The external morphology of the termite Reticulitermes flavipes Kollar (order, Isoptera).

Vernon A. V. Bell
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Bell, Vernon A. V., "The external morphology of the termite Reticulitermes flavipes Kollar (order, Isoptera)." (1938). Masters Theses 1911 - February 2014. 3095.

Retrieved from https://scholarworks.umass.edu/theses/3095

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

FIVE COLLEGE DEPOSITORY

(1) WXJHNA MORPYOROCY OF THE TERMITE MPTCUITPRMES MAVDES KOLLAR (ORD)WR, (SORTKRA)

3 3 21-1988

THE EXTERNAL MORPHOLOGY OF THE TERMITE RETICUIITERNES FLAVIPES KOILAR (ORDER, ISOPTERA)

by
Vernon A. V. Bell

Thesis submitted for the degree of Master of Science Massachusetts State College Amberst, Massachusetts

1938

CONTENTS

Page
Acknowledgments 1
Introduction 2
External Morohology 3
Head 4
Mouthnarts 5
Antennae 10
Tentorium 11
Thorax 12
Neck 12
Prothorax 13
Pterothorax 14
Legs 18
Wings 20
Abdomen 24
Literature Cited or Read 26
Abbreviations 31
Exolanation of Plates 34
Plates

ACKNOWLTDGEMENTS

The prenaration of this paper was undertaken at the sirggestion of Dr. G. C. Cramoton, to whom the author is indebted for valuable advice durine the progress of the work.

The anthor is also indebted to Dr. C. P. Alexander for his insniring interest in the work and for criticisms of the entire manuscrint, and to Dr. H. L. Sweetman for his counsel, and assistance in making literature available.

Many valuahle suggestions have been incornorated from other sources and the author wishes to express his anpreciation for the aid rendered.

INTRODUCIION

The genus Reticulitermes is of importance as a major pest in consuming the parts of non-living organisms that contain cellulose. Of the eight known species native to the United States, six have proven to be of economic importance. An introduced species, native to Europe, has not as yet become a general pest, whereas, in Europe it is the most dangerous member of the order. The rich fauna of this genus is limited entirely to the northern hemisphere.

Isoptera are ancient, orimitive, Pterygota of the Orthopteroid type, closely related to the Blattids. Paleontologists have found their fossil remains in the Oligocene of the Tertiary but since these fossils are of a recent genus and their nearest relatives, the Blattids, have been found in the Carboniferous, the actual origin of Isoptera must have occurred millions of years earlier. They are called white ants although all the forms of ant species are not white nor do they exhibit general morphologicel likenoss to the true ant.

There is a dearth of literature describing morphological features of various parts among the genera although much has been written of the general adpearance of Reticulitermes.

There is no complete account of the external morphology of any representative species in the Nearctic fauna. A paner, each as the present one, should be valuable not only as a comparative study of the species of the genus, but also, since the genus is representative of the order, it describes much of the external morphology of the entire order.

EXTERNAL MORPHOLOGY

Reticulitermes flavipes Kollar was chosen to represent the genus because it is well known, due to its wide distribution in all the States east of the Mississippi River. It was the first of the American termites to be d escribed, having been named by Kollar in 1837.

The alate form was used primarily to illustrate this work since the pigmentation of all the sclerotized regions makes it possible to distinguish the parts even in individuals. 9s small as the present ones. However, for completeness, narts of individuals of other castes are also included in the study.

The Head

The Head Cansule. (Figs. 7, 8, 9, 10)
From the ventral aspect it apoears almost as broad as long. It is uniformly rounded at the front and back giving it an ovoid appearance. The cuticle of the dorsal surface is not very risid and a depression may be made with slight pressure. Nany live individuals were ohserved with the head capsule partially collapsed by some external force. The color ranges from a dark brown to nearly black and is generally darker than the other parts of the body. At the anterior end is the labrum (1), which morphologically is a part of the head capsule although it functions as the "uoper lip" of the mouthparts. It forms the roof of the mouth cavity and is dorsally convex with a few setae near the weakly bilobed anterior margin. Behind it is the clypeus (c) which is approximately three times as broad as long and is divided into two parts. The weakly sclerotized anterior oortion, which is cream-colored, is the anteclypeus (ac) and the normally sclerotized posterior portion which occunies about one half the length of the clypeus is the postclypeus (pc). The clypeus is bordered posteriorly by the epistomal suture (es) which is a line of demarcation between the clypeus and the frons (fr), the latter being the anterior portion of the dorsal surface of the cranium. The coronal suture, which usually separates
the cranium into two lateral areas or parietals (p), is lacking in this species. The highest, region of the head is called the vertex (v), not demarked by any definite suture that would separate it from the adjoining regions. The areas that inelude the two lateral surfaces below and behind the compound eyes are known as the genae (g). Along the ventral edge of the gena extends a slender sclerite termed the subgena (sb) separated from the gena by the subgenal suture (sbs). Posterior to the vertex is the occibut (oc), the two regions being separated by the occioital suture (os). The occiput is continued ventrally along the genae to form the postgenae (pg). The occiput and the postgenae combined form the so-called occipital arch. Similarly, the occioital suture extends ventrally on each side to form the postgenal sutures (ogs) which separate the postgenae anteriorly from the genae. The occipital arch partly surrounds the occipital foramen (of) which is an opening in the head capsule opposed to a similar ovening in the orothorax and gives passage to the internal structures which extend from the head to thorax. The latieral surface of the head above the compound eye and hordering the occioital arch is termed the tempora (te).

The Mouthnarts. (Figs. 11, 12, 13, 14)
The mouthparts of Isontera are of the mandibulate tvpe. Characters which closelv resemble the more primitive

Orthontera add to the evidence that the group is Orthopteroid in origin.

Mandibles.

Tre mechanism of the mandibles (md) is of a unique design. Each mandible is hinerd to the head capsule at two points of articulation at the base. One of these points is at the dorsal anterior margin of the head capsule on the lateral margin of the postclypous. Here a rounded process of the clypeus forms a point of articulation with the ginglymus (gy) or shallow pit on the dorsal or exterior edge of the base of the mandible. At the lateral anterior margin of the postgena is a similar point of articulation. Here the structure is reversed, with the rounded nrocess, called the condyle (cd) located on the mandible, and the saucer-shaped depression or acetabulum, situated at the opnosing point on the postgena. Near the other corner of the somewhat triangular base, and near the cutting edge of the mandible, is attached a strong tendon known as the flexor tendon. It is heavily sclerotized near the mandible and extends posteriorly, ilust ventral to the anterior arm of the tentorium into the head capsile where it becomes pliable and fan-shaped and affords an attachment for the adductor muscles from the endo-dorsal region of the head. The extensor tendon is much smaller and is attached to the mandible near the condyle. It affords attachment for the abductor muscles. These tendons are often referred to as "apodemes".

The mesal or cutting edge of the mandible may be divided into the distal toothed lobe and the proximal molar lobe (Snodgrass). The hook-like incisor at the apex is called the gnathapex (gn) and is used for tearing loose morsels of wood to be masticated between the filelike ridges of molars (mr) located at the base of the cutting edge.

The labium.

According to Snodgrass, the parts of the labium of R. flavines may best be divided into the prelabium or movable distal portion, and the postlabium or stationary proximal portion which in this case is fused into one sclerite. The four terminal lobes of the prelabium constitute the ligula. The median pair of these ligular lobes is called the glossae (gl). The lateral lobes are the paraglossae (pa). These lobes are borne on the distal end of the labiostioites (It) or the body of the prelabium. The labial palpi (lp) are three-segmented and are attached dorsally on the lateral margins of the labiostipites. The proximal margin of the labiostipites lies along the union of the prelabium with the postlabium.

Previously mentioned, the postlabium anpears as one sclerite. However, if it is observed closely, there are three distinct regions. The mentum (m) is unnigmented anterior region which overlaps and gives support to the labiostipites. The submentum (sm) is the region which extends from the mentum to a point immediately proximal
to the gular pjts. This gives support to the subeosophageal ganglion which rests upon the dorsal surface. The nosterior part or gula (gu) reaches to the occipital foramen and partially overlies it. In the soldier caste the same relationship of parts persists when the head capsille becomes elongated. The gula becomes greatly elnngated to extend over the increased length of the head between the base of the maxillae and the occipital foramen. The subeosophageal ganglion occupies the same general position and the postlabium projects over the prelabium, as in the winged form.

Maxillae.

The maxillae (mx) are located below the mandibles and latero-dorsad of the labium. They form the sides of the buccal cavity and each is commosed of the following parts: The cardo is the base or the most proximal sclerite of the maxilla, and acts as a hince for the maxilla proper. The cardo is divided into two sclerites by the cardinal suture (cs). The basal sclerj.te thus formed is the basic ardo (bc) and the distal sclerite the disticardo (dc).

Bordering the cardo anteriorly are the sclerites of the stipes which comprise the main portion of the maxilla. The outer sclerite is the eustipes (eu) and the proximal portion is the parastines (pr). A maxillary plate occurring in this species is formed by the sclerotization of the basimaxillary membrane and is known as the basimaxilla (bm) (Crampton, 1923). This sclerite bounds
the inner border of the parastipes. The internal ridge separating the narastines from the eustines serves for muscle attachment.

Borne on the distal end of the stipes are two lobes, the lacinia (lc) and the galea (ge). The lacinia bears two claw-like teeth at its distal end and on the inner margin a row of setae which give it the appearance of a brush. The galea extends bevond the lacinia and is composed of two parts. The hooded distal nortion is the distigalea (dg) and the basal portion the basigalea (bg).

The maxillary palpus (mp) is an appendage representing the endopod ite of a Crustacean limb (regarded by some to be the telopodite) and contains the usual five segments of Orthopteroid insects.

Far down on each side of the head are located the slightly ovate compound eyes (e) which are their own diameter from the margin of the ventral surface. Immediately mesad of, and on a level with, the front margin of each comoound eye is located a small ocellus (oc). This is slightly more than its own diameter from the compound eve. The cuticle encircling the ocelli and the compound eves is verv light in color.

On the dorsal surface, and immediately caudad of the exact middle of a line drawn between the two hind margins of the compound eres, is sitrated the fontanelle (f): This has the shape of a small tubercle in the center of which is a small pore, throukh which the secretions of the
internal frontal gland nass to the exterior (Imms, 1929).

Antennae. (Fig. 16)
The antenna (a) is a $16-18$ segmented appendage located directly in front of the compound eye and near the base of the mandible. In most cases, the soldier form has a total of 17 antennae segments. Except for a few segments at the base, the organ is monilifnrm or bead-like. It is borne in a memhranous depression in the side of the cranium known as the antennal socket (as). Surrounding the antennal socket is a circular sclerite which is the antennal sclerite (asc). On the base of this sclerjte is a process projecting dorsally, called the antennifer (af) on which the antenna pivots in any direction. The antennal sclerite is demarked from the rest of the cranium by the antennal suture.

The hasal segment of the antenna, or scape (sc), is larger than any other one of the segments. Its base is bulb-like and the entire segment presents a firm foundation fon the second segment or pedicel (pd), which is slightly elbowed in shape. The next three segments (3, 4, and 5) are the smallest and have straight sides, but the segments distal to the fifth have symmetrically convex sides. The third and fourth segments are always smaller than the fifth. The fourth seoment is usually smaller than the third. All castes of flavipes have the antennae snarsely clothed with setae.

Tentorium. (Fig. 15)

The walls of the lower oart of the head capsule are braced internally by an internal skeleton termed the tentorium. It is composed of a pair of anterior arms (am), connected to a pair of posterior arms (pm) by a broad central plate, or corporotentorium (ct), which has the shane of an inverted hood. The anterior arms are flat with the edges firmly sclerotized and the midportion thin and transparent. These ribbon-shaped arms lie in vertical position with a slight twist of the ventral edge outward toward the anex. The outer edge terminates with the head capsule at the anterior base of the antenna, and the dorsal adge terminates with the head capsule near the base of the mandible at the clypeus. Externally there is an invagi-. nation of the head capsule known as the frontal oit (fp), which is the origin of the anterior arm. It is readily indicated hy a heavier pigmentation at this point. There are no dorsal amms.

Near the center of the corporotentorium is a round anerture or neuroforamen (nf) and extendine anterior to this is a median line through the transparent olate. The neuroforamen permits the nassage of the nerves connecting the subeosophageal ganglion with the hrain proper.

The posterior portion is in the form of an arc, the tentorial bridge ($t b$), the arms of which extend posteriorly along the lateral edges of the occioital foramen to form the so-called Dosterior arms.

At the point of union of the posterior arm with head cansule exteriorly is an invagination called the gular nit (ED), which is the origin of the posterior arm, Near the apex of each posterior arm is the point of articulation of the neck sclerite with the head capsule.

Thorax

The Neck. (Figs. 17, 18)
The neck or cervix is anterior to the prothorax. It is believed to have originated from a portion of the labial segment of the head and the anterior region of the prothorax. It, is mostly membranous to permit the head to move freely. The sclerites of this region are known as the cervical plates. The laterocarvical plates or laterocervicales are the important plates of the neck, while the ventral and dorsal plates are apparently lacking. The laterocervicales are distinctly divided into an anterior nortion or eucervicale (ec), and a posterior portion or intercervicale (ic). Anteriorly, the eucervicale articulates with the postgenae bordering the occipital foramen, and serves as a fulcral point for the movement of the head in a dorso-ventral olane. The intercervicales touch each other on the ventro-median line of the hody. This is typically characteristic of the Blattids and of the Mantids (Cramnton, 1927). This feature lends suport to the belief that these families $\cap f$ Orthoptere and of the order Isontera must have had a common origin. Immediately posterior to the intercer-

-- 13 --

vicale, and much in the same relative position, is the oostcervicale (pv).

Prothorax

Pronotum. (Figs. 17, 18, 19)
The oceipital region of the head, the cervix, the nleura of the nrothorax, and the dorsal anterior region of the mesothorax are shielded dorsally by the oronotum (nn). The pronotum, from a dorsal asnect, is heart-shaped, slightly broader than long, and bilobed at both ends. The anterior half of the dorso-median line is without oigment.

The nronleuron.

The episternum (er) dorsally joins the pronotum, and at the base is fused to the precoxale (pe). The precoxale or procoxal bridge is a sclerite which extends along the intercervicale from the base of the evisternum, and has its termination just anterior to the basisternum (bs). The edimeron (em) is an elongated sclerite which extends Darallel to the enisternum and is separated from it by an infoldino into the interment called the plemral suture (pls). Internally this infolding forms a ridee or endooleuron which serves as an attachment for the muscles.

The trochantin $(t r)$ is a very narrow sclerite extendine from the base of the coxa $(c x)$ anteriorly and curving laterally to join with the opimeron. It is divided inten two narts: The nroximal portion or distitrochantin $\left(d t_{n}\right)$, and the distal Dortion or basitrochantin (bth) near tire epimeron.

The prosternum.
The sclerites of the prosternum are greatly reduced. The entire basisternm is triangular and divided at the ventro-median line of the hody into two lateral portions. Posterior to the basisternum is a small triangular plate or furcasternum (fs), which is separated from the basisternim by a membranous area.

At each lateral edge of the furcasternum is a furcal Dit which is an invasination of the integument to form the internal furca. Both the basisternum and the furcasternum vary in shape and often the furcasternum is so Iightly sclerotized that it is not distinguishable. Iust posterior to and adjoining the furcasternum is a very small sclerite or spinasternum. A spinal pit is located posterior to this.

Pterothorax

Dire to the general similarity of shapes and relative Dositions of the meso-and metathorax (Figs. 17, 18, 19) one descrintion is adealtate for both. A few minor differences will be given special attention. Meso-and metanotum.

The larg e anterior lobe, which is partly covered anteriorly by the segment before it, is the preseutum (osc). The anterior margin is bordered by a narrow sclerite called the pretergite (prt). At each end of the pretergite is a small trianoular sclerite known as the
prealare (pra). The lateral edge of the prescutum has a projection known as a suralare (su).serving as an anterior notal wing orocess. The tegular incision (ti) lies between the prealare and the suralare and contains the tegula (tg), a small, unpigmented, convex sclerite covering the anterior wing base.

Of the notal sclerites, the largest, which is shieldshaped and termed the scutum (st), lies behind and slightly overliaps the prescutum. The anterior corners of the scutum are each modified into a posterior notal wing process on adanale $(a d)$. Between the adanale and the suralore is a deep incision known as the notal incision (ni), which divides the scutum from the prescutum. On the lateral margin of the scutum is horne the tough, pliable axillary cord (ao) which forms the posterior margin of the basal membrane of the wing.

The Axillary Sclerites. (Fig. 19)

Since it is commonly accepted that the wings are formed by the outgrowths of the notum it is fitting that the selerites of the wing base be treated here. These sclerites are so minute that it is almost impossible to determine their comnarative oositions from an alcoholic specimen. When a recently killed specimen is observed, bef ore rigor mortis takes place, the sclerites of this membranous area between the axillary cord and the tegula are readily d iscernible.

The first axillary sclerite or notale (n) has four oroiecting arms. The two mesad arms are hineed to the orescutum. The second axillary sclerite or mediale (ml) is partly surrounded by the two lateral arms. The third axillary sclerite or basanale (bl) is located immediately posterior to the notale and mediale. Between the basanale and the tio of the adanale is situated a much smaller sclerite which is generally considered to be a fourth axillary sclerite formed from a nortion of the adanale. Two median plates or ossicles are joined laterally to the first three axillary sclerjtes. An anterior plate at the base of the anterior marein of the wing is known as the humeral plate (hp) or parategula.

Meso-and metanleuron.
The two largest and most conspicuous plates of the pleuron are the enisternum (er) and the enimeron (em). They are eparated by the pleural suture (ols) which extends from the dorsal margin posteriorly on a diagonal to the ventral margin where it forms a coxifer or an articulation noint for the coxa. The oleural suture is an infolding of the integrment, forming the oleural ridpe internally and serving as a process for muscle attachment. On the dorsal margin of the epistornum is the pleural wing-bearing nrocess or alifer (al).

In the memhranous area at the mouth of the episternal incision anterior to the alifer is a very small sclerite or basalare (y).

In the membrane directly behind the dosterior wing-bearing nrocess and near the dorsal margin of the epimeron is located a cresent-shaped sclerite called the subalare (sa). Both the subalare and the basalare are associated with the movements of the wing. The mesothoracic and the metathoracic soiracles ($s p$) are both located in the membrane of the oleuron directly anterior to the episternum.

Immediately ventral to the base of the enisternum aro two triangular plates, the laterosternum (ls) and the trochantin (tr). The dorsal edge of the anterior plate or laterosternum is continious to the episternum and ventrally it reaches the hasisternum (bs) or princioal sclerite of the st,ernum. Its dorsal posterior corner is in contact with the anterior corner of the trochantin. The trochantin is slightly curved and the dorsal posterior corner meets with the coxifer of the episternum while the ventral corner forms a noint of articulation with the basal rim of the coxa.

Meso-and metasternum.
The sternum is the only region which shows a distinct variation in the shape of the parts in the two segments. The basisternum of these sements is many times larger than that of the orothorax. The anterior third of the mesobasisternum lies iust dorsal to the coxa of the orothorax and its nosterior end tapers to a small process and extends to the base of the mesocoxae. A membranous incisjon at the anterior end of the basisternum differs
in size among individuals and the shape of the basisternum varies accordingly from a weakly to a strongly bilobed tyne.

The basisternum of the metathorax is broader and about one-half the length of that of the mesothorax and its nosterior end tapers abruptly to a point between the metathoracic coxae. The coxae of the mesothorax do not extend over the basisternum ventrally.

The furcasternum and the sninasternum, which lie posterior to the basisternum, are not distinct. However, the region is easily located externally by the two furcal pits which lie laterally anterior to the spinal pit located on the ventro-median line of the body.

The Legs

With the exception of a difference in the coxa of the foreleg, the legs are in general alike. (Fig. 20)

Coxa. (Figs. 17, 18, 20)
The simple, cylindrical coxa of the prothorax has its proximal margin obliaue t, n the two lateral margins. At the anterior end it articulates with the coxifer of the pleuron. Another point of articulation is with the distitrochantin near the basisternum.

On the meso-and metathorax the coxa is divided into a elrcoxa ($3 c x$) and a meron (me) by a deep suture called the meral suture (ms). Dorsally the coxa articulates with
the coxifor which is a nrocess formed by the nosterior ends of the episternum and the epimeron of the pleuron. Trochanter.

The trochanters (t.n) are alike in all the legs. Although the trochanter hinges freely with the coxa, distally it is fused with the femur.

Femur.
The femur (fe) is a long, flattened, segment which joins with the trochanter at its proximal end. Distally it forms a hinged joint with the tibia. It is as heavily pigmented as the sclerites of the plemron. Tibia.

The tibia. (ta) is as long as the femur, but more slender. It is distinctly lacking in pigment as contrasted with the femur. The surface of the segment is clothed with setae and ventrally, on the distal end, it bears a Dair of spines. The tibia of the prothoracic leg differs by bearing an extra spine on the distal end on the outer margin of the dorsal surface.

Tarsus.
There are forr distinct tarsal segments or tarsameres (t, m). The first three segments are small and each bears distally on the ventral surface a small protuberance or tarsal nad $(t n)$. The basal segment is termed the basitarsils (bt). The fourth segment is as long as the combined lengths of the first three and hears on the distal end a nretarsus. The tarsus is of the same color as the tibia.

The oretarsus.
The pretarsus bears a pair of ungues (un) or claws. A small ventral Dlate or unguitracter plate is concealed dorsally by the ungues. The emnodium and the oulvillus are lacking in this species.

Wings

The wings of about fifty individuals were used in this study. These were collected in Amherst, Massachusetts, May 1936. To observe clearly all the major veins, the wings were mounted uoon micro-slides and the wing projected with a micro-projector up on a Dlain white surface. When the wings were embedded in mounting medium such as gum damar or balsam, it was nractically imnossible to distinguish any of the median or cubitus veins since these are colorless as compared to the heavily pigmented veins of the anterior portion of the wing.

The procedure for mounting the wing dry upon the micro-slide is not elaborate. The wing is simply removed from the alcohol preservative and placed immediately unon the slide. If it happens to be folded it may easily be manipulated into onsition. The wings are then encircled with a thin layer of gold size and a cover olass is firmly oressed into place while the wings are still moist. In this way the wincs are not. sibjected to twisting on becoming dry. This results in a fairly nermanent mount and all the veins remain visible.

The wing venation of Reticulitermes flavipes Kol. is a remarkable variation folind among insects because it consistently anoars in all individuals. It is not only imnossible to find two snecimens whose wing venations are identical, but it is also rare to find an individual with the wings of both sides shnwinc the same oattern in the longitudinal veins. The best example of stability observed in the individual is represented by Plate one, Fig. I where cubitus has nine and ten branches and media is two-branched with the excention of the left hind wing (d) where it remains unbranched. In rather sharp contrast to this examole is Fig. 2 in which the right fore wing (a) has the entire media wanting but has a well developed cubitus to fill the space left vacant when media drons ont. The media of the three remainine wings have the same branching condition as prevails in Fig. I. However, the cubitus is exceotionally plastic in Fig. 2 and represents dichotomis hranching near the apex (a, c, and d). This instance of dichotomus branching of the cuhitus is not so obvious in the more nectinate branching of the crobitus found in Fig. l. Another remarkable fact which I observed in only one specimen (Fig. 2) is the greatly reduced convex veins between the two strongly sclerotized marginal veins of the hind wings band. This is indicative of the remnant of the $R 2+3$ vein which is common to the more primitive species of Isoptera, Zootermnnsis angusticolis Hagen.

In the right hind wing (Fig. 3b) the media coalesces with $R 4+5$ about one-half the distance from the point where it arises from $R 4+5$ to the apex and also in the left fore winc (c) the media fades out into reticulations and is gradually picked un by the strong $R 4+5$ and then leaves $R 4+5$ near the anex as a single vein. An excellent examole of asymmetry is notable in Fig. 4 where media is so reduced in the right wings (a, b) that a small portion shows only in the hind wing while in the wings of the left side (c, d) a media in the unbranched condition is common to both wings.

The limitations of this continuous variation among individuals is illustrated in Figs. 5 and 6. In the fore wines (Fig. 5) the variation is from an example with fourbranched media to en example with the media wantine. Not more than four branches were noted on the media in any fore wing. When the cubitus becomes greatly develooed in order to fill the space left vacant by the reduced media it is normally dichotomolrsly branched (g and h), however, it may in rarer cases remain uniformly pectinate as in e.

The hind wing (Fig. 6) present a slight increase in the scope of variation from that of the fore wing and also a remarkably freakish behavior of the Cul vein. The exceptional 8-branched media with the corresponding reduced cubitus (d) affords the widest divergence of characters from that which is more usually encomntered. The definite union of Cul with media, halfway between the base and the
apex, presents a situation in wing venation which is most incommon among the Insecta. The variation of media and cuhitus in the opposite of that shown by \underline{d} is evident in the greatly reduced media and a well developed cubitus in c and Plate I, Fig. $4 b$. However the media of the hind wing is nevar combletely eliminated as in the fore wing. Regardless of all these variations, there are, never-the-less, a few characters which are always constant. The parallel veins on the margin are tyoically unbranched, always thickened, heavily pigmented and in the same position. The humeral suture near the base of the wing is alwavs at a rieht angle to the marginal vein in the fore wing. In the hind wine, this angle is usually about 50° with the body but never a right angle or more. The joining of the media with the $R 4+5$ near the base in the hind wine is a character which is constant not only in this genus but also in Termodsis, Mastotermes, etc. This evidence is indicative that this may be an ordinal character.

The imbortance of this remarkable wing venation rests entirely in its significance. The paleontologist, may easily misconstrue a fossilized wing, as abnormal in its venation as Fig. 13 or 14 for a new species unless he is aware of the wide limits to the variation of the already descrined species. To the taxnnomist, the wing venation is practically useless for separating the species.

From an evolutionary noint of view, these variations
have remained because there has been no chance for natural selection due to the very short duration of the nuotial flight. The termite usinp his wing only during this neriod discards it long before it has begun to show any signs of its weaknesses there by leaving all these mutations to remain with the generations to come. This is substantiated in the fact the Mastotermes and Termopsis, which are much more primitive, have comparatively very slight variation in wing venation.

The Abdomen

The abdomen (Figs. 21, 22, 23) of R. flavines contains ten segments. The dorsal nlate of each segment, or tergite $\left(t_{I}-t_{10}\right)$, each of which slightly overlies the succeeding plate. The tergites show no differences in the sexes. The first tergite $\left(t_{I}\right)$ is more curved on its anterior margin and is shorter than the tergites succeeding it. Between the tergites and the ventral nlates or sternities $\left(s_{2}-s_{10}\right)$ is on unsclerotized region that expands with an increase in the turgidity of the abdomen. Under each Dostero-lateral margin of the first eight tergites there is located in the membrane a soiracle (sp).

The first sternite $\left(s_{I}\right)$ is reduced to unsclerotized cuticle under the metacoxae and extends over the metathorax, covering the sninasternal and the furcasternal regions.

The sternal plates exhihit sexual differences in the alate caste. In the female, sternites 2 to 6, inclusive.
are simnle transverse plates with rounded lateral edges. The seventh sternite $\left(s_{7}\right)$ is elongated to form a subgenital olate which completely overlies ventrally the 8th and 9th sternites, which are modified into mechanical structures of reproduction. The seventh, eighth, and ninth sternites of the male are similar to the preceding ones except that they are slightly shorter and the ninth bears a pair of styli (sy) on the ventro-median line of the posterior margin. In both sexes between the base of each narapodial nlate or paranroct (pp) of the tenth sternite and the lateral edges of the tenth tiergite, a small one or two segmented cercus (ce) is located which appears to be morphologically an appendage of the tenth segment although embryologically the cerci are modified limbs of the eleventh spgment.

LITERATURE CITED OR READ

Banks, N.
1907 A new species of Termes. Ent. News, vol. 18, no. 9, Nov. (Termes virginicus described.)

Banks, N. and Snyder, T. E.
1920 A Revision of the Nearctic Termites (Banks) with notes on their biology and geographic distribution (Snyder). U. S. Nat. Mus., Bull. 108:1-228, pls. l-35, 70 figs.

Comstock, J. H.
1918 The wings of insects. pp. I-430, 427 figs. Comstock Publishing Co., Ithaca, N. Y.

1930 An introduction to entomology. po. 230-269, 70 figs. The Comstock Publishing Co., Ithaca, N. Y.

Crampton, G. C.
1914a On the misuse of terms parapteron, hypopteron, tegula, squamula, patagium and scapula. Jour. N. Y. Ent. Soc., 22, pp. 248-261.

1914b Notes on the thoracic sclerites of winged insects. Ent. News, 25, pp. 15-25.

1916a The nhylogenetic origin and the nature of the wings of insects according to the paranotal theory. Jour. N. Y. Ent Soc., 24, pp. I-39.

1916 b The line of descent of the lower Pterygotan insects with notes on the relationships of other forms. Ent. News, 27, np. 244-258, 297-307, 1 fig.

1916c A comparative study of the maxilla of the Acrididae (Oediponinae and Tettiginae), Phasmidae and Phvlliidae. Psyche, 23, no. 83-87, 1 pl.

1917a The nature of the veracervix or neck region in insects. Ann. Ent. Soc. Amer., 10, 187-197.

1917 b A phylogenetic study of the lateral head, neck and orothoracic regions in some Apterygota and lower Pterygota. Ent. News, 28, 398-412, $1 \mathrm{pl}$.

1917 c A phylogenetic study of the terminal ahdominal segmenta and apoendages in some female Abterygota and lower Pterygota. Jour. N. Y. Ent. Soc., 25, pp. ?25-237, ? pls.

1918a A phylogenetic study of the terminal abdominal structures and genitalia of male Apterygota, Ephemorids, Odonata, Plecoptera, Neurontera, Orthoptera, and their allies. Bull. Brklyn. Ent. Soc., $13, \mathrm{pn} .49-68,6$ pls.

2918 b A phylogenetic study of the terga and wing bases in Embiids, Plecontera, Dermantera and Coleoptera. Psyche, 25, 4-12, 1 pl .

1918c The genitalia of Neuroptera and Necontera with notes Psocidae, Diotera and Trichoptera. Psyche, 25, pn. 45-59.

1919 Notes on the phylogeny of Orthoptera. Ent. News, 30, 42-48, 64-72.

1920a The terminal abdominal structures of the nrimitive Australian termite Mastotermes darwinensis Froggatt. Trans. Ent. Soc. Lond., $137-145,1$ pl.

1921 Sclerites of the head and mouthparts of certain immature and adult insects. Ann. Ent. Soc. Amer., 14, 65-103, 7 pls .

1923a A comparison of the terminal abdominal structures of an adult alate female of the primitive termite, Mastotermes darwinensis with those of the roach, Periplanata americana. Bull. Brklyn. Ent. Soc., 85-93. 1 pl .

1923 A nhylogenetic comparison of the maxillae throughout the orders of insects. Jour. N. Y. Ent Soc., 31, 77-106, 6 pls.

1925 The external anatomy of the head and abdomen of the roach, Periplantaamericana. Psyche, 32 , 195-220.

1926 A comparison of the neck and prothoracic sclerites throughout,the orders of insects from a standpoint of Dhylogeny. Trans. Amer. Ent. Soc., 52, 199-248.

1927 The thoracic sclerites and the wing bases of the roach, Perinlanta americana and the basal structures of the wings of insects. Psyche, 34, po. 59-72.

1928 The eulabium, menyum, submentum and gular region of insects. Jour. Ent. and Zool., 20, l-18.

1932 A phylogenetic strudy of the head capsule in certain Orthopteroid, Psocid, Hemipteroid and Holometabolous insects. Bull. Brklyn. Ent. Soc., 27, $19-55,5 \mathrm{pls}$.

Desneux, J.
1904 Isoptera, Fgm. Termitidae, pp. 52, figs. 10, nls. 2, Wytsman, P. "Genera Insectorm, " fasc. 25, Bruxelles.

Dobson, R. J.
1918 A European termite Reticulitermes lucifugus Rossi in vicinity of Boston. Psyche, vol. 25, no. 5 .

Hagen, H. A.
1885 White ants destroying living trees and changing foliage in Cambridge, Mass. Canad. Ent., vol. 17, no. 7, DD. 89-90, June.

Hegh, E
1922 Les Termites (Bruxelles, Imor. Industrielle and Financiere), pp. 1-755, figs. 460.

Hoke, Gladys
1084 The anatomy of the head and mouthparts of Plecontera. Jour. Morph., 38, $347-373,6 \mathrm{pls}$.

Holway, R. T.
1935 Preliminary note on the structure of the pretarsus and its possible phylogenetic significance. Psyche, 42, l-24, 3 nls.

Imms, A. D.
1929 A General Textbook of Entomology. Methuen and Co., xii and pp. 1-698, 607 figs.

1931 Recent Advancesin Entomology. Blakiston's Son and Co., Phila., po. I-89.

Jantel, I. H.
1893 Some notes on the ravages of the white ant (Termes flavipes). Jour. N. Y. Ent. Soc., vol. l, no. 2, ov. 89-90, June.

King, G. B.
1898 Termes flavines Kollar and its association with ants. Ent. News, vol. 8, no. 8, Oct. op. 193196.

Kofnid, C.
1935 Termites and termite control

Light, S. F.
1927 A new and more exact method of exoressing important snecific characters of termites. Univ. Calif. Publ. Entom., 4:75-88, 2 figs.

Martin, J. F.
1916 The thoracic and cervical sclerites of insects. Ann. Ent. Soc. Amer., 9, 35-83, 15 figs.

Morse, M.
1931 The external morphology of Chrysona perla L. (Neurontera: Chrysopidae). Jour. N. Y. Ent. Soc., 39, D0. 1-36.

O'Kane, W. C. and Osgood, W. A.
1922 Studies in termite control. N. H. Agr. Exp. Sta. Dept. Ent., pp. I-20, 5 figs.

Snodgrass, R. E.
1909 The thorax of insects and the articulation of the wings. Proc. U. S. Nat. Mus., 36, 511-595, 30 pls.
1927. Morpholngy and mechanism of the insect thorax. Smiths. Misc. Coll., 81, 158 pp., 57 figs.

1935 Princinles of Insect Morphology. I-667, 319 figs. McGraw-Hill Book Co., N. Y. and London.

Snyder, T.E.
1913 Changes during quiescent stages in the metamorphosis of termites. Proc. Ent. Soc. Wash., vol. 15, no. 4, pp. 162-165.

1915 Biology of the termites of Eastern United States, with preventive and remidial measures. Bur. Ent. Bull., 94, Pt. II, U. S. D. A.

1919 Some significant modifications in Nearctic termites. Proc. Ent. Soc, Wash., vol. 2l, no. 5, pp. 97-104.

1935 Our enemy the termite. Comstock Pub. Co., Ithaca, N. Y. nn. l-l96, 56 figs.

Strickland, E. H.
1911 A quiescent stage in the developement of Termes flavines Kollar. Jour. N. Y. Ent. Soc., vol. 19, no. 4, Dec., po. 255-269.

Sumner, Ethel C.
1933 The species of the termite, genus Zootermopsis Fmerson (Termonsis Hagen). Univ. Calif. Publ. Entom. vol. 6, no. 7, po. 197-2.30, 23 figs.

Walker, E. H.
1919 The terminal abdominal structures of Orthonteroid insects: a phylogenetic study. Pt. I. Ann. Ent. Soc. Amer., 12, 267-316, 71 figs.

1922 The terminal abdominal structures of Orthonteroid insects: a phylogenetic study. Pt. II. Ann. Ent. Amer., 15, 1-89, 106 figs.

ABBREVIATIONS

```
a - antenna
ac - anteclypeus
ad - adanale
af - antennifer
al - alifer
am - anterior arm
ao - axillary cord
as - antennal socket
asc - antennal sclerite
```

bc - basicardo
bg - basigalea
bl - basanale
bm - basimaxilla
bs - basisternum
bt - basitarsus
btn - hasitrochantin
c - clypeus
cd - condyle
ce - cercus
cs - cardinal suture
ct - corporntentorium
Cu - cubitus
cx - coxa
dc - disticardo
dg - distigalea
dtn - distitrochantin
e - comnound eye
ec - encorvicale
ecx - eucoxa
ei - episternal incision
em - epimeron
er - episternum
es - coistomal suture
ell - eustipes
-. Par ceralio
f - fontanelle
$f \ominus$ - femur
fo - frontal nit
fr - frons
fs - furcasternum

```
g - gena
ge - galea
gl - glossa
\varepsilonn - gnathapex
oo - gular pit
gu - gula
gy - ginglymus
hp - humeral plate
ic - intercervicale
1 - labrum
lc - lfcinia
In - labiopalnus
ls - laterosternum
lt - labiostines
\begin{tabular}{ll}
\(W\) & - media \\
\(m\) & - mentim \\
\(m d\) & - mandible \\
\(m l\) & - mediale \\
\(m n\) & - maxillary pelbus \\
\(m r\) & - molar \\
\(m s\) & - meral suture \\
\(m x\) & - moxilla
\end{tabular}
n - notale
nf - neuroforemen
ni - notal incision
oc - ocellus
occ - occinut
of - occinutal foramen
ol - ossicle
os - occioital suture
n - narietal
na - paraglossa
nh - postlahium
pc - postclymeus
nd - nedicel
ne - nrecozalo
ng - Dostgena
pes - Dosteenal suture
fl - orelabium
pls - pleixal sixture
```


EXPLANATION OF PLATES

PLATE I

Figs. 1, 2, 3, 4, represent fore and hind wings from one individual. (a - right fore wing, b - right hind wing, c - left fore wing, and d - left hind wing.)

PLATE II

Fig. 5
Right and left fore wings from various individuals.
Fig. 6
Right and left hind wings from various individuals.
(With the exception of Fig. 9 all Figs. in PLATES III and IV are of an alate form.)

PLATE III

Fig. 7 Dorsal view of head.
Fig. 8 Ventral view of head.
Fig. 9 Ventral view of head of a soldier.
Fig. In Lateral view of head.
Fig. 11 Ventral view of mandibles.
Fig. 12 Dorsal view of mandibles.
Fig. 13 Ventral view of labium.
Fig. 14 Ventral view of maxilla.
Fig. 15 Ventral view of tentorium.
Fig. 16 Antenna

PLATE IV

Fig. 17 Lateral view of thorax and neck region.
Fig. 18 Ventral viow of thorax and neck region.
Fig. 19 Dorsal view of thorax.
Fig. 20 Lateral view of right mesothoracic leg.
Fig. 21 Ventral view of male terminal structure of abdomen.
Fig. 22 Ventral view of female terminal structure of abdomen.
Fìg. 23 Lateral view of abdomen.

PLATE III

Fig. 18

Fig. $22 \tau_{10}$

Fig. $21 \quad \mathbf{t}_{10}$

Approved by

