
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

5-8-2020 

Defining the let-7 microRNA-mediated molecular mechanisms Defining the let-7 microRNA-mediated molecular mechanisms 

regulating T cell differentiation regulating T cell differentiation 

Constance C. Angelou 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Immunity Commons 

Recommended Citation Recommended Citation 
Angelou, Constance C., "Defining the let-7 microRNA-mediated molecular mechanisms regulating T cell 
differentiation" (2020). Doctoral Dissertations. 1901. 
https://doi.org/10.7275/z0n5-td13 https://scholarworks.umass.edu/dissertations_2/1901 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1901&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/34?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/z0n5-td13
https://scholarworks.umass.edu/dissertations_2/1901?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1901&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 
 
 
 
 
 

DEFINING THE LET-7 MICRORNA-MEDIATED MOLECULAR 
MECHANISMS REGULATING T CELL DIFFERENTIATION 

 
 
 
 
 
 
 
 

A Dissertation Presented 
 

by 
 

CONSTANCE C. ANGELOU 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate School of the 
University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 
 
 

DOCTOR OF PHILOSOPHY 
 
 

May 2020 
 
 

Molecular and Cellular Biology Graduate Program 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Constance C. Angelou 2020 
 

All Rights Reserved 
 
 
 
 



 
 
 
 

DEFINING THE LET-7 MICRORNA-MEDIATED MOLECULAR 
MECHANISMS REGULATING T CELL DIFFERENTIATION 

 
 
 
 
 
 
 

A Dissertation Presented 
 

by 
 

CONSTANCE C. ANGELOU 
 
 
 
 
 

Approved as to style and content by: 
 
 

 ____________________________________ 
Leonid A. Pobezinsky, Chair 
 
 

 ____________________________________ 
Cynthia L. Baldwin, Member 
 
 

 ____________________________________ 
Barbara A. Osborne, Member 
 
 

 ____________________________________ 
Wilmore C. Webley, Member 
 
 
 

 __________________________________  
Scott C. Garman, Director 
Molecular and Cellular Biology 



DEDICATION 

For my parents, who, despite not having a single clue of what I wanted to do, let me do 
it anyways. If that is not true love, I don’t know what is.



v 
 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my gratitude to my thesis advisor, Dr. 

Leonid Pobezinsky, for showing me how fascinating the immune system is, and for 

contributing to shaping the scientist I have become. Thank you for all the time you spent 

training me, giving me many projects to explore, and thereby letting me learn all the 

techniques I have (hopefully) now mastered. Thank you for the many hours you invested 

in teaching me how to make efficient presentations and considerably improving my 

public speaking skills. Thank you for being open-minded to and supportive of the career 

path I want to pursue, even though you often doubt about how useful your mentorship 

was in this regard. This experience is unforgettable, and I now feel like I can accomplish 

anything, and this is predominantly because of you.  

I would also like to acknowledge my thesis committee members, Dr. Cynthia 

Baldwin, Dr. Barbara Osborne, and Dr. Wilmore Webley, for their support, enthusiasm, 

and utmost valuable insights on my thesis research, without which this dissertation would 

never have been what it turned out to be.  

I would like to address special thanks to Dr. Elena Pobezinskaya. Thank you for 

agreeing to teach me a little bit of all the things you know. I think of you as my role model 

of the strong, brilliant and confident scientist and accomplished woman I aspire to become 

one day. This dissertation would not have been possible without your scientific and 

technical advice, and I will always be grateful for all your help and patience.  

Many thanks to my other fantastic mentors, Dr. Kimberly Tremblay, Dr. Jesse 

Mager, Dr. Lisa Minter, and Shana Passono, for always taking the time to check in with 

me on how I felt, for listening to me when I needed someone to talk to, and for giving me 



vi 
 

such precious advice and insights regarding my personal and professional aspirations. 

You were instrumental to my development as a person and scientist.  

I would also like to thank past and present members of the Pobezinsky lab, Alex 

Wells, Lizzy Iverson, Eric Fagerberg, Eugenia Roberts, and Daniel Ryan, for their 

scientific and non-scientific support, as well as their friendship. I also thank my 

colleagues in other labs, as well as my MCB and VASCI friends, for providing the 

indispensable emotional support without which this thesis would have been impossible. 

I would also like to acknowledge my Belgian friends for their constant support, 

even though I was far away and did no visit often, and for making me feel like Belgium 

was never really far away through monthly Skype sessions. Thank you for making sure I 

was not losing all of my French. Thank you for all the waffles, mulled wine, beer, 

delicious foods, and parties, and for always being there when I needed you during this 

experience. 

Extremely special thanks go to my amazing boyfriend, Joe, who was the most 

patient, supportive, and helpful person in my entourage during my Ph.D. experience. 

Thank you for listening to and soothing all my doubts and fixations, for repeatedly 

reminding me that everything was going to be alright, for being my very personal 

scientific consultant, tennis partner, hiking companion, and for making sure I was well-

fed when I had no time to think about my wellbeing. 

And last but not least, I would like to thank my family. Even though you really 

did not want me to leave Belgium for such a remote location as the United States, and 

had no idea of what I was precisely going to do here, you understood that completing my 



vii 
 

Ph.D. was very important to me. Thank you for supporting me throughout this process 

and making sure I had everything I needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

ABSTRACT  

DEFINING THE LET-7 MICRORNA-MEDIATED MOLECULAR 

MECHANISMS REGULATING T CELL DIFFERENTIATION 

MAY 2020 

CONSTANCE ANGELOU, B.S., UNIVERSITÉ CATHOLIQUE DE LOUVAIN 

M.S., UNIVERSITÉ CATHOLIQUE DE LOUVAIN 

PH.D. UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Leonid A. Pobezinsky, Ph.D. 

CD4+ and CD8+ T cells are lymphocytes of the adaptive immune system that play 

essential roles in immunity. Both T cell subsets recognize their cognate antigen through 

the T cell receptor (TCR), which induces the proliferation and differentiation of these 

antigen-specific cells into effector T cells. CD4+ T cells have the potential to differentiate 

into one of multiple lineages of helper T (Th) cells and participate indirectly in antigen 

clearance by orchestrating the function of other cells. CD8+ T cells differentiate into 

cytotoxic T lymphocytes (CTL), which directly contributes to the resolution of an 

infection by killing cancerous or virally-infected cells. Upon antigen clearance, most 

effector T cells die, but some survive and generate long-lived memory T cells that will 

respond faster and more efficiently to subsequent encounters with the same antigen. 

When antigen fails to be cleared, such as in chronic infections and cancer, effector T cells 

are diverted into a hyporesponsive state, exhaustion, characterized by the upregulation of 

co-inhibitory receptors that transmits inhibitory signals resulting in the loss of effector 

function and memory potential. Moreover, when T cell differentiation is dysregulated, T 

cell responses become aberrant, causing autoimmune diseases. Therefore, understanding 
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the molecular mechanisms controlling T cell responses is important to develop innovative 

treatments that can enhance T cell activity during infections and cancer, and dampen the 

generation of disease-causing T cells in autoimmunity. We have uncovered a novel post-

transcriptional mechanism regulating T cell differentiation. Particularly, we showed that 

the let-7 family of miRNAs is highly expressed in naive T cells, but gets dramatically 

downregulated upon antigen encounter, proportionally to both the strength and duration 

of TCR stimulation. Specifically, let-7 downregulation was required for the 

differentiation of pathogenic Th17 cells in experimental autoimmune encephalomyelitis 

(EAE), a mouse model of the autoimmune disease multiple sclerosis (MS). In CD8+ T 

cells, although let-7 inhibits CTL differentiation in vitro, let-7 was demonstrated both in 

silico and in vivo to promote memory CD8+ T cell formation, while repressing the 

differentiation of terminal effectors, which are susceptible to exhaustion. Thus, let-7 

constitutes a promising tool for the therapeutic manipulation of T cell responses. 
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CHAPTER 1 

INTRODUCTION 

1.1 The immune system 

The immune system comprises numerous types of bone marrow-derived 

(hematopoietic) cells that have evolved to recognize and react to foreign substances, 

known as antigens (Janeway, 1992; Medzhitov, 2007). The immune system’s reaction, or 

immunity, constitutes the body’s defense against diseases caused by infectious pathogens, 

such as viruses, bacteria, protozoa, fungi, and parasites, as well as cancer (Janeway et al., 

2017). The immune system can be divided into two distinct, but intertwined, components 

– the innate and adaptive immune systems (Figure 1.1) (Vivier & Malissen, 2005). The 

innate immune system is a series of broad and immediate defense mechanisms that serve 

as a first physical and chemical line of defense against pathogens that gets established 

within minutes after the onset of infection. Innate defense mechanisms consist of physical 

barriers or epithelia (e.g. skin, oral mucosa, respiratory epithelium, intestine), as well as 

circulating antimicrobial proteins, and innate immune cells. Innate immune cells include 

granulocytes, macrophages, dendritic cells, innate lymphoid cells, and natural killer cells, 

which recognize a wide variety of pathogen- or damage-associated molecules (Akira et 

al., 2006; Bird et al., 2018). The adaptive immune system is unique to vertebrates, and 

encompasses B and T cells, which express surface receptors that specifically recognize 

individual immune determinants, or epitopes, on antigens (Burnet, 1959; Pancer & 

Cooper, 2007). Adaptive immunity gets activated by antigen-presenting cells, such as 

dendritic cells, when pathogens resist to innate immune responses, and participates in 

pathogen elimination by using processes that specifically target antigen-expressing 
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pathogens (Busso, 2008; Iwasaki & Medzhitov, 2015). B cells develop in the bone 

marrow, and contribute to immune responses through the production of antibodies 

(humoral immunity), while T cells mature in the thymus and secrete effector molecules 

and cytokines which contribute either directly or indirectly to pathogen clearance (cellular 

immunity) (Waksman et al., 1962; Ryser & Vassalli, 1974; Spits, 2002; Cooper, 2015). 

Unlike the innate immune system, adaptive immune responses are slower, as adaptive 

immune cells need to differentiate and acquire their function after responding to presented 

antigen. However, the duration of these responses lasts longer and results, after the 

resolution of an infection, in the formation of long-lived memory cells. These memory 

cells respond faster, with higher affinity, and more efficiently upon subsequent exposures 

to the same antigen (Figure 1.2) (Hammarlund et al., 2003).  

1.2 T lymphocyte development in the thymus 

T lymphocyte progenitors are generated following Notch signaling in common 

lymphoid progenitors in the bone marrow and then migrate to the thymus where they 

become thymocytes and develop into mature T cells (Figure 1.3) (Kondo et al., 1997; 

Pui et al., 1999; Spits, 2002). The thymus is also the site where thymocytes acquire their 

lineage identity, characterized by the mutually exclusive surface expression of the co-

receptors CD4 and CD8, which will determine whether the generated mature T cells will 

have the potential to differentiate into helper CD4+ T (Th) cells or CD8+ cytotoxic T 

lymphocytes (CTLs) (Singer et al., 2008). At the beginning of thymic education, 

thymocytes are double-negatives (DN), as they do not express any of these surface co-

receptors, and undergo irreversible random genetic recombinations of T cell receptor 

(TCR) gene segments, thereby generating a broad diversity (repertoire) of different 
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antigen-specific TCR from only a limited pool of gene segments (Davis & Bjorkman, 

1988; Engel & Hedrick, 1988). Each thymocyte then expresses a unique TCR that is 

transmitted to its progeny, or clone. After productive TCR rearrangement, thymocytes 

upregulate both co-receptors, thereby becoming double-positives (DP), and are subjected 

to repertoire (positive) selection (Nikolić-Žugić, 1991; Mombaerts et al., 1992; Starr et 

al., 2003). During this process, thymocytes interact with thymic epithelial cells, which 

express self-peptide antigens presented on major histocompatibility complex (MHC) 

molecules (Scott et al., 1989; Anderson et al., 1996). Thymocytes that fail to recognize 

self-MHC die “by neglect”, while cells that are able to do so are positively selected and 

thus receive survival signals, thus establishing an MHC-restricted T cell repertoire (Klein 

et al., 2014). Positively selected thymocytes subsequently go through the process of 

negative selection, during which thymocytes that have too strong of an affinity for self-

peptides receive apoptotic signals, resulting in the deletion of these potentially harmful 

autoreactive T cells (Ashton-Rickardt et al., 1994). During the same process, DP 

thymocytes also transition to an intermediate stage during which CD8 gets 

downregulated, and CD4 versus CD8 lineage commitment occurs following mutually 

exclusive signaling events (Brugnera et al., 2000). Persistence of positively selecting 

TCR signals induces the transient expression of the transcription factor ThPOK and 

results in the generation of single-positive CD4+ T cells (He et al., 2005; Luckey et al., 

2014). In contrast, cessation of TCR signaling following positive selection allows 

thymocytes to respond to the cytokine IL-7, the signaling of which drives the upregulation 

of the transcription factor Runx3, leading to ThPOK repression, co-receptor reversal, and 
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commitment of intermediate thymocytes to the CD8+ T cell lineage (Sato et al., 2005; 

McCaughtry et al., 2012).  

The goal of T cell development in the thymus is thus to produce a functional pool 

of mature MHC-restricted and self-tolerant mature T cells with distinct differentiation 

potentials. After thymic education, mature T cells exit the thymus and migrate to 

secondary lymphoid organs, such as the spleen and lymph nodes (McCaughtry et al., 

2007).  

1.3 T cell differentiation 

1.3.1 Activation of naive T cells 

Mature T lymphocytes that migrate to the secondary lymphoid organs after 

developing in the thymus are naive and appear small and round, with a low cytoplasm-

to-nucleus ratio (Donnadieu et al., 1994). Naive T cells are antigen-inexperienced and 

exist in an inactive, or quiescent, state defined by rare mitotic divisions, minor 

transcriptional activity, and absence of any effector function (Hamilton & Jameson, 

2012). Because of their low activity level, naive T cells have limited metabolic needs, 

which they fulfill by using oxidative phosphorylation as the predominant metabolic 

pathway (Chapman et al., 2020). Although devoid of any effector function, naive T cells 

constitute a sustained homeostatic pool of potential effector cells that will only acquire 

their function upon antigen recognition, thereby avoiding any spontaneous activity that 

could become detrimental to the host and would result in the depletion of the naive T cell 

reservoir (Tzachanis et al., 2004). 
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Antigen presentation to antigen-specific naive T cells initiates effector T cell 

differentiation with T cell activation, a process achieved by the combination of three 

distinct, but synergistic signals (Figure 1.4) (Smith-Garvin et al., 2009). The first signal 

directly derives from the recognition of the cognate antigen presented on MHC molecules 

(Cone, 1981). MHC class I is recognized by CD8+ T cells and is expressed by all 

nucleated cell types, while CD4+ T cells recognize MHC class II, which is expressed only 

on antigen-presenting cells (APCs), such as dendritic cells, macrophages, and B cells, as 

well as by thymic epithelial cells (Rudolph et al., 2006). Antigens recognized by CD4+ T 

cells consist of exogenous peptides that get processed in acidified endocytic vesicles 

(endocytic pathway) into fragments of up to 18 residues-long, whereas CD8+ T cells 

recognize short, 8-10 residues-long endogenous peptides generated in the cytosol (Stern 

& Wiley, 1994). The interaction between the TCR and peptide-antigen:MHC complex is 

stabilized by co-receptor binding to constant domains on MHC molecules (Gao et al., 

2002). This interaction further induces conformation changes in the intracellular portion 

of the co-receptor, which is connected to the kinase Lck, and brings Lck close to the 

immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, which 

constitutes the signaling component of the TCR (Samelson et al., 1986; Artyomov et al., 

2010). Lck phosphorylates the CD3 ITAMs, which trigger TCR signaling, a highly 

complex series of signal transduction pathways that initiate T cell activation 

(Glaichenhaus et al., 1991). These pathways promote the nuclear translocation and 

subsequent activity of transcription factors that are already expressed in naive T cells, but 

remain in the cytosol in an inactive state until they receive activating signals to translocate 

into the nucleus and transcribe genes required for the initiation of T cell differentiation 
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(Figure 1.5). For instance, calcium influx, triggered upon TCR stimulation, activates 

calmodulin, which interacts with and thereby activates the phosphatase calcineurin (Jain 

et al., 1993). In turn, calcineurin dephosphorylates the transcription factor NFAT, which 

is initially sequestered in the cytoplasm, thereby enabling NFAT nuclear translocation 

and transcriptional activity. Similarly, the MAPK pathway leads to c-Jun 

phosphorylation, which interacts with phosphorylated c-Fos in the nucleus to form the 

active transcriptional complex AP-1 (Maciàn et al., 2001). Notably, NFAT and AP-1, by 

binding to common gene promoters, enhance the strength of TCR activation (Maciàn, 

2005). On the other hand, the transcription factor NF-κB is kept in the cytoplasm when 

bound to the inhibitor IκB. TCR signaling events induce the phosphorylation and 

subsequent degradation of IκB, which enables the translocation of NF-κB to the nucleus, 

where it drives the transcription of target genes (Schulze-Luehrmann & Ghosh, 2006). 

Enabling the transcriptional activity of these three transcription factors thus initiates the 

expression of genes required for effector T cell differentiation in a timely manner, which 

is critical to achieve efficient T cell responses. 

The second signal results from interactions between co-stimulatory ligands and 

receptors, such as the CD28 receptor on the T cell and molecules of the B7 family on 

APCs, and leads to the amplification of the TCR signal, and in the generation of 

mitogenic, metabolic, and survival signals (Boise et al., 1995; Pagès et al., 1996, Vella et 

al., 1998; Frauwirth et al., 2002). In fact, absence of co-stimulation during T cell 

activation elicits a dysfunctional state known as anergy (Harding et al., 1992).  

The third signal is mediated by cytokines, which are secreted by multiple immune 

and non-immune cell types, including APCs, and differ in nature according to the type of 
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pathogen detected by the host (Curtsinger et al., 1999). For instance, CD28-dependent 

co-stimulation of activated T cells leads to the expression of IL-2 and the IL-2 receptor 

high-affinity chain, IL-2Rα, also known as CD25. Binding of IL-2 to its high-affinity 

receptor is critical during early T cell activation as it promotes T cell survival, growth, 

and clonal expansion (Pape et al., 1997, Refaeli et al., 1998). Cytokine signaling also 

plays a decisive role in the acquisition of effector T cell function, which will be discussed 

later. 

1.3.2 Metabolic reprogramming and proliferation 

In response to these three stimulatory signals, activated T cells exit quiescence 

and undergo dramatic transcriptional, morphological, and metabolic transitions, as they 

prepare to rapidly proliferate in order to produce a large progeny of antigen-specific 

effector T cells that will mount an efficient response against the antigen (Butz & Bevan, 

1998; Frauwirth et al., 2002). The intensified rates of RNA and protein synthesis result 

in the accumulation of newly produced molecules in the cytoplasm of activated T cells, 

which leads to cell growth characterized by a greater cytoplasm-to-nucleus ratio 

(Donnadieu et al., 1994). The exit of activated T cells from quiescence is also marked by 

their entry into the cell cycle, which promotes the rapid expansion of antigen-specific T 

cell clones (Butz & Bevan, 1998). This increased cellular activity requires greater 

amounts of energy and biomacromolecules, which activated T cells satisfy by switching 

their metabolism from oxidative phosphorylation to glycolysis. In addition to providing 

ATP more rapidly, glycolysis also results in the production of a large variety of 

metabolites necessary for the cellular processes needed for T cell proliferation and 
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functional differentiation, including DNA replication and biomacromolecules synthesis 

(Chapman et al. 2020). 

The initiation of the metabolic switch and cell cycle entry requires the expression 

of the transcription factor Myc, which is rapidly induced upon T cell activation by both 

TCR and co-stimulatory signals, and enhanced by IL-2 signaling at later stages of T cell 

activation (Reed et al., 1985; Wang et al., 2011). On the one hand, Myc drives the 

expression of glucose transporters and glycolytic enzymes, which contributes to increased 

glucose uptake and ATP production by glycolysis. On the other hand, Myc also directly 

induces the expression of cyclins, cyclin-dependent kinases, and transcription factor of 

the E2F family, while repressing cell cycle inhibitors, thereby promoting cell cycle 

progression from the G1 to S phase (Grandori & Eisenman, 1997). However, because the 

continuous expression of Myc is detrimental to T cell survival, Myc is only expressed in 

a transient manner, but its activity is preserved by upregulation of the transcription factor 

AP-4, a direct Myc target gene which maintains the metabolically active and proliferative 

state of  differentiating T cells after Myc downregulation (Butz & Bevan, 1998; Chang et 

al., 2000; Hoffman & Liebermann, 2008; Jung et al., 2008; Chou et al., 2014). 

1.3.3 The acquisition of effector T cell function 

1.3.3.1 CD4+ helper T cells 

 As mentioned earlier, cytokine signaling plays an important role in the acquisition 

of effector T cell function. In the case of CD4+ T cells, which have the potential to 

differentiate into one of several helper T (Th) cell lineages, cytokines present during 

CD4+ T cell activation play a central role in inducing specific Th differentiation programs 
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(Zhu et al., 2010). Each Th cell subset is tailored to respond effectively to distinct types 

of pathogens, as they each express a signature transcription factor which controls the 

expression of specific cytokines (Figure 1.6) (Zhu & Paul, 2008). The cytokines IL-12 

and IFNγ drive the Th1 differentiation program, which is characterized by the expression 

of the transcription factor T-bet and secretion the cytokine IFNγ. Th1 cells contribute to 

the clearance of intracellular pathogens and tumor cells by promoting the phagocytic 

activity and antigen-presenting function of macrophages, as well as the function of CD8+ 

cytotoxic T lymphocytes (CTLs) (Hsieh et al., 1993; Szabo et al., 2000; Lighvani et al., 

2001). Th2 differentiation is induced by IL-4 signaling, which induces the expression of 

the transcription factor GATA-3 and secretion of the cytokines IL-4, IL-5, and IL-13. Th2 

cells activate eosinophils, basophils, and mast cells, and elicit mucus secretion in goblet 

cells and smooth muscle contraction, all of which work towards the elimination of 

extracellular pathogens (Swain et al., 1990; Zheng et al., 1997, Kishikawa et al., 2001; 

Min et al., 2004). The Th17 lineage is promoted by IL-6 in combination with TGF-β, 

which drives RORγt expression, secretion of IL-17, IL-21, and IL-22, and helps in the 

clearance of mucosal bacteria and fungi by activating neutrophils and inducing 

antimicrobial peptide secretion in epithelial cells (Aggarwal et al., 2003; Mangan et al., 

2006; Zhou et al., 2007; Yang et al., 2008). Follicualr T (TFH) cells are generated upon 

exposure to IL-6 alone, express the transcription factor Bcl-6, and can secrete different 

cytokines, depending on the type of immune response, including  IL-21, IFNγ, IL-4, IL-

5, and TGF-β (Yu et al., 2009). The role of TFH cells is to specify the production of high-

affinity antigen-specific antibodies of the appropriate isotype by B cells, phenomena 

known as somatic hypermutation and immunoglobulin isotype switching, which are 
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dependent on the interaction between the co-stimulatory molecules CD40 and CD40L 

(Kawabe et al., 1994; Xu et al., 1994). Thus, through cytokine secretion and cell-cell 

interactions, Th cells play a critical role in the establishment, coordination, and 

potentiation of adaptive immune responses by enabling or enhancing the function of 

immune and non-immune cells, as well as by attracting appropriate immune cells to the 

site of infection, hence their “helper” appellation. A distinct type of effector CD4+ T cells, 

regulatory T (Treg) cells, are induced upon exposure to TGF-β and IL-2, express FOXP3, 

and secrete the immunosuppressive cytokines IL-10 and TGF-β to regulate the magnitude 

and intensity of immune responses and prevent detrimental consequences on the host 

(Sakaguchi et al., 1995; Chen et al., 2003; Fontenot et al., 2003; DiPaolo et al., 2007; Kim 

et al., 2007). The regulation of Th cell responses is essential, as spontaneous or sustained 

Th cell activity can result in the development of pathologies, such as hypersensitivities 

and autoimmune disorders (Ohashi, 2002). However, despite undergoing negative 

selection in the thymus and being kept in check by Tregs, some autoreactive T cell clones 

are able to escape these regulatory mechanisms and drive autoimmune diseases upon 

recognition of self-peptide antigens (Yui et al., 1990; Kariv et al., 1993).  

1.3.3.2 CD8+ cytotoxic T lymphocytes 

Following antigen encounter, CD8+ T cells differentiate into cytotoxic T 

lymphocytes (CTLs) in the presence of the cytokine IL-2 (Andrus et al., 1984). As the 

name suggests, CTLs are able to kill targets cells, specifically those infected by 

intracellular pathogens, such as viruses, or that are cancerous, thus directly contributing 

to infection clearance (Figure 1.7) (Sawamura et al., 1989; Dharakul et al., 1990; Harty 

et al., 1992; Rodrigues et al., 2003). Differentiation of naive CD8+ T cells into CTLs 
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requires a complex regulatory interplay between the transcription factors Notch, Runx3, 

T-bet, Eomesodermin (Eomes), Blimp-1, Id2, and Zeb2  (Pearce et al., 2003; Sullivan et 

al., 2003; Cannarile et al., 2006; Cho et al., 2009; Cruz-Guilloty et al., 2009; Kallies et 

al., 2009; Backer et al., 2014; Dominguez et al., 2015). This differentiation program 

induces the expression by CTLs of the effector molecules Perforin, Granzyme A, and 

Granzyme B, as well as the death receptor ligand FasL, and the cytokines IFNγ and TNFα 

(Ruby & Ramshaw, 1991; Suda & Nagata, 1994; Janas et al., 2005, Brehm et al., 2005). 

Effector molecules are contained within lysosome-derived structures, called secretory 

granules, and mediate direct cytolysis of target cells upon release, which is triggered upon 

antigen recognition by CTLs on target cells through TCR:MHC I interactions, a process 

known as degranulation (Peters et al., 1991). Degranulation involves the reorientation of 

the Golgi apparatus towards the target cell, where perforin forms a pore in the target cell 

membrane to enable the entry of the proteases Granzymes A and B (Masson & Tschopp, 

1985). Granzyme A is a tryptase that can initiate caspase-independent cell death by 

cleaving NDUFS3, a protein from complex I of the mitochondrial electron chain, 

resulting in the disruption of the NADH oxidation process and reactive oxygen species 

production (Martinvalet et al., 2008). Other identified substrates of Granzyme A are 

histones and proteins involved in DNA repair pathways, which sensitizes target cells to 

DNA damage and degradation upon Granzyme A-mediated cleavage (Lieberman, 2010). 

Granzyme B is a serine-protease that induces apoptosis by cleaving inactive initiator pro-

caspases-8 and -10, as well as inactive executioner pro-caspases-3 and -7 into their active 

forms, which contributes to cell disassembly (Adrain et al., 2005). In human but not in 

mouse, Granzyme B is also able to induce the intrinsic pathway of apoptosis by cleaving 
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the pro-apoptotic protein BID, leading to cytochrome c release (Sutton et al., 2000, 

Casciola-Rosen et al., 2007). Similarly to granule-mediated cytolysis, expression of FasL 

on CTLs can trigger apoptosis of the target cell through the extrinsic apoptotic pathway 

by binding to its cognate receptor Fas on the target cell (Rouvier et al., 1993; Suda & 

Nagata, 1994). In contrast to effector molecules, cytokines secreted by CTLs do not 

contribute directly to target cell killing. Rather, IFNγ promotes CTL proliferation, 

motility, and cytotoxicity by stimulating perforin expression (Whitmire et al., 2005; Bhat 

al., 2017), potentiates Th1 cell differentiation and function, and enhances antigen 

presentation and Fas expression on target cells (Portnoy et al., 1989; Früh & Yang, 1999; 

Müllbacher et al., 2002). CTLs are able to produce both soluble and membrane-bound 

forms of TNFα. Soluble TNFα activates and recruits immune cells to the site of infection, 

and enhances T cell survival and CTL cytotoxicity (Bancroft et al., 1989; McKenzie et 

al., 2006; Calzascia et al., 2007; Allie et al., 2013). On the other hand, membrane-bound 

TNFα has been suggested to participate in “slow lysis” of target cells upon interaction 

with its receptor TNFR1 (Ratner & Clark, 1993). 

1.4 T cell motility, homing and migration to tissues 

Efficient immune responses require T cells to adopt appropriate trafficking 

patterns throughout their lifetime. T cell motility arises from the combination of three 

distinct processes: autonomous cell locomotion, physical guidance, and response to 

chemical signals (Krummel et al., 2016). Autonomous cell locomotion depends on the 

cell-intrinsic motility machinery, including the actin cytoskeleton and motor proteins, 

while physical guidance is controlled by interactions with the extracellular matrix and 

surrounding cells, and the response to chemical signals relies on the expression of 
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chemokine receptors on the T cell surface (Figure 1.8). Depending on their stage of 

differentiation, T cells express distinct chemokine receptors that sense specific 

chemokines. The signaling events resulting from these interactions lead to the 

rearrangement of the actin cytoskeleton, which enables the migration of T cells towards 

peripheral tissues, where these cells participate in processes ranging from development 

in the thymus, homing, antigen encounter, and ongoing immune responses at inflamed 

sites (Griffith et al., 2014). For instance, mature naive T cells traveling in the bloodstream 

express CCR7, the receptor that recognizes and guides these cells towards gradients of 

the chemokines CCL19 and CCl21, which are secreted by stromal cells of the secondary 

lymphoid organs, such as the spleen and lymph nodes, where antigen presentation occurs 

(Gunn et al., 1998; Förster et al., 1999; Luther et al., 2000). T cells constantly interact 

with endothelial cells through repeated bind-release events between adhesion molecules, 

such as L-selectin (CD62L), and their ligands, a process termed “rolling” (Kishimoto et 

al., 1990). T cells that respond to CCL19/CCL21 upregulate surface adhesion molecules 

that will bind more strongly to the endothelium, and undergo rearrangement of their actin 

cytoskeleton that promotes the transmigration of these cells from the bloodstream into 

the secondary lymphoid organs through specialized blood vessels, high endothelial 

venules (HEV) (Stein et al., 2000). Engagement of the TCR with peptide antigen:MHC 

results in the transient upregulation of CD69, as well as the reciprocal downregulation of 

S1PR1 on activated T cells, which results in their retention in secondary lymphoid organs 

during activation and differentiation (Matloubian et al., 2004; Shiow et al., 2006).  TCR 

engagement is also accompanied by the reciprocal downregulation of CD62L and 

upregulation of the adhesion molecule CD44 (DeGrendele et al., 1996). After 
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differentiation, effector T cells downregulate CD69 expression and restore S1PR1 

expression, which facilitates their exit from the secondary lymphoid organs and re-entry 

into the circulation through diapedesis by following gradients of the S1P1R ligand S1P 

(Pappu et al., 2007; Bankovich et al., 2010). Many cell types at sites of ongoing immune 

responses secrete chemokines that will also generate gradients, and result in the 

recruitment of the appropriate types of effector T cells, which will be specifically 

responsive to these signals through the expression of the corresponding cognate 

chemokine receptors (Kagnoff & Eckmann, 1997; Griffith et al., 2014). Once in the 

inflamed tissue, effector T cells keep following chemokine gradients, and come to an 

arrest upon antigen re-encounter. 

1.5 Memory T cell formation 

Upon entry into inflamed sites, large numbers of antigen-specific T cells, peaking 

at about a week after antigen challenge, accomplish their effector function and participate 

in antigen clearance (De Boer et al., 2003). After resolution of an infection, these cells 

are no longer needed, and may even be detrimental to the host, due to the tissue toxicity 

of the effector molecules and cytokines they secrete (Hutcheson et al., 2008). 

Accordingly, antigen clearance is followed by the withdrawal of co-stimulatory signals 

and cytokines, including the survival factor IL-2, which will cause approximately 90% of 

expanded effector T cell clones to undergo apoptosis mediated by the pro-apoptotic factor 

Bim, an event known as contraction (Badovinac et al., 2002; Pellegrini et al., 2003, 

McKinstry et al., 2010). Because they express high levels of the chemokine receptor IL-

7α (CD127), Bcl-2, and other anti-apoptotic proteins, the remaining 10% are able to 

survive and differentiate into long-lived memory T cells. These cells preserve the memory 
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of the initial antigen exposure and respond more rapidly and efficiently to subsequent 

challenges with the same antigen (Figure 1.9) (Akbar et al., 1993; Mueller et al., 1996, 

Grayson et al., 2000; Wojciechowski et al., 2006; Whitmire et al., 2008). Memory CD4+ 

T cell differentiation remains poorly understood, but shares many similarities with the 

mechanisms of CD8+ T cell memory formation, which have been more extensively 

studied (Seder & Ahmed, 2003). In contrast to effector T cells, which are highly active 

and glycolytic, memory T cells exist in a quiescent state characterized by the preferential 

utilization of oxidative phosphorylation and fatty acid oxidation, but retain an intermittent 

self-renewal capacity, and can survive in the absence of interaction with their cognate 

antigen (Seder & Ahmed, 2003; Pearce et al., 2009; van der Windt et al., 2012).  

Several models have proposed distinct explanations for the determination of this 

terminal-effector (contraction-sensitive)-versus-memory (contraction-resistant) T cell 

fate dichotomy (Kaech & Cui, 2012). In the asymmetric cell fate model, a single T cell 

precursor gives rise to both a terminal effector and a memory T cell precursor at the time 

of the first division during antigen presentation, which depends on APC-proximal versus 

-distal T cell identity, respectively (Chang et al., 2007). The underlying uneven 

acquisition of factors following cell division programs the daughter cells to adopt distinct 

differentiation programs (Arsenio et al., 2014). For instance, the proximal daughter cell 

obtains more of T-bet, as well as the high-affinity alpha chain of the IL-2 receptor (IL-

2Rα or CD25), the signaling of which negatively regulates IL-7Rα (CD127), and thus 

contributes to inducing terminal effector differentiation (Xue et al., 2002; Kalia et al., 

2010; Chang et al., 2011). In contrast, the signal-strength model suggests that the strength 

of signals 1, 2, and 3 initially received by a T cell during antigen presentation determines 
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T cell fate. That is, a weak signal strength generates memory-like T cells, while strong 

signals induce terminal effector-like T cells (Stemberger et al., 2007; Gerlach et al., 

2010). In the decreasing-potential model, the cumulative amounts of signals 1, 2, and 3 

received throughout the effector T cell stage will similarly shape T cell fate (Kaech & 

Ahmed, 2001; Harbertson et al., 2002; Williams et al., 2008; Plumlee et al., 2013). 

Finally, the T memory stem cell model proposes the existence of a subset of memory T 

cells with stem-like properties that can maintain the memory T cell pool, while being able 

to give rise to effector T cells (Gattinoni et al., 2011; Graef et al., 2014).  

T cells that will become terminal effectors or memory cells can already be 

distinguished during the primary immune response by specific markers. Memory 

precursor effector cells (MPECs) highly rely on IL-7 signaling for their maintenance, and 

accordingly express high levels of its cognate receptor IL-7Rα (CD127), whereas short-

lived effector cells (SLECs) express high levels of the terminal effector marker KLRG1 

(Kaech et al., 2003; Kondrack et al., 2003; Seddon et al. 2003, al; Lenz et al., 2004; Joshi 

et al., 2007). Memory T cell differentiation also requires the expression of transcription 

factors, including Eomes, FOXO1, and Id3, as well as IL-15 and Wnt signaling, which 

induces the expression of the transcription factors TCF-1 and LEF1 (Zhang et al., 1998; 

Becker et al., 2002; Gattinoni et al., 2009; Zhou et al., 2010; Yang et al., 2011; Zhou & 

Xue, 2012; Hess Michelini et al., 2013). However, the memory T cell pool is 

heterogeneous, and as such exhibit distinct differentiation capacities, proliferative 

potentials, effector function, and homing characteristics (Buchholz et al,. 2013). T 

memory stem cells (TSCM) are multipotent and can give rise to all types of memory T cells 

(Figure 1.10), and accordingly exhibit a high proliferative and self-renewal ability, but 
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do not display any effector function, and reside in the secondary lymphoid organs 

(Gattinoni et al., 2011; Lugli et al., 2013). On the contrary, tissue-resident memory T cells 

(TRM) display the lowest differentiation capacity, but proliferate rapidly and exhibit strong 

effector function upon recall, and accordingly occupy non-lymphoid organs, such as the 

lung, liver, skin, and adipose tissue (Beura et al., 2019). In between TSCM and TRM are 

central-memory (TCM) and effector-memory T (TEM) cells, TCM being less differentiated 

than TEM, which can be distinguished by their level of CD62L expression (Sallusto et al., 

1999; Ahmadzadeh et al., 2001; Pepper & Jenkins, 2011). TCM exhibit high CD62L 

expression, and accordingly reside in the secondary lymphoid organs. These cells also 

have a higher proliferative potential and can give rise to TRM that populate the skin 

(Osborn et al., 2019), but display weaker effector function upon antigen re-challenge 

(Wherry et al., 2003). TEM express low levels of CD62L, and are found in the circulation 

(Masopust et al., 2001). This memory T cell subset has a lower proliferation ability than 

TCM, but elicits a more potent effector response upon antigen re-encounter (Sallusto et al., 

2004; Olson et al., 2013; Roberts et al., 2014). Despite their apparent more differentiated 

phenotype, TRM and TEM have the capacity to give rise to TCM that populate the secondary 

lymphoid organs (Wherry et al., 2003; Bromley et al., 2013; Beura et al., 2018). 

1.6 T cell exhaustion 

In distinction from acute infections during which antigen is effectively cleared by 

functional effector T cells and memory T cells are formed following contraction, antigen 

persists during chronic infections and cancer, resulting in an unresponsive state known as 

exhaustion which has been more extensively studied in CD8+ T cells than in CD4+ T cells 

(Moskophidis et al., 1993; Crawford et al.; 2014). The exhausted state is characterized by 
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compromised effector T cell proliferation, cytotoxic function, and pro-inflammatory 

cytokine production, as well as by the loss of memory T cell potential (Zajac et al., 1998; 

Fuller et al., 2003; Wherry et al., 2004; Angelosanto et al., 2012). T cell exhaustion is 

established progressively through continuous TCR signaling provoked by recurring 

contacts with the lingering antigen, during which T cells upregulate co-inhibitory 

receptors, such as PD-1, TIM-3, LAG-3, CD160, 2B4, and CTLA-4 (Figure 1.11) (Day 

et al., 2006; Grosso et al., 2007; Wherry, 2007; Cai et al., 2008; Jones et al., 2008; Bucks 

et al., 2009; Razziorrouh et al., 2010). During acute infections, these surface molecules 

get expressed transiently on activated T cells following antigen encounter, and promote 

self-tolerance by negatively regulating T cell activation and proliferation when bound to 

their ligand, hence their designation as “immune checkpoints” (Brunet et al., 1987; 

Triebel et al., 1990; Maïza et al., 1993; Valiante & Trinchieri, 1993; Agata et al., 1996; 

Monney et al., 2002; Probst et al., 2005). In contrast, during chronic inflammation, 

exhausted T cells continuously express high levels of these receptors, which can inhibit 

T cell responses by transmitting negative signals or inducing cell death upon ligand 

binding (Blackburn et al., 2009). Cognate ligands for these co-inhibitory receptors are 

upregulated in response to immune signals, such as cytokines, on APCs, as well as on 

non-hematopoietic cells, including endothelial cells, and are also abundantly expressed 

in immunosuppressive environments typical of chronic infections and cancer (Mazanet 

& Hughes, 2002; Liang et al., 2003; Rodig et al., 2003; Mühlbauer et al., 2006). For 

instance, PD-1 suppresses effector T cell function after interaction with PD-L1 or PD-L2, 

TIM-3 elicits calcium-dependent cell death when bound to Galectin-9, and CD160 

inhibits T cell activation upon binding herpesvirus entry mediator (HVEM) (Freeman et 
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al., 2000; Latchman et al., 2001; Iwai et al., 2002; Zhu et al., 2005; Mühlbauer et al., 

2006; Cai et al., 2008; Mengshol et al.; 2010; Malissen et al., 2019). Other co-inhibitory 

receptors function by competing for co-stimulatory ligand binding (Blackburn et al., 

2009). Specifically, LAG-3 competes with its homolog CD4 for binding to MHC-II, 2B4 

competes with CD2 for interacting with CD48, and CTLA-4 competes with CD28 for 

binding to the B7-family molecules (Baixeras et al., 1992; Brown et al., 1998; Fallarino 

et al, 1998). Suppression of T cell function following co-inhibitory receptor signaling 

occurs in a sequential fashion, starting with compromised IL-2 production, proliferation, 

motility, and cytotoxicity, followed by the loss of the ability to produce TNFα and IFNγ, 

and eventually concluding with the death of the exhausted T cells (Wherry et al., 2003; 

Zinselmeyer et al., 2013).  

The establishment of the exhausted state in T cells is induced by a dysregulated 

terminal effector differentiation program derived from persistent TCR stimulation that 

results in aberrant expression of multiple transcription factors, including BATF, Blimp-

1, Eomes, Id2, IRF4, NFAT, TOX, as well as transcription factors from the NR4A family, 

which in turn control the expression of some co-inhibitory receptors (Cannarile et al., 

2006; Wherry, 2007; Oestreich et al., 2008; Shin et al., 2009; Quigley et al., 2010; 

Buggert et al., 2014; Martinez et al., 2015; Man et al., 2017; Li et al., 2019; Seo et al., 

2019). In recent years, the possibility of reverting exhausted T cells back to a functional 

state has been demonstrated by inhibiting the interaction between co-inhibitory receptors 

and their ligands using blocking antibodies, thereby preventing co-inhibitory receptor 

signaling (Leach et al., 1996; Barber et al., 2006; Sakuishi et al,. 2010; Wolchok et al., 

2013). This strategy, termed “checkpoint blockade immunotherapy” (CBI), has since 
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been developed for human therapeutic purposes, and many “checkpoint inhibitors”, 

mainly targeting PD-1, PD-L1, and CTLA-4, have already been approved for the 

treatment of various types of cancer (Hargadon et al., 2018). However, most patients are 

resistant to CBI, and some of them experience detrimental effects due to the tissue toxicity 

of these treatments, especially when used in combination (Topalian et al., 2012; Wolchok 

et al., 2013; Topalian et al., 2014; Larkin et al., 2015). Studies investigating the possibility 

of using CBI to treat chronic infectious diseases, such as HIV, hepatitis B, tuberculosis, 

and malaria, are ongoing (Wykes & Lewin, 2018). 

Aside from co-inhibitory receptors, anti-inflammatory cytokine signaling also 

participates in the induction of T cell exhaustion, as these are abundant during chronic 

infections and in the tumor microenvironment (Landskron et al., 2014; Beltra & 

Decaluwe, 2016). Two potent immunosuppressive cytokines are IL-10 and TGFβ, which 

are secreted by Tregs, but also other T cells, including exhausted T cells and APCs 

(Tinoco et al., 2009; Ng & Oldstone, 2012; Parish et al., 2014). These cytokines 

contribute to the suppression of effector T cell function both directly, by restraining T 

cell proliferation, cytokine production, and cytotoxicity, as well as indirectly, by 

preventing the upregulation of MHC molecules on APCs, and by suppressing the 

response of other innate immune cells that normally support effector T cell function, 

notably macrophages (Geiser et al., 1993; Lee et al., 1997; Corinti et al., 2001; Thomas 

& Massagué, 2005; Wilson & Brooks, 2011; Stephen et al., 2014; Ip et al., 2017). 

Similarly to CBI, blocking IL-10 signaling during chronic viral infection using 

neutralizing antibodies has been shown to restore effector T cell function and result in 

viral clearance (Brooks et al., 2006; Ejrnaes et al., 2006). However, TGFβ blockade alone 
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fails to ameliorate effector T cell function in chronic disease, and needs to be combined 

with CBI to enhance T cell-mediated anti-tumor responses (Garidou et al., 2012; 

Mariathasan et al., 2018; Tauriello et al., 2018).  

1.7 Regulation of T cell differentiation by microRNAs 

1.7.1 Biogenesis and function of microRNAs 

 MicroRNA (miRNA)-mediated RNA interference is one of the most well-studied 

post-transcriptional mechanisms that potently regulates gene expression (Elbashir et al., 

2001; Kim et al., 2008). MiRNAs are short, 20-22 nucleotide-long, non-coding RNAs 

that bind target mRNAs in a sequence-specific manner to inhibit translation by inducing 

target mRNA degradation or ribosome stalling (Lee et al., 1993; Lee & Ambros, 2001; 

Bartel et al., 2009). Several hundreds of miRNAs have been identified in the mammalian 

genome, and many of these are evolutionarily conserved (Lagos-Quintana et al., 2001; 

Lewis et al., 2003). Single miRNAs have many target mRNAs, and individual mRNAs 

can be directly regulated by multiple miRNAs (Lim et al., 2005; Friedman et al., 2009). 

MiRNAs are involved in the control of a broad range of cellular functions, including cell 

differentiation, cell cycle progression and apoptosis, which makes these an essential 

component of the cellular machinery, as they confer robustness to a wide range of 

biological processes, including development and immunity (Abbott et al., 2005; Farh et 

al., 2005; Stark et al., 2005). It has been estimated that miRNAs control the expression of 

approximately one third of the total human gene pool, including genes involved in 

immune cell differentiation (Lewis et al., 2005). However, dysregulation of miRNA-

mediated RNA interference has been shown to result in pathologies, such as 
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developmental defects, cancer, obesity, and autoimmune diseases (Zhao et al., 2007; 

Wang et al., 2008; Frost & Olson, 2011; Xu et al., 2013).  

MiRNAs can be encoded by genes located either in intergenic regions of the 

genome, where they rely on their own promoter for transcription, or within gene introns, 

in which case the transcription of these miRNAs is controlled by the promoter of the 

neighboring gene (Rodriguez et al., 2004; Baskerville & Bartel, 2005). Because in this 

situation both the adjoined gene and the miRNA are transcribed at the same time, mRNA 

splicing and processing is needed to separate the miRNA from the gene mRNA (Kim & 

Kim, 2007; Melamed et al., 2013; Ramalingam et al., 2014). In addition, miRNA genes 

can include either a single miRNA (monocistronic) or a cluster of multiple miRNAs 

(polycistronic), which all share the same promoter (Altuvia et al., 2005; Ozsolak et al., 

2008).  

MiRNA gene transcription, mediated by RNA polymerases II and III, produces 

long primary miRNA (pri-miRNA) transcripts, consisting of a succession of hairpin 

structures (Figure 1.12) (Lee et al., 2004; Borchert et al., 2006). Pri-miRNAs are then 

cleaved by the ribonuclease (RNase) III enzyme Drosha of the microprocessor complex 

in the nucleus into precursor miRNAs (pre-miRNAs), which are composed of 60-70 

nucleotide-long single hairpin structures (Lee et al., 2003). Pre-miRNAs are next 

exported from the nucleus to the cytoplasm by Exporting 5, where they undergo cleavage 

of their hairpin loop, mediated by the RNase III enzyme Dicer, which generates mature 

miRNA duplexes (Knight & Bass, 2001; Yi et al., 2003). Only one strand of this double-

stranded mature miRNA, the guide strand, will bind to the RNAse III enzyme Argonaute 

(AGO) and other proteins to generate the RNA-induced silencing complex (RISC), while 



23 
 

the other strand, the passenger strand, will be degraded (Williams & Rubin, 2002; 

Kloosterman et al., 2004; Rand et al., 2004; Leuschner et al., 2006; Ameres et al., 2007; 

MacRae et al., 2008).  

MiRNAs recognize their target mRNAs through their seed region, located at their 

5’ end at positions 2-8, and miRNAs with conserved seed regions are grouped into 

families which share common mRNA targets (Lewis et al., 2005; Bartel, 2018). RISC 

antagonizes protein translation by mediating the degradation of target mRNAs when the 

loaded miRNA seed region is perfectly complementary to the mRNA, or by ribosome 

stalling in cases of partial mRNA-miRNA seed region complementarity (Vella et al., 

2004; Bagga et al., 2005; Baek et al., 2008). MiRNA seed regions most commonly bind 

sequences canonically located within the 3’ untranslated region (UTR) of mRNAs, but 

some miRNAs binding sites can be found in non-canonical sites outside the 3’ UTR, such 

as within the mRNA 5’ UTR or coding sequence (CDS) (Lai, 2002; Lytle et al., 2007; 

Majoros & Ohler, 2007; Schnall-Levin et al., 2010). Interestingly, recent studies have 

described a role for sequences outside the seed region in miRNA-mediated RNA 

interference (Grimson et al., 2007; Brancati & Großhans, 2018). 

1.7.2 Role of microRNAs in CD4+ T cell differentiation 

The crucial regulatory functions of miRNAs in many aspects of T cell 

development, homeostasis, and differentiation, have been extensively studied 

(Baumjohann & Ansel, 2013; Wells et al., 2020). Pioneer studies using ectopic 

overexpression of miRNAs demonstrated that miRNAs were able to direct hematopoietic 

lineage differentiation (Chen et al., 2004). Moreover, T cell-specific deletion of factors 

involved in miRNA biogenesis, such as Dicer and Drosha, led to diminished survival and 
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proliferation of activated T cells (Cobb et al., 2005), but also resulted in enhanced Th1 

cell differentiation and inflammatory disease with reduced Treg presence, which suggested 

that miRNAs can control the quiescent state of naive T cells (Muljo et al., 2005; Cobb et 

al., 2006; Chong et al., 2008). Subsequent studies identified regulatory roles for 

individual miRNAs at distinct steps of CD4+ T cell differentiation (Baumjohann & Ansel, 

2013). For instance, miR-155 and miR-181a enhance CD4+ T cell activation and clonal 

selection (Banerjee et al., 2010; Palin et al., 2013), while miR-146a inhibits it (Yang et 

al., 2012). Moreover, the miR-17-92 miRNA cluster promotes CD4+ T cell proliferation 

and survival, ultimately resulting in lymphoproliferative disease and autoimmunity (Xiao 

et al., 2008). Furthermore, Th1 cell differentiation is enhanced by the miR-17-92 cluster 

and miR-155, but negatively regulated by miR-29, miR-125b, and miR-146a (O’Connell 

et al., 2010; Jiang et al., 2011; Rossi et al., 2011; Steiner et al., 2011; Yang et al., 2012). 

MiR-21 facilitates the differentiation of Th2 cells, while miR-27, miR-126, and miR128 

prevents it (Mattes et al., 2009; Guerau-de-Arellano et al., 2011; Sawant et al., 2013). 

Th17 cell differentiation is increased by miR-155, miR-301a, and miR-326, but 

suppressed by miR-10a (Du et al., 2009; O’Connell et al., 2010; Mycko et al., 2012; 

Takahashi et al., 2012). The differentiation of TFH cells is positively regulated by the miR-

17-92 cluster, whereas miR-10a prevents it (Baumjohann et al., 2013; Takahashi et al., 

2012). Finally, Treg cell differentiation is promoted by miR-10a, miR-146a and miR-155, 

but repressed by the miR-17-92 cluster (Lu et al., 2009; Lu et al., 2010; Jiang et al., 2011; 

Jeker et al., 2012; Takahashi et al., 2012). 
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1.7.3 Role of microRNAs in CD8+ cytotoxic T lymphocyte differentiation 

The importance of miRNA-mediated regulation of CD8+ T cell responses was 

demonstrated through CD8-specific deletion of Dicer, which led to enhanced activation 

and proliferation, but also diminished survival, effector function, and migratory potential 

(Zhang & Bevan, 2010). A later study found that Dicer deletion at the naive stage, but 

not at the activated stage, potentiated CD8+ T cell responses through upregulation of 

Granzyme B, IFNγ, as well as Eomes and its direct transcriptional target Perforin, due to 

the absence of mature miR-139 and miR-342 (Trifari et al., 2013). Other miRNAs, such 

as miR-15a/16 and miR-150, were also identified as critical drivers and suppressors of 

CTL differentiation, respectively (Smith et al., 2015; Yang et al., 2017). Interestingly, 

some miRNAs that play a role in the regulation of Th1 cell differentiation also control 

CTL differentiation, such as the miR-17-92 cluster, miR-29, and miR-155, which inhibit 

the T-bet/IFNγ signaling axis that both CTL and Th1 differentiation programs rely on 

(Ma et al., 2011; Wu et al., 2012; Gracias et al., 2013).  

 Although studies profiled the expression of a wide array of miRNAs at different 

stages of CD8+ T cell differentiation, the molecular mechanisms underlying the miRNA-

mediated regulation of the CD8+ T cell memory versus terminal-effector fate 

specification remain largely unknown (Wu et al., 2007). Some miRNAs, such as miR-

143, miR-155, and the miR-200 family, have been shown to promote memory CD8+ T 

cell formation (Tsai et al., 2013; Guan et al., 2018; Zhang et al., 2018). In contrast, other 

miRNAs, including miR-15/16, the miR-17-92 cluster, miR-23a, miR-31, and miR-150, 

have been found to skew the CD8+ T cell fate towards terminal effectors and exhausted 

cells (Wu et al., 2012; Khan et al., 2013; Lin et al., 2014; Ban et al., 2017; Chen et al., 
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2017; Moffett et al., 2017; Gagnon et al, 2019). Despite the fact that all these studies 

significantly contributed to the understanding of the miRNA-mediated control of T cell 

differentiation and fate determination, whether specific miRNAs consistently play 

regulatory roles throughout T cell differentiation remains an outstanding question in the 

field. 

1.8 The lethal-7 (let-7) family of microRNAs 

1.8.1 Phylogeny and genomic organization of let-7 microRNAs 

 Lethal-7 (let-7) miRNAs were discovered in the nematode Caenorhabditis 

elegans and were initially described as critical regulators of larval development, in which 

let-7 deficiency results in premature death (Meneely & Herman, 1984; Lee et al., 1993; 

Reinhart et al., 2000; Slack et al., 2000). The let-7 family of miRNAs was later found to 

be highly conserved across bilaterian animals, in which more let-7 isoforms, or members, 

are found in comparison to C. elegans, due to multiple let-7 miRNA gene duplications 

(Pasquinelli et al., 2000; Hertel et al., 2012). In the mouse, 14 paralog let-7 genes produce 

8 mature let-7 members, while in humans 12 miRNA genes give rise to 10 mature let-7 

members (Lagos-Quintana et al., 2002). Paralog let-7 miRNA genes are located on 

distinct chromosomes and different members are identified by a unique letter (e.g. let-7a, 

let-7b). In addition, identical mature let-7 miRNAs can be generated from distinct let-7 

genes, which is indicated by a unique number after the let-7 member name (e.g. let-7a-1, 

let-7a-2) (Ambros et al., 2003; Roush & Slack, 2008). 
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1.8.2 Regulation of let-7 microRNA expression 

 Let-7 miRNAs are expressed in numerous different cell types and control many 

biological processes, such as cell survival, metabolism, and differentiation (Büssing et 

al., 2008; Zhu et al., 2011). Particularly, let-7 miRNAs were found to silence the mRNAs 

of cell cycle progression regulator genes such as Cdc25a and Cdk6, as well as genes 

involved in carcinogenesis, including HMGA2, Myc, and Ras, demonstrating their robust 

tumor-suppressing function (Mayr et al, 2007; Büssing et al., 2008). The tight and 

complex regulation of let-7 miRNAs is well illustrated by the differences in its expression 

levels in distinct cell types (Reinhardt et al., 2000, Johnson et al., 2003). For instance, in 

embryonic stem cells, mature let-7 miRNAs cannot be detected, but both pri- and pre-let-

7 forms are present, which indicates that let-7 expression is regulated at the post-

transcriptional level, at different steps of let-7 biogenesis (Suh et al,. 2004; Thomson et 

al., 2006). Well-studied factors that inhibit mature let-7 miRNA expression are the fetal 

proteins Lin28 and Lin28B, which bind to a specific and conserved sequence in the stem-

loop region of pri- and pre-let7, thereby preventing Drosha- and Dicer-mediated 

processing (Piskounova et al., 2008; Viswanathan et al., 2008). Moreover, binding of 

Lin28 to pre-let-7 leads to the recruitment of the terminal uridylyl transferases (TUTases) 

TUT4 and Zcchc11, which polyuridylate pre-let-7, thereby marking it for degradation by 

the exoribonuclease Dis3l2 (Heo et al., 2008; Hagan et al., 2009; Heo et al., 2009; 

Piskounova et al,. 2011; Chang et al., 2013). Lin28-mediated let-7 miRNA repression 

therefore constitutes a potent regulatory mechanism during early embryonic 

development, and has also been shown to play an important role in establishing neonatal 

immunity (Wang et al., 2016). 
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1.8.3 Let-7 microRNAs in immunity 

In contrast to embryonic stem cells, let-7 miRNAs are highly expressed in lymphocytes 

(Kuchen et al., 2010). As such, many lymphocyte subsets have been shown to be 

dependent on let-7 miRNAs for their development, homeostasis, and differentiation. For 

instance, the upregulation of let-7 miRNAs during natural killer T (NKT) cell 

development in the thymus is necessary for the differentiation of IFNγ-producing 

effectors (Pobezinsky et al., 2015). In the periphery, let-7 miRNA expression is required 

for the survival and maintenance of the quiescent phenotype in naive T cells (Wells et al., 

2017; Pobezinskaya et al., 2019). During lymphocyte activation, let-7 miRNAs have been 

shown to inhibit the metabolic reprogramming of both B cells and CD8+ T cells by 

negatively regulating the expression of the transcription factor Myc and the glycolytic 

enzyme hexokinase 2 (Wells et al., 2017; Jiang et al., 2018). Moreover, let-7 miRNAs 

have been shown to play a regulatory role in CD8+ cytotoxic T lymphocyte (CTL) 

function by directly targeting the transcription factor Eomes, as well as in CD4+ helper T 

cell responses during HIV infection and airway inflammation by regulating the 

expression of the cytokines IL-10 and IL-13, respectively (Polikepahad et al., 2010; 

Kumar et al., 2011; Swaminathan et al., 2012; Wells et al., 2017). One study also 

proposed a regulatory role for let-7f expression in Th17 cell function in women with 

severe asthma (Newcomb et al., 2015). In addition, the exosome-mediated transfer of let-

7 miRNAs to various immune cells has been proposed as a suppressive mechanism used 

by regulatory T (Treg) cells, and has also been reported to inhibit the generation and 

function of Treg cells (Okoye et al., 2014; Kimura et al., 2018). Although many studies 

have described regulatory roles for let-7 in T cells, the molecular mechanisms underlying 
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the control of T cell differentiation and the determination of memory versus terminal 

effector/exhausted  T cell fate remains unclear. 

1.9 Rationale, central hypothesis, specific aims, and significance 

 We have previously shown that all let-7 family members are abundantly expressed 

in naive CD8+ T cells, but get dramatically downregulated upon antigen recognition, 

which enables CTL differentiation and function (Wells et al., 2017). Based on these 

findings, the central hypothesis of this dissertation is that let-7 acts as a central regulator 

of effector T cell differentiation and fate specification. This main hypothesis will be 

investigated through two specific aims. The first aim will be to determine the regulatory 

role of let-7 miRNAs during CD4+ T helper cell differentiation. The second aim will 

elucidate the signaling pathways controlled by let-7 miRNAs in memory versus terminal- 

effector/exhausted CD8+ T cell fate specification. Completion of the proposed aims will 

identify let-7 miRNAs as key regulators of T cell responses. Determining the let-7-

mediated regulatory mechanisms governing the differentiation of CD4+ T helper cells and 

specifying the differentiation of CD8+ T cells towards the memory or terminal 

effector/exhausted fate will significantly advance our understanding of the post-

transcriptional mechanisms controlling the function and fate of T cells. Moreover, this 

research has the potential to establish let-7 miRNAs as a promising novel therapeutic 

target or cargo that can adjust T cell responses in the contexts of infectious diseases, 

cancer, and autoimmunity. 
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Figure 1.1: Innate and adaptive immune cells and response kinetics. Innate processes 
of the immune system constitute the first defenses against pathogens, while adaptive 
mechanisms of immunity, which are mediated by activated lymphocytes, are slower to 
appear. ILC, innate lymphoid cell; NK, natural killer. Adapted from Cellular and 
Molecular Immunology, 8th edition, Figure 1-1. 
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Figure 1.2: The innate and adaptive immune systems show distinct kinetics and 
amplitudes in primary and secondary response to antigen. The primary adaptive 
immune response to antigen is low in both duration and amplitude, while subsequent 
exposure to the same antigen results in secondary responses. These secondary responses 
recruit memory cells and are thus faster to appear, stronger in amplitude, and more 
specific to the antigen than was the primary response (dark blue). In contrast, innate 
immune responses, which do not form immunological memory, remain unchanged every 
time the antigen is encountered (light blue). Adapted from Cellular and Molecular 
Immunology, 8th edition, Figure 1-8. 
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Figure 1.3: T cell selection in the thymus. T cell progenitors migrate from the barrow 
to the thymus, where they become thymocytes and complete their development by 
rearranging their T cell receptor genes and undergoing repertoire selection.  (a & b) 
During the process of positive selection, immature T cells that are able to bind self-MHC 
receive survival signals, while those which fail to recognize self-MHC are eliminated 
through the induction of apoptosis. (c) Next, the process of negative selection selects self-
tolerant thymocytes by providing survival signals, whereas those which react too strongly 
with self-antigen are deleted from the repertoire by apoptosis. 
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Figure 1.4: Efficient activation of naive T cells by antigen-presenting cells require 
three types of signals. Upon antigen recognition in the context of peptide:self-MHC 
complex by the T cell receptor (TCR) on the surface of an antigen-presenting cell 
(APC), the CD3 complex of the TCR and the co-receptor (CD4 in this example) send 
signal 1 to the activated T cell (arrow 1). Signal 2 is transmitted by ligation of co-
stimulatory receptors, expressed on T cells (CD28 in this example), to their ligand 
expressed by the APC (molecules of the B7 family in this example) and provide 
survival, metabolic, and mitogenic signals (arrow 2). Signal 3 is mediated by cytokine 
signaling, which is important for directing the differentiation of T cells, particularly in 
the case of CD4+ T cells which can differentiate into multiple distinct lineages, 
depending on the nature of signal 3. Adapted from Owen Kuby Immunology, 7th 
edition, Figure 11-3. 
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Figure 1.5: Engagement of the T cell receptor results in the activation of 
transcription factors that initiate the differentiation process. Model representing 
signaling events occurring upon T cell receptor (TCR) engagement. Recognition of 
cognate antigen by TCR, which is associated to the CD3 complex, elicits a cascade of 
phosphorylation events eventually leading to the activation and nuclear translocation of 
the transcription factors NFκB, NFAT, and AP-1, the latter being a complex comprising 
c-Fos and c-Jun. Adapted from Cellular and Molecular Immunology, 8th edition, 
Overview Figure 3-5. 
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Figure 1.6: CD4+ T cells can differentiate into multiple subsets of helper T cells. Each 
helper T cell lineage is induced by distinct cytokines and specialize in enhancing the 
function of or recruiting other cells that will directly participate in the elimination of 
different types of pathogens. Adapted from Janeway’s Immunobiology, 9th edition, 
Figure 9.30. 
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Figure 1.7: CD8+ T cells differentiate into cytotoxic T lymphocytes that can directly 
kill target cells. Differentiated cytotoxic CD8+ T lymphocytes (CTLs) specialize in 
lysing cancerous cells and cells infected with intracellular pathogens upon recognition of 
pathogen fragments presented on MHC class I molecules on the surface of target cells. 
Adapted from Janeway’s Immunobiology, 9th edition, Figure 9.22. 
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Figure 1.8: Effector T cells reach sites of ongoing immune responses by following 
physical and chemical cues that induce rearrangements in their actin cytoskeleton. 
Effector T cells express surface receptors for cell-adhesion molecules such as selectins 
and integrins, as well as chemokine receptors. Interactions with cells expressing ligands 
for selectins and integrins, as well as chemokine gradients, direct the migration of these 
cells to inflames tissues. Adapted from Cellular and Molecular Immunology, 8th edition, 
Figure 3-3. 
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Figure 1.9: Phases of a T cell response in the context of acute infections. Antigen-
specific T cells undergo massive clonal expansion upon activation, but most effector T 
cells undergo apoptosis upon antigen clearance during the contraction phase, while only 
a small T cell population remains and form long-lasting immunological memory. Adapted 
from Kaech & Cui, 2012. 
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Figure 1.10 Heterogeneity of the memory T cell pool. Multiple memory T cell subsets 
can differentiate from naïve T cells and exhibit distinct differentiation potential and 
preferential anatomic location. T memory stem cells (TSCM) are multipotent, reside in the 
secondary lymphoid organs, and have the greatest proliferative, self-renewal and 
differentiation capacity. On the other hand, tissue-resident memory T (TRM) cells show 
the lowest differentiation ability and populate peripheral tissues. In between TSCM and 
TRM are central (TCM) and effector (TEM) memory T cells, which can be distinguished by 
differential expression of CD62L. TCM express high levels of CD62L and thus reside in 
the secondary lymphoid organs, while TEM exhibit low expression of CD62L and are 
found in the circulation. Despite their apparent more differentiated phenotype, TRM and 
TEM can give rise to TCM that migrate to the lymphoid organs. Effector T cells (TEff) cells 
represent terminally-differentiated cells, which eventually undergo cell death. is one 
outcome of increased antigen exposure and proliferation. Adapted from Farber et al., 
2014. 
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Figure 1.11: Chronic inflammation induces T cell exhaustion. In contrast to acute 
infection, during which antigen gets cleared efficiently, antigen lingers during persistent 
viral infection and in the tumor microenvironment, which recurrently signals to the T cell 
receptor, resulting in the upregulation of co-inhibitory receptors, such as PD-1, LAG-3, 
2B4, and CD160. In turn, ligation of these receptors to their cognate ligands present in 
these immunosuppressive environments transmits negative signals to the T cell, leading 
to the loss of effector function and memory potential. Adapted from Wherry, 2007. 
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Figure 1.12: MicroRNA biogenesis and function. MicroRNAs (miRNAs) are encoded 
as genes in the genome and are transcribed by RNA polymerase II into long primary 
miRNAs (pri-miRNAs), which undergo a first cleavage by the endonuclease Drosha in 
the nucleus, resulting in the generation of precursor miRNAs (pre-miRNAs.) These pre-
miRNAs then get exported by Exportin 5 into the cytoplasm , where the endonuclease 
Dicer will cleave the loop region to produce mature miRNA duplexes. Only the guide 
strand will be incorporated into the RNA-induced silencing complex (RISC) and 
participate in the silencing of messenger RNA (mRNA) targets, while the passenger 
strand will undergo degradation. Adapted from Baumjohann & Ansel, 2013. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

CHAPTER 2 

 DIFFERENTIATION OF PATHOGENIC TH17 CELLS IS NEGATIVELY 

REGULATED BY LET-7 MICRORNAS IN A MOUSE MODEL OF MULTIPLE 

SCLEROSIS 

2.1 Introduction 

CD4+ helper T cells play essential roles in the function of the immune system by 

orchestrating immune responses against a broad range of pathogens, supporting the 

function of CD8+ T cells, helping B cells produce antibodies, activating macrophages and 

granulocytes, eliciting memory responses, as well as by regulating the magnitude and 

persistence of immune responses (Zhu & Paul, 2008). However, the dysregulation of 

CD4+ T cell responses causes aberrant effector CD4+ T cell activity, including 

overproduction of pro-inflammatory cytokines, eventually resulting in the manifestation 

of autoimmune disorders, such as multiple sclerosis (MS) and related diseases 

(Wucherpfennig, 2001; Goodnow, 2007). MS is a chronic inflammatory disease of the 

central nervous system (CNS) that affects approximately 2.5 million people worldwide, 

with a strong predominance in women (Compston & Coles, 2008). The animal model of 

neuroinflammation, experimental autoimmune encephalomyelitis (EAE), recapitulates 

the pathological and clinical symptoms of MS and has been extensively used to study this 

disorder (Rangachari & Kuchroo, 2013). In both MS and EAE, autoreactive CD4+ type-

17 helper T (Th17) cells that are generated by exposure to IL-23 and IL-1β (Langrish et 

al., 2005; Sutton et al., 2006, Komuczki et al., 2019) migrate to the CNS and cross the 

blood-brain barrier by following gradients of chemokines secreted by CNS-resident 

innate lymphoid cells (Kwong et al., 2017). The transcription factor Bhlhe40, which is 
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induced in encephalitogenic Th17 by IL-1β signaling, positively regulates the secretion 

of granulocyte-macrophage colony-stimulating factor (GM-CSF) (Martínez-Llordella et 

al., 2013; Lin et al., 2014; Lin et al., 2016). GM-CSF is a proinflammatory cytokine 

essential for disease induction as it promotes the activation, differentiation, and 

recruitment of monocytes and dendritic cells to the CNS, as well as the mobilization of 

the local microglia (McQualter et al., 2001; Ponomarev et al., 2007; Codarri et al., 2011; 

El-Behi et al., 2011; Spath et al., 2017; Komuczki et al., 2019). In turn, GM-CSF-

stimulated glial and dendritic cells secrete IL-6 and IL-23, thereby reinforcing the 

differentiation and maintenance of pathogenic Th17 cells (Sonderegger et al., 2008). 

Inflammatory myeloid cells produce reactive oxygen species and cytokines that cause 

neuron demyelination and axonal damage, which leads to the disruption of neuronal 

signaling, eventually resulting in disabling physical symptoms, including progressive loss 

of motor function, which reflect the extent of neurodegeneration (Compston & Coles, 

2008). 

 About a third of the total risk factors for MS development can be attributed to 

genetic variation, and genome-wide association studies have identified more than 100 

different genetic variants associated with MS and related autoimmune disorders (Lock et 

al., 2002; Duerr et al., 2006; Stuart et al., 2010; International Multiple Sclerosis Genetics 

Consortium et al., 2013). Many of these susceptibility factors consist of variants of genes 

which are involved in Th17 pathways and contain single nucleotide polymorphisms 

within the untranslated regions (UTRs) of their mRNA. Given that UTR sequences are 

targeted by factors controlling mRNA translation and stability (Barrett et al., 2012), the 

post-transcriptional dysregulation of these genes, particularly by miRNAs, may be 
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responsible for the aberrant cytokine responsiveness and effector function observed in 

autoreactive Th17 cells. In fact, altered miRNA expression has been shown in 

encephalitogenic Th17 cells from active MS lesions, and specific upregulated miRNAs, 

such as miR-155 and miR-326, were demonstrated to promote the pathogenic Th17 

phenotype (Du et al., 2009; Junker et al., 2009; O’Connell et al., 2010; Ma et al., 2014). 

Although regulatory roles have been described for let-7 miRNAs in the control of 

the differentiation of cytotoxic CD8+ T cells and various subsets of effector CD4+ T cells 

(Polikepahad et al., 2010; Kumar et al., 2011; Swaminathan et al., 2012; Okoye et al., 

2014; Wells et al., 2017; Kimura et al., 2018), the precise contribution of let-7 miRNAs 

in autoreactive Th17 cell differentiation and MS pathogenesis has been controversial (Ma 

et al., 2014). Disease-promoting roles have been proposed for individual let-7 miRNA 

family members (Junker et al., 2009; Guan et al., 2013; Kimura et al., 2018), but other 

reports have suggested that let-7 miRNA expression may confer protection against MS 

(Cox et al., 2010; Martinelli-Boneschi et al., 2012). Therefore, the objective of this project 

was to investigate the role of let-7 miRNAs in the regulation of pathogenic Th17 cell 

generation and identify the underlying molecular mechanisms.  

We demonstrated that the differentiation of pathogenic Th17 cells in EAE requires 

the downregulation of let-7 miRNAs in naive CD4+ T cells upon antigen stimulation. 

Specifically, we found that high let-7 miRNA expression in activated CD4+ T cells 

prevents EAE development by inhibiting the clonal expansion, IL23R/IL-1R1-dependent 

acquisition of pathogenic function, and CCR2/CCR5-dependent chemokine-mediated 

migration of Th17 cells to the CNS, while depletion of let-7 miRNAs enhances Th17 cell 

pathogenicity and aggravates EAE. Therefore, let-7 miRNA delivery to pathogenic Th17 
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cells may be a promising therapeutic strategy for the treatment of autoimmune diseases 

such as MS. 

2.2 Results 

2.2.1 Let-7 expression in CD4+ T cells inhibits EAE development 

The role of let-7 miRNAs in the differentiation of pathogenic CD4+ T cells 

remains unclear (Junker et al., 2009; Cox et al., 2010; Martinelli-Boneschi et al., 2012; 

Guan et al., 2013; Ma et al., 2014; Kimura et al., 2018). Previously, we have shown that 

let-7 miRNA expression in CD8+ T cells prevents the differentiation of CTLs and must 

be downregulated during antigen stimulation (Wells et al., 2017). Here, we found that, 

similarly to CD8+ T cells, naive CD4+ T cells expressed high levels of let-7, which were 

rapidly downregulated upon activation, proportionally to both the duration (Figure 2.1A) 

and strength of TCR stimulation (Figure 2.1B). Based on these observations, we 

hypothesized that let-7 miRNAs inhibit the differentiation of CD4+ T cells and may 

therefore compromise the generation of pathogenic Th17 cells, thereby suppressing the 

development of autoimmune disorders. 

To test our hypothesis in vivo, we acquired mice with a doxycycline-inducible let-

7g transgene (Let-7Tg) in order to maintain high let-7g expression in activated CD4+ T 

cells (Zhu et al., 2011). We used EAE susceptibility as a readout of CD4+ T cell 

differentiation in doxycycline- or vehicle-treated Let-7Tg and WT control mice 

immunized with the peptide antigen myelin oligodendrocyte glycoprotein, residues 35-

55 (MOG35-55), in complete Freund’s adjuvant (CFA). Only doxycycline-treated Let-7Tg 

mice developed a significantly milder disease in comparison to control mice (Figure 
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2.2A). Strikingly, the number of mononuclear cells (Figure 2.2B) and CD4+ T 

lymphocytes (Figure 2.2C) that infiltrated the CNS was strongly diminished in these 

mice. Overall, the frequencies and numbers of cytokine-producing CD4+ T cells were 

greatly reduced in the CNS of doxycycline-treated Let-7Tg mice (Figure 2.2D). In 

addition, in vitro MOG35-55-restimulated splenocytes from the same mice secreted less 

IL-17, IFNγ, and GM-CSF in comparison to that of control mice (Figure 2.2E). We 

obtained similar results using WT and Let-7Tg mice on a 2D2 RAG2-deficient 

(2D2Rag2KO) background, in which all CD4+ T cells express the 2D2 transgenic T cell 

receptor that recognizes the MOG35-55 peptide (Bettelli et al., 2003) (Figure 2.3). To 

assess whether the absence of let-7 miRNAs in CD4+ T cells leads to aggravated EAE, 

we used Lin28 transgenic mice (Lin28Tg) with T-cell specific ectopic overexpression of 

the fetal protein Lin28B, which blocks let-7 miRNA biogenesis (Heo et al., 2008; 

Piskounova et al., 2008; Newman et al., 2008; Heo et al., 2009; Piskounova et al., 2011; 

Pobezinsky et al., 2015). 2D2Rag2KO Lin28Tg mice developed stronger symptoms of 

EAE, during which the phenotype of cytokine-producing pathogenic CD4+ T cells was 

enhanced, even though the extent of CD4+ T cell infiltration into the CNS was unchanged 

in comparison to controls (Figure 2.3), suggesting that let-7 miRNAs inhibit EAE 

development. 

To determine whether the let-7 miRNA-mediated protection against EAE is CD4+ 

T cell-intrinsic, we adoptively transferred naive 2D2Rag2KO CD4+ T cells from Let-7Tg, 

Lin28Tg and control mice, into Rag2KO recipient mice that were subsequently 

immunized with MOG35-55 in CFA. At day 9 post-EAE induction, disease outcome 

(Figure 2.4A), CNS infiltration (Figure 2.4B), as well as frequencies and numbers of 
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cytokine-producing donor 2D2Rag2KO CD4+ T cells that had differentiated into 

pathogenic CD4+ T cells (Figures 2.4C and 2.4D) recapitulated the results from our 

previous EAE experiments (Figures 2.2 and 2.3). These results demonstrate that let-7 

abolishes the development of EAE in a CD4+ T cell-intrinsic manner. 

Although Let-7Tg CD4+ T cells were largely absent in the CNS of EAE-induced 

mice, they were found in the spleen, albeit at lower numbers than control cells (Figure 

2.4E). To explain this phenotype, we proposed four potential mechanisms: 1) poor cell 

survival, 2) reduced proliferation, 3) compromised differentiation, or 4) impaired 

trafficking. 

2.2.2 Let-7 promotes survival but restricts the proliferation of activated CD4+ T      
lymphocytes 

To examine whether let-7 miRNAs negatively regulate the survival of activated 

CD4+ T cells during EAE, we measured the survival rate of Let-7Tg, Lin28Tg and WT 

control CD4+ T cells activated in vitro for 3 days. Interestingly, Let-7Tg cells survived 

better than their WT counterparts, while the recovery of Lin28Tg lymphocytes was 

significantly lower (Figure 2.5A). In fact, these results are in agreement with our recently 

published findings in naive CD4+ and CD8+ T cells (Pobezinskaya et al., 2019), 

suggesting that let-7 expression also supports the survival of activated CD4+ T cells. 

Thus, the reduced numbers of CNS-infiltrated Let-7Tg CD4+ T cells recovered during 

EAE cannot be explained by increased cell death. 

Based on our data in CD8+ T cells (Wells et al., 2017), we tested whether let-7 

miRNAs suppress CD4+ T cell proliferation as well. To address this question, Let-7Tg, 

Lin28Tg and WT control naive CD4+ T cells were labeled with CellTrace Violet (CTV) 



48 
 

and activated in vitro. We observed that Let-7Tg CD4+ T cells proliferated less than 

activated control T cells, while Lin28Tg CD4+ T lymphocytes proliferated more (Figure 

2.5B), even though this effect was less pronounced than in CD8+ T cells. These findings 

suggest that let-7 restricts CD4+ T cell proliferation, which, in turn, can contribute to the 

diminished numbers of CNS-infiltrated Let-7Tg CD4+ T cells observed in EAE. 

Given that Let-7Tg CD4+ T cells exhibit a lower proliferative potential, we 

investigated whether let-7 inhibits the expression of genes that regulate cell cycle 

progression and the metabolic switch in antigen-stimulated CD4+ T cells. Similarly to the 

results observed in CD8+ T cells, activated Let-7Tg CD4+ T cells expressed low levels of 

cyclin D2 (Ccnd2), cyclin-dependent kinase 6 (Cdk6), phosphatase Cdc25a (Cdc25a), 

and ubiquitin-conjugating enzyme Cdc34 (Cdc34), as well as the transcription factor Myc 

and several Myc target genes involved in glycolysis and protein synthesis (Tfap4, Glut3, 

Hk2, Ldha, Qars, Yars), while in Lin28Tg cells those genes were derepressed 

(Galaktionov et al., 1996; Johnson et al., 2007; Legesse-Miller et al., 2009; Wells et al., 

2017) (Figures 2.5C and 2.5D). These results indicate that let-7 miRNAs may restrain 

CD4+ T cell proliferation by suppressing the metabolic switch and cell cycle progression. 

These data also suggest that Lin28Tg CD4+ T cells are able to elicit aggravated EAE 

because of their proliferative and metabolic advantage over WT CD4+ T cells, despite a 

survival defect. 

2.2.3 Let-7 negatively regulates the differentiation of pathogenic Th17 cells 

Alternatively, the low frequency of effector CD4+ T cells in the CNS of Let-7Tg 

mice during EAE could be due to a defect in autoreactive CD4+ T cell differentiation. 

Therefore, we tested the ability of let-7 miRNAs to influence the differentiation of 
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pathogenic Th17 cells. Naive 2D2Rag2KO CD4+ T cells with different levels of let-7 

expression were polarized in vitro towards the TGFβ-independent pathogenic Th17 

lineage in the presence of the cytokines IL-1β, IL-6, and IL-23 (Chung et al., 2009; 

Ghoreschi et al., 2010). We confirmed that, while the expression of let-7 miRNAs was 

downregulated over time in 2D2Rag2KO WT cells (Figure 2.6A), the expression of the 

let-7g transgene remained high in 2D2Rag2KO Let-7Tg cells before and after 

differentiation (Figure 2.6B), and Lin28 expression could only be detected at substantial 

levels in 2D2Rag2KO Lin28Tg cells (Figure 2.6C). Notably, very low frequencies of 

Let-7Tg pathogenic Th17 cells expressed IL-17 and GM-CSF as compared to WT 

controls, whereas Lin28Tg cells had increased percentages of cells that expressed these 

cytokines (Figure 2.7A). This trend was also observed in the frequencies of IL-17+GM-

CSF+ double positive cells, suggested to be the most pathogenic Th17 cells in EAE 

(Ponomarev et al., 2007; Sonderegger et al., 2008; Codarri et al., 2011; El-Behi et al., 

2011; Spath et al., 2017). Furthermore, the extent of Il17a and Csf2 mRNA expression 

correlated with the percentage range of IL-17A- and GM-CSF-producing cells (Figure 

2.7B). These results suggest that let-7 expression in CD4+ T lymphocytes prevents the 

differentiation of pathogenic Th17 cells. 

We observed that the expression of the cytokine receptors Il1r1 and Il23r, both 

previously described as essential for the differentiation of pathogenic Th17 cells in EAE 

(Langrish et al., 2005; Matsuki et al., 2006; McGeachy et al., 2009; El-Behi et al., 2011; 

Komuczki et al., 2019), was profoundly inhibited in Let-7Tg and derepressed in Lin28Tg 

pathogenic Th17-polarized cells. Analysis of Il1r1 and Il23r mRNA sequences revealed 

multiple potential let-7 binding motifs which can be directly targeted by let-7 (Figure 
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2.7C). In fact, such regulation was previously proposed for the mRNA of IL23R in human 

memory CD4+ T cells (Li et al., 2011). Interestingly, although miRNA binding sites are 

most commonly found within the 3’ UTRs of mRNAs, some let-7 binding sites were 

located within the coding sequence of mouse and human Il1r1 and Il23r mRNAs. On the 

other hand, the expression of the transcription factor Bhlhe40, shown to be induced by 

IL-1R signaling (Lin et al., 2016) and essential for the pathogenicity of Th17 cells in EAE 

(Martínez-Llordella et al., 2013; Lin et al., 2014), was only slightly reduced in Let-7Tg 

pathogenic Th17-polarized cells, but drastically enhanced in Lin28Tg lymphocytes 

(Figure 2.7B). Let-7 miRNAs did not repress the expression of other genes controlling 

the Th17 cell fate, such as Il6ra, Il6st, Irf4 and Rorc, and had little impact on Stat3 

expression (Figure 2.7D), even though Il6ra, Stat3, and Rorc are predicted direct let-7 

targets (Agarwal et a;., 2015). Thus, these results suggest that let-7 miRNAs negatively 

regulate the acquisition of pathogenic Th17 phenotype and may act through directly 

targeting Il1r1 and Il23r transcripts. 

Of note, in agreement with previously published reports (Polikepahad et al., 2010; 

Kumar et al., 2011; Swaminathan et al., 2012), we confirmed that let-7 expression also 

blocks the differentiation of Th0, Th1, and Th2 cells. Surprisingly, let-7 did not suppress 

the differentiation of non-pathogenic Th17 cells generated in the presence of IL-6 and 

TGF-β (Figures 2.8A and 2.8B) (McGeachy et al., 2007). Moreover, there was no 

obvious effect of let-7 on the generation of iTregs in polyclonal polarization cultures, but 

in monoclonal 2D2Rag2KO cells iTreg differentiation was quite substantially inhibited 

by let-7 (Figures 2.8A and 2.8B). The expression level of Ifng, Il4, and Csf2 mRNAs 

was consistent with the range of frequencies of IFNγ+, IL-4+ and GM-CSF+ cells in Th0, 
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Th1, and Th2 cultures (Figures 2.9). The expression of genes encoding lineage-specific 

cytokine receptors, such as Il12rb2 (Th1) and Il4ra (Th2), as well as lineage-specific 

transcription factors, including Tbx21 (Th1) and Gata3 (Th2), and the transcription factor 

Bhlhe40, which has been shown to promote a proinflammatory phenotype in Th1 cells 

(Yu et al., 2018), was also repressed in Let-7Tg Th0, Th1, and Th2 cells, but increased 

in Lin28Tg cells. Thus, these results suggest a broader suppressive role for let-7 miRNAs 

in the regulation of effector CD4+ T cell differentiation. 

2.2.4 Let-7 prevents the chemokine-mediated migration of pathogenic Th17 cells 

In addition to reduced proliferation potential and compromised differentiation, the 

lower number of effector Let-7Tg CD4+ T cells in the CNS may be due to impaired cell 

trafficking. Antigen-stimulated T cells upregulate chemokine receptors to sense, migrate, 

and home to the location of inflammatory sites by following gradients of chemokines 

(Griffith et al., 2014). Two chemokine receptors, CCR2 and CCR5, have been shown to 

be critical for the migration of pathogenic T cells to the CNS and subsequently for EAE 

development (Fife et al., 2000; Szczuciński & Losy, 2007; Kara et al., 2015; Gu et al., 

2016). To determine whether let-7 regulates CCR2 and CCR5 expression, we measured 

Ccr2 and Ccr5 mRNA levels in in vitro-generated 2D2Rag2KO pathogenic Th17 cells 

from WT, Let-7Tg and Lin28Tg mice. Surprisingly, the expression of both Ccr2 and Ccr5 

was very low in Let-7Tg cells, while in Lin28Tg cells it was enhanced (Figures 2.10A). 

Interestingly, we found potential let-7 binding sites within the mRNA of both Ccr2 and 

Ccr5 (Figures 2.10B). To test whether these binding sites were functional, we transfected 

NIH3T3 fibroblasts, which have high endogenous expression of let-7 miRNAs, with dual 

luciferase vectors containing the wild-type sequence of these binding motifs. An ability 
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for let-7 to bind to both sites in the Ccr2 mRNA, and one site in Ccr5 mRNA was 

demonstrated by a significant reduction in luciferase activity (Figures 2.10C). Mutation 

of these binding sites restored luciferase activity, confirming direct let-7 targeting. To test 

whether the let-7-mediated suppression of CCR2 and CCR5 expression is sufficient to 

prevent chemokine-mediated migration of Th17 cells towards their specific ligands, 

CCL2 and CCL4, we subjected in vitro-generated 2D2Rag2KO WT, Let-7Tg and 

Lin28Tg pathogenic Th17 cells to chemokine-mediated migration assays. Indeed, 

2D2Rag2KO Let-7Tg cells exhibited compromised trafficking in response to both 

chemokines alone and in combination, while Lin28Tg cells migrated more efficiently 

than WT cells (Figures 2.10D).  Even though changes in cell motility can contribute to 

the difference in trafficking of Th17 cells, neither speed nor other intrinsic motility 

variables (track length, track straightness, and cell displacement) were negatively affected 

by let-7 expression (Figures 2.11). To test whether let-7 miRNAs prevent the migration 

of pathogenic Th17 cells by inhibiting CCR2 and CCR5 expression, we overexpressed 

Ccr2 or Ccr5 in in vitro-generated 2D2Rag2KO WT and 2D2Rag2KO Let-7Tg 

pathogenic Th17 cells (Figures 2.10E) and tested the migratory potential of these cells 

using chemokine-mediated migration assays. Surprisingly, only overexpression of Ccr5, 

but not Ccr2, partially rescued the chemotaxis of 2D2Rag2KO Let-7Tg pathogenic Th17 

cells towards CCL4, and enhanced the migration of 2D2Rag2KO WT pathogenic Th17 

cells (Figures 2.10F). These results strongly suggest that let-7 miRNAs restrict the 

CCR5-mediated migration of pathogenic Th17 cells by directly binding to Ccr5 mRNA 

and inhibiting CCR5 expression, and additional let-7-mediated regulatory mechanisms 

are involved in the CCR2-mediated migration of these cells. 
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Altogether, our data show that let-7 miRNAs control the pathogenicity of Th17 

cell in EAE by restricting their clonal expansion, inhibiting IL-1R1/IL-23R-dependent 

differentiation and preventing CCR2/CCR5-mediated migration to the CNS. As such, we 

propose that let-7 miRNAs may constitute a promising therapeutic target for the treatment 

of autoimmune diseases such as MS. 

2.3 Discussion 

In the present study, we have identified let-7 miRNAs as critical negative 

regulators of pathogenic Th17 cell differentiation and EAE development. Specifically, 

we found that, similarly to CD8+ T cells (Wells et al., 2017), the expression of let-7 

miRNAs in naive CD4+ T cells is downregulated upon activation, which is essential for 

the clonal expansion, acquisition of pathogenic Th17 phenotype, and migration to the 

CNS. We demonstrate that high let-7 miRNA expression in activated CD4+ T cells 

confers almost complete protection against EAE by preventing CD4+ T cell pathogenicity 

and infiltration in the CNS, while in the absence of let-7 miRNAs the development of 

EAE is exacerbated. 

The role of miRNAs in the regulation of T cell differentiation and function has 

been extensively studied (Baumjohann & Ansel, 2013). However, despite the growing 

number of reports describing miRNA dysregulation in MS patients (Ma et al., 2014), their 

contribution to MS pathogenesis remains largely unknown. Although let-7 is one of the 

most highly expressed miRNA families in CD4+ T cells (Kuchen et al., 2010) and it has 

been shown to play regulatory roles in helper T cell responses (Polikepahad et al., 2010; 

Kumar et al., 2011; Swaminathan et al., 2012; Okoye et al., 2014; Kimura et al., 2018), 

published reports have yielded conflicting conclusions regarding the contribution of let-
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7 miRNAs to Th17 cell pathogenicity during MS and EAE, and have remained 

unresolved (Ma et al., 2014). For example, Junker et al., 2009 found an upregulation of 

let-7c in MS lesions, while Kimura et al., 2018 described an increase in exosomal let-7i 

in MS patients and proposed a disease-promoting role for let-7i. On the other hand, Cox 

et al., 2010 showed a downregulation of let-7d, f, i, and, together with Martinelli-

Boneschi et al., 2012, let-7g, in peripheral blood samples of MS patients, whereas Guan 

et al., 2013 reported a decrease in let-7g and let-7i in pathogenic CD4+ T cells in EAE, 

but at the same time let-7b, c, d, f and especially let-7e, were upregulated. Moreover, 

overexpression of let-7e in CD4+ T cells led to aggravated EAE, while knockdown of this 

miRNA attenuated the disease. Our findings are in discordance with Guan et al., 2013, 

since we show that EAE is aggravated upon adoptive transfer of Lin28Tg naive CD4+ T 

cells, in which all let-7 members are suppressed, into Rag2KO recipients. These 

disparities could be due to the use of different mouse models and treatments, as the cited 

study employed CD44 KO CD4+ T cells and lentivirus-mediated overexpression or 

silencing of let-7e expression, while we used transgenic mice with specific modulation 

of let-7 miRNA expression. 

Our most striking finding is that let-7 miRNAs keep pathogenic CD4+ T cells 

from infiltrating the CNS. This effect was not due to a detrimental impact of let-7 

miRNAs on the survival of activated CD4+ T cells, as maintenance of high let-7 miRNA 

expression improved the survival rate of activated CD4+ T cells, while let-7 deficiency 

caused an increase in cell death, which is consistent with our recently published 

observations in both naive CD4+ and CD8+ T cells that let-7 miRNAs promote 
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homeostatic survival through IL-7-independent stabilization of Bcl2 expression 

(Pobezinskaya et al., 2019). 

In comparison to CD8+ T cells (Wells et al., 2017), we observed only an 

incremental contribution of let-7 to the proliferation of CD4+ T cells, despite the fact that 

we found let-7-mediated suppression of Myc and Myc target genes involved in glycolysis 

and protein synthesis. Furthermore, we demonstrate that let-7 miRNAs inhibit the 

expression of Cdc25 and Cdc34, both of which are involved in the positive regulation of 

cell cycle progression and are also documented direct Myc and let-7 miRNA target genes 

(Gakationov et al., 1996; Johnson et al., 2007; Legesse-Miller et al., 2009). Thus, our 

results indicate that let-7 miRNAs may regulate cell cycle progression in CD4+ T cells 

both directly by inhibiting Cdc25a and Cdc34, as well as indirectly through Myc.  

It is well-known that regulatory T cells play an indispensable role in preventing 

autoimmunity (Wing & Sakaguchi, 2010). Based on our EAE experiments, it was 

reasonable to hypothesize that let-7 miRNA expression may enhance the development or 

function of Tregs while let-7 deficiency may compromise it. Surprisingly, our data show 

the opposite results, in which let-7 miRNAs inhibited the differentiation of monoclonal 

(2D2Rag2KO) iTregs in vitro. Furthermore, we noticed that, even though Lin28Tg CD4+ 

T cells have an enhanced potential to differentiate into pathogenic Th17 cells, Lin28Tg 

mice are healthy and do not show any sign of autoimmunity, suggesting unaltered Treg 

function in the absence of let-7 miRNAs. Based on these observations we can conclude 

that let-7 expression does not enhance Treg differentiation or function. Therefore, in order 

to understand the observed phenotype, we focused our research on the role of let-7 

miRNAs in the differentiation and function of pathogenic Th17 cells. 



56 
 

We show that let-7 miRNAs prevent the in vitro differentiation of naive CD4+ T 

cells towards the pathogenic Th17 lineage, as reflected by the reduced frequencies of IL-

17A+, GM-CSF+, and IL-17A+GM-CSF+ cells, and the downregulation of the cytokine 

genes Il17a and Csf2 (encoding GM-CSF), as well as the cytokine receptor genes Il1r1, 

and Il23r. Both IL-1R1 and IL-23R signaling play critical roles in Th17 cell 

differentiation, as mice deficient in either cytokine receptor or their respective ligand are 

completely resistant to EAE development (Cua et al., 2003; Matsuki et al., 2006; Sutton 

et al., 2006; McGeachy et al., 2009). It was later found that IL-23R signaling, as well as 

IL-1R-mediated expression of the transcription factor Bhlhe40, induces the expression of 

the cytokine GM-CSF, which stimulates peripheral inflammatory macrophages and 

promotes their migration to the CNS, where they are responsible for demyelination and 

neuroaxonal damage (El-Behi et al., 2011; Lin et al., 2016; Spath et al., 2017; Komuczki 

et al., 2019). Both Bhlhe40 and GM-CSF have been shown to be indispensable for EAE 

induction, since deficiency in either factor confers protection against EAE (McQualter et 

al., 2001; Ponomarev et al., 2007; Codarri et al., 2011; Martínez-Llordella et al., 2013; 

Lin et al., 2014), and elevated GM-CSF levels have been correlated with the active phase 

of MS (Carrieri et al., 1998). In addition, two earlier reports proposed a role for specific 

members of the let-7 family in the regulation of Il23r expression. Specifically, potential 

let-7f binding sites were identified in IL23R mRNA in human memory CD4+ T cells (Li 

et al., 2011), and loss of let-7e- and let-7f-mediated regulation of a human IL23R gene 

variant was shown to be associated with inflammatory bowel disease, due to a 

polymorphism in the 3’ UTR of IL-23R mRNA sequence (Zwiers et al., 2012). In our 

study, we found additional let-7 binding sites within the mRNA sequence of Il23r and 



57 
 

described the regulatory role of let-7 miRNAs in the context of pathogenic Th17 cell 

differentiation. Furthermore, we identified potential let-7 binding sites within the mRNA 

sequence of Il1r1, which has never been suggested to be a direct let-7 miRNA target. 

Therefore, we propose a novel let-7 miRNA-mediated regulatory mechanism in which 

let-7 miRNAs prevent both IL-1R1 and IL-23R expression in CD4+ T cells by directly 

targeting their respective transcripts. Consistent with knock-out studies, CD4+ T cells that 

do not express these cytokine receptors are unable to receive the necessary signals for the 

induction of Bhlhe40 and GM-CSF, thereby aborting the differentiation of 

encephalitogenic Th17 cells and EAE development.  

We also tested whether the let-7 miRNA-mediated restriction of CNS infiltration 

by pathogenic CD4+ T cells in EAE was due to the inhibition of cell migration to the 

CNS. Even though there was no difference in intrinsic motility of in vitro-generated 

pathogenic Th17 cells, we demonstrated, using transwell assays, that let-7 repressed the 

chemokine-mediated migration of these cells in response to the chemokines CCL2 and 

CCL4 by suppressing the expression of their cognate receptors CCR2 and CCR5. 

Although chemokine receptors are normally upregulated in differentiating T cells, 

enabling them to migrate and home to the location of ongoing immune responses, CCL2 

and CCL4 have been detected at high levels in the cerebrospinal fluid, brain tissue, and 

active lesions of patients with MS, and elevated expression of both chemokine receptors 

on pathogenic CD4+ T cells has been correlated with the active phase of MS (Sørensen 

& Sellebjerg, 2011; Teleshova et al., 2002; Szczuciński & Losy, 2007). In fact, the role 

of CCR2 and CCR5 in pathogenic CD4+ T cell trafficking to the CNS in MS has been 

confirmed in EAE using receptor-deficient mice (Fife et al., 2000; Gu et al., 2016). 
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Despite the fact that the observed dysregulation of these receptors could be indirectly 

resulting from the let-7-mediated inhibition of pathogenic Th17 differentiation, we found 

that the mRNA sequences of both chemokine receptors contain potential let-7 miRNA 

binding sites. We showed, using luciferase reporter assays, that both sites identified in 

Ccr2 mRNA, but only one site in Ccr5 mRNA, are functional let-7-binding sites. 

Furthermore, we showed, in transwell assays using Ccr2- and Ccr5-overexpressing cells, 

that let-7 can inhibit the CCR5-, but not the CCR2-mediated migration of pathogenic 

Th17 cells. Therefore, we propose that let-7 miRNAs, in addition to possibly targeting 

Il1r1 and Il23r transcripts, also inhibit CCR5-mediated chemotaxis by directly targeting 

Ccr5 mRNA in pathogenic CD4+ T cells. The repression of CCR2-mediated chemotaxis 

appears to be controlled by unknown let-7-mediated regulatory mechanisms, as it is not 

rescued upon CCR2 overexpression. In accordance with chemokine receptor deficiency 

studies in EAE, we can conclude that the inability to express the adequate levels of CCR5 

suppresses the responsiveness of pathogenic Th17 cells to their respective ligands, 

thereby preventing their migration to the CNS and EAE induction. 

Our study strongly highlights a potential therapeutic application for let-7 miRNAs 

in the treatment of autoimmune diseases such as MS. Besides, we show that let-7 

expression did not interfere with the differentiation of non-pathogenic Th17 cells, which 

are generated with IL-6 and TGF-β (McGeachy et al., 2007). This was consistent with 

our findings that let-7 expression does not inhibit the expression of genes expressed in 

both Th17 subsets, such as the transcription factors Rorc and Irf4, as well as the IL-6 

receptor components Il6ra and Il6st. In contrast to their pathogenic counterparts, these 

cells are not able to induce EAE, likely due to their inability to secrete GM-CSF in the 
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absence of IL-1β and IL-23 signaling. Instead, non-pathogenic Th17 cells secrete the anti-

inflammatory cytokine IL-10, which antagonizes autoimmune responses (Kühn et al., 

1993). Therefore, it would be interesting to test whether let-7 affects the normal function 

of these cells, the preservation of which would be important in the context of the proposed 

therapeutic strategy. Furthermore, because the phenotypic plasticity of the Th17 subset is 

well known, assessing whether the let-7-mediated inhibition of pathogenic Th17 

differentiation can contribute to the conversion of these cells towards the non-pathogenic 

Th17 lineage in the presence of the adequate signals would also have significant 

implications for this therapy (McGeachy et al., 2007; McGeachy et al., 2009). 

 Altogether, our data demonstrate that let-7 miRNAs have a protective effect in 

EAE rather than a role in promoting disease pathogenesis. Therefore, delivering let-7 

miRNAs to pathogenic Th17 cells may constitute a promising therapeutic strategy for the 

treatment of MS and related autoimmune diseases. 
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Figure 2.1 Let-7 miRNAs are highly expressed in naive CD4+ T cells, but get 
downregulated upon activation, proportionally to the duration and strength of TCR 
stimulation. (A) Quantitative RT-PCR analysis of individual let-7 miRNA expression in 
naive CD4+ T cells activated with plate-bound α-CD3 mAbs (5 µg/mL) and α-CD28 
mAbs (5 µg/mL) for increasing time periods as indicated, presented relative to results 
obtained for the small nuclear RNA U6 (control) and normalized to the unstimulated (0 
hours) control. (B) Quantitative RT-PCR analysis of individual let-7 miRNA expression 
in naive CD4+ T cells activated for 24 hours with plate-bound α-TCR mAbs (as indicated) 
and α-CD28 mAbs (5 µg/mL), presented relative to results obtained for the small nuclear 
RNA U6 (control) and normalized to the unstimulated (0 hours) control. Data are from 
one experiment representative of two independent experiments (A, B; mean ± S.E.M. of 
technical triplicates). 
 



61 
 

 
 
 
 
 
 
 
 
 
 



62 
 

Figure 2.2 Downregulation of let-7 miRNAs upon activation is required for CD4+ T 
cell pathogenicity in EAE. (A) Mean clinical scores in vehicle- (no dox) treated wild-
type (WT) (n=3) and Let-7Tg (n=4) mice or doxycycline- (+ dox) treated WT (n=7) and 
Let-7Tg (n=7) mice immunized with MOG35-55 in complete Freund’s adjuvant (CFA) and 
pertussis toxin (60 ng). (B) Number of total mononuclear cells at the peak of the disease 
(day 9-15 post-immunization) in the CNS of vehicle- (no dox) or doxycycline- (+ dox) 
treated WT versus Let-7Tg mice. (C) Number of CNS-infiltrated CD4+ T cells at the peak 
of the disease (day 9-15 post-immunization) in vehicle- (no dox) or doxycycline- (+ dox) 
treated WT versus Let-7Tg mice as analyzed by flow cytometry. (D) Intracellular staining 
of CD4+ T cells from the CNS of vehicle- (no dox) or doxycycline- (+ dox) treated WT 
versus Let-7Tg mice (left). Numbers indicate the frequencies of cytokine-positive cells 
within the indicated gates. Quantification of the numbers of cytokine-positive cells as 
assessed by flow cytometry for each staining strategy (right). (E) ELISA analysis of IL-
17, IFNγ and GM-CSF concentration in the supernatants of splenocytes from vehicle- (no 
dox) or doxycycline- (+ dox) treated WT versus Let-7Tg mice harvested at the peak of 
disease (day 9-15 post-immunization) and restimulated for 5 days in vitro with 20 µg/mL 
MOG35-55. * p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 (A, B, C, D, E), 
employing two-way ANOVA (A) or compared with WT using two-tailed Student’s t test 
(B, C, D, E). Data are from two combined independent experiments (A, B, C; mean ± 
S.E.M. of each population from all mice), from one experiment representative of two 
independent experiments (D; mean ± S.E.M. of each population from all mice), or from 
one experiment (C; mean ± S.E.M. of technical triplicates of each population from all 
mice). 
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Figure 2.3 Let-7 miRNAs control the development of active EAE by negatively 
regulating the pathogenicity of monoclonal CD4+ T cells. (A) Mean clinical scores in 
2D2Rag2KO WT (n=4), 2D2Rag2KO Let-7Tg (n=5) and 2D2Rag2KO Lin28Tg (n=3) 
mice immunized with MOG35-55 in complete Freund’s adjuvant (CFA) and pertussis toxin 
(60 ng). (B) Number of total mononuclear cells at the peak of the disease (day 9 post-
immunization) in the CNS of 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO 
Lin28Tg mice. (C) Number of CNS-infiltrated CD4+ T cells at the peak of the disease 
(day 9-15 post-immunization) in 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 
2D2Rag2KO Lin28Tg mice as analyzed by flow cytometry. (D) Intracellular staining of 
CD4+ T cells from the CNS of 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO 
Lin28Tg mice (left). Numbers indicate the frequencies of cytokine-positive cells within 
the indicated gates. * p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 (A, B, C, D), 
compared with WT employing two-way ANOVA (A) or using two-tailed Student’s t test 
(B, C, D). Data are from two combined independent experiments (A, B, C; mean ± S.E.M. 
of each population from all mice) or one experiment representative of two independent 
experiments (D). 
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Figure 2.4 Let-7 miRNAs negatively regulate CD4+ T cell pathogenicity in a cell-
intrinsic manner in EAE. (A) Mean clinical scores in Rag2KO recipient mice that 
received 2D2Rag2KO WT (n=7), 2D2Rag2KO Let-7Tg (n=7) or 2D2Rag2KO Lin28Tg 
(n=8) naive CD4+ T cells (2-2.5 x 106 cells/recipient) and that were subsequently 
immunized with MOG35-55 in complete Freund’s adjuvant (CFA) and pertussis toxin (60 
ng). (B) Number of total mononuclear cells at the peak of the disease (day 9 post-
immunization) in the CNS of Rag2KO recipients that received 2D2Rag2KO WT, 
2D2Rag2KO Let-7Tg, and 2D2Rag2KO Lin28Tg cells. (C) Number of CNS-infiltrated 
2D2Rag2KO CD4+ T cells at the peak of the disease (day 9 post-immunization) in 
Rag2KO recipients transferred with 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg, and 
2D2Rag2KO Lin28Tg cells as analyzed by flow cytometry. (D) Intracellular staining of 
donor CD4+ T cells from the CNS of Rag2KO recipients that received 2D2Rag2KO WT, 
2D2Rag2KO Let-7Tg, and 2D2Rag2KO Lin28Tg cells (left). Numbers indicate the 
frequencies of cytokine-positive cells within the indicated gates. (E) Quantification of 
total cell numbers and CD4+ T cell numbers in the spleens of Rag2KO recipient mice that 
received 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg, and 2D2Rag2KO Lin28Tg cells.          
* p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 (A, B, C, D, E), compared with 
WT employing two-way ANOVA (A) or using two-tailed Student’s t test (B, C, D, E). 
Data are from two combined independent experiments (A, B, C; mean ± S.E.M. of each 
population from all mice), from one experiment representative of two independent 
experiments (D), or from one experiment (E; mean ± S.E.M. of each population from all 
mice). 
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Figure 2.5 Let-7 miRNAs control the proliferation of CD4+ T cells by negatively 
regulating metabolic reprogramming and cell cycle progression. (A) Survival rate of 
WT, Let-7Tg and Lin28Tg CD4+ T cells activated in vitro for 3 days with α-CD3 and α-
CD28 mAbs (5 µg/mL each) as analyzed by trypan blue exclusion. (B) Proliferation of 
Cell-Trace Violet-labeled WT, Let-7Tg and Lin28Tg CD4+ T cells activated in vitro for 
3 days α-CD3 and α-CD28 mAbs (5 µg/mL each) as analyzed by flow cytometry. 
Numbers indicate the cell frequencies within the indicated gates for each genotype. (C) 
Quantitative RT-PCR analysis of the cell cycle regulators, cyclin D2 (Ccnd2), cyclin-
dependent kinase 6 (Cdk6), cell division cycle 25a phosphatase (Cdc25a), and ubiquitin-
conjugating enzyme E2 Cdc34 (Cdc34) in naive CD4+ T cells activated with plate-bound 
α-CD3 and α-CD28 mAbs (5 µg/mL each) for increasing time periods as indicated, 
presented relative to results obtained for the ribosomal protein Rpl13a (control). (D) 
Quantitative RT-PCR analysis of the transcription factors Myc (Myc) and AP-4 (Tfap4), 
as well as Myc direct target genes involved in glycolysis and protein synthesis, glucose 
transporter 3 (Glut3), hexokinase 2 (Hk2), lactate dehydrogenase A (Ldha), glutamyl-
tRNA synthetase (Qars) and tyrosyl-tRNA synthetase (Yars) in naive CD4+ T cells 
activated with plate-bound α-CD3 mAbs and α-CD28 mAbs (5 µg/mL each) for 48 hours, 
presented relative to results obtained for the ribosomal protein Rpl13a (control).                    
* p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 (A, C, D), compared with WT 
using two-tailed Student’s t test. Data are from one experiment representative of two 
independent experiments (A, C, D; mean ± S.E.M. of technical triplicates of each 
population from all mice) or from two independent experiments (B). 
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Figure 2.6 Let-7 miRNAs also get downregulated over time during pathogenic Th17 
differentiation. (A) Quantitative RT-PCR analysis of individual let-7 miRNA expression 
in naive 2D2Rag2KO WT CD4+ T cells and during in-vitro-generation of 2D2RagKO 
WT pathogenic Th17 cells at the indicated time points, presented relative to results 
obtained for the small nuclear RNA U6 (control), and normalized to results obtained for 
naive 2D2Rag2KO WT CD4+ T cells. (B) Quantitative RT-PCR analysis of individual 
let-7 miRNA expression in naive CD4+ T cells and day-5 in-vitro-generated pathogenic 
Th17 cells from 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg, and 2D2Rag2KO Lin28Tg 
mice, presented relative to results obtained for the small nuclear RNA U6 (control), and 
normalized to results obtained for naive 2D2Rag2KO WT CD4+ T cells. (C) Quantitative 
RT-PCR analysis of Lin28a and Lin28b in naive 2D2Rag2KO WT and 2D2Rag2KO 
Lin28Tg CD4+ T cells, as well as during in-vitro-generation of 2D2RagKO WT 
pathogenic Th17 cells at the indicated time points presented relative to results obtained 
for the small nuclear RNA U6 (control), and normalized to results obtained for naive 
2D2Rag2KO WT CD4+ T cells. . * p < 0.05, *** p < 0.001, **** p < 0.0001, compared 
with WT using two-tailed Student’s t test. Data are from one experiment representative 
of at least two experiments (A, B, C; mean ± S.E.M. of technical replicates). 
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Figure 2.7 Let-7 miRNAs specifically inhibit the acquisition of the pathogenic Th17 
phenotype. (A) Intracellular staining of CD4+ T cells from 2D2Rag2KO WT, 
2D2Rag2KO Let-7Tg and 2D2Rag2KO Lin28Tg mice polarized in vitro towards the 
pathogenic Th17 lineage with IL-6, IL-1β, and IL-23. Numbers indicate the frequencies 
of cytokine-positive cells within the indicated gates. (B) Quantitative RT-PCR analysis 
of the cytokines IL-17A (Il17a) and GM-CSF (Csf2), the cytokine receptors IL-1R1 
(Il1r1) and IL-23R (Il23r), and the transcription factor Bhlhe40 (Bhlhe40) in in vitro-
generated pathogenic Th17 cells from 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 
2D2Rag2KO Lin28Tg mice from (A), presented relative to results obtained for the 
ribosomal protein Rpl13a (control). (C) Diagram positioning in silico-identified let-7 
binding sites (black vertical lines) within the mouse and human mRNA sequences of the 
cytokine receptors IL1-R1 (Il1r1 and IL1R1, respectively) and IL-23R (Il23r and IL-23R, 
respectively). (D) Quantitative RT-PCR analysis of the IL-6 cytokine receptor 
components IL-6Rα (Il6ra) and IL-6ST (Il6st), and the transcription factors STAT3 
(Stat3), IRF4 (Irf4), and RORγt (Rorc) in in vitro-generated pathogenic Th17 cells from 
2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO Lin28Tg mice.* p < 0.05,     
*** p<0.001, **** p < 0.0001 (B, D), compared with WT using two-tailed Student’s t 
test. Data are from one experiment representative of two independent experiments (A) or 
from two independent experiments (B, D; mean ± S.E.M. of technical triplicates of each 
population from all mice).  
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Figure 2.8 Let-7 miRNAs inhibit the differentiation of several helper T cell subsets 
generated from both polyclonal and monoclonal naive CD4+ T cells in vitro. 
Intracellular staining of CD4+ T cells from polyclonal (A) or monoclonal 2D2Rag2KO 
(B) WT, Let-7Tg and Lin28Tg mice polarized in vitro towards the Th0, Th1, Th2, non-
pathogenic Th17 and iTreg lineages. Numbers indicate the frequencies of cytokine-
positive cells within the indicated gates. Data are from one experiment representative of 
seven (A) or six (B) independent experiments. 
 
 
 



73 
 

 
Figure 2.9 Let-7 miRNAs negatively regulate the expression of genes controlling the 
differentiation of Th0, Th1 and Th2 cells generated in vitro. Quantitative RT-PCR 
analysis of the cytokines IFNγ (Ifng), GM-CSF (Csf2), and IL-4 (Il4), the cytokine 
receptors IL12Rβ2 (Il12rb2) and IL4Rα (Il4ra), as well as the transcription factors T-bet 
(Tbx21), Bhlhe40 (Bhlhe40) and GATA3 (Gata3) in naive CD4+ T cells and in vitro-
generated Th0, Th1 and Th2 cells from WT, Let-7Tg and Lin28Tg mice, presented 
relative to results obtained for the ribosomal protein Rpl13a (control). Data are from one 
experiment representative of two independent experiments (mean ± S.E.M. of technical 
triplicates of each population from all mice). 
 



74 
 

 
 



75 
 

Figure 2.10 Let-7 miRNAs prevent the chemokine-dependent migration of in vitro-
generated pathogenic Th17 cells by suppressing the expression of the chemokine 
receptors CCR2 and CCR5. (A) Quantitative RT-PCR analysis of the chemokine 
receptors CCR2 (Ccr2) and CCR5 (Ccr5) in in vitro-generated pathogenic Th17 cells 
from 2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO Lin28Tg mice, 
presented relative to results obtained for the ribosomal protein Rpl13a (control). (B) 
Diagram positioning in silico-identified conserved (red vertical lines) and non-conserved 
(black vertical lines) let-7 binding sites within the mouse and human mRNA sequences 
of the chemokine receptors CCR2 (Ccr2 and CCR2, respectively) and CCR5 (Ccr5 and 
CCR5, respectively). (C) Luciferase reporter assay of let-7 targeting in-silico-identified 
let-7-binding sites in mouse Ccr2 or Ccr5 mRNA, in NIH/3T3 cells transfected with a 
luciferase reporter vector containing either the wild-type or mutated variants of these 
binding sites, or either the wild-type or a mutated variant of the antisense seed sequence 
of let-7g (controls). Results are presented as relative luminescence units (RLU), 
calculated by normalization of Firefly luciferase activity to Renilla luciferase activity 
(control). (D) Transwell migration assay of in vitro-generated pathogenic Th17 cells from 
2D2Rag2KO WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO Lin28Tg mice from (A) in 
response to the chemokines CCL2 (50 ng/mL) and CCL4 (50 ng/mL) alone or in 
combination (50 ng/mL or 10 ng/mL each). Results are presented as percentage of cell 
migration in media only control, defined as 100%. (E) Quantitative RT-PCR analysis of 
the chemokine receptors CCR2 (Ccr2) and CCR5 (Ccr5) in in vitro-generated pathogenic 
Th17 cells from 2D2Rag2KO WT and 2D2Rag2KO Let-7Tg mice, transduced with 
empty vector (solid bars), Ccr2-overexpression vector (horizontally-striped bars), and 
Ccr5-overexpression vector (diagonally-striped bars), presented relative to results 
obtained for the ribosomal protein Rpl13a (control). (F) Transwell migration assay of in 
vitro-generated pathogenic Th17 cells from 2D2Rag2KO WT and 2D2Rag2KO Let-7Tg 
mice, transduced with empty vector (solid bars), Ccr2-overexpression vector 
(horizontally-striped bars), and Ccr5-overexpression vector (diagonally-striped bars) in 
response to the chemokines CCL2 (50 ng/mL) and CCL4 (50 ng/mL) alone. Results are 
presented as percentage of cell migration in media only control, defined as 100%.                 
* p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001 (A, C, D, F), compared with WT 
using two-tailed Student’s t test. Data are from one experiment representative two 
independent experiments (A, C, D, F; mean ± S.E.M. of technical triplicates). 
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Figure 2.11 Let-7 miRNAs do not control the intrinsic motility of in vitro-generated 
pathogenic Th17 cells. Speed, track length, track straightness, and displacement of 
migrating CFSE-labeled in vitro-generated pathogenic Th17 cells from 2D2Rag2KO 
WT, 2D2Rag2KO Let-7Tg and 2D2Rag2KO Lin28Tg mice embedded in collagen 
matrices. * p < 0.05, ** p < 0.01, **** p < 0.0001, compared with WT using two-tailed 
Student’s t test. Data are from one experiment (mean ± S.E.M. of at least 175 analyzed 
cells of each population from all mice). 
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CHAPTER 3 

COMPUTATIONAL ANALYSES PREDICT THE REGULATORY ROLE OF 

LET-7 MICRORNAS IN SHAPING THE FATE OF CD8+ T CELLS TOWARDS 

MEMORY FORMATION WHILE SUPPRESSING TERMINAL EFFECTOR 

DIFFERENTIATION/EXHAUSTION 

3.1 Introduction 

Cytotoxic CD8+ T lymphocytes (CTLs) are critical players of the immune response, 

as they are able to directly contribute to antigen clearance by recognizing and killing cells 

infected by intracellular pathogens, as wells as tumor cells (Sawamura et al., 1989; 

Dharakul et al., 1990; Harty et al., 1992; Rodrigues et al., 2003). Upon antigen encounter, 

antigen-specific CD8+ T cells proliferate and generate a large pool of CTLs that migrate 

to the inflamed sites and execute their effector function to participate in the resolution of 

the infection (Butz & Bevan, 1998). After antigen elimination, the majority of CTLs 

undergo apoptosis during a contraction phase, as they are terminally differentiated, but a 

small proportion survives and generates long-lived memory CD8+ T cells that will 

respond faster and more effectively to subsequent challenges with the same antigen 

(Grayson et al, 2000; Badovinac et al., 2002). This terminal-effector versus memory fate 

specification depends on the strength of signals 1, 2, and 3, received by CD8+ T cells 

upon activation, with stronger signals leading to a decrease in memory potential 

(Stemberger et al., 2007; Gerlach et al., 2010; Angelosanto et al., 2012). These signals 

also result in the upregulation of co-inhibitory receptors or “immune checkpoints”, such 

as PD-1, TIM-3, LAG-3, 2B4, CD160, and CTLA-4 (Wherry, 2007). During acute 
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infections, these receptors are only expressed in a transient manner, and contribute to the 

adjustment of the strength and duration of the CTL response to prevent toxicity towards 

host tissues (Agata et al., 1996; Monney et al., 2002; Probst et al., 2005). However, when 

antigen fails to be efficiently cleared, such as during chronic infections and cancer, the 

persistence of TCR signals on CD8+ T cells results in a more abundant, permanent, and 

joint expression of these receptors (Blackburn et al., 2009). Following the interaction of 

these receptors with their specific ligands that are upregulated in immunosuppressive 

environments, such as the tumor microenvironment, CTLs are diverted towards a 

dysfunctional state known as exhaustion. Exhausted CTLs are unable to clear the 

infection and to differentiate into long-lasting memory cells (Moskophidis et al., 1993; 

Zajac et al., 1998; Wherry et al., 2004).  

 Although memory CD8+ T cell formation is compromised during chronic 

inflammation, memory CD8+ T cells introduced under these pathological conditions have 

the capacity to elicit highly protective responses (Shoukry et al., 2003; Malik et al., 2017). 

These efficient responses may be due to the high survival capacity of memory cells, 

coupled to low immune checkpoint expression that may confer resistance to exhaustion 

(Shoukry et al., 2003; Wirth et al., 2010). In addition, the generation of memory CD8+ T 

cells by vaccination possess outstanding potential for preventing infectious diseases 

(Lauvau et al., 2001; Akondy et al., 2017). However, the molecular mechanisms 

promoting memory formation while inhibiting terminal effector differentiation and 

restraining exhaustion are still incompletely understood.  

 RNA interference mediated by miRNAs is a potent and well-conserved post-

transcriptional mechanism that regulates gene expression in a sequence-specific manner 
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(Elbashir et al., 2001; Kim et al., 2008). Many individual miRNAs have been shown to 

play a role in the control of terminal-effector versus memory CD8+ T cell fate 

determination. For instance, miR-143, miR-155, and miRNAs of the miR-200 family 

promote memory CD8+ T cell differentiation (Tsai et al., 2013; Guan et al., 2018; Zhang 

et al., 2018), while miR-15/16, the miR-17-92 cluster, miR-23a, miR-31, and miR-150, 

direct terminal-effector specification (Wu et al., 2012; Khan et al., 2013; Lin et al., 2014; 

Ban et al., 2017; Chen et al., 2017; Moffett et al., 2017; Gagnon et al, 2019). 

We previously showed that the let-7 miRNA family is highly expressed in naive CD8+ 

T cells, thereby keeping these cells in a quiescent state and promoting their survival 

(Wells et al., 2017; Pobezinskaya et al., 2019). Moreover, we demonstrated that let-7 gets 

substantially downregulated upon antigen encounter, as these miRNAs negatively 

regulate CTL differentiation (Wells et al., 2017). Surprisingly, follow-up studies in our 

lab have found that, even though cytotoxic function is diminished upon let-7 

overexpression in in vitro-generated CTLs, these cells confer superb anti-cancer 

protection upon adoptive transfer into tumor-bearing mice. Conversely, although in vitro-

differentiated let-7-deficient CTLs exhibit enhanced cytotoxic function, these cells failed 

to control the same tumors, leading to poor recipient survival. Because the CTL response 

observed in vitro is not reflective of the in-vivo outcome, the purpose of the research 

described here was to elucidate this paradox. 

RNA sequencing (RNA-Seq) is a well-established quantitative method that measures 

the expression of all genes in a tissue sample at a given time using next-generation 

sequencing of the transcriptome (Wang et al., 2009). In addition, bioinformatics has 

emerged as a powerful tool to understand this type of big biological data by executing in 
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silico analyses that use mathematical and statistical methods embedded in specific 

analysis pipelines (Van den Berge et al., 2019). Thus, we sought to apply RNA-Seq and 

bioinformatics analyses in order to explain this in-vitro versus in-vivo discrepancy in the 

let-7-mediated regulation of CTL function in an unbiased manner.  

We found that the modulation of let-7 expression in CD8+ T cells results in 

transcriptional changes that shape the terminal-effector versus memory fate. Specifically, 

we showed that maintaining high let-7 expression during the early stages of CTL 

differentiation led to the upregulation of a memory-like gene signature, whereas absence 

of let-7 during the differentiation of CTLs led to the upregulation of a gene signature 

associated with terminally-differentiated effectors and exhaustion. This was consistent 

with the identification of multiple early T cell activation-associated pathways inhibited 

by let-7, including ERK1/2 and Notch.  Finally, we identified multiple direct let-7 target 

genes that were negatively regulated throughout CD8+ T cell differentiation, among 

which we found that Hk2 and Mycn functionally contribute to the control of terminal-

effector versus memory fate. Altogether, this study has solved the paradoxical outcomes 

in the let-7-regulated CTL function in-vitro versus in-vivo using an unbiased approach 

that uncovered a novel regulatory role for let-7 in promoting the generation of memory 

CD8+ T cells differentiation while preventing terminal-effector differentiation. Thus, let-

7 miRNAs exhibit an utmost encouraging therapeutic potential as an innovative treatment 

against chronic infections and cancer. 
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3.2 Results 

3.2.1 Modulation of let-7 expression in CTLs results in transcriptional changes 

To understand the discrepancy between the in-vitro and in-vivo performance of 

CTLs expressing different levels of let-7 (Figure 3.1), we isolated naive CD8+ T cells 

from P14Rag2KO WT, Let-7Tg, and Lin28Tg mice, where P14 is a transgenic TCR 

which recognizes the gp33-41 epitope from the lymphocytic choriomeningitis virus 

(LCMV) glycoprotein (Pircher et al., 1987). We differentiated these cells into CTLs in 

vitro in the presence of the cytokine IL-2, and we performed RNA-Seq on these CTLs at 

day 5 of culture to analyze their transcriptome.  

To assess whether let-7 regulates the transcriptome of CTLs, we used Principal 

Component Analysis (PCA) to reduce the complexity of all 35,276 transcripts examined 

to only ranked 9 variables, or principal components (PCs), which reflect the overall 

variance between all samples analyzed in a small range of dimensions (Abdi & Williams, 

2010). We chose to project our experimental samples along PC1 and PC2, which together 

accounted for most of the total variance (74% and 13%, respectively). Notably, PCA 

analysis revealed that WT, Let-7Tg, and Lin28Tg CTLs exhibited transcriptionally 

distinct gene signatures, as all samples from the same genotype were clustered together, 

but separated from those with distinct genotypes (Figure 3.2A). This genetic distance 

was statistically significant between all groups, as represented by the non-overlapping 

95% confidence ellipses from each cluster. These results show that let-7 expression alters 

the transcriptome of CTLs. 

To examine the extent to which let-7 modulates the CTL transcriptome, we 

performed differential gene expression analysis on Let-7Tg-versus-WT, and Lin28Tg-
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versus-WT CTLs. The output data showed that, in comparison to WT CTLs, 216 genes 

were downregulated and 286 genes were upregulated in Let-7Tg CTLs, while in Lin28Tg 

CTLs 448 genes were downregulated and 428 genes were upregulated, as compared to 

WT CTLs (Figures 3.2B). Moreover, we found that several genes involved in memory T 

cell differentiation and terminal-effector differentiation/exhaustion were differentially 

expressed in a reversed manner in Let-7Tg and Lin28Tg CTLs, when compared to WT 

CTLs. For instance, memory markers, such as Ccr7, Id3, Il7ra, Lef1, Sell (CD62L) and 

Tcf7 (TCF-1), were upregulated in Let-7Tg CTLs, but downregulated in Lin28Tg CTLs, 

whereas terminal-effector/exhaustion markers, including Cd244a (2B4), Entpd1 (CD39), 

Eomes, Havcr2 (TIM-3), Id2, and Pdcd1 (PD-1), were upregulated in Lin28Tg CTLs, but 

downregulated in Let-7Tg CTLs. These findings suggest that let-7 globally manipulates 

the transcriptional signature of CTLs. 

To identify and compare the expression of all genes that were either positively or 

negatively regulated by let-7 in CTLs, we used the normalized gene expression reads 

from WT, Let-7Tg, and Lin28Tg CTL replicate samples to generate a heatmap plot of all 

the genes that were differentially expressed at least by 30% (|log2(fold change|= 0.5) in a 

statistically significant manner in Let-7Tg and Lin28Tg CTLs, in comparison to WT 

CTLs. Heatmaps are bi-dimensional matrices that represent, across comparable samples, 

the differences in the expression level of genes, which are ranked according to the extent 

of differential expression (Eisen et al., 1998). Under these criteria, we were able to 

categorize 177 of these genes into 4 distinct clusters (Figure 3.2C). Cluster I was the 

largest and comprised all genes that were negatively regulated by let-7 (n=98), such as 

Cd160, Gzmb, Havcr2, and the direct let-7 target Hk2, and were thus downregulated in 
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Let-7Tg CTLs, but upregulated in Lin28Tg CTLs, as compared to WT CTLs. Conversely, 

cluster II contained all genes that were positively regulated by let-7 (n=70), including 

Il7ra, thereby upregulated in Let-7Tg CTLs, but downregulated in Lin28Tg CTLs, in 

comparison to WT CTLs. Cluster III and cluster IV were very small and consisted of 

genes downregulated (n=2) or upregulated (n=7) in both Let-7Tg and Lin28Tg CTLs, 

when compared to WT CTLs, respectively. These results demonstrate that let-7 has both 

substantial negative and positive impacts on the CTL transcriptome. 

To determine which biological processes the genes significantly downregulated 

in Let-7Tg CTLs and upregulated in Lin28Tg CTLs (cluster I), as well as the genes 

significantly upregulated in Let-7Tg CTLs and downregulated in Lin28Tg CTLs (cluster 

II) belonged to, we performed functional annotation of these genes using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2009). 

This analysis determined that cluster I was enriched for functionally-related gene groups 

involved in the defense response to viruses and the response to biotic stimulus, whereas 

in cluster II, genes implicated in the immune response and the apoptotic signaling 

pathway were over-represented (Figure 3.2D). These data indicate that let-7 expression 

in CTLs regulates biological processes associated with the immune response and cell 

survival, which is consistent with our previous reports on the regulatory role of let-7 in 

CTL differentiation (Wells et al., 2017), as well as the role of let-7 in promoting T cell 

survival (Pobezinskaya et al., 2019). 
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3.2.2 Let-7 expression promotes a memory-like gene signature in CTLs, while also 
repressing genes associated with terminal effector differentiation and 
exhaustion 

Because several memory markers were upregulated in Let-7Tg CTLs and 

downregulated in Lin28Tg CTLs, as compared to WT CTLs, and multiple terminal-

effector/exhaustion markers followed the opposite expression pattern in the same cells, 

we hypothesized that let-7 may regulate memory versus terminal-effector CD8+ T cell 

fate determination.  

To support our hypothesis that let-7 promotes memory formation in CD8+ T cells, 

we employed gene set enrichment analysis (GSEA), which determines whether a defined 

set of genes is differentially expressed in a statistically significant manner between two 

samples (Subramanian et al., 2005). To do so, we ranked the differential gene expression 

data from Let-7Tg-versus-WT, and Lin28Tg-versus-WT CTLs by increasing statistical 

significance using the adjusted p-value. We next ran GSEA by subjecting our ranked gene 

lists to a memory-associated gene signature (n=56 genes), as well as a terminal-

effector/exhaustion-associated gene set (n=62 genes), both of which were generated by 

gathering well-defined markers from the literature (Yang et al., 2011; Im et al., 2016; 

Schietinger et al., 2016; Yu et al., 2017; Snell et al., 2018; Miller et al., 2019). In fact, the 

memory gene signature was significantly enriched in Let-7Tg CTLs (NES=1.458; p-

value<0.001), whereas in Lin28Tg CTLs this gene set was significantly depleted (NES=-

1.518; p-value<0.001) (Figure 3.3A). In contrast, the terminal-effector/exhaustion gene 

signature was over-represented in Lin28Tg CTLs (NES=1.431; p-value=0.118), but 

depleted in Let-7Tg CTLs (NES=-1.153; p-value=0.213), although the statistical 
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significance threshold was not reached. These findings suggest that let-7 may play a role 

in the specification of memory versus terminal-effector/exhausted CD8+ T cell fate. 

To define and compare the expression of the genes contained in the gene sets used 

in GSEA, we used the normalized gene expression reads from WT, Let-7Tg, and Lin28Tg 

CTL replicate samples and we grouped all genes from both signatures examined into 

functional categories. We then generated heatmaps of each gene category, namely 

transcription factors, effector molecules and receptors, chemokines and chemokine 

receptors, co-stimulatory molecules and receptors, and inhibitory receptors (Figure 

3.3B). This analysis revealed that Let-7Tg CTLs upregulated the transcription factors 

Foxo1, Id3, Lef1, and Tcf7, which drive the memory fate of CD8+ T cells (Zhou et al., 

2010; Gattinoni et al., 2011; Yang et al., 2011; Zhou & Xue, 2012; Hess Michelini et al., 

2013), but also Tbx21 (T-bet) and Zeb2, which promote cytotoxic activity (Dominguez et 

al., 2015). Moreover, the secondary lymphoid organ homing receptor Ccr7, as well as the 

cell-adhesion molecule Sell (CD62L), which direct the migration of central memory cells 

to the lymph nodes, also showed increased expression in Let-7Tg CTLs (Kishimoto et al, 

1990; Förster et al., 1999; Sallusto et al., 1999). In addition, Let-7Tg CTLs exhibited high 

expression of the cytokine receptors Il7ra (CD127), emblematic of memory precursor 

effector cells (MPECs), as well as Il6ra, which is important for memory CD8+ T cell 

survival (Brown et al., 2019). Interestingly, Let-7Tg CTLs also upregulated most co-

stimulatory molecules and receptors assessed, including Cd28, Icos, and Ox40, the 

engagement of which is particularly important for optimal recall responses of memory 

CD8+ T cells (Borowski et al., 2007). Most strikingly, Let-7Tg CTLs expressed high 

levels of T memory stem cell markers, including the transcription factor Sox4, the anti-
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apoptotic protein Bcl2, the secondary lymphoid organ homing receptor S1pr1, as well as 

the Wnt signaling target Axin2 (Figure 3.3C) (Gattinoni et al., 2009; Gattinoni et al., 

2011). Thus, these data indicate that let-7 directs the fate of CD8+ T cells towards memory 

formation. 

On the other hand, Lin28Tg CTLs showed increased expression of the 

transcription factors Eomes, Id2, Ikzf2 (Helios), and Prdm1 (Blimp-1), which are highly 

expressed in terminally-differentiated effectors and exhausted CD8+ T cells (Wherry, 

2007; Shin et al., 2009). Besides, Eomes and Ikzf2 are direct let-7 targets (Agarwal et al., 

2015; Wells et al., 2017). Moreover, most effector molecules and cytokines, including 

GzmA, GzmB, Prf1, Ifng, Tnf, and Fasl, were upregulated in Lin28Tg CTLs. In addition, 

these cells also expressed high levels of the immunosuppressive cytokine Il10, which, in 

addition to being directly targeted by let-7, is also abundantly expressed in exhausted 

cells CD8+ T cells (Wilson et al., 2011). Furthermore, numerous pro-inflammatory 

chemokines, including Ccl3, Ccl4, Ccl5, as well as the chemokine receptors Cx3cr1 and 

Cxcr1, were highly expressed in Lin28Tg CTLs. In contrast, these cells showed enhanced 

expression of only a few co-stimulatory molecules and receptors, namely Tnfrsf9 (4-

1BB), its ligand Tnfsf9 (4-1BBL), and Tnfrsf8 (CD30). Most remarkably, Lin28Tg CTLs 

showed upregulation of numerous co-inhibitory receptors, including Pdcd1 (PD-1), 

Havcr2 (TIM-3), Cd160, and Cd244a (2B4), as well as the short-lived effector cell 

(SLEC) marker Klrg1. Therefore, these results suggest that let-7 deficiency leads to 

terminal-effector differentiation, which renders CD8+ T cells susceptible to exhaustion 

upon engagement with their cognate ligands, which can be found in immunosuppressive 

conditions such as the tumor microenvironment.  
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To test whether let-7 expression influences the memory potential of 

differentiating CD8+ T cells, we injected 2x104 P14Rag2KO WT or P14Rag2KO 

Lin28Tg naive CD8+ T cells into congenic CD45.1+ recipient mice which were 

subsequently infected with 6x106 colony-forming units (cfu) of a strain of the bacterium 

Listeria monocytogenes, a well-established model for the study of memory T cell 

responses (Khan & Badovinac, 2015), that expresses the LCMV gp33-41 peptide antigen 

(Lm-gp33). Strikingly, the frequencies of donor CD8+ T cells in the spleen of mice that 

received Lin28Tg cells were dramatically diminished, and the proportions of effector-

memory (CD44hiCD62Llo) to central-memory cells (CD44hiCD62Lhi) were increased, in 

comparison to mice that received WT cells (Figure 3.3D). These results demonstrate that 

the formation of memory CD8+ T cells is compromised in the absence of let-7 miRNAs, 

and that in these conditions the cells that survive contraction preferentially generate 

effector-memory cells. Overall, our results strongly indicate that let-7 plays a regulatory 

role in the fate determination of CD8+ T cells into memory and terminally-differentiated 

cells. 

3.2.3 Let-7 expression primes CD8+ T cells towards the memory fate early upon 
antigen encounter by negatively regulating T-cell receptor signaling 
pathways 

The asymmetric-cell-fate model and the signal-strength model propose that the 

memory CD8 + T cell fate is specified following antigen encounter (Kaech & Cui, 2012). 

To determine whether let-7 can direct the fate of CD8+ T cells towards memory formation 

early during activation, we performed RNA-Seq on P14Rag2KO WT, Let-7Tg, and 

Lin28Tg naive CD8+ T cells, as well as CD8+ T cells activated in vitro for 12 hours.  
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To examine whether let-7 expression has an impact on the gene signatures of 

CD8+ T cells at early stages of differentiation, PCA analysis was run on normalized 

expression reads of naive and 12h-activated CD8+ T cells. Again, the output data 

demonstrated that the transcriptomes of WT, Let-7Tg, and Lin28Tg CD8+ T cells 

clustered separately both at the naive and 12h-activated stage, as shown by the shift of 

samples from different genotypes along PC1 (accounting for 61% and 57% of the total 

variance in naive and 12h-activated, respectively) and PC2 (accounting for 21% and 22% 

of the total variance in naive and 12h-activated, respectively), as well as by the grouping 

of all samples from the same genotype into non-overlapping clusters (Figure 3.4A and 

3.4B). These results demonstrate that let-7 expression induces transcriptional changes 

early during CD8+ T cell differentiation. 

To assess the magnitude of let-7 influence on the transcriptome of naive and 12h-

activated CD8+ T cells, we analyzed the differential gene expression between WT and 

Let-7Tg or Lin28Tg CD8+ T cells at these two time points. In naive CD8+ T cells, 220 

genes were downregulated and 131 genes were upregulated in Let-7Tg cells, whereas in 

Lin28Tg cells 1,687 genes were downregulated, and 2,718 genes were upregulated 

(Figure 3.4C). The same analysis in 12h-activated CD8+ T cells revealed that 357 genes 

were downregulated and 241 genes were upregulated in Let-7Tg cells, while in Lin28Tg 

cells 580 genes were downregulated and 1,177 genes were upregulated. These findings 

demonstrate that let-7 expression already has a substantial impact on the transcriptome of 

CD8+ T cells at early stages of differentiation (Figure 3.4D). 

To determine which genes were significantly controlled by let-7 early during 

CD8+ T cell differentiation, heatmap clusters representing the same 4 trends as in our 
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CTL bioinformatics studies were generated using all genes exhibiting at least a 30% 

change in expression (|log2(fold change)|= 0.5) in Let-7Tg and Lin28Tg CD8+ T cells, as 

compared to WT cells, at the naive and 12h-activated stage. In naive cells, 148 of these 

genes could be incorporated in these 4 clusters (Figure 3.4E), whereas in 12h-activated 

cells, 224 of these genes could be included (Figure 3.4F). Cluster I, which contained 

genes repressed by let-7, was again the largest for both time points assessed, especially 

in 12h-activated cells. In this cluster, there were 63 genes from the naive stage, including 

the let-7 target genes Cdc34, Efhd2, Gng5, Hk2, and Nme4, as well as the proliferating 

cell nuclear antigen Pcna. At the 12h-activated time point, cluster I comprised 157 genes, 

including additional targets of let-7, such as Arid3a, Arid3b, and Ero1l, but also numerous 

genes involved in cell cycle regulation, including Ccna2, Cdc25a, and Mki67, consistent 

with the inhibitory role of let-7 in CD8+ T cell proliferation (Wells et al., 2017). 

Moreover, this cluster contained T cell activation-associated genes, such as Jund, and 

Notch2, as well as the effector molecule Ifng, the activation marker Cd44, and the anti-

apoptotic factor Bcl2l1 (Bcl-xL) (Boise et al., 1993). Cluster II, which contained genes 

positively regulated by let-7, was once again the second largest cluster at both stages 

tested, and comprised 41 genes from the naive time point, including the co-stimulatory 

receptor Cd28, which was consistent with the same cluster in CTLs (Figure 3.2C). At the 

12h-activated time point, cluster II contained 47 genes, and comprised the transcription 

factor Ets1, which drives the expression of Il7ra (CD127) (Grenningloh et al., 2011), as 

well as Il6st, a component of the IL-6 receptor complex, the signaling of which promotes 

memory CD8+ T cell survival (Nish et al., 2014; Harker et al., 2015). Cluster III and IV, 

which respectively incorporated genes either upregulated or downregulated in both Let-
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7Tg and Lin28Tg CTLs when compared to WT CTLs, were once more the least 

represented at both stages assessed. In naive cells, cluster III comprised 24 genes and 

cluster IV contained 20 genes while in 12h-activated cells cluster III incorporated 6 genes 

and cluster IV contained 14 genes. These results reveal that let-7 has a mostly negative 

impact on the transcriptome of CD8+ T cells that gets established very early during T cell 

activation. 

To identify the biological processes enriched in cluster I in both naive and 12h-

activated CD8+ T cells, we ran the DAVID functional gene annotation algorithm. To our 

surprise, the output data revealed that, in naive CD8+ T cells, many functionally-related 

gene groups from this cluster belonged to processes associated with T cell activation. 

These let-7-regulated pathways included signal transduction, protein phosphorylation, 

gene expression regulation, cell cycle progression, apoptosis, the immune response, as 

well as signaling pathways downstream of TCR signaling, such as Notch, JNK, MAPK, 

and ERK1/2 (Figure 3.5A). Consistently, in 12h-activated CD8+ T cells, there was an 

over-representation of let-7-inhibited processes that resulted from these pathways, such 

as the regulation of gene expression, protein phosphorylation, and cell cycle progression 

(Figure 3.5B), which is in agreement with our previously published findings that let-7 

represses CD8+ T cell proliferation (Wells et al., 2017). These data indicate that let-7 

regulates CD8+ T cell differentiation at early stages of CD8+ T cell activation. 

To validate our predictions, we first examined the extent of ERK1/2 

phosphorylation (pERK1/2) in 5-minute in vitro-activated P14Rag2KO WT, Let-7Tg, 

and Lin28Tg CD8+ T cells. Outstandingly, the levels of pERK1/2 were diminished in Let-

7Tg cells, while in Lin28Tg cells the amount of pERK1/2 was increased, which suggests 
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that let-7 regulates the strength of TCR signaling in CD8+ T cells (Figure 3.5C). These 

findings confirm that let-7 controls the differentiation of CD8+ T cells during the very 

first minutes following activation by inhibiting early signaling pathways, including the 

ERK1/2 pathway. 

We next sought to determine whether let-7 controls the fate of CD8+ T cells 

through the negative regulation of the Notch signaling pathway, which has already been 

reported to promote short-lived effector cell (SLEC) over memory precursor effector cell 

(MPEC) generation (Backer et al., 2014). Notch is a transmembrane receptor which, upon 

ligand binding on its extracellular portion, undergoes cleavage of its intracellular portion, 

Notch intracellular domain (NICD) (Artavanis-Tsakonas et al., 1995). NICD is the active 

form of Notch which can participate both in the transcriptional control of gene expression 

in the nucleus (canonical Notch signaling) and in signaling pathways in the cytoplasm 

(non-canonical Notch signaling) (Nam et al., 2003; Kwon et al., 2011; Minter & Osborne, 

2012; Dongre et al., 2014; Shin et al., 2014). We overexpressed NICD, containing either 

a nuclear export signal (NES) or a nuclear localization signal (NLS), in P14Rag2KO 

CD8+ T cells by transduction using the pMRX-IRES-GFP retroviral vector that contains 

a GFP reporter (Saitoh et al., 2002), and assessed their phenotype in vivo. We injected 

2x105 of these cells into congenic CD45.1+ recipient mice which were subsequently 

infected with Lm-gp33. Surprisingly, both NICD-NES and NICD-NLS overexpression 

in CD8+ T cells had a dramatic effect on memory formation in the spleen of these mice 

30 days post-infection (dpi) (Figure 3.5D). Specifically, the frequencies of NICD-NES 

and NICD-NLS-overexpressing CD8+ T cells were substantially reduced in comparison 

with cells that overexpressed the empty vector, as represented by GFP expression, which 
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demonstrates that these cells lost their memory potential. Moreover, the percentages of 

effector-memory cells were increased, while central-memory cell proportions were 

diminished in NICD-NES- and NICD-NLS-overexpressing CD8+ T cells that persisted at 

this time point. This was consistent with the diminished frequencies and enhanced 

effector-memory to central-memory cell identity ratio of donor P14Rag2KO Lin28Tg 

CD8+ T cells present in the spleen of Lm-gp33-challenged CD45.1+ mice at the same time 

point (Figure 3.3D). These results suggest that let-7 antagonizes the Notch signaling 

pathway that promotes terminal-effector CD8+ T cell differentiation over memory 

formation both by participating in signaling pathways and driving gene transcription. 

Since we showed that let-7 negatively regulates early T cell activation signaling 

pathways, and that we previously demonstrated that let-7 downregulation depends on the 

strength of TCR signaling upon CD8+ T cell activation (Wells et al., 2017), we next 

sought to examine whether the generation of SLECs and MPECs depended on strong and 

weak TCR signals, in accordance with the signal-strength and asymmetric-cell-fate 

models. To this end, we took advantage of Nur77-GFP mice, which express a GFP 

reporter under the control of the Nr41a (Nur77) promoter, the expression level of which 

directly correlates with the strength of TCR signaling received by T cells upon activation 

(Moran et al., 2011). We crossed these mice to P14Rag2KO mice to generate 

P14Rag2KO Nur77-GFP mice, and we injected 2x104 naive CD8+ T cells from these 

mice into CD45.1+ congenic recipient mice that were subsequently challenged with Lm-

gp33. Remarkably, we observed that, at day 9 dpi, SLECs (KLRG1hiCD127lo) expressed 

higher levels of Nur77 than MPECs (KLRG1loCD127hi), as reflected by GFP MFI 

(Figure 3.5E). Of note, intermediate cells (KLRG1hiCD127hi) shared similar Nur77 
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expression to MPECs. These findings directly validate the signal-strength model of CD8+ 

T cell fate determination. Moreover, our data suggest that let-7 promotes the memory 

CD8+ T cell fate by suppressing the strength of TCR signaling.  

These analyses strongly indicate that let-7 negatively regulates CD8+ T cell 

differentiation early on by diminishing the strength of TCR signaling, thereby inhibiting 

early downstream activation pathways, including ERK1/2 and Notch. These results 

coincide with the signal-strength and asymmetric-cell-fate models of CD8+ T cell fate 

specification, and thus provide a mechanism for the let-7-mediated regulation of memory 

versus terminal-effector CD8+ T cell fate determination. 

3.2.4 Let-7 consistently regulates target genes throughout CD8+ T cell 
differentiation 

 To deepen our understanding of the let-7-regulated molecular mechanisms 

controlling the fate of CD8+ T cells, we compared all the let-7 target genes contained in 

cluster I at all stages of CD8+ T cell differentiation assessed (naive, 12h-activated, and 

CTLs). Remarkably, this analysis revealed that multiple genes were negatively regulated 

by let-7 throughout CD8+ T cell differentiation (Figure 3.6A). For instance, the ubiquitin-

conjugating enzyme Cdc34, which is involved in the regulation of the cell cycle, as well 

as in the NF-κB and Wnt signaling pathways, was negatively regulated by let-7 in both 

naive and 12h-activated CD8+ T cells (Semplici et al., 2002 ; Legesse-Miller et al., 2010; 

Wu et al., 2010). Moreover, the expression of the transcription factor Mycn, which 

promotes hematopoietic stem cell proliferation, differentiation, survival, was inhibited by 

let-7 at both the 12h-activated and CTLs stage of CD8+ T cell differentiation (Laurenti et 

al., 2008). Most interestingly, let-7 consistently repressed several target genes at all time 
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points tested, namely Efhd2, Gng5, and Hk2. Efhd2, or EF Hand Domain Family Member 

D2, is a calcium-binding adapter protein which has been shown to promote CD8+ T cell 

cytotoxicity and contribute to PD-1 inhibitory activity (Peled et al., 2018). Gng5 is a G 

protein-coupled receptor gamma subunit that participates in chemokine receptor 

signaling, which regulates the migration of T cells (Griffith et al., 2014). Hk2 is the 

glycolytic enzyme hexokinase 2, which catalyzes the rate-limiting step of glucose 

phosphorylation into glucose-6-phosphate, and is highly upregulated in T cells upon 

activation as well as in terminal effectors, but gets downregulated in memory CD8+ T 

cells (Tan et al., 2017; Sukumar et al., 2013). These results provide candidate let-7 target 

genes that may play a role in the regulation of CD8+ T cell fate determination. 

 To test whether the candidate let-7 target genes identified above contribute to the 

regulation of terminal-effector versus memory CD8+ T cell fate specification, we 

overexpressed the open reading frame (ORF) of Cdc34, Efhd2, Gng5, Hk2, and Mycn in 

CD8+ T cells by transduction using the pMRX-IRES-GFP retroviral vector. 

Overexpression of Cdc34 in in vitro-generated Let-7Tg CTLs resulted in a slight increase 

in PD-1 expression, and, unexpectedly, in enhanced frequencies of central memory-like 

(CD44hiCD62Lhi) cells over effector memory-like (CD44hiCD62Llo) cells (Figure 3.6B). 

However, this effect was also observed in cells that were not transduced (GFP-), making 

these results inconclusive. To test the biological relevance of the remaining candidate 

genes in the fate of CD8+ T cells, P14Rag2KO CD8+ T cells overexpressing the ORF of 

Efhd2, Gng5, Hk2, or Mycn were injected into CD45.1+ congenic host mice that were 

subsequently infected with Lm-gp33. At 30 dpi, only overexpression of Hk2 and Mycn 

had substantial effects on the formation of memory CD8+ T cells in the spleen of these 
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mice (Figure 3.6C and 3.6D). In fact, the percentages of Hk2- and Mycn-overexpressing 

CD8+ T cells were significantly diminished when compared to cells that overexpressed 

the empty vector. Moreover, the frequencies of effector-memory cells were increased, 

while central-memory cell proportions were diminished in Hk2- or Mycn- overexpressing 

cells that persisted at this time point. These findings are consistent with the phenotype 

observed upon Notch NICD overexpression (Figure 3.5D), and are in agreement with 

previous reports describing Notch as a positive regulator of glycolysis, and Mycn as a 

positive regulator of Notch (Landor et al., 2011; Tong et al., 2019). Thus, these data 

demonstrate that Hk2 and Mycn are let-7 target genes that play a role in establishing the 

terminal-effector differentiation program and repressing memory formation in CD8+ T 

cells.  

 Taken together, our results demonstrate that let-7 miRNA expression specifies the 

fate of CD8+ T cells following antigen encounter towards memory formation while 

preventing terminal-effector differentiation, and thus the susceptibility to exhaustion, 

thereby solving the in-vitro versus in-vivo paradox of let-7-regulated CTL function. 

Specifically, absence of let-7 leads to the upregulation of co-inhibitory receptors that 

induce exhaustion upon engagement with their cognate ligands, which are abundantly 

expressed in immunosuppressive environments encountered during chronic infections 

and cancer. In fact, we show that let-7 alters the CD8+ T cell transcriptome, reduces TCR 

signaling strength, and inhibits downstream signaling pathways during early stages of 

activation, including ERK1/2 and Notch. Finally, we identified multiple let-7 target genes 

that were continuously dysregulated during CD8+ T cell differentiation, and among these 

we found that Hk2 and Mycn drive the terminal-effector CD8+ T cell fate, while inhibiting 



96 
 

the generation of memory cells. Consequently, our discovery that let-7 skews CD8+ T 

cell fate towards memory cell generation may lead to the development of novel 

therapeutic strategies contributing to substantial advances in the treatment of cancer and 

chronic infections. 

3.3 Discussion 

Our study uncovered a novel post-transcriptional mechanism regulating the fate 

of CD8+ T cells towards memory and terminally-differentiated effector cell formation, 

using RNA-Seq and bioinformatics analyses as an unbiased approach. Particularly, we 

identified let-7 miRNAs as central regulators of this dichotomy, promoting the generation 

of memory CD8+ T cells while restraining the terminal effector program early during 

CD8+ T cell differentiation, thereby preventing exhaustion in chronic inflammatory 

conditions. This discovery elucidates the paradoxical CTL performance in-vitro and in-

vivo, as let-7 deficiency resulted in high expression of co-inhibitory receptors that  can 

induce exhaustion upon interaction with their cognate ligands, which are upregulated in 

immunosuppressive conditions, such as the tumor microenvironment. Most importantly, 

our findings directly establishes let-7 has a promising innovative therapeutic means to 

treat chronic pathologies such as cancer. 

Analysis of the CTL transcriptome showed that let-7 expression significantly 

altered the phenotype of these cells, in which many genes were negatively regulated by 

let-7. Consistently with the in-vitro phenotype of CTLs, Let-7Tg CTLs upregulated genes 

involved in the immune response and the regulation of apoptosis, whereas processes such 

as the defense response to viruses and the response to biotic stimuli were over-represented 
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in let-7 deficient CTLs. Moreover, let-7 overexpression contributed to the enrichment of 

a memory-associated gene signature, whereas in the absence of let-7 a gene set 

characteristic of terminally-differentiated CD8+ T cells was over-represented. 

Specifically, we found that Let-7Tg CTLs expressed high levels of the well-defined 

memory markers Ccr7, Sell (CD62L), Il7ra, Bcl2, Foxo1, Id3, Tcf7, and Lef1, as well as 

T stem cell memory markers, including Axin2, S1pr1 and Sox4, but also transcription 

factors involved in CTL differentiation, such as Tbx21 (T-bet) and Zeb2 (Gattinoni et al., 

2009; Gattinoni et al., 2011; Dominguez et al., 2015). Additionally, these cells expressed 

high levels of co-stimulatory receptors, such as Cd28, Icos, and Ox40, the signaling of 

which contributes to efficient memory responses (Borowski et al., 2007). Based on these 

results, we could infer that, although they exhibit reduced cytotoxicity in vitro, Let-7Tg 

CTLs maintain a central/stem cell-like memory potential and are thus able to elicit the 

robust, long-lasting anti-tumor immunity observed in vivo. This is in accordance with our 

previously published findings that let-7 preserves the quiescence of naive T cells, as 

memory cells are characterized by a return to the quiescent state (Kalia et al., 2015; Wells 

et al., 2017). Our predictions are also consistent with another publication in which we 

demonstrated that let-7 expression is required for the survival of naive T cells, as Let-7Tg 

CTLs had increased expression of the anti-apoptotic genes Bcl2 and Bcl11b (Bcl-xL) 

(Pobezinskaya et al., 2019). Thus, let-7 may contribute to the resistance of memory 

precursors to the contraction phase and prolonged survival of memory cells through 

enhanced Bcl2 expression (Akbar et al., 1993; Grayson et al., 2000; Pobezinskaya et al., 

2019). In contrast, Lin28Tg CTLs preferentially expressed the transcription factors 

Eomes, Id2, Ikzf2 (Helios), and Prdm1 (Blimp-1), the co-inhibitory receptors Pdcd1 (PD-
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1), Havcr2 (TIM-3), Cd160, and Cd244a (2B4), effector molecules and cytokines GzmA, 

GzmB, Prf1, Ifng, Tnf, and Fasl, as well as the immunosuppressive cytokine Il10, all of 

which are highly expressed in terminally-differentiated and exhausted CD8+ T cells 

(Wherry, 2007; Blackburn et al., 2009; Shin et al., 2009). These cells also had increased 

expression of the co-stimulatory receptor Tnfrsf9 (4-1BB), which has been described as 

an exhaustion marker in CD8+ T cells (Williams et al., 2017). Several of these genes were 

also direct targets of let-7, namely Eomes, which we previously reported, as well as Ikzf2 

and Il10 (Swaminathan et al., 2012; Agarwal et al., 2015; Wells et al., 2017). Our data 

indicate that, despite their superior in-vitro cytotoxic activity, Lin28Tg CTLs fail to 

control tumor growth in vivo due to the high expression of these co-inhibitory receptors, 

which likely interacted with their cognate ligands in the tumor microenvironment, 

inducing exhaustion in these cells. We further show experimentally that Lin28Tg CD8+ 

T cell have a poor memory potential, as only few of these cells persisted after Lm-gp33 

clearance, which are skewed towards the effector-memory phenotype. Thus, these results 

suggest that absence of let-7 leads to the terminal differentiation of CD8+ T cells, which 

renders these cells prone to exhaustion. 

In fact, we show that this let-7-mediated-regulation of CD8+ T cell fate 

determination occurs soon after antigen encounter, which is consistent with previous 

work in our lab that recapitulated the phenotype of Let-7Tg CTLs by inducing the let-7g 

transgene only during the first 48h following CD8+ T cell activation in vitro (Figure 3.7). 

Specifically, transcriptome analysis of naive CD8+ T cells predicted that numerous 

signaling pathways downstream of TCR signaling were negatively regulated by let-7, 

including ERK1/2 and Notch, which we experimentally validated. Interestingly, both the 
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cytoplasmic (NICD-NES) and nuclear (NICD-NLS) active forms of Notch inhibited 

memory CD8+ T cell formation and skewed the persisting memory cells towards effector-

memory cell formation at the expense of central-memory cell generation, thereby 

showing that both canonical and non-canonical Notch signaling contribute to the 

regulation of CD8+ T cell fate. These results indicate that let-7 expression diminishes the 

strength of TCR signaling in these cells, thereby specifying the memory CD8+ T cell fate 

minutes following antigen encounter. In fact, we show, using P14Rag2KO donor CD8+ 

T cells that express the Nur77-GFP reporter of TCR signal strength, that SLECs exhibit 

a stronger TCR signaling history than MPECs. These data are consistent with previous 

work in our lab demonstrating that let-7 inhibits TCR signal strength in in vitro-activated 

P14Rag2KO WT, Let-7Tg, and Lin28Tg CD8+ T cells expressing Nur77-GFP (Figure 

3.8). Our data are in accordance with the signal-strength and asymmetric-cell-fate models 

of CD8+ T cell fate determination, both of which propose that the strength of TCR 

signaling received upon T cell activation inversely correlates with the extent of memory 

potential (Kaech & Cui, 2012). Our predictions are also consistent with a previously 

published report in which we showed that the magnitude of let-7 downregulation upon 

CD8+ T cell activation depends on the strength and duration of TCR signaling, where 

high let-7 expression negatively regulates CTL differentiation (Wells et al., 2017). 

Moreover, examination of the CD8+ T cell transcriptome at both the naive and 12h-

activated stage revealed that let-7 inhibited cell cycle progression, which we had already 

shown before (Wells et al., 2017). Thus, reduced proliferation, in addition to the enhanced 

survival promoted by let-7 in CD8+ T cells, may also contribute to the maintenance of the 

quiescent state in these cells, thereby preserving the memory cell pool. 
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Even though our study provides strong evidence that let-7 miRNAs promote the 

fate of CD8+ T cells towards memory CD8+ T cells while restraining terminal-effector 

differentiation and exhaustion, the relative expression of let-7 at these different stages of 

CD8+ T cell differentiation in vivo remains to be examined. It would be reasonable to 

hypothesize that, because weak TCR signaling induces the retention of let-7 expression, 

these cells would adopt the memory fate, while CD8+ T cells receiving strong TCR 

signals downregulate let-7 to a greater extent will become terminally-differentiated, and 

thus more susceptible to exhaustion. Along these lines, recurrent TCR stimulation during 

chronic inflammation due to persisting antigen may gradually cause the loss of let-7 

expression in CD8+ T cells, which would progressively direct these cells towards the 

exhausted state. In fact, we confirmed, using CD8+ T cells expressing the Nur77-GFP 

reporter of TCR signal strength, that SLECs do receive stronger TCR signals than 

MPECs, which is in agreement with our hypothesis. In addition, it would be interesting 

to test the memory versus terminal-effector differentiation potential of CD8+ T cells 

activated in vitro with different strengths of TCR stimulation at the phenotypic and 

functional levels.  

We also identified multiple direct target genes of let-7 that were consistently 

dysregulated throughout CD8+ T cell differentiation, which provided candidates to study 

the let-7-mediated mechanisms that inhibit terminal effector differentiation and 

exhaustion. The ubiquitin-conjugating enzyme Cdc34 was common to the naive and 12h-

activated time points,  the oncogenic transcription factor Mycn was found at both the 12h-

activated and CTL stages, and the calcium-binding adapter protein Efhd2, the G-protein 

gamma subunit Gng5, as well as the rate-limiting glycolytic enzyme Hk2 were negatively 
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regulated by let-7 at all stages of CD8+ T cell differentiation examined. Among these, the 

rate-limiting glycolytic enzyme Hk2 and the oncogenic transcription factor Mycn were 

confirmed to prevent memory CD8+ T cell formation and enhance the effector- to central- 

memory cell ratios using the Lm infection model. Since Hk2 and Mycn overexpression 

recapitulated the phenotype observed upon overexpression of Notch, and given that 

Notch signaling induces glycolysis and is regulated by Mycn, additional overexpression 

studies in Let-7Tg CD8+ T cells or knockdown in Lin28Tg cells would determine whether 

these factors have redundant or distinct roles in CD8+ T cell fate regulation (Landor et 

al., 2011; Tong et al., 2019). Although they were not investigated in this study, we do not 

rule out the possibility that genes which are regulated by let-7 at a single stage of CD8+ 

T cell differentiation may play a role in the regulation of terminal effector differentiation 

and memory formation. In fact, previous work in our lab has identified such a role for the 

transcription factor Arid3a, the expression of which is inhibited by let-7 at the 12h-

activated stage, as well as the transcription factors Eomes and Hmga1, which are both 

negatively regulated by let-7 at the CTL stage (Figure 3.9). Thus, together with the early 

T cell activation signaling pathways we had identified above, assessing the function of 

these genes will advance our knowledge of the molecular mechanisms through which let-

7 controls the fate of CD8+ T cells.  

Although the present study offers significant insights into the let-7-mediated 

mechanisms regulating terminal effector versus memory CD8+ T cell differentiation, it 

only examined the role of let-7 miRNAs in the fate of CD8+ T cells at the transcriptional 

level, and thus provides an incomplete perspective in this regard. Therefore, validating 

whether let-7 shapes the proteome of differentiating CD8+ T cells consistently with our 
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transcriptomic study will be important. Moreover, because the memory and terminal-

effector fates are also regulated at the epigenetic level, whether let-7 performs its 

regulatory function by modeling the chromatin state of differentiating CD8+ T cells 

remains to be examined (Araki et al., 2009; Crompton et al., 2016; Kakaradov et al., 2017; 

Henning et al., 2018). Furthermore, since it is well understood that terminally-

differentiated and memory T cells rely on distinct metabolic processes, investigating 

whether let-7 plays a role in modulating these metabolic pathways will be interesting, 

especially since we already showed that the expression of glycolytic genes, including 

Glut1, Glut3, Hk2, Pfk1, Pkm, and Tpi, were repressed by let-7 (Wells et al., 2017). 

Moreover, previous work in our lab showed that, when compared to WT CTLs, Let-7Tg 

CTLs exhibit a lower glycolytic rate, while in Lin28Tg CTLs glycolysis is increased 

(Figure 3.10), which is in agreement with studies describing that memory CD8+ T cells 

preferentially use fatty acid metabolism, whereas glycolysis is used to a higher extent in 

terminally-differentiated cells (Araki et al., 2009; Pearce et al., 2009; Michalek & 

Rathmell, 2010; Sukumar et al., 2013; Pollizzi et al., 2016).  This is also consistent with 

our results showing that Hk2-overexpressing CD8+ T cells fail to form memory cells. 

Our data emphasize a strong potential for the translation of the let-7-mediated 

control of memory CD8+ T cell formation into novel therapies for the treatment of chronic 

pathologies such as cancer and persistent infections. Such innovative medical solutions 

could consist of let-7 miRNA delivery to CD8+ T cells during the ex vivo T cell expansion 

phase of CAR-T cell production for adoptive T cell therapy, during which these cells 

would be directed towards the memory fate, and thus would not be as prone to exhaustion 

(Ho et al., 2003; Rosenberg et al., 2011). Besides, in the case of anti-cancer therapy, 
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delivering let-7 miRNAs directly to tumor cells could also be performed, since let-7 is a 

well-known tumor suppressor, and thus may have at least an additive effect on the 

outcome of tumor control. Moreover, the combination of these let-7-based therapies with 

checkpoint blockade immunotherapy may elicit a superior anti-tumor response. 

Furthermore, our study may substantially contribute to advances in vaccine development, 

since effective vaccination relies on the generation of memory cells (Lauvau et al., 2001; 

Akondy et al., 2017). Finally, although it remains to be tested experimentally, inhibiting 

let-7 expression in CD8+ T cells may constitute a promising healthcare solution to treat 

CD8+ T cell-driven autoimmune disorders, such as type-1 diabetes, by inducing 

exhaustion in these self-reactive cells (McKinney et al., 2015). 

Altogether, our study elucidated the paradoxical outcome of let-7 expression on 

the in-vitro versus in-vivo activity of CTLs by predicting that let-7 expression regulates 

CD8+ T cell differentiation towards the generation of memory cells, while inhibiting the 

differentiation of terminal effectors. Additionally, our data establish let-7 miRNA as 

novel therapeutic tool for the manipulation of CD8+ T cell function in the contexts of 

cancer, persistent infections, and autoimmune diseases. 

 

 

 

 

 

 



104 
 

 

Figure 3.1 Let-7 expression in CTLs results in paradoxical functional outcomes in 
vitro and in vivo. (A) Cytotoxicity assay of in vitro-differentiated CTLs from 
P14Rag2KO WT, P14Rag2KO Let-7Tg, and P14Rag2KO Lin28Tg mice co-cultured for 
4h at the indicated ratios with splenocytes pulsed with either LCMV gp33-41 peptide 
(cognate P14 epitope) or LCMV np396 peptide (non-specific epitope). (B) Tumor growth 
curves in mice inoculated subcutaneously with 0.25X106 B16gp33 tumor cells. Tumor-
bearing mice received adoptive transfer of 1.5X106 CTLs generated in vitro from either 
P14Rag2KO WT (n=5), P14Rag2KO Let-7Tg (n=5), P14Rag2KO Lin28Tg (n=5) mice. 
Some mice did not receive CTLs (n=5). * p < 0.05, ** p < 0.01, and *** p < 0.001, 
compared with WT using two-tailed Student’s t-test. Data are from one experiment 
representative of three experiments (A; mean and S.E.M of technical triplicates), or from 
one experiment representative of two experiments (B; mean and S.E.M. of 5 biological 
replicates). 
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Figure 3.2 Let-7 miRNAs significantly alter the CTL transcriptome. (A) Principal 
component analysis (PCA) on normalized expression read counts from the RNA-Seq data 
obtained from in vitro-generated CTLs from P14Rag2KO WT, P14Rag2KO Let-7, and 
P14Rag2KO Lin28Tg mice, separated by PC1 (y axis) and PC2 (x axis), which explain 
74% and 13% of the total variance between samples, respectively. All replicate samples 
from each genotype were clustered by applying 95% confidence ellipses (p <0.05). (B) 
Volcano plots displaying differential gene expression in in vitro-differentiated 
P14Rag2KO Lin28Tg (left panel) and P14Rag2KO Let-7Tg (right panel) CTLs, as 
compared with P14Rag2KO WT CTLs, by the mean expression value of -log10(p-value) 
(y axis) and the log2 value of the expression fold change (Log2(Fold Change), x axis). 
Each differentially-expressed gene is represented by a gray solid circle, and examples of 
upregulated (red solid circles) and downregulated (blue solid circles) associated with CTL 
differentiation are indicated in each plot. (C) Heatmap clusters of normalized expression 
read counts from the RNA-Seq data showing all genes differentially expressed by 
|log2(Fold Change)| ≥ 0.5 in a statistically-significant manner (p<0.05) in in vitro-
generated CTLs from P14Rag2KO WT (center), P14Rag2KO Let-7 (right), and 
P14Rag2KO Lin28Tg (left) mice. Downregulated genes are indicated in blue and 
upregulated genes are represented in red. Cluster I shows genes downregulated in Let-
7Tg CTLs and upregulated in Lin28Tg CTLs, cluster II indicates genes upregulated in 
Let-7Tg CTLs and downregulated in Lin28Tg CTLs, cluster III represents genes 
downregulated in both Let-7Tg and Lin28Tg CTLs, and cluster IV shows genes 
upregulated in both Let-7Tg and Lin28Tg CTLs, in comparison with WT CTLs. 
Examples of differentially-expressed genes important for CTL differentiation are 
indicated. (D) Database for Annotation, Visualization and Integrated Discovery 
(DAVID) analysis of gene ontology (GO) biological processes significantly enriched            
(p <0.05) in cluster I (red bubbles) and cluster II (blue bubbles) from (C), based on the 
over-representation of functionally-related gene groups. Data is presented relative to the 
-log10 of the false discovery rate (-Log10(FDR), x axis). The size of the bubbles indicates 
the percentage of genes from each cluster contributing to the enriched biological process. 
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Figure 3.3 Let-7 miRNA expression promotes a memory gene signature in CTLs, 
while let-7 deficiency is characterized by am enrichment in genes associated with 
terminal effectors. (A) Gene set enrichment analysis (GSEA) using the adjusted p-value-
ranked normalized expression read counts from the RNA-Seq data obtained from in vitro-
generated P14Rag2KO Let-7 and P14Rag2KO Lin28Tg CTLs scored against gene sets 
containing memory-associated genes (n=56; left panel) and terminal effector-associated 
genes (n=62; right panel), and compared to the transcriptome of P14Rag2KO WT CTLs. 
Gene signatures were created by gathering well-characterized genes from the literature 
(see Materials and methods). Normalized enrichment score (NES), as well as adjusted p-
values, are shown for each analysis. Positive NES values indicate gene signature 
enrichment, while negative NES values show gene set under-representation. (B) Heatmap 
clusters of normalized expression read counts from the RNA-Seq data showing 
differential expression by P14Rag2KO WT (center), Let-7Tg (right), and Lin28Tg (left) 
CTLs of the genes used for GSEA in (A) that were classified into heatmap categories. 
Downregulated genes are indicated in blue and upregulated genes are represented in red. 
Examples of differentially-expressed genes important for memory and terminal effector 
differentiation are indicated. (C) Heatmap showing differential expression of T stem cell 
memory (Tscm) markers in P14Rag2KO WT (center), Let-7Tg (right), and Lin28Tg (left) 
CTLs. Downregulated genes are indicated in blue and upregulated genes are represented 
in red. (D) Staining of CD45.2+ donor P14Rag2KO WT (n=3) and P14Rag2KO Lin28Tg 
(n=3) CD8+ T cells in the spleen of CD45.1+ host mice for CD44 and CD62L at day 30 
post-infection with Lm-gp33. Numbers represent the frequencies of each population on 
the indicated gates (left). Quantification of the frequencies of total, effector memory 
(CD44hiCD62Llo), and central memory (CD44hiCD62Lhi) CD45.2+ donor P14Rag2KO 
CD8+ T cells for each genotype as assessed by flow cytometry (right) * p <0.05, ** p < 
0.01, compared with P14Rag2KO WT CD8+ T cells using two-tailed Student’s t-test (D). 
Data are from one experiment representative of two experiments (D, mean ± S.E.M. of 
each population from all mice). 
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Figure 3.4 Let-miRNAs substantially modify the transcriptome of naive and 12h-
activated CD8+ T cells. (A and B) Principal component analysis (PCA) on normalized 
expression read counts from the RNA-Seq data obtained from P14Rag2KO WT, 
P14Rag2KO Let-7, and P14Rag2KO Lin28Tg naive (A) or 12h-activated (B) CD8+ T 
cells, separated by PC1 (y axis) and PC2 (x axis), which explain 61% and 21% (naive) or 
57% and 22% (12h-activated) of the total variance between samples, respectively. All 
replicate samples from each genotype were clustered by applying 95% confidence 
ellipses (p<0.05). (C and D) Volcano plots displaying differential gene expression in 
naive (C) and 12h-activated (D) P14Rag2KO Lin28Tg (left panel) and P14Rag2KO Let-
7Tg (right panel) CD8+ T cells, as compared with P14Rag2KO WT CD8+ T cells, by the 
mean expression value of -log10(p-value) (y axis) and the log2 value of the expression fold 
change (Log2(Fold Change), x axis). Each differentially-expressed gene is represented 
by a gray solid circle, and significantly upregulated and downregulated genes are 
indicated in red and blue, respectively. (E and F) Heatmap clusters of normalized 
expression read counts from the RNA-Seq data showing all genes differentially expressed 
by |log2(Fold Change)| ≥ 0.5 in a statistically-significant manner (p<0.05) in naive (E) 
and 12h-activated (F) P14Rag2KO WT (center), P14Rag2KO Let-7 (right), and 
P14Rag2KO Lin28Tg (left) mice. Downregulated genes are indicated in blue and 
upregulated genes are represented in red. Cluster I shows genes downregulated in Let-
7Tg CD8+ T cells and upregulated in Lin28Tg cells, cluster II indicates genes upregulated 
in Let-7Tg CD8+ T cells and downregulated in Lin28Tg cells, cluster III represents genes 
downregulated in both Let-7Tg and Lin28Tg CD8+ T cells, and cluster IV shows genes 
upregulated in both Let-7Tg and Lin28Tg cells, in comparison with WT CD8+ T cells. 
Examples of differentially-expressed genes important for CD8+ T cell differentiation are 
indicated. 
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Figure 3.5 Let-7 miRNAs controls the fate of differentiating CD8+ T cells by 
suppressing the strength of TCR signaling, thereby inhibiting early signaling 
pathways, including ERK1/2 and Notch. Database for Annotation, Visualization 
and Integrated Discovery (DAVID) analysis of gene ontology (GO) biological processes 
significantly enriched (p <0.05) in cluster I of naive (A) and 12h-activated (B) CD8+ T 
cells, based on the over-representation of functionally-related gene groups. Data is 
presented relative to the -log10 of the false discovery rate (-Log10(FDR), x axis). The size 
of the bubbles indicates the percentage of genes from each cluster contributing to the 
enriched biological process. (C) Normalized MFI of phosphor-ERK1/2 (pERK1/2) in 
P14Rag2KO WT, P14Rag2KO Let-7Tg, and P14Rag2KO Lin28Tg CD8+ T cells 
activated in vitro for 5 minutes with plate-bound anti-CD3e (1 µg/mL) and anti-CD28 
mAbs (5 µg/mL). Data is presented relative to results obtained for 5-minute activated 
P14Rag2KO WT CD8+ T cells. (D) Staining of CD45.2+ donor P14Rag2KO WT CD8+ 
T cells transduced with GFP reporter-containing empty retroviral vector (n=3), or 
retrovirus expressing Notch intracellular domain (NICD) fused to either a nuclear export 
signal (NES, n=3) or a nuclear localization signal (NLS, n=3) in the spleen of CD45.1+ 
host mice for CD44 and CD62L at day 30 post-infection with Lm-gp33. Numbers 
represent the frequencies of each population on the indicated gates (left). Quantification 
of the frequencies of total, effector memory (CD44hiCD62Llo), and central memory 
(CD44hiCD62Lhi) CD45.2+ donor P14Rag2KO CD8+ T cells for each condition as 
assessed by flow cytometry (right). (E) MFI of GFP of P14Rag2KO Nur77-GFP donor 
CD8+ SLECs (KLGR1hiCD62Llo) and MPECs (KLRG1loCD127hi) in the blood of 
CD45.1+ host mice at day 9 post-infection with Lm-gp33. Data is presented relative to 
MFI obtained for control P14Rag2KO WT CD8+ SLECs and MPECs. * p < 0.05; ** p 
<0.01, *** p < 0.001, compared with WT using two-tailed Student’s t-test. Data are from 
one experiment representative of two experiments (C; mean and S.E.M. of technical 
triplicates), or from one experiment (D, E; mean and S.E.M. of each cell population).  
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Figure 3.6 Let-7 miRNAs consistently represses the expression of multiple target 
genes throughout CD8+ T cell differentiation, and restrain terminal effector 
differentiation through inhibiting Hk2 and Mycn expression. (A) Diagram 
representing the numbers of let-7 direct targets that are differentially expressed in cluster 
I a statistically significant manner at all stages of CD8+ T cell differentiation examined. 
(B) Staining of P14Rag2KO Let-7Tg CD8+ T cells transduced with GFP reporter-
containing empty retroviral vector or retrovirus expressing Cdc34 and differentiated in 
vitro into CTLs for CD44 and CD62L. Numbers represent the frequencies of each 
population on the indicated gates (left). Histogram of PD-1 expression in GFPhi cells from 
each condition, as assessed by flow cytometry. Numbers represent the MFI of PD-1 for 
each condition (right). (C) Staining of CD45.2+ donor P14Rag2KO WT CD8+ T cells 
transduced with GFP reporter-containing empty retroviral vector (n=2), or retrovirus 
expressing Hk2 (n=3) in the spleen of CD45.1+ host mice for CD44 and CD62L at day 
30 post-infection with Lm-gp33. Numbers represent the frequencies of each population 
on the indicated gates (left). Quantification of the frequencies of total, effector memory 
(CD44hiCD62Llo), and central memory (CD44hiCD62Lhi) CD45.2+ donor P14Rag2KO 
CD8+ T cells for each condition as assessed by flow cytometry (right). (D) Staining of 
CD45.2+ donor P14Rag2KO WT CD8+ T cells transduced with GFP reporter-containing 
empty retroviral vector (n=1), or retrovirus expressing Mycn (n=3) in the spleen of 
CD45.1+ host mice for CD44 and CD62L at day 30 post-infection with Lm-gp33. 
Numbers represent the frequencies of each population on the indicated gates. * p < 0.05; 
** p <0.01, compared with WT using two-tailed Student’s t-test. Data are from one 
experiment representative of two experiments (C; mean and S.E.M. of each cell 
population), or from one experiment (B, D). 
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Figure 3.7 Maintenance of let-7 expression during the first 48h of CTL 
differentiation is sufficient to recapitulate the memory phenotype of Let-7Tg CTLs 
in vitro. Quantitative RT-PCR analysis of mRNA expression in: Tcf7 (TCF-1), Sell 
(CD62L), Ccr7, Id2, Havcr2 (TIM-3), and Cd244 (2B4) in in vitro-differentiated 
P14Rag2KO CTLs WT and Let-7Tg CTLs which received doxycycline either prior to 
stimulation or during the culture, as indicated (left, blue boxes), presented relative to the 
expression of the ribosomal protein Rpl13a. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.001 compared with WT cells from matched culture conditions using two-tailed 
Student’s t-test. Data are from one experiment representative of two experiments (mean 
± S.E.M. of technical triplicates). 
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Figure 3.8 Let-7 miRNAs negatively regulate the strength of TCR signaling in CD8+ 
T cells. MFI of GFP in P14Rag2KO Nur77-GFP WT, P14Rag2KO Nur77-GFP Let-7Tg, 
and P14Rag2KO Nur77-GFP Lin28Tg CD8+ T cells activated in vitro for 12h with plate-
bound anti-CD3e and anti-CD28 mAbs (5 µg/mL each). **** p < 0.0001, compared with 
WT using two-tailed Student’s t-test. Data are from one experiment representative of two 
experiments (mean and S.E.M. of technical triplicates). 
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Figure 3.9 Let-7 miRNAs inhibit terminal effector differentiation through a complex 
transcriptional mechanism involving Arid3a, Eomes, and Hmga1. Staining of 
P14Rag2KO Let-7Tg CD8+ T cells transduced with GFP reporter-containing empty 
retroviral vector or retrovirus expressing Arid3a (A), Eomes (B), or Hmga1 (C) and 
differentiated in vitro into CTLs for TIM-3, 2B4, CD160, PD-1, and CD62L and 
intracellular staining of IFNγ on P14Rag2KO Let-7Tg CD8 T cells transduced with either 
GFP-expressing empty vector or Hmga1. Numbers represent either the frequencies of 
positive cells (GFP, TIM-3, 2B4, CD160, CD62L), negative cells (CD62L), or mean 
fluorescence intensities of protein expression (MFI, PD-1, IFNγ) of each population on 
the indicated gates. 
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Figure 3.10 Let-7 miRNAs regulate glycolysis in CTLs. Glycolytic rate assay of in 
vitro-generated P14Rag2KO WT, P14Rag2KO Let-7Tg, and P14Rag2KO Lin28Tg 
CTLs. Arrows indicate the times of rotenone/antimycin A (Rot/AA, inhibitor of 
mitochondrial activity) and 2-deoxyglucose (2-DG, inhibitor of glycolysis) treatments. 
Data from one experiment representative of two experiments (mean ± S.E.M. of 
technical triplicates. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Conclusions 

 Overall, the data presented in this thesis show that let-7 miRNAs are global 

regulators of T cell differentiation. We first investigated the role of let-7 in CD4+ T cell 

differentiation in the context of autoimmunity, and demonstrated that, as observed in 

CD8+ T cells, the expression level of let-7 miRNAs is high in naive CD4+ T cells, but 

gets downregulated upon activation, proportionally to both the strength and duration of 

TCR signaling. Moreover, we show that this reduction in let-7 expression is required for 

the differentiation of pathogenic Th17 cells in EAE, the mouse model of the autoimmune 

disease MS. Specifically, maintenance of high levels of let-7 during the differentiation of 

these cells resulted in almost complete protection from disease, while absence of let-7 in 

pathogenic Th17 cells led to aggravated EAE. In fact, we demonstrated that let-7 

negatively regulated the proliferation, IL-1β/IL-23-dependent acquisition of function, and 

CCR2/CCR5-dependent migration of these cells to the CNS. This first study thus 

established a protective role for let-7 miRNAs in EAE, which has promising therapeutic 

implications for the treatment of MS and related autoimmune diseases.  

 We further predicted a regulatory role of let-7 miRNAs in the fate determination 

of CD8+ T cells towards memory cell formation and terminal-effector differentiation 

using RNA-Seq and bioinformatics analyses as an unbiased approach, which we validated 

through in-vitro and in-vivo experiments. Specifically, we elucidated the paradoxical 

outcomes of let-7-mediated regulation of CTL function in-vitro versus in-vivo, during 

which we had observed that let-7-deficient CTLs that exhibited superior cytolytic 
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function in vitro failed to control tumor growth in vivo. Conversely, overexpression of 

let-7 in CTLs in vitro resulted in diminished cytotoxic activity, whereas the same cells 

elicited outstanding tumor control in vivo. Transcriptomic analyses of these cells 

uncovered that let-7 promoted memory CD8+ T cell differentiation, while inhibiting the 

differentiation of terminally-differentiated effectors. Conversely, absence of let-7 

resulted in the activation of the terminal-effector differentiation program, characterized, 

among others, by the upregulation of co-inhibitory receptors. These receptors may render 

let-7-deficient CD8+ T cells susceptible to exhaustion upon engagement with their 

cognate ligands, which are upregulated in immunosuppressive conditions, such as the 

tumor microenvironment. In fact, we showed that the influence of let-7 miRNAs on CD8+ 

T cell fate gets established early upon activation, as let-7 dampened the strength of TCR 

signaling, which resulted in the inhibition of signaling pathways associated with T cell 

activation, including ERK1/2 and Notch. Moreover, we identified direct let-7 target genes 

that were dysregulated throughout CD8+ T cell differentiation, among which we validated 

the rate-limiting glycolytic enzyme Hk2 and the transcription factor Mycn as drivers of 

the terminally-differentiated state in vivo. Thus, we have identified specific genes that are 

functionally repressed by let-7 to prevent terminal effector differentiation and maintain 

the memory potential of CD8+ T cells. 

4.2 Future directions 

 Even though the discoveries described in this dissertation significantly advance 

our knowledge of the let-7-mediated mechanisms regulating T cell differentiation, they 

also raise many other questions that remain to be investigated, such as: (1) uncovering 

the molecular mechanisms governing let-7 expression in T cells (2) determining the 
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common let-7-mediated regulatory mechanisms of T cell differentiation, (3) assessing the 

possible role of let-7 in the control of Treg activity, (4) deepening our understanding of 

the role of let-7 in the induction of memory T cells, and (5) identifying the function of 

Hk2 and Mycn in the differentiation of terminal effector CD8+ T cells. 

4.2.1 Determine the molecular mechanisms controlling let-7 expression in T cells 

An outstanding question remaining from our studies on the role of let-7 miRNAs 

in T cell differentiation is to identify the molecular mechanisms regulating the expression 

of let-7 in T cells, especially given the therapeutic potential of modulating let-7 

expression in these cells to control T cell responses. We previously demonstrated that let-

7 miRNAs are abundantly expressed in both naive CD4+ and CD8+ T cells, but get 

dramatically downregulated over time upon T cell activation (Wells et al., 2017; Angelou 

et al., 2020). Moreover, we showed that the extent of let-7 downregulation following 

antigen encounter depends on the strength and duration of TCR signaling, both in CD4+ 

and CD8+ T cells. Because mature miRNAs are encoded in genes and generated following 

a sequence of transcriptional and post-transcriptional steps during biogenesis, it would be 

interesting to examine whether the TCR-mediated regulatory mechanisms of let-7 

expression are of epigenetic, transcriptional and/or post-transcriptional nature. 

 To test whether let-7 is regulated at the epigenetic level, the chromatin state at the 

distinct let-7 miRNA loci can first be analyzed in naive and activated T cells using 

methods such as ATAQ-Seq and bisulfite sequencing. ATAQ-Seq, or assay for 

transposase-accessible chromatin with high-throughput sequencing, enables the analysis 

of global epigenetic profiles through the construction of a sequencing library using the 

hyperactive transposase Tn5, which integrates the Tn5 transposon modified with flanking 
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sequencing adapters, at accessible chromatin regions of the genome (Buenrostro et al., 

2013), which can be identified by sequencing. Bisulfite sequencing consists of treating 

DNA with bisulfite before sequencing to uncover methylation profiles, particularly of 

cytosine residues at the carbon-5 position of CpG dinucleotides, which are found at high 

frequencies at gene promoters, and where methylation represses transcriptional activity 

(Frommer et al., 1992). The predicted outcomes of such experiments would be that the 

genomic loci of let-7 miRNAs in naive T cells consist of open chromatin, and would 

therefore be enriched following ATAQ-Seq, but become less accessible to the 

transcriptional machinery in activated T cells, in which these loci would not be detected, 

or at very low levels, by ATAQ-Seq. Conversely, CpG dinucleotides at let-7 miRNA 

promoters in naive T cells would not be marked by methylation, as they are 

transcriptionally active, while in activated T cells CpG methylation at these sites would 

be increased, as let-7 miRNA transcription is repressed.  

To identify the potential transcriptional mechanisms regulating let-7 miRNA 

expression in T cells, proteomics of isolated chromatin segments (PICh), can be run on 

naive and activated T cells. This technique employs DNA probes that hybridize to 

genomic loci of interest and pull these down together with associated proteins, which can 

be subsequently identified using mass spectrometry (Déjardin & Kingston, 2009). 

Proteins bound to let-7 loci in activated, but not naive T cells, may be responsible for the 

negative regulation of let-7 expression following antigen encounter. These candidates can 

first be validated by overexpression, where the open-reading frame (ORF) of their 

respective genes is cloned into a retroviral vector containing a GFP reporter that gets 

transduced in NIH/3T3 fibroblasts, in which let-7 miRNAs are abundantly expressed. 
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Candidates that induce a reduction in let-7 expression in this system can then be tested 

functionally by transducing activated T cells with specific shRNAs targeting these genes. 

Recovery of high let-7 expression upon silencing of these candidates in activated T cells 

will confirm their role in the TCR-mediated control of let-7 expression. 

Previous work in our lab showed that, while mature let-7 miRNAs, including let-

7b, let-7c, and let-7g, are depleted in activated T cells, their respective pre-let-7 miRNAs 

accumulate, suggesting that a post-transcriptional mechanism controls let-7 expression. 

Subsequent mass spectrometry experiments using pre-let-7b pull-down have identified 

numerous candidate proteins that bind to pre-let-7b during T cell activation. We have 

already tested the potential role of some candidates in the regulation of let-7 expression 

by overexpression in NIH/3T3 fibroblasts, using the gain-of-function strategy described 

above. Although none of the candidates assessed so far were found to control let-7 

expression in this system, more candidates remain to be examined. Once candidates are 

validated in NIH/3T3 fibroblasts, their potential role in the regulation of let-7 expression 

in T cells can be assessed by silencing the expression of these genes using shRNAs, as 

mentioned before. Maintenance of high let-7 miRNA expression upon silencing of these 

genes will confirm their role in controlling let-7 expression in T cells.  

To further understand how let-7 is regulated at different stages of T cell 

differentiation, the experimental approaches proposed above can also be expanded to 

SLECs, MPECs, memory, and exhausted T cells. To this end, donor CD8+ T cells 

adoptively transferred into congenic recipient mice challenged with Lm or cancer can be 

electronically sorted at these differentiation stages. In addition to offering important 

insights into the molecular mechanisms regulating the expression of let-7 miRNAs in T 
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cells, these findings will provide a therapeutic strategy to modulate let-7 expression to 

enhance T cell responses against infections and cancer, and suppress the activity of 

autoreactive T cells. 

4.2.2 Identify the common let-7-mediated mechanisms regulating T cell 
differentiation  

We show, in accordance with previous publications (Polikepahad et al., 2010; 

Kumar et al., 2011; Swaminathan et al., 2012), that the let-7-mediated suppression of 

effector CD4+ T cell differentiation is not limited to the pathogenic Th17 cell subset and 

extends to the Th0, Th1, and Th2 lineages. Together with our published data on the 

suppressive function of let-7 in the differentiation of effector CD8+ T cells (Wells et al., 

2017), our findings indicate that let-7 plays a global regulatory role in T cell 

differentiation, and suggest that common let-7-mediated regulatory mechanisms are 

involved in the control of both CD4+ and CD8+ T cell differentiation. Because let-7, 

initially highly expressed in naive T cells, is downregulated in both subsets within the 

first 48 hours following TCR stimulation, and since both CD4+ and CD8+ T cells undergo 

shared early activation signaling pathways downstream of TCR signaling, a major point 

to address will be to determine the common genes within these pathways that are 

regulated by let-7 during T cell differentiation. A first step in answering this question 

would be to perform RNA-Seq on monoclonal WT, Let-7Tg, and Lin28Tg CD4+ and 

CD8+ T cells at the naive and early-activated stage, followed by bioinformatics analyses. 

Such analyses that will be relevant in identifying the shared signaling pathways regulated 

by let-7 in both CD4+ and CD8+ T cells are contained within pathway analysis softwares, 

which interact with pathways collections and protein interaction networks databases. The 
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algorithm of such softwares will calculate the number of genes from the RNA-Seq data 

that are differentially expressed in the pathway collection databases between WT versus 

Let-7Tg, and WT versus Lin28Tg activated CD4+ and CD8+ T cells, and generate a list 

of predicted let-7-regulated pathways ranked according to the statistical significance of 

the overlap between the list of differentially expressed genes and the genes contained in 

a given pathway. The pathways that are most probably regulated by let-7 will be the ones 

that are shared between the WT-versus-Let-7Tg and WT-versus-Lin28Tg hits in both the 

CD4+ and CD8+ T cell samples. 

Upon identification of these predicted shared let-7-regulated pathways, and 

following validation of these in silico predictions by quantifying the transcript and protein 

expression of the direct let-7 target genes contained in the identified pathways in WT, 

Let-7Tg, and Lin28Tg activated CD4+ and CD8+ T cells, whether these factors promote 

T cell differentiation will be tested using both gain-of-function and loss-of-function 

approaches. Gain-of-function can be achieved through transduction of early-activated T 

cells with a retroviral overexpression vector containing the open reading frame of these 

candidate genes, as well as a reporter such as GFP, upon which cells overexpressing these 

factors can be identified through GFP expression. Similarly, loss-of-function can be 

accomplished by designing shRNAs capable of inhibiting the expression of the candidate 

genes. Implementing these approaches in both in vitro and in vivo experimental strategies, 

using the outcome on effector T cell differentiaton as a readout, will enable us to directly 

test the hypothesis that let-7 miRNAs negatively regulate both CD4+ and CD8+ T cell 

differentiation by mechanistically targeting our candidate genes. 
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In vitro, when compared with the same cells overexpressing the empty vector, 

recovery of effector T cell phenotype upon overexpression of these genes in Let-7Tg 

CD4+ and CD8+ T cells, as well as diminished effector T cell phenotype in WT and 

Lin28Tg CD4+ and CD8+ T cells expressing shRNAs targeting these factors, will confirm 

that the candidate genes are regulated by let-7, and functionally relevant in both CD4+ 

and CD8+ T cell differentiation. In vivo models of infection, autoimmunity, and cancer, 

can also be used to determine whether these candidate genes control T cell differentiation, 

thereby establishing their biological significance. To investigate the potential regulatory 

role of these genes in T cell differentiation during acute infection, transduced OT-I 

Rag2KO CD8+ T cells, which specifically recognize the OVA257-264 epitope from the 

chicken ovalbumin (OVA), or OT-II Rag2KO CD4+ cells, which specifically recognize 

the OVA323-339 epitope, can be transferred into congenically-marked recipient mice which 

are subsequently challenged with an OVA-expressing Lm strain (Lm-OVA). In 

comparison with T cells expressing the empty vector, shRNA-expressing donor WT and 

Lin28Tg T cells will become more MPEC-like, resulting in enhanced memory T cell 

formation. 

To investigate the function of the candidate genes in T cell differentiation during 

the anti-cancer immune response, transduced OT-I Rag2KO CD8+ T cells or OT-II 

Rag2KO CD4+ cells can be adoptively transferred into recipient mice challenged with 

subcutaneous OVA-expressing B16 melanoma tumors (B16-OVA). In the case of CD8+ 

T cells, it would be predicted that, when compared to the same cells expressing the empty 

vector, Let-7Tg T cells overexpressing the candidate genes would divert towards the 

terminal-effector state and thus would not be able to control tumor growth, while shRNA-
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expressing donor WT and Lin28Tg T cells would control the tumors more efficaciously, 

as they would adopt a memory-like phenotype. For CD4+ T cells, in comparison to empty 

vector-expressing cells, donor Let-7Tg T cells overexpressing the candidate genes would 

become better helpers and contribute to effective tumor control, while donor WT and 

Lin28Tg T cells that express shRNAs would be detrimental to the anti-tumor response, 

as their helper capacity would be compromised. 

To assess whether the predicted let-7 target genes regulate the differentiation of 

both T cell subsets in the context of autoimmunity, T cell transfers in EAE and the RIP-

mOVA model of diabetes, in which membrane-OVA is expressed under the control of 

the rat insulin promoter, can be respectively used as CD4+ and CD8+ T cell-driven 

autoimmunity in vivo experimental methods. 2D2Rag2KO donor CD4+ T cells can be 

used in EAE, while OT-IRag2KO donor CD8+ T cells can be employed in the diabetes 

model. In comparison with T cells expressing the empty vector, Let-7Tg T cells 

overexpressing the candidate genes are expected to exhibit enhanced pathogenicity, while 

the autoreactive phenotype of shRNA-expressing donor WT and Lin28Tg T cells would 

be diminished. 

If some candidate genes, in addition to meet our predictions following the above-

mentioned gain-of-function and loss-of function in vitro and in vivo studies, are not well 

characterized in regards to their role in T cell differentiation, it would be interesting to 

generate conditional overexpression and knock-out mouse models, in which these factors 

are specifically overexpressed or deleted in T cells, respectively. Further crossing of these 

mice with TCR-transgenic mice on a Rag2KO background would provide powerful tools 
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for the study of the function of these genes in T cell differentiation in vitro and in vivo 

using the disease models mentioned before. 

4.2.3 Investigating the potential role of let-7 in Treg function 

Although we observed substantial suppression of monoclonal 2D2Rag2KO iTreg 

differentiation in vitro in Chapter 2, we showed that mice which received 2D2Rag2KO 

Let-7Tg CD4+ T cells upon EAE induction did not develop autoimmunity, due to the let-

7-mediated inhibition of pathogenic effector CD4+ T cells. This global let-7-mediated 

inhibition of effector CD4+ T cell differentiation may have masked a potential role of let-

7 in the regulation of Treg activity, which will be important to determine given that Tregs 

are critical regulators of immune responses and are very different from other effector 

CD4+ T cell lineages. To study the potential role of let-7 in the regulation of Treg activity, 

we could acquire FOXP3-GFP mice, in which only Tregs express the GFP reporter that 

is constitutively expressed under the control of the Treg-specific FOXP3 promoter, and 

can thus be electronically sorted by gating on GFP+ cells. Breeding FOXP3-GFP mice to 

Let-7Tg and Lin28Tg mice will enable the direct investigation of the potential regulatory 

role of let-7 miRNAs in the immunosuppressive function of Tregs both in vitro and in 

vivo.  

To test whether let-7 suppresses Treg activity, an in-vitro suppression assay can 

be performed using FACS-sorted FOXP3-GFP (GFP+) WT, Let-7Tg, and Lin28Tg Tregs 

co-cultured with CTV-labeled electronically-sorted GFP- naive WT CD4+  T cells 

activated in vitro with anti-CD3e mAbs and CD4 T cell-depleted irradiated splenocytes. 

In this assay, the extent of GFP- CD4+ T cell proliferation, represented by CTV dilution, 

is inversely correlated with the potential of Treg immunosuppressive function. The 
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predicted outcome of this assay would be, in comparison to WT Tregs, a diminished 

suppressive capacity in Let-7Tg Tregs, whereas in Lin28Tg Tregs the 

immunosuppressive potential would be increased. 

To confirm the biological significance of let-7 in the negative regulation of Treg-

mediated immunosuppression in vivo, the T cell transfer model of colitis can be 

employed, in which FACS-sorted FOXP3-GFP WT, Let-7Tg, and Lin28Tg Tregs are co-

transferred with electronically-sorted GFP- CD45RBhi naive WT CD4+ T cells, which are 

pathogenic and induce the disease, into Rag2KO recipient mice. In this model, weight 

loss and colon inflammation are inversely correlated with Treg immunosuppressive 

capacity and disease control. When compared to WT Tregs, Let-7Tg Tregs would be 

expected to show reduced suppressive activity, while Lin28Tg Tregs would exhibit 

enhanced disease control. 

To investigate the let-7-mediated molecular mechanisms regulating Treg 

function, FACS-sorted FOXP3-GFP WT, Let-7Tg, and Lin28Tg Tregs can be subjected 

to RNA-Seq, and the transcriptome of these cells can be subsequently analyzed by 

bioinformatics analyses. The potential mechanistic role in Treg function of genes that are 

negatively regulated by let-7 in Tregs and that are also predicted direct let-7 targets can 

be tested by gain-of-function and loss-of-function approaches described before, using in-

vitro suppression assays and colitis.  

 If the hypothesis that let-7 inhibits Treg-mediated immunosuppression is 

validated through the experiments proposed above, let-7 miRNAs may be established as 

a novel therapeutic target that could be artificially deleted in Tregs from patients suffering 

from autoimmune disorders such as inflammatory bowel disease, transplant rejection, and 
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graft-versus-host disease to enhance Treg-mediated immunosuppression of 

autoimmunity. On the other hand, let-7 miRNAs could be specifically delivered to Tregs 

that populate the the tumor microenvironment of cancer patients to inhibit their 

immunosuppressive activity towards the anti-tumor response. 

4.2.4 In-vivo assessment of the memory-promoting role of let-7 in T cells 

Although we demonstrated in Chapter 3 that the memory potential of let-7-

deficient CD8+ T cells is compromised in vivo by the adoptive transfer of P14Rag2KO 

Lin28Tg naive CD8+ T cells in congenic host mice subsequently challenged with Lm-

gp33, we did not show that CD8+ memory T cell formation is enhanced when high let-7 

expression is maintained by adoptive transfer of Let-7Tg CD8+ T cells in this system. 

Despite the fact that this experiment is conceptually feasible, previous work in our lab 

revealed that adoptively transferred Let-7Tg cells could not be retrieved from the spleen 

of Lm-gp33-challenged host mice at 30 dpi. Because we previously showed that let-7 

inhibits CD8+ T cell clonal expansion (Wells et al., 2017), this phenotype could be 

explained by impaired proliferation. It was also described that central-memory T cells, 

the memory subset which Let-7Tg CTLs shares the most phenotypic attributes with, can 

give rise to tissue-resident memory T cells that populate non-lymphoid organs, including 

the skin (Osborn et al., 2019). Thus, it will be interesting to test whether the preferential 

location of memory Let-7Tg CD8+ T cells is in peripheral tissues, which would provide 

an explanation for their absence in lymphoid organs. Moreover, minor differences in the 

genetic background of Let-7Tg and host mice exist and could therefore cause allogeneic 

rejection of donor Let-7Tg cells. Therefore, whether complete genetic background 

matching of Let-7Tg mice with host mice through backcrossing can rescue this technical 
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difficulty would be interesting to assess. A direct solution to this issue that would avoid 

the lengthy process of backcrossing would be to clone let-7g into a retroviral vector 

containing a GFP reporter, and use this method to overexpress let-7 to the same extent as 

in Let-7Tg CD8+ T cells in donor WT CD8+ T cells of the same genetic background as 

host mice, which prevents any risk of allogeneic rejection. Using this approach, the role 

of let-7 in the formation of memory CD8+ T cells in vivo can be assessed using the Lm-

gp33 model of infection and compared in the same host mice between let-7g-

overexpressing (GFP+) and WT (GFP-) donor P14Rag2KO CD8+ T cells. Potential 

differences in the preferential anatomical location between these populations can also be 

examined by comparing the ratios of GFP+ versus GFP- frequencies in lymphoid and non-

lymphoid organs.  

The same approach can be used to investigate the potential role of let7 miRNAs 

in the control of memory CD4+ T cell generation, which was not addressed in this 

dissertation, with the hypothesis that, similarly to CD8+ T cells, let-7 directs the fate of 

CD4+ T cells towards memory formation. In fact, we have generated a strain of Lm that 

expresses the gp66-81 epitope of LCMV (Lm-gp66), which is specifically recognized by 

TCR-transgenic SMARTA CD4+ T cells. Thus, crossing SMARTA mice to WT and 

Lin28Tg mice on a Rag2KO background will enable the study of the potential regulatory 

role of let-7 miRNA in memory CD4+ T cell generation in vivo by adoptive transfer of 

transduced SMARTARag2KO WT CD4+ T cells into congenically-marked host mice 

subsequently challenged with Lm-gp66. To investigate the effect of let-7 deficiency on 

memory CD4+ T cell formation, donor naive SMARTARag2KO Lin28Tg CD4+ T cells 

can be adoptively transferred into congenic recipient mice subsequently infected with 
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Lm-gp66 . In comparison with WT (GFP-) CD4+ T cells, let-7-overexpressing (GFP+) 

CD4+ T cells would be predicted to show enhanced memory cell formation, while absence 

of let-7 would be expected, as in CD8+ T cells, to result in compromised generation of 

memory CD4+ T cells. 

4.2.5 Determine the function of Hk2 and Mycn in terminal effector CD8+ T cell 
differentiation 

In Chapter 3, we identified Hk2 and Mycn as let-7 direct targets that functionally 

promote the terminal effector fate in CD8+ T cells, using retroviral transduction to 

overexpress these genes as a gain-of-function approach.  To test whether absence of these 

genes results in the specification of CD8+ T cells towards the memory fate, conditional 

genetic knock-out mouse models in which these genes would be specifically deleted in 

CD8+ T cells could be generated. In fact, Hk2fl/fl and Mycnfl/fl mice were already produced 

by other groups (Knoepfler et al., 2002; Patra et al., 2013). Thus, breeding these mice to 

mice that express the Cre recombinase under the control of a T cell-specific promoter, 

such as CD4 or CD2, will result in the deletion of Hk2 and Mycn only in T cells. These 

mouse model will enable the study of the role of these genes in terminal effector CD8+ T 

cell differentiation using in-vitro CTL differentiation and the in vivo model of Lm 

infection used throughout Chapter 3. It would be expected that, consistently with our 

overexpression studies, the generation of memory T cells would be enhanced in CD8+ T 

cells deficient in either gene. 

Altogether, this dissertation establishes a central role for let-7 miRNAs in the 

regulation of T cell differentiation, and highlights the very promising medical potential 
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of using let-7 miRNA delivery as a novel therapeutic mean to modulate T cell-mediated 

responses for the treatment of pathological conditions, such as autoimmunity and cancer. 
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CHAPTER 5 

MATERIALS AND METHODS 

5.1 Mice 

C57BL/6J (WT CD45.2+, stock no. 000664), B6.SJL- PtprcaPepcb/ BoyJ (WT CD45.1+, 

stock no. 002014), B6(Cg)-Rag2tm1.1Cgn/J (Rag2KO, stock no. 008449), B6.Cg-

Col1a1tm3(tetO-Mirlet7g/Mir21)Gqda/J (let-7g, stock no. 023912), B6.Cg- Gt(ROSA)26 

Sortm1(rtTA*M2)Jae/J (M2rtTA, stock no. 006965), and C57BL/6-Tg(Nr4a1-

EGFP/cre)820Khog/J (Nur77-GFP, stock no. 016617) mice were acquired from the 

Jackson Laboratory. let-7g and M2rtTA mice were bred to generate Let-7Tg mice. Mice 

with a human CD2 promoter-driven Lin28B transgene (Lin28Tg) (Pobezinsky et al., 

2015), as well as B6 Tg(TcrLCMV)327Sdz/JDvs/J (P14) mice were generously provided 

by Alfred Singer (NCI, NIH) and C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J (2D2) mice 

were a kind gift from Barbara Osborne (UMass Amherst, VASCI). 2D2 mice were 

crossed on a Rag2KO background to produce 2D2Rag2KO WT mice. Let-7Tg and 2D2 

mice were bred on a Rag2KO background to generate 2D2Rag2KO Let-7Tg mice. 

Lin28Tg and 2D2 mice were crossed on a Rag2KO background to produce 2D2Rag2KO 

Lin28Tg mice. P14 mice were crossed on a Rag2KO background to produce P14Rag2KO 

WT mice. Let-7Tg and P14 mice were bred on a Rag2KO background to generate 

P14Rag2KO Let-7Tg mice. Lin28Tg and P14 mice were crossed on a Rag2KO 

background to produce P14Rag2KO Lin28Tg mice.  Control mice used were either 

littermates or age and sex-matched mice. All breedings were maintained at the University 

of Massachusetts, Amherst. All experiments were executed according to the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 
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National Institutes of Health. All mice were handled in accordance with reviewed and 

approved institutional animal care and use committee (IACUC) protocols (#2017-0041, 

#2017-0053) of the University of Massachusetts. 

5.2 Doxycycline treatment for the induction of let-7 transgene expression 

All experimental mice (including controls) were fed with 2 mg/mL doxycycline hyclate 

(Sigma) and 10 mg/mL sucrose in drinking water that was replaced once over the course 

of 4 days before the start of experiments to induce maximal let-7g expression. For EAE 

experiments, doxycycline treatment was maintained throughout disease course analysis, 

during which doxycycline-containing water was replaced every other day. For in-vitro 

lymphocyte cultures, lymphocyte culture media (see cell sorting and in-vitro culture 

below) was complemented with 2 µg/mL doxycycline hyclate. 

5.3 Cell sorting and in-vitro culture 

Lymph nodes were collected and gently dissociated using sharp-ended forceps to release 

lymphocytes. Naive CD4+CD44loCD25-CD8- T cells were either purified using electronic 

sorting after removal of B cells from whole-lymphocyte suspensions using α-mouse IgG-

coated magnetic beads (BioMAg, Qiagen) or directly isolated from whole-lymphocyte 

suspensions using the EasySepTM Mouse Naive CD4+ T Cell Isolation kit (Stem Cell 

Technologies) according to the manufacturer’s instructions. Cells were cultured in RPMI 

media supplemented with 10% fetal bovine serum, 1% penicillin/streptavidin, 1% L-

glutamine, 1% non-essential amino-acids, 1% sodium pyruvate, 1% HEPES and 0.3% β-

mercaptoethanol. Culture media was supplemented with 2 µg/mL doxycycline, and 100 
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µg/mL gentamicin when necessary. Unless otherwise indicated, cells were activated with 

plate-bound α-CD3 (clone 2C11, 1 or 5 µg/mL) and α-CD28 (clone 37.51, 5 µg/mL).  

5.4 Induction of EAE and disease analysis 

EAE was induced by subcutaneous immunization with the MOG35-55 peptide in complete 

Freund’s adjuvant (Hooke Laboratories EK-2110) according to the manufacturer’s 

instructions. Intraperitoneal injection of 60 ng pertussis toxin (Hooke Laboratories BT-

0105) was performed 2-4 hours and 26-28 hours post-immunization. For adoptive-

transfer experiments, intravenous injection of 2-2.5x106 WT, Let-7Tg or Lin28Tg 

2D2Rag2KO naive CD4+ T cells was performed 12 hours prior to immunization with 

MOG35-55. EAE symptoms were scored according to standard criteria: 0, asymptomatic; 

1, limp tail; 2, hindlimb weakness; 3, hindlimb paralysis; 4, complete hindlimb and partial 

frontlimb paralysis; 5, moribund or death. 

5.5 Isolation of CNS-infiltrating cells 

Experimental mice were sacrificed at the peak of EAE and perfused through the left 

cardiac ventricle with PBS containing 1% fetal bovine serum. Brain and spinal cord 

tissues were dissociated and digested with 1 mg/mL DNaseI (Roche) and 2.5 mg/mL 

collagenase D (Roche) for 30 minutes at 37°C using a gentleMACS dissociator 

(Miltenyi), filtered through 100-µm mesh strainers, and centrifuged through a Percoll 

density gradient (37% and 70%). Mononuclear cells in the interphase were collected, 

washed twice with PBS and resuspended in lymphocyte culture media prior to in-vitro 

restimulation. 
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5.6 Enzyme-linked immunosorbent assay (ELISA) 

Spleens from experimental mice were harvested at the peak of EAE and splenocytes were 

released by gentle organ dissociation using sharp-ended forceps. After erythrocyte lysis, 

duplicates of 2x107 splenocytes from each mouse were restimulated in lymphocyte 

culture media supplemented with either 2.5, 5 or 10 µg/mL MOG35-55 (Hooke 

Laboratories DS-0111) in the presence of 2 µg/mL doxycycline hyclate. Cytokine 

concentrations were measured in supernatants collected from restimulated cells after 5 

days in culture. Concentrations of secreted IL-17, GM-CSF and IFNγ were measured 

using matching capture and biotinylated detection mAbs (BD Pharmingen) in a sandwich 

ELISA. HRP-conjugated streptavidin and HRP substrate from the TMB ELISA kit 

(Pierce) were applied for the quantification of HRP activity at 450 nm using a Synergy™ 

2 Multi-Mode Microplate Reader (Biotek).   

5.7 CTV and CFSE labeling 

Naive CD4+ T cells were labeled at 1x106 cells/mL in PBS containing 2.5 µM CTV or 1 

µM CFSE, both obtained from Invitrogen, for 15 minutes at 37°C. The labeling reaction 

was stopped by washing the cells with lymphocyte culture media prior to use in 

experiments.  

5.8 In-vitro proliferation assay 

CTV-labeled WT, Let-7Tg and Lin28Tg cells were activated with plate-bound α-CD3e 

(clone 2C11, 5 µg/mL) and α-CD28 (clone 37.51, 5 µg/mL). Cells were cultured for 3 

days prior to CTV dilution profile analysis by flow cytometry. 
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5.9 In-vitro differentiation of CD4+ T helper (Th) cells 

Naive CD4+ T cells (1x106) were activated with soluble α-CD3 (clone 2C11, 2 µg/mL) 

in the presence of irradiated WT splenocytes (5x106) and cultured for 5 days in 

lymphocyte culture media. In some experiments, whole-splenocyte suspensions were 

depleted of CD4+ and CD8+ T cells using α-mouse CD4 (clone L3T4) and α-mouse CD8 

(clone Ly-2) microbeads (Miltenyi) followed by magnetic-activated cell sorting. For 

pathogenic Th17 differentiation, culture media was further supplemented with 20 ng/mL 

IL-6 (Miltneyi), 10 ng/mL IL-1β (Miltenyi), 10 ng/mL IL-23 (R&D Systems), 10 µg α-

IFNγ mAbs (clone XMG1.2, BioXCell) and 10 µg/mL α-IL-4 mAbs (clone 11B11, 

BioXCell). For Th0 differentiation, culture media was further supplemented with 200 

U/mL IL-2 (Peprotech). For Th1 differentiation, culture media was further supplemented 

with 200 U/mL IL-2, 10 ng/mL IL-12 (Peprotech) and 10 µg/mL α-IL-4 mAbs (clone 

11B11, BioXCell). For Th2 differentiation, culture media was further supplemented with 

200 U/mL IL-2, 10 ng/mL IL-4 (Peprotech) and 10 µg/mL α-IFNγ mAbs (clone XMG1.2, 

BioXCell). For non-pathogenic Th17 cell differentiation, culture media was further 

supplemented with 20 ng/mL IL-6 (Miltenyi), 2 ng/mL TGF-β (Miltenyi), 10 µg/mL α-

IFNγ mAbs (clone XMG1.2, BioXCell) and 10 µg/mL α-IL-4 mAbs(clone 11B11, 

BioXCell). For iTreg differentiation, naive CD4+ T cells were stimulated with 10 µg/mL 

soluble α-CD3 (clone 2C11, BD Pharmingen) and culture media was further 

supplemented with 100 U/mL IL-2 (Peprotech ) and 5 ng/mL TGF-β (Miltenyi). 

5.10 In-vitro differentiation of cytotoxic CD8+ T lymphocytes (CTLs) 

Naive CD8+ T cells were stimulated either with irradiated splenocytes loaded with anti-

CD3e mAbs (10 μg/mL), or plate-bound anti-CD3e mAbs (10 μg/mL) and anti-CD28 
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mAbs (5 μg/mL), then differentiated for 5 days in lymphocyte culture media 

supplemented with 100 U/mL IL-2 (Peprotech). Culture media was further supplemented 

with 2μg/mL doxycycline when necessary.  

5.11 Overexpression and retroviral transduction of candidate genes 

The open reading frame (ORF) of Ccr2, Ccr5, Cdc34, Hk2, Mycn, NICD-NES, and NICD-

NLS were cloned into the pMRX-IRES-GFP plasmid, which contain a green fluorescent 

protein (GFP) reporter (Saitoh et al., 2002). Empty pMRX-IRES-GFP plasmids were 

used as controls. Retrovirus supernatants were produced by transfecting Platinum-E 

(Plate-E) retroviral packaging cells (Morita et al., 2000) using Transporter 5 transfection 

reagent (Polysciences). Retrovirus supernatants were concentrated 10x in lymphocyte 

culture media with PEG-it™ virus concentration reagent (System Biosciences) prior to 

cell transduction. T cells were retrovirally transduced 24h after activation with 10x-

concentrated retrovirus supernatants by spin-infection (660 xg for 90 minutes at 37°C) in 

the presence of polybrene (4 µg/mL). Transduction media was replaced with lymphocyte 

culture media appropriately supplemented 4h after spin-infection. Analysis of transduced 

cells was performed by gating on the GFP+ cell population. 

5.12 Flow cytometry 

For analysis of surface markers, live cells were treated with α-CD16/32 Fc block (2.4G2, 

BD Pharmingen, RRID:AB_394657) prior to staining with antibodies against surface 

markers for 30 minutes at 4°C. For intracellular cytokine staining, cell suspensions were 

restimulated in vitro for a total of 4 hours with 50 ng/mL phorbol 12-myristate 13-acetate 

(PMA, Sigma) and 1 µM Ionomycin (Sigma) with addition of 2 µM monensin 
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(eBioscience) in the last 2 hours of restimulation to inhibit secretion. After surface marker 

staining, cells were stained with the Live/Dead fixable Aqua Dead Cell Stain Kit (Thermo 

Fisher Scientific) according to the manufacturer’s instructions. Before intracellular 

staining, cells were fixed and permeabilized for 30 minutes at 4°C using the 

Cytofix/Cytoperm solution kit (BD Biosciences) for cytokine staining or the Foxp3/ 

Transcription factor staining buffer set (eBioscience) for transcription factor staining 

according to the manufacturer’s instructions. Samples were acquired on a BD LSR 

Fortessa flow cytometer (BD Biosciences) and data analysis was performed using FlowJo 

software (TreeStar). 

5.13 Antibodies 

The following monoclonal antibodies were used for flow cytometry: 2B4 (m2B4, 

Biolegend), CD4 (RM4-5, Biolegend), CD8a (53-6.7, eBioscience; 5H10, Invitrogen), 

CD25 (PC61, Biolegend), CD45.2 (104, BD Pharmingen), CD44 (IM7, BD Pharmingen), 

CD62L (MEL-14, Biolegend), CD127 (A7R34, Biolegend), CD160 (CNX46-3, 

eBioscience), FOXP3 (FJK-16S, eBioscience), GFP (FM264G, Biolegend), GM-CSF 

(MP1-22E9, Biolegend), IFNγ (XMG1.2, Biolegend), IL-4 (11B11, BD Pharmingen), IL-

17A (17B7, eBioscience), KLRG1 (2F1, BD Pharmingen),  PD-1 (29F.A12, Biolegend), 

PE-Streptavidin (Biolegend), APC-Streptavidin (Biolegend), TIM-3 (RMT3-23, 

Biolegend). 

5.14 RNA isolation and quantitative RT-PCR 

RNA was isolated using the QIAGEN miRNeasy (QIAGEN) or the Total RNA 

Purification kit (Norgen Biotek) according to the manufacturer’s instructions. Genomic 
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DNA was eliminated using the DNA-free DNA removal kit (Invitrogen). cDNA of 

mRNA-encoded genes was synthesized using the SuperScript III Reverse Transcriptase 

kit (Invitrogen) or the SensiFastTM cDNA synthesis kit (Bioline). cDNA of miRNAs was 

synthesized using the TaqMan MicroRNA Reverse Transcription kit (Applied 

Biosystems). SYBR Green or TaqMan quantitative RT-PCR were executed using the 

SensiFastTM SYBR Lo-Rox kit (Bioline) or the SensiFast TM Probe Lo-Rox kit (Bioline), 

respectively. The list of specific SYBR Green amplification primers (Integrated DNA 

Technologies), TaqMan gene (Integrated DNA Technologies or Thermo Fisher 

Scientific) and TaqMan microRNA assays (Thermo Fisher Scientific) used can be found 

in Table 5.1. Quantitative RT-PCR data was acquired using a QuantStudio 6 Flex Real-

Time PCR system and analyzed using QuantStudio Real-Time PCR software (Applied 

Biosystems). 

5.15 In-silico prediction of let-7 binding sites 

Let-7 binding sites were identified by searching for complete or partial continuous 

matches to the extended let-7 seed sequence “TACTACCTCA” in the complete mRNA 

sequences of the indicated mouse and human genes, and are available in Table 5.2. A 6 

bp-long perfect match was considered as minimum requirement for a potential binding 

site. Conservation was assessed according to the retention of the binding site position 

within corresponding mouse and human mRNA sequences upon optimal GLOBAL 

pairwise alignment using BioEdit software (Tom Hall, Ibis Therapeutics).  
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5.16 Luciferase reporter assays 

NIH/3T3 cells (ATCC) were transfected with the pmirGLO vector (Promega) containing 

either the wild-type in-silico predicted let-7-binding sites within Ccr2 and Ccr5 mouse 

mRNA, or mutated variants of these binding sites, or either the wild-type or a mutated 

variant of the antisense seed sequence of let-7g, using Lipofectamine and Plus Reagent 

(Invitrogen). Firefly luciferase activity was measured 48h post-transfection and was 

normalized to Renilla luciferase activity, using the Dual-Luciferase Assay Reporter kit 

(Promega), on a POLARstar Omega 96-well plate reader (BMG Labtech). 

5.17 Motility in collagen matrices 

In vitro-differentiated pathogenic Th17 cells from 2D2Rag2KO WT, 2D2Rag2KO Let-

7Tg and 2D2Rag2KO Lin28Tg mice were harvested at day 5, labeled with CFSE, and 

resuspended in RPMI/10% FBS. PureCol EZ Gel (Advanced BioMatrix) was added to 

cells in RPMI/10% FBS to obtain a final collagen gel concentration of 1.6 mg/mL with a 

final cell concentration of 1.25x106 cells/mL. Collagen gels were allowed to fully 

polymerize for 1 hour at 37°C prior to imaging the cells for 20 minutes at 10-second 

intervals with a modified inverted epi-fluorescence microscope (Axio Observer.Z1, Carl 

Zeiss). Data was analyzed using Imaris software (Bitplane). 

5.18 Transwell assay 

In vitro-differentiated pathogenic Th17 cells from 2D2Rag2KO WT, 2D2Rag2KO Let-

7Tg and 2D2Rag2KO Lin28Tg mice were harvested at day 5, washed in RPMI/10% FBS 

and resuspended at 5x106 cells/mL in RPMI/10% FBS. Chemotaxis towards 600 µL 

control media, Ccl2 and Ccl4 alone (50 ng/mL) or in combination (50 ng/mL or 10 ng/mL 
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each) in the lower chamber of a 24-well plate was assessed by incubating 100 µL cell 

suspension in the upper chamber of 24-well 6.5 mm transwell inserts with a 5-µm pore 

polycarbonate membrane (Corning) at 37°C for 3 hours. Percent chemotaxis was 

measured by manually counting the number of cells present in the lower chamber and 

normalized to cell counts obtained in control media for each condition. 

5.19 Listeria monocytogenes-gp33 (Lm-gp33) infection and adoptive CD8+ T cell 
transfer 

2x104 CD45.2+ P14Rag2KO donor cells, or 2x105 transduced CD45.2+ P14Rag2KO 

donor cells from the indicated mice were transferred intravenously (i.v.) into CD45.1+ 

congenic hosts. Mice were challenged i.v. with 6x106 colony-forming units (cfu) Lm-

gp33 grown to log phase in TSB with 50 µg/mL streptomycin the next day, or 1h later, 

respectively. 

5.20 RNA Sequencing (RNA-Seq) and bioinformatics analyses 

20x106 in vitro-generated CTLs were sent out for RNA-Seq. Unless specified, the R 

scripting language was used for bioinformatics analyses. 

5.20.1 Reads mapping to the reference genome 

Reference genome and gene model annotation files were downloaded from genome 

website browser (NCBI/UCSC/Ensembl) directly. Indexes of the reference genome were 

built using Bowtie v2.0.6 and paired-end clean reads were aligned to the reference 

genome using TopHat v2.0.9. Bowtie uses a BWT(Burrows-Wheeler Transformer) 

algorithm for mapping reads to the genome and Tophat can generate a database of splice 
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junctions based on the gene model annotation file and thus achieve a better mapping result 

than other nonsplice mapping tools. 

5.20.2 Quantification of gene expression level 

HTSeq v0.6.1 was used to count the read numbers mapped of each gene. Reads Per 

Kilobase of exon model per Million mapped reads (RPKM), which considers the effect 

of sequencing depth and gene length for the reads count at the same time, was calculated 

for each gene based on the length of the gene and reads count mapped to this gene.  

5.20.3 Differential gene expression analysis  

Differential expression analysis between two conditions/groups (three biological 

replicates per condition) was performed using the DESeq2 R package (2_1.6.3). DESeq2 

provide statistical routines for determining differential expression in digital gene 

expression data using a model based on the negative binomial distribution. The resulting 

p-values were adjusted using the Benjamini and Hochberg’s approach for controlling the 

False Discovery Rate (FDR). Genes with an adjusted p-value <0.05 found by DESeq2 

were assigned as differentially expressed.  

5.20.4 Plot generation for data visualization 

Principal component analysis (PCA) was performed with normalized expression read 

counts using the “PCAtools”, “car”, “RColorBrewer”, and “ggplots2” R packages. 

Volcano plots were generated with differential gene expression analysis output data using 

the “ggplots2” R package. Heatmaps were generated with normalized expression read 
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counts using the “ggplots2” and “RColorBrewer” R packages. Bubble plots were 

generated using the “ggplots2” R package. 

5.20.5 Database for Annotation, Visualization and Integrated Discovery (DAVID) 
analysis of gene ontology (GO) biological processes 

Lists of genes of interest were subjected to the gene ontology (GO) Functional Annotation 

Tool of the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

database, which finds functionally-related groups of genes that belong to biological 

processes that are enriched in the submitted gene list (Huang et al., 2009). GO terms with 

p-value < 0.05 were considered significantly enriched. 

5.20.6 Gene set enrichment analysis 

The differential gene expression data output was ranked according to the adjusted p-

value. Gene signatures were generated by compiling well-defined memory and terminal-

effector/exhaustion markers from the literature (Yang et al., 2011; Im et al., 2016; 

Schietinger et al., 2016; Yu et al., 2017; Snell et al., 2018; Miller et al., 2019). The GSEA 

software (Broad Institute) was used for data analysis (Mootha et al., 2003; Subramanian 

et al., 2005). 

5.20.7 Venn diagram 

Genes contained in Cluster I at all time points tested were analyzed for predicted let-7 

miRNA target genes using the TargetScan database (Agarwal et al., 2015). A Venn 

diagram representing the let-7 target genes dysregulated at all stages of CD8+ T cell 

differentiation tested was generated using the “ggplots2” R package. 
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5.21 Statistics 

Data statistical analysis was performed with Prism 7 (GraphPad software) or RStudio 

software (RStudio Team). P-values were determined using a two-tailed Student’s t test or 

a two-way ANOVA, as indicated on the figure legends. A p value < 0.05 was considered 

significant (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
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Table 5.1: Primers and probes used for quantitative RT-PCR 

 

Gene Forward primer (5'-3') Reverse primer (5'-3')
Bhlhe40 ACGGAGACCTGTCAGGGATG GGCAGTTTGTAAGTTTCCTTGC
Ccnd2 GAGTGGGAACTGGTAGTGTTG CGCACAGAGCGATGAAGGT
Ccr2 ATCCACGGCATACTATCAACATC CAAGGCTCACCATCATCGTAG
Ccr5 TTTTCAAGGGTCAGTTCCGAC GGAAGACCATCATGTTACCCAC
Cdc25a ACAGCAGTCTACAGAGAATGGG GATGAGGTGAAAGGTGTCTTGG
Cdc34 CCCCAACACCTACTATGAGGG ACATCTTGGTGAACCGGA
Cdk6 GGCGTACCCACAGAAACCATA AGGTAAGGGCCATCTGAAAACT
Csf2 TGGAAGCATGTAGAGGCCATCA GCGCCCTTGAGTTTGGTGAAAT
Gata3 CGAGATGGTACCGGGCACTA GACAGTTCGCGCAGGATGT
Glut3 ATGGGGACAACGAAGGTGAC GTCTCAGGTGCATTGATGACTC
Hk2 TGATCGCCTGCTTATTCACGG AACCGCCTAGAAATCTCCAGA
Il1r1 GTGCTACTGGGGCTCATTTGT GGAGTAAGAGGACACTTGCGAAT
Il4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT
Il4ra TCTGCATCCCGTTGTTTTGC GCACCTGTGCATCCTGAATG
Il6ra CCTGAGACTCAAGCAGAAATGG AGAAGGAAGGTCGGCTTCAGT
Il6st CCGTGTGGTTACATCTACCCT CGTGGTTCTGTTGATGACAGTG
Il12rb2 AGAGAATGCTCATTGGCACTTC AACTGGGATAATGTGAACAGCC
Il17a TTTAACTCCCTTGGCGCAAAA CTTTCCCTCCGCATTGACAC
Il23r TTCAGATGGGCATGAATGTTTCT CCAAATCCGAGCTGTTGTTCTAT
Irf4 TCCGACAGTGGTTGATCGAC CCTCACGATTGTAGTCCTGCTT
Myc AGTGCTGCATGAGGAGACAC GGTTTGCCTCTTCTCCACAG
Qars CCTTGGCCTTAGCGAGAACAA TGTCGATGGTAGAACCCAGAATC
Rorc GACCCACACCTCACAAATTGA AGTAGGCCACATTACACTGCT
Rpl13a CGAGGCATGCTGCCCCACAA AGCAGGGACCACCATCCGCT
Stat3 AGCTGGACACACGCTACCT AGGAATCGGCTATATTGCTGGT
Tfap4 GGAGAAGCTAGAGCGGGAAC TTTTGCCGGGATGTAGAGAC

Gene Assay ID Source
Ifng Mm.PT.58.30096391 Integrated DNA Technologies
Rpl13a Mm.PT.58.43547045.g Integrated DNA Technologies
Ldha Mm01612132_g1 Thermo Fisher Scientific

microRNA Assay ID Source
hsa-let-7a 00377 Thermo Fisher Scientific
hsa-let-7b 00378 Thermo Fisher Scientific
hsa-let-7c 00379 Thermo Fisher Scientific
hsa-let-7d 02283 Thermo Fisher Scientific
hsa-let-7e 02406 Thermo Fisher Scientific
hsa-let-7f 00382 Thermo Fisher Scientific
hsa-let-7g 02282 Thermo Fisher Scientific
hsa-let-7i 02221 Thermo Fisher Scientific
U6 01973 Thermo Fisher Scientific

SYBR primers

TaqMan probes

TaqMan microRNA assays
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Table 5.2: Let-7-binding sites identified in mouse and human Ccr2 and Ccr5 
mRNA sequences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Receptor Accession number Binding site Sequence Positon
1 TACCTCA 153-159
2 ACCTCA 2025-2030
1 CTACCT 311-316
2 ACTACC 356-361
1 ACCTCA 211-216
2 CTACCTC 360-366
3 ACCTCA 1679-1684
1 CTACCT 558-563
2 ACTACCTC 1274-1281

Mouse
Ccr2

Ccr5

NM_009915.2

NM_009917.5

NM_001123396.2CCR2
Human

CCR5 NM_000579.3
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