

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Hall, Kerry, Chang, Anne B., Anderson, Jennifer, Kemp, Anita, & O'Grady, Kerry-Ann

(2014)

Lung sickness in Murri kids : a cohort study in urban Indigenous children. In

The Thoracic Society of Australia and New Zealand Annual Scientific Meeting 2014, 4-9 April 2014, Adelaide Convention Centre, Adelaide, SA.

This file was downloaded from: http://eprints.qut.edu.au/80842/

© Copyright 2014 [The Authors]

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1111/resp.12263_4

Lung Sickness in Murri Kids: a cohort study in urban Indigenous children

Kerry Hall,¹ Anne B Chang,^{1,2,3}Jennie Anderson,⁴ Anita Kemp,⁴ Kerry-Ann F O'Grady.¹

¹Queensland Children's Medical Research Institute, Queensland University of Technology, Herston QLD ²Menzies School of Health Research, Charles Darwin University, Tiwi, NT ³Department of Respiratory Medicine, Queensland Children's Health Services, Herston, QLD

^₄Murri Health Group, Caboolture, QLD

Queensland University of Technology

Background

- Acute respiratory illnesses (ARI) with cough as a symptom are predominant causes of morbidity in Australian Indigenous children.
- With the exception of ear disease, there are limited studies that have addressed burden and outcome. Further, none of the existing studies relate to Indigenous children living in urban areas.
- Here we present our study design and the results of the first 66 children enrolled in the first study that comprehensively examines the incidence, aetiology, risk factors for and outcomes of ARI in this population.

Primary objectives

- To determine the incidence of ARI over a 2 year period amongst urban Indigenous children.
- To determine the incidence of chronic cough (> 4weeks duration) following ARI among urban Indigenous children

Secondary objectives

 To examine the social, cultural, environmental, microbiological and clinical predictors of ARI and its outcomes in urban Indigenous children

To describe the direct and indirect costs of ARI and ARI outcomes in urban Indigenous children

Study design

- Cohort study of Indigenous children aged < 5 years registered with an urban Indigenous primary health care Service (Murri Health Group, Caboolture, Queensland)
- children followed monthly for 12 months from enrolment
- if ARI develops, children followed weekly for 4 weeks and reviewed by respiratory physician if cough persists for >28 days
- Overseen by an Indigenous Research Reference Group
- All recruitment & data collection performed by Indigenous researchers

Eligibility criteria

- Age < 5 years and identified as Indigenous by parent/guardian.
- Registered as client of the primary health service and not planning to move from study area

Data collection

- Clinical, epidemiological, social, economic, environmental, microbiological data collected at baseline
- Monthly follow-up to collect ARI events and changes in child characteristics over time
- At ARI onset, weekly follow-up is initiated including weekly nasal swabs and parent completed cough diary cards

This painting, produced for the TLSiMkids Study portrays the sea turtle. Turtles need strong lungs to survive throughout life

Artist: Indala (2012)

Study endpoints

Primary: Acute respiratory illness with cough as a symptom

Co-primary: Chronic cough, defined as persistent cough for 28 days with no more than a 3 day break in cough

Laboratory Data

Bilateral anterior nasal swabs collected at baseline and during ARI events

Bacteriology

PCR testing for *M. pneumoniae, S. pneumoniae*, non-typable *Haemophilis influenza* (NTHi), *M. catarrhalis, S. aureus C. trachomatis, C pneumoniae* and *S. negevensis*

Virology

 PCR testing for human rhinviruses, adenovirus, influenza vairus (A & B), parainfluenza virus 1 - 3, respiratory syncytial virus, human metapneumonovirus, bocavirus, coronaviruses (OC43, 229E,NL63 + HKU1) and polyomaviruses KI and WU

Table 1. Selected baseline characteristics of first 66 children enrolled

	N=66		
Gender: Male	30	45.4%	
Female	36	54.6%	
Median age (months)		17.8 (IQR 8.2-30.7)	
Indigenous Status of child: Aboriginal	60	91%	
Torres Strait Islander	4	6%	
Both Aboriginal and Torres Strait Islander	2	3%	
Cultural factors			
Cultural connections maintained at home	41	65.2%	
Identify with Mob/Tribe/Nation	43	65.2%	
Family members of stolen generation	29	42.4%	

Breastfeeding history			95%CI
Currently breastfed	8	12.3%	4% - 20%
Never breastfed	17	25%	14% - 36%
Ever breastfed	47	73%	62% - 84%
Birth Information			95%CI
Mean birth weight in grams		2473.2	2123 - 2823
Mean Gestational age weeks		38.6	38 - 39
Mean Maternal age at birth of child		26.0	25 - 28
Mean Paternal age at birth of child		31.5	28 - 35
Maternal smoking during pregnancy	33	50%	38% - 63%
Maternal alcohol consumption during pregnancy	14	22%	11% - 32%
Maternal alcohol consumption in 3—6 months before pregnancy	35	53%	40% - 65%
Environmental Factors			95%CI
Child Care attendance	18	27%	16% - 38%
Indoor smoke exposure	2	3.5%	2% - 8%
Outdoor smoke exposure	48	75%	63% - 86%
Care type at home: both parents	35	53%	40% - 65%
single parents	25	37%	26% - 50%
other carer	6	10%	3.5% - 18%
Crowding Indicator			95%CI
Average number of people sleeping in same room as child		1.49	1.22 - 1.76
Average number of children usually living in house		1.84	1.5 - 2.18
Respiratory history			95%CI
Wheeze in past 12 months	11	16%	8.6% - 27%
History chronic cough in past 12 months	15	15%	10% - 20%
Hospitalisation of ARI past 12 months	9	16%	8.6% - 27%
Immunisation status			95%CI
Flu vaccine in previous 12 months	4	6%	1.6% - 14%
Pneumococcal vaccine ever given	35	85%	75% - 93%
Symptoms suggestive of Obstructive Sleep Apnoea			95%CI
Choking/gasping sounds while asleep	14	21%	12% - 33%
Frequent colds	28	44%	31% - 56%
Mouth breathing because of a blocked nose	27	42%	29% - 55%
Snoring	31	48%	35% - 61%
Pauses in breathing at night	10	15%	8% - 26%
Excessive daytime sleepiness	29	45%	32% - 58%

Table 2. ARI events recorded to date (n = 66 children)

Child-weeks of follow up	1189	
Total ARI reported in cohort	67	
ARI/per 100 child-weeks		5.7 (95%CI 4.4 - 7.1)
Cough at ARI onset: Dry		35%
Wet		40%
Variak	ole	15%
None		10%
Persistent cough at day 28:	Yes	20%
	Νο	73%
	Unknown	7%
Cough type at day 28: Dry		31%
Wet		54%
Varia	ble	15%

Conclusion

This is the first study to comprehensively describe the incidence, predictors and outcomes of ARI in urban Indigenous children.

The proportion of children developing chronic cough post ARI is higher than that currently reported in the literature¹

Challenges faced during the recruiting and follow up have included:

- Transience of children and carers
- Limited access to communication resources e.g. internet ,email,

The study will provide data that informs prevention and management of ARI in this population

References

1. Hay AD, Wilson AD. Br J Gen Pract. 2002; 52: 401 - 409

Acknowledgements

KH is supported by an APA scholarship and the NHMRC CRE for Lung Health in Aboriginal and Torres Strait Islander Children. KO is supported by a NHMRC Career Development Fellowship & QLD Government Smart Futures Fellowship. AC is supported by a NHMRC Practitioner Fellowship. The study is funded by a QCMRI Program Grant , a University of Queensland Foundation Research Excellence Award, a QUT Indigenous Health Research Start-Up Grant and seed-ing funding from the NHMRC CRE for Lung Health in Aboriginal and Torres Strait Islander Children.