcohol group as 
acceptor

0.0144359 GO:MF

kinase activity 0.0220999 GO:MF

protein serine/threonine 
kinase activity

0.0231489 GO:MF

protein kinase activity 0.0246808 GO:MF

Table A3. SWIZ protein-DNA interactions from yeast one hybrid assay 

TARGET TARGET SEQUENCE TF TF Locus ID At homolog

CAD-1-1

ACATAATTCGCGGGA
TCAATTTCCACCTCCG
GGCAATCGAGCGAGA
TGTGAATATCTGATCC
CACGACAACTTCCAC
ACACAGGCTGAGATG
ATATTTTTTTTTCATC
CTCTGCACTAAAAAA
GAAAAGCTTAAGCTA
GCCACAGAAGATCCA
GCCGCACAATGATAG
AAAACGCGCCCCACC
TGATCACGGCTGCCG
CTGGCAGTCAGTT SWIZ Bradi1g17700 bZip52

CAD-2
AGATCATGTCCTAGT
CCTTCTACCAAACAA SWIZ Bradi1g17700 bZip52
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ATACATCACCTGCTCC
CATTCGACGATGATC
ATCTTGACTTGACGTA
GCAATTAGCATATAC
CAACGAGCGGGGCCG
ATGAAAGAGCTTAAC
ACACCTTCGGTTACGT
GCTCGCATTTCATATT
TCCACTTGTTAACATA
TCCTCCCTTAGCTTGG
CCTCTCTTGTACACAA
GAGGAGAGGGCCAAA
TTAATTCTCGAATATA
AATTGCGCATCCAAA
CTGTTTGAAAATCAA
ATCTGCTACTAATAA
GAAGGACATGAATAC
AACAACATAATTCGC
GGGATCAATTTCCAC
CTCCGGGCAATCGAG
CGAGATGTGAATATC
TGATCCCACGACAAC
TTCCACACACAGGCT
GAGATGATATTTTTTT
TTCATCCTCTGCACTA
AAAAAGAAAAGCT

CESA4-1

GCCTGGAGAAGTGGC
CGAGCAGTGTTTTGC
AGAGAttggtgattactttgcaa
aaggcctcagctaatgttgtttgagg
caattttctgatctgttatgttggtttgc
actctgatagcttatggtaaaagata
cagaaatgttgaggttttgtatgcca
ccaagttttcctcatacttgatagctt
atgacaagacatcgttgggtgcata
ataatctatggatatcacagcataaa
atatttgccgttttgtttaaaacatttcc
catcagcattcccgagctggcacaa
cggaagctggcatacgcacgtata
atcttcccttcctttcctcattagatca
cgtccctgcttggatgcctaggtac SWIZ Bradi1g17700 bZip52
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aagttgatttttgtgc

COMT-1

ATCCTCATGTCGTGTG
CATGGGATGGTAACT
CCGACAGGATGTTGC
ACCACCAACCCTTCG
CGACAACAAGTATAT
CTTTTTTATCCTAACG
TGACGTATATATTTGA
TCTGAGTATACGCAA
AATAAAAAACTATCA
GGAAAACAACCCCAC
TTATCAACAACAACT
ACTACTATGATGTAA
ACACACACATATTTTT
CCCCGGTACCACATTT
CTCCCTCACCTTTTCT
CCCAAAGTCGAAGAA
GAAGGGGAAAAAAA
CTCAGTTGGTGTGGT
GTGGTGGTTGGTGAA
TGCAGAAAAGCCATA
TAACCCCTCCCACATC
CTCCCTCCCAAATCAC
ACCCTCATCTCCTCTC
AGTCGCTCACTCACA
CCAAGAAGGCAAGAA
CACACCTACCAAGCA
GAAAGAAGAAGCAGC
CAGCAACCCCCAGCA
GCAATTCGATCC SWIZ Bradi1g17700 bZip52

COMT-3

ATCCTCAAGTTGAGG
ACATGGCATAGCTGA
TCCAAACGAATCCGT
AAAGACCTTAACCTA
AAAGTGAAATGATAA
CATGTTGTCAGCAGG
TCAAAATTAAAACCA
GGCTCATGTCAAAAT
CTTGAGAGAAATTTT
AGTTTAGGAGTTGAG
CCAGGGATCAAATTC KNOB7 Bradi1g76970 KNAT7
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AGAGACCAAAAGTAT
CCTTTTTCTTCTTATTT
TCCGTTTTGTCTGATC
CTGACGACGGGTGTA
TAGGCTATGATGACA
AGGAATCCGGACTTG
AAAAATGAAAACTTG
TCGACCGCTATCACT
GACCAAGCGTGACAC
ACATTGCTGGCCACTT
GATCACACTTGCTCA
CGCTTCAACTCCAACT
AAACCCTGCATCTGC
ATGCGTTCCACCCAC
CCTCCATCACCATCAC
GAGACCGATCAAACT
GAATTTTCCTACTCTC
GTCATTGCTATCTCCA

SWAM1

AACGATTTTAGGGGC
AGTGATCCGGTTATTC
CCGTTCGAGAAAAAC
AGCGTTCTATTTACAC
GGGCGAGTGCGACCT
CAGCCACCCGCATCG
AACGTTTCGACCCTA
GCTAGCTAGCTCGCC
TAGCGTGGTGTAGCG
TCAGGTTGTCACGGTT
CACCACCGCGCGGGC
GACGGGATTAATTGC
GCGCTCGGCCCATTT
GCAAATCGATATGGA
CGGAACGCGGCAGTC
AAGCAAAAGCCTGTC
GATAGCATATGACAC
ACAGGGTTAGTGCGA
TCAATGTAATCCAAG
CACAGCTAATACGAG
ACTATTATATAGCAG
CACAACGTGGCCGCT
CTGTTGAAATGTTCTG KNOB7 Bradi1g76970 KNAT7
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CATTGATGTGTTGTGT
TTGCGCCAGTA

Table A4. Primers used in these studies.

Primer Sequence Purpose

Hpt_F agaatctcgtgctttcagcttcga
Hygromycin resistance gene marker for 
genotyping

Hpt_R tcaagaccaatgcggagcatatac
Hygromycin resistance gene marker for 
genotyping

Zm_Ubi_F agctacgggggattccttt Genotyping OE lines

HB9cas9_2geno_
F ccgagctagttagcacttagc Genotyping the knob7-1 locus

HB9cas9_2geno_
R gccattggtcagactagtgg Genotyping the knob7-1 locus

KNOB7:GFP_F gcagcaacactccaagtggcc
Confirming KNOB7:GFP fusion construct. 
Binds the top strand of KNOB7

KNOB7:GFP_R ccttgaagaagatggtgcgctcc
Confirming KNOB7:GFP fusion construct. 
Binds the bottom strand of GFP

NaN451F GTATGATCGTCAGGTGCGACG Genotyping the knob7-3 allele

NaN451R2 CCTTGACTTGAAGCCCTGCAA Genotyping the knob7-3 allele 

qPCR_CESA8_F caaagcacaaagttccgcctgtg Gene expression of BdCESA8 (Bradi2g49912)

qPCR_CESA8_R tggctcgtatgcatctgtcaaatc Gene expression of BdCESA8 (Bradi2g49912)

qPCR_CESA4_F gcgtttcgcatacaccaacacc Gene expression of BdCESA4 (Bradi3g28350)

qPCR_CESA4_R actcgctaggttgttcagtgtgg Gene expression of BdCESA4 (Bradi3g28350)

qPCR_COMT6_F tggagagctggtactacctgaag Gene expression of BdCOMT6 (Bradi3g16530)

qPCR_COMT6_R cgacatcccgtatgccttgttg Gene expression of BdCOMT6 (Bradi3g16530)

qPCR_CAD1_F aggatagaatgggcagcatcgc Gene expression of BdCAD1 (Bradi3g06480)

qPCR_CAD1_R atcttcagggcctgtcttcctgag Gene expression of BdCAD1 (Bradi3g06480)

qPCR_CESA7_F gcgattcgcctacatcaacaccc Gene expression of BdCESA7 (Bradi4g30540)

qPCR_CESA7_R ggctggcaaatgtgctaatcgg Gene expression of BdCESA7 (Bradi4g30540)

qPCR_UBC18_F tcacccgcaatgactgtaagttc
Gene expression of BdUBC18, housekeeping 
Bd5g25870

qPCR_UBC_R ttgtcttgcggacgttgctttg
Gene expression of BdUBC18, housekeeping 
Bd5g25870

BdActin-F
TGGATTGGAGGATCCATCTTG
GCA

Gene expression of BRADI1g10630 (homolog 
of ACT11), housekeeping

BdActin-R
AGCATTTCCTGTGCACAATGG
ACG

Gene expression of BRADI1g10630 (homolog 
of ACT11), housekeeping

KNOB7_qPCR_F tccttgcaggacctaactggtg Gene expression of BdKNOB7 (Bradi1g76970)

KNOB7_qPCR_R ttcgtcctctgacatggttgcg Gene expression of BdKNOB7 (Bradi1g76970)

qPCR_HYG_F atttcggctccaacaatgtc Gene expression of HPT hygromycin resistance 
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gene

qPCR_HYG_R gcgacctcgtattggCaat
Gene expression of HPT hygromycin resistance 
gene

bZZIP6miR-s2 agtgactgggaagagattcagtttga Constructing swiz-amiRNA

bZZIP6miR-a2 tgtagcgtgaacctgctgctacagcc Constructing swiz-amiRNA

bZZIP6miR-*s2 cttagcgagaagctgctgctaggctg Constructing swiz-amiRNA

bZZIP6miR-*a2 aatgactgggaagaggcaaaagtgaa Constructing swiz-amiRNA
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