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ABSTRACT 

PHYSIOLOGICAL AND BEHAVIORAL FACTORS AFFECTING FEEDING 
AND SATIATION IN TAB AN US NIGROVITTATUS AND PHORMIA REGINA 

September 2006 

KELLEY E. DOWNER, B.S, NORTHWESTERN COLLEGE 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. John G. Stoffolano, Jr. 

For most organisms, feeding is an absolute necessity. Yet, there remain many 

unknown aspects about the feeding behavior of insects that beg to be discovered. 

Specifically, little is known about the chemical short-term and long-term satiety factors 

that are involved in feeding. Sulfakinin is an invertebrate neuropeptide that has recently 

been shown to be homologous to vertebrate cholecystokinin. 

In this study, sulfakinin has been used to investigate the role it has in blood 

engorgement of the salt marsh horse fly, Tabanus nigrovittatus, and in carbohydrate and 

protein ingestion of both sexes of the black blow fly, Phormia regina. Horse flies 

injected with 1 nmol dose of sulfakinin (perisulfakinin) were inhibited from feeding by 

45-58%, when blood fed using an artificial membrane. However, no feeding inhibition 

was observed when blood fed using blood-soaked Kimwipes. In the blow fly, feeding 

was significantly inhibited by 34% in the males and 44% in the females when injected 

with sulfakinin (drosulfakinin I). Sulfakinin had no significant inhibitory effect on protein 

feeding in either sex. 
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Several other factors affecting feeding in the horse fly were also examined. The 

effect of odors on blood engorgement has not previously been looked at in the Tabanidae. 

Octenol, which is a known odor attractant, was found to significantly stimulate 

engorgement in the horse fly. The effect of blood temperature on engorgement has never 

been examined in this species, and the results of this study demonstrate that temperature 

is a significant stimulus for successful engorgement of a blood meal. Also, the 

percentage of engorgement throughout the season was recorded and found to fluctuate 

depending on whether it was the beginning, middle, or end of the season. 
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CHAPTER I 

LITERATURE REVIEW 

Introduction 

The idea of food is an all-consuming thought in and of itself. Food consumption 

infiltrates practically every area of human life, the least of which includes dieting, 

disorders, and survival. Feeding has been argued as one of the most important behaviors 

in all living organisms. Not only does feeding behavior affect the individual or even the 

species, but it has implications for other organisms as well. The feeding habits of other 

organisms, specifically insects, greatly affect the quality of human life, more so than what 

we often give credit for. Food consumption by insects is responsible for much of the 

major global economic and health related problems that plague humans. The feeding 

behaviors of insects have a fascinating breadth of diversity, and the Diptera prove no 

different. The two species of flies, Tabanus nigrovittatus and Phormia regina, used in the 

following studies have quite different feeding habits and mechanisms for feeding 

regulation. There are a series of ‘events’ that must take place in order for both species to 

feed. 

Feeding Behavior. For T. nigrovittatus, only blood feeding will be examined. In 

order to successfully engorge (i.e., feed to repletion on blood) a blood meal several things 

must occur. Once the female horse fly emerges as an adult on the marsh and has mated 

she is immediately able to lay a batch of eggs without a blood meal (autogenous). The 

egg production and laying process takes about 7-10 days (Magnarelli and Stoffolano, 

1980). After she has completed her first gonotrophic cycle, the female voraciously seeks 

out her first blood meal from a vertebrate host. 
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One of the first events that needs to take place in order to find a blood meal is for 

the female to visually orient herself to a host, more specifically, to detect and recognize 

appropriate background contrast (Allen and Stoffolano, 1986a), as well as hue and 

intensity (Allen and Stoffolano, 1986b). In fact, visual attraction is so central to T. 

nigrovittatus orientation that much of the control effort for this fly is based on color (i.e., 

the blue and black box traps) and shape (i.e., compact, solid box traps) (Allen and 

Stoffolano, 1986c). The second sequential and complementary event that leads to the 

female finding a blood meal is the odor stimulus. Research with odorants for tsetse flies 

in the 1970’s proved very successful in setting the stage for isolating specific compounds 

involved in attraction to a vertebrate host (Vale, 1977). Certain compounds, such as 

octenol, carbon dioxide and acetone, have been identified as important factors in the host 

seeking behavior of tsetse flies (Glossina spp.: Vale, 1979; 1980; Vale and Hall, 1985), 

stable flies (Stomoxys calcitrans Linnaeus: Warnes and Finlayson, 1985), black flies 

(Simulium spp.: Thompson, 1976) and horse flies as well (Hayes et al., 1993). Other 

stimuli that ensure hematophagous Diptera will find a blood meal is host movement 

(O’Meara, 1987). Once the female has located the host, appropriate cues must be 

received while on the host before probing is initiated, such as an appropriate heat and 

humidity stimulus (Friend and Smith, 1977). According to Dethier (1957) the most 

important factor to induce probing is heat. Friend and Smith (1977) explained in their 

review of factors affecting blood feeding that after landing on the host the female tabanid 

uses her ‘...foretarsi to palpate a wide area’ in order to find an appropriate stimulus 

which would elicit the fly to lower and spread her labellum and begin probing. After she 

has pierced the skin and located the blood from the hemorrhage, ingestion is initiated by 

2 



the taste of blood via the chemoreceptors on the labellum (Dethier, 1957) and the blood 

meal is directed to the midgut (Stoffolano, 1983). The behavioral and physiological 

factors that affect blood feeding and satiation in T. nigrovittatus will be discussed below 

and in the coming chapters. 

The blow fly, P. regina, actively searches for its two essential nutrients, 

carbohydrates and proteins. In the wild, sources of these nutrients include nectar, sucrose, 

fructose, decaying matter, and feces. When an acceptable food source is encountered, the 

blow fly stops the searching behavior and orients toward the source. If the 

chemoreceptors on the tarsi are appropriately stimulated, the fly extends its proboscis and 

spreads the labellar lobes. Ingestion will occur if there is further stimulation by the 

chemoreceptors of the mouthparts and cibarium. The nutrient source enters the 

alimentary canal and can either be stored in the crop or diverted to the midgut for 

digestion. The extent of time that feeding takes determines the amount of food ingested 

(Gelperin, 1971). The known mechanisms of feeding control in non-hematophagous 

insects are discussed below and in chapter V. After feeding has been terminated, if food 

is stored in the crop, it will be moved up the crop duct and re-shunted to the midgut. 

According to Gelperin (1971), the mechanism regulating feeding in P. regina does not 

function to maintain a constant caloric intake, but rather meal size. In addition to 

carbohydrates for energy, the blow fly requires a protein meal before the onset of 

oogenesis. 

Feeding Control in Vertebrates. Feeding regulation in vertebrates has been well 

studied and well established in the literature. Current research suggests that the endocrine 

system plays a significant role in feeding regulation (Geary, 2004). Long-term feeding 
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regulation, the homeostasis of a stable body weight, is controlled through insulin and 

leptin signals that are involved in indicating the body fat stores (Geary, 2004; Strader and 

Woods, 2005). Short-term feeding regulation is controlled by meal-related signals and 

function to maintain the meal size. According to Strader and Woods (2005), satiety 

signals are referred to as gastrointestinal signals that stop an ongoing meal. There have 

been several hormones identified and known to be secreted in response to an ingested 

meal, but one of the most studied and most important regulatory hormones is 

cholecystokinin (CCK). Most satiety signals, including CCK, are released from endocrine 

cells that line the lumen of the gastrointestinal tract (Strader and Woods, 2005). These 

specialized endocrine cells have projections that have chemoreceptors sensitive to the 

food that passes through the gut. The cells secrete peptides that act as hormones and enter 

the bloodstream or act on other cells. CCK is secreted from endocrine cells in the 

duodenum in response to proteins and fats (Beglinger and Degen, 2004), and interacts 

with specific CCK receptors on the vagus nerve. The vagus nerve then transmits signals 

to the brain, causing the termination of the ongoing meal. Other biological actions in 

response to the release of CCK include myostimulatory effects on the gut and gall 

bladder, enzyme secretion from the pancreas, and gastric emptying (Strader and Wood, 

2005). There are also stretch receptors on the afferent fibers of the vagus nerve. These 

fibers line the gut and are sensitive to volume and lumen pressure from the resulting 

meal. They act additively to shut down feeding (Strader and Woods, 2005). CCK also 

acts additively with other hormones (i.e., bombesin, glucagon) and other absorbed 

nutrients from the meal, as well as the biogenic amine, serotonin (Hayes et al., 2006). 

Exogenous injections of CCK have reduced meal size in animals and humans while CCK 
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antagonists (blocking CCK receptors) have increased meal size. CCK is thought to also 

interact with long-term feeding regulation signals (Strader and Woods, 2005). 

Feeding Control in Insects. For hematophagous and non-hematophagous insects 

alike, little research has been done examining the long-term feeding regulation 

mechanisms. For hematophagous insects, it is well known that stretch receptors play a 

significant role in short-term control of blood feeding (Gwadz, 1969; Friend and Smith, 

1977). Stretch receptors are activated once a blood meal enters the midgut and distend 

the abdomen. Exogenous applications of juvenile hormone have been shown to terminate 

blood feeding in Culex mosquitoes and consequently inhibit further host seeking behavior 

(Meola and Petralia, 1980). The role of neuropeptides in satiation has not been 

investigated. 

For non-hematophagous insects, several neural mechanisms of short-term satiety 

have been outlined by Bernays and Simpson (1982) and include chemosensory 

adaptation, the decay of the excitatory state, stretch receptors, and negative feedback 

from hemolymph factors following the meal. Biogenic amines, specifically serotonin, 

have been shown to inhibit carbohydrate food intake in the flesh fly (Dacks et al., 2003) 

and protein food intake in the blow fly (Haselton, 2005; Stoffolano, unpublished data). 

More recently, neuropeptides have been shown to have a role in feeding satiety (Maestro 

et al., 2001; Wei et al., 2000). 

The role of sulfakinin, an invertebrate homologue to vertebrate cholecystokinin, 

has been identified in many insects; thus far, its effects on feeding have only been studied 

in the German cockroach (Maestro et al., 2001) and desert locust (Wei et al., 2000). 

Sulfakinins are a family of invertebrate neuropeptides that are physiologically and 
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structurally homologous to vertebrate cholecystokinin (Schoofs and Nachman, in press). 

The first invertebrate sulfakinin to be reported was leucosulfakinin (LSK), isolated from 

the cockroach, Leucophaea maderae, and shown to increase hindgut contractions 

(Nachman et al., 1986). As reported in Nichols (2003), sulfakinins have also been 

identified in other insects such as the cockroach, Periplaneta americana (Veenstra, 

1989), the locust, Locusta migratoria (Schoofs et al., 1990), the flesh fly, Neobellieria 

bullata (Fonagy et al., 1992), the fruit fly, Drosophila melanogaster (Nichols, 1992) and 

the blow fly, Calliphora vomitoria (Duve et al., 1994). Sulfakinin immunoreactive cells 

have been found in the blow fly, P. regina (Haselton, 2005), in the midgut of Aedes 

aegypti (Veenstra et al., 1995), as well as in the brain, abdominal ganglion and in the 

endocrine cells of the gut where the foregut and midgut merge in T. nigrovittatus 

(Haselton, 2005). 

Sulfakinins have been shown to have myostimulatory effects on the gut of both 

the cockroach and locust, but have not been shown to have myotropic effects in any of 

the Diptera examined to this point (Duve et al., 1994; Haselton et al., 2006). Research by 

Aguilar et al. (2004) identified a myosuppressin, leucomyosuppressin (LMS), in the 

German cockroach as another inhibitor of food intake. The authors hypothesized that 

myoinhibitory factors produce accumulations of food in the gut, further inhibiting food 

intake due to constant signals from the appropriate stretch receptors. The authors found 

that, in response to LMS, food accumulated in alimentary compartments (specifically the 

foregut) in a dose-dependent manner. While sulfakinin also had anti-alimentary effects, it 

did not cause an accumulation of food in the foregut. 
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The authors proposed that sulfakinins were inhibiting food intake though a different 

mechanism than that of LMS, suggesting the satiety factor acts on the CNS. The role of 

sulfakinin on feeding inhibition in the Diptera will be discussed in chapters III, IV, and 

V. 
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CHAPTER II 

THE EFFECT OF OCTENOL ON ENGORGEMENT BY THE SALT MARSH 
HORSE FLY, TABANUS NIGROVJTTATUS. 

Abstract 

Adult female Tabanus nigrovittatus were field collected from a salt marsh in 

Essex Co., MA. The horse flies were transported back to and tested in the laboratory to 

determine the effects of octenol (l-octen-3-ol) on engorgement. Flies exposed to octenol 

strips had a significantly higher engorgement response compared to control flies. This is 

the first study to demonstrate an important link between an odor stimulus and the feeding 

response in Tabanidae. Research examining the link between odor attractants and 

repellents on the engorgement response is lacking or limited in most hematophagous 

Diptera. Understanding the role odors have on ingestion is essential to knowing how to 

interrupt feeding behavior of blood feeding arthropods, especially for important vectors. 
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Introduction 

Tabanus nigrovittatus Macquart is found in the salt marshes of the Atlantic coast. 

This fly is a notorious nuisance to tourists, locals, and livestock alike, especially as its 

three to four week presence on the marsh coincides with the peak tourist season of the 

summer. T. nigrovittatus is an excellent blood-feeding insect to study because the flies 

can be collected in extremely high numbers on the marsh during the season, they have 

been shown to readily feed through a parafilm membrane (Stoffolano, 1979), and 

considerable information already exists on phagostimulants (Friend and Stoffolano, 1983; 

1984; 1991), food diversion (Stoffolano, 1983), oogenesis and oviposition (Magnarelli 

and Stoffolano, 1980; Graham and Stoffolano, 1983). Research examining the effects of 

odor on probing and ingestion is lacking for most hematophagous Diptera. Most, if not 

all, research involving host-seeking stimuli and odor attractants is concerned with trap 

effectiveness and control measures (Takken and Kline, 1989; Jaenson et al., 1991). Those 

studies that do examine the role of odors only investigate probing and not ingestion 

(Hopkins, 1964; Gatehouse, 1970). There is a general absence in the literature of studies 

that look at the function of odors in the next behavioral step of obtaining a blood meal 

(i.e., engorgement). I used octenol to study how it affects engorgement. Octenol (1-octen- 

3-ol), identified from ox breath and originally used in tsetse fly research (Vale and Hall, 

1985), is an odorous compound that has been identified as an olfactory stimulant for 

several hematophagous insects, including tabanids (Hayes et al., 1993; Foil and Hribar, 

1995). Octenol is used in box traps and has proven to be an effective attractant for 

increasing trap collection of T. nigrovittatus (Hayes et al., 1993; Foil and Hribar, 1995). 
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Materials and Methods 

Collecting and Maintaining Flies. Female host-seeking T. nigrovittatus were 

collected from box traps on the salt marsh in Essex Co., Massachusetts, during July 2005. 

Flies were moved from black box traps on the marsh to metal screened cages (24 x 24 x 

45 cm) and given access to granulated sugar and water during transportation back to and 

while housed in the laboratory. Females were maintained at 25-27°C and 50-60% relative 

humidity. Prior to experimentation, all flies were deprived of granulated sugar for 16 h 

and were tested one day after being collected in the field. The exact chronological ages of 

all flies used are unknown. However, the first collection date for the 2005 experiments 

occurred on 4 July 2005 and field collections were made every other day consecutively 

throughout the season. Therefore, all flies used in experimentation were assumed to have 

only been in the field traps for at most two days. 

Feeding Assay. Following the starvation period, flies were cold immobilized in 

the freezer. Each experimental group (control and octenol) consisted of 20 flies and a 

total of 8 replicates were performed. Citrated beef blood was warmed on a hot plate to 

37°C and continuously stirred. The bottoms of 500 ml plastic deli cups were cut off, 

parafilm was fitted over the opening and secured to the cup with a rubber band. A single 

cup was placed on top of each cage with the parafilm positioned on the bottom to act as a 

membrane for the flies to probe. 

The warmed blood was poured into each cup and a lamp with a 60-watt bulb was 

positioned over it to provide adequate light and to keep the blood warmed. The flies were 

placed in the cages and allowed to feed ad libitum for one hour. Octenol strips 

(BioSensory Inc., Willimantic CT.) were placed on top of the cage next to the cups of 
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blood for the octenol-exposed treatments. The octenol release rate at room temperature in 

an open area is 0.0075 g/h (Biosensory Inc.). Octenol feeding assays were performed in a 

different laboratory from that containing the control cages to ensure no odor stimulus 

affected any other feeding assays, and only octenol-exposed cages were used for octenol- 

exposed flies for the same reason. The two laboratories were not tested beforehand using 

a non-treatment to ensure equivalency; however, optimal lighting and temperature was 

ensured before each experimental replication. 

Dissection Technique and Analysis. After the feeding assays, flies were put into 

a deep freezer for approximately an hour. Once the flies were dead they were submerged 

in 70% ethanol and each one was then held up to a light bulb to check for the presence of 

a blood meal. Flies appeared deep red if there was a blood meal in the midgut and 

appeared yellow if lacking one. Any questionable individuals were dissected and the 

midgut was checked for the presence of blood. The data was analyzed using a r-test to 

compare the means of the non-treatment and the treatment group. 

Results 

A total of 320 flies were used in this study. A Mest was used to compare the 

means of the controls (2.375 ± 1.4497) and the octenol-exposed flies (7.250 ± 1.4497) 

(JMP, SAS Institute Inc. 2005). I found that 36.3% of the 160 flies exposed to octenol 

took a blood meal while only 10.4% of the 160 control flies took a meal. Thus, octenol 

significantly stimulates blood feeding in T. nigrovittatus (F = 5.65; df = 14; P < 0.05). 

While not quantified, with the flies exposed to octenol, there appeared to be a greater 

number of individuals spending more time moving about on the top of the cage near the 

octenol strips and blood. 
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Discussion 

There is abundant literature describing how hematophagous insects locate their 

host and all the factors involved. There is also a wealth of knowledge available on how 

hematophagous insects ingest their blood meals, as well as destination of meals, and the 

factors affecting feeding physiology. The results of this study demonstrate that there is 

also an important link between an odor stimulus and the feeding response (i.e., probing 

and ingestion) in this hematophagous insect. 

It is not intuitively surprising that an odor attractant stimulates biting in a 

hematophagous fly. However, it is an important missing link in the literature when 

investigating the sequence of events a fly must respond to in order to obtain a blood meal. 

Since I did not make any observations of individual flies, it is impossible to make a direct 

correlation in this study between an individual fly probing and its engorgement. 

However, what is clear is that the number of individuals probing was increased based on 

the increased engorgement rate that has been demonstrated. 

The observation that octenol-exposed flies spend more time moving about on the 

underside of the top of the cage near the octenol strips and that they appeared to be in a 
j 

more excited state compared to flies not exposed to the odorant suggests that the octenol 

is positively affecting the central excitatory state (CES) as related to probing and gorging. 

The effect of one stimulus on a specific, often unrelated, behavior was termed central 

excitatory state if the stimulus caused an increased expression of the behavior being 

examined (Dethier et al., 1965). Later, Tully and Hirsch (1983) evaluated the previous 

studies examining the central excitatory state with respect to feeding in Drosophila and 

Phormia and noted, “It is conceivable that other sensory modalities may induce CES 
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too.” I propose in this study that octenol, which is a non-feeding modality perceived by 

the antenna, alters the central excitatory state of the female tabanids such that it increases 

their CES as it relates to probing and ingestion behavior. Few if any studies using 

hematophagous insects have looked at the CES as it relates to obtaining a blood meal. 

This study only looked at the effect of octenol on membrane feeding. Future 

studies that should provide insight concerning T. nigrovittatus might include time trials to 

observe how fast blood meals are taken once probing has been initiated, and whether an 

odor stimulus stimulates a faster ingestion response. Another study could examine how 

Kimwipe feeding (described by Stoffolano, 1979) differs and whether one could observe 

a 100% engorgement response from flies treated with octenol. Knowing how to increase 

the engorgement response of hematophagous insects in the laboratory would be 

beneficial and have practical applications for physiological and behavioral studies 

investigating the consequences of engorgement or for research examining parasite 

transmission and blood feeding. 

Other experiments that would prove insightful would be to test the effects of 

insect repellents on membrane feeding. A repellent is defined as ‘any stimulus which 

elicits an avoiding reaction’ and therefore, according to Vincent Dethier, there should be 

a distinction made between those repellents that act on the contact chemoreceptors after 

the insect lands on the host and those repellents that act on the olfactory system and deter 

the insect from finding the host (Dethier, 1957). Most past and current literature 

examining the effects of repellents on probing are performed in the field with mosquitoes 

(Barnard et al., 2002) and biting midges (Perich et al., 1995) and most studies tend to 

generalize any fly ‘settling’ on a human volunteer as one that would eventually bite 
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(Dethier, 1957). While performing behavior studies in a laboratory environment has 

certain limitations, it may provide more accurate information when evaluating the 

engorgement response and what is actually happening with the flies physiologically. 

Field tests and even some laboratory tests using mosquitoes (Klun et al., 2004; Konan et 

al., 2003) with repellents have examined the repellency duration and biting rate but have 

not necessarily examined in detail how the repellent interrupts the physiological feeding 

sequence of the fly. 

Understanding how to interrupt feeding, especially when trying to control pests 

like T. nigrovittatus, requires knowing not only what attracts and repels the flies to their 

hosts but also recognizing each physiological and behavioral step that stimulates the fly 

to successfully feed. Thus, understanding the role of attractants on engorging is essential. 

14 



CHAPTER III 

THE EFFECT OF PERISULFAKININ AND SEASONALITY ON 
ENGORGEMENT BY THE SALT MARSH HORSE FLY, 

TABANUS NIGROVITTATUS. 

Abstract 

Insect sulfakinins are homologues to cholecystokinin, which in vertebrates 

functions as a satiety factor. Recently, non-hematophagous insect studies demonstrated 

that sulfakinins function in feeding inhibition. Using a hematophagous insect (i.e., 

Tabanus nigrovittatus Macquart), flies injected with 1 nmol of perisulfakinin were 

inhibited from blood feeding by 45-58%. This percentage of inhibition is comparable to 

previous research on non-hematophagous species. When flies were injected with 10 nmol 

of perisulfakinin, engorgement was increased relative to the sham-injected flies. The 

stimulation of feeding may be due to the fact that the endogenous levels of sulfakinins in 

insects remain unknown. This study is the first to examine sulfakinin in a hematophagous 

insect and suggests that sulfakinins act additively with other mechanisms to regulate 

blood feeding. Also, the percentages of flies engorging throughout the season was 

recorded and revealed that the percentage of flies gorging fluctuates, leading to a 

decrease in engorgement as the season comes to an end. Understanding what controls 

blood feeding will allow researchers to interrupt engorgement more successfully for 

control efforts. 
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Introduction 

Tabanus nigrovittatus Macquart is an ideal hematophagous model to study 

feeding behavior because flies can be collected in extremely large numbers on the marsh 

and considerable information already exists on phagostimulants (Friend and Stoffolano, 

1983; 1984; 1991), food diversion, and feeding methods (Stoffolano, 1979, 1983). To 

date, the least understood aspects of its biology are the factors affecting satiety. In 

addition, little is known about the natural engorgement pattern throughout the fly’s three 

to four week season, especially in regards to aging. 

Sulfakinins (SKs) are a family of invertebrate neuropeptides that are 

physiologically and structurally homologous to vertebrate cholecystokinin (Schoofs and 

Nachman, 2006), and thus have a role in vertebrate satiety. Recent studies reported that 

sulfakinins significantly inhibited food intake by 55% (at 1 nmol, Wei et al., 2000) in the 

desert locust, Schistocerca gregaria Forskal, and by 60% (at 10 pg, Maestro et al., 2001) 

in the German cockroach, Blatella germanica Linnaeus. In T. nigrovittatus, sulfakinin 

immunoreactive cells have been found in the brain, abdominal ganglion, and in the 
j 

endocrine cells of the gut where the foregut and midgut merge (Haselton, 2005). The goal 

of the present study is to investigate the role of sulfakinins on blood feeding and to 

determine what the natural pattern of engorgement is over the season. 

Materials and Methods 

Collecting and Maintaining Flies. Female host-seeking T. nigrovittatus were 

collected from box traps, as previously described in chapter II, during July of 2004 and 

2005. Prior to experimentation, all flies were deprived of granulated sucrose for 16-20 h. 

All flies used in experimentation were tested the day after being collected in the field. 
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The exact chronological ages of all flies used are unknown. However, during the 2005 

field season the first observation of T. nigrovittatus in surveillance traps (3 flies) occurred 

on 22 June 2005. The first collection date for the 2005 experiments occurred on 4 July 

2005 and field collections were made every other day consecutively throughout the 

season until the flies were no longer on the marsh. Flies were only collected once a week 

during 2004. 

Injection Technique for Perisulfakinin Experiments. All flies were cold 

immobilized in the freezer and only flies of approximately the same size were used. Flies 

were then placed in a Petri dish on ice to prevent them from moving prior to injections. 

Sham-injected and treatment flies were injected with 1 pi in the second to last 

intersegmental membrane on the right ventral side of the abdomen. All flies were injected 

using a 30-gauge needle attached to a 25 pi glass gastight Hamilton #1750 syringe 

(Hamilton Co., Reno, Nevada). Sham-injected flies were injected with Phormia saline 

(Chen and Friedman 1975) and treatment flies were injected 1 nmol and 10 nmol 

perisulfakinin (PSK) (Bachem, PA, USA) dissolved in Phormia saline. The sulfakinin 

was prepared in a stock solution of 80% acetonitrile and 20% water, made up to 0.01% 

trifluoroacetic acid. The nanomolar doses were chosen based on the doses used in the 

previous insect studies with sulfakinins (Masestro et al., 2001; Wei et al., 2000). 

Control flies (used in the seasonality experiments described below) were cold 

immobilized and set on ice for the same duration as the sham-injected and treatment flies 

but were not injected with saline. After an individual fly was injected, it was placed back 

on ice until the entire experimental (control, sham, or treatment) group was completed. 40 

flies were used for each experimental group in 2004 and 20 flies were used for each 
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experimental group in 2005. The entire injection process for each experimental group 

3 
took less than 10 minutes. Each experimental group of flies was placed in a 23 cm 

metal-screened cage and the feeding assay was started. There was zero mortality with all 

injections. All flies recovered from injections and resumed normal ‘fly behavior of 

walking, grooming, etc. The recovery period usually took less than 5 minutes. 

A total of 1,200 flies were used in experimentation for the sulfakinin study and a 

total of 15 replicates were performed throughout the study (5 replicates in 2004 and 10 

replicates in 2005). Here and throughout the rest of this thesis, one replicate consists of a 

single run of all of the experimental cages (sham-injected and sulfakinin-injected) 

simultaneously. All statistical analyses were performed using ANOVA to compare the 

percentage engorged by treatment and Tukey-Kramer HSD test (JMP, SAS Institute Inc. 

2005). The percentage of difference between the sham-injected group and the treatment 

group was calculated by: 

% engorged by treatment 

- % ensoreed bv sham x 100 = % Difference 

j 

% engorged by sham 

Feeding Assay. Friend and Stoffolano (1983) found that tabanids only 

successfully blood fed in a group setting of more than 5 flies, so all flies were group-fed. 

Citrated beef blood was warmed on a hot plate to 37°C and stirred with a magnetic stirrer. 

Horse flies have been shown to blood feed in the laboratory using two different methods 

(Stoffolano, 1979), using an artificial membrane or blood-soaked Kimwipes. Both of 

those feeding techniques were examined for the seasonality experiments. For the parafilm 

membrane feeding technique, plastic deli cups were fitted with a parafilm membrane and 
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prepared as previously described in chapter II. Wanned blood was poured into each cup 

and a lamp with a 60-watt bulb was positioned over it to provide adequate light and keep 

the blood warmed. For the blood-soaked Kimwipe feeding technique (used in the 

seasonality experiments described below, not in PSK experiments), Kimwipes were 

placed on top of the cages and warmed blood was pipetted onto the Kimwipes until 

thoroughly soaked. Only the parafilm membrane feeding technique was used in the PSK 

experiments. The flies were then allowed to feed ad libitum for one hour. The flies used 

in the seasonal engorgement experiments were prepared and treated the same, with the 

exception of no injections. After the feeding assays were completed, flies were killed and 

their midguts checked for the presence of a blood meal. 

Seasonality and Engorgement. Stoffolano (1979) demonstrated that horse flies 

could be blood-fed in the laboratory using two methods. The parafilm membrane feeding 

technique employs the probing mechanism from the fly, while the Kimwipe feeding 

mechanism does not require probing through a membrane and has been shown to be a 

more successful method for blood feeding in the laboratory. For this reason, the 

percentage of flies engorging throughout the 2005 season was recorded for both feeding 

techniques. Based on dissections of the ovarioles of females throughout the 2005 season, 

as well as previous work conducted by Magnarelli and Stoffolano (1980), there is enough 

information to make plausible predictions about how seasonality, and ultimately aging, 

affects engorgement patterns in this species. 

A total of 1,315 flies were used for the seasonal engorgement studies with 34 

replicates performed for the parafilm membrane feeding technique throughout both field 

seasons (2004 and 2005) and 23 replicates performed for the Kimwipe feeding technique 
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in 2005. All dates (total of 11) in 2005 had a minimum of two replicates per date and a 

maximum of four replicates per date for each feeding technique. Here and throughout the 

rest of this thesis, figures included, ‘n’ refers to the total number of flies used in the entire 

assay from all of the replicates. All statistical comparisons were performed using 

ANOVA to compare the percentage of engorgement by date and Tukey-Kramer HSD test 

(JMP, SAS Institute Inc., 2005). A t-test was used to compare the mean (±SEM) 

percentage of engorgement for 2004 and 2005 for flies fed through parafilm membranes 

(JMP, SAS Institute Inc., 2005). 

Results 

Perisulfakinin and Satiety. Perisulfakinin (PSK) had a marginally significant 

effect on blood feeding during the 2004 field season (F2, io = 3.94; P = 0.054). However, 

only the 10 nmol and 1 nmol doses were significantly different from one another. Flies 

that were injected with a high dose of PSK (10 nmol) showed an increase in engorgement 

(62.5% of flies engorged), while flies injected with a low dose (1 nmol) showed a 

decrease in engorgement (15.1% of flies engorged), compared to 36.6% of the sham- 

injected flies that engorged (Fig. 1). The significant difference observed here between the 

10 nmol and 1 nmol doses may be a physiological effect of PSK stimulating and/or 

inhibiting the probing mechanism, which is examined in chapter IV. 

During the 2005 field season, the effect of PSK on engorgement was also 

marginally significant (F2) 27 = 3.17; P = 0.058; Fig. 2). The 2005 data were obtained 

under more controlled conditions (i.e., flies were collected every other day from the 

traps). The pattern of engorgement remained the same when examining the sham-injected 

and treatment groups for both the 2004 and 2005 field season. 
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Flies that were injected with a high dose of PSK (10 nmol) engorged at higher 

percentages (15.7%), while flies injected with 1 nmol doses of PSK engorged at lower 

percentages (6%), compared to the 11% of the sham-injected flies that engorged. 

Previous research (Maestro et al., 2001; Wei et al., 2000) reported data as the 

percentage of feeding inhibition. When the results are calculated as the inhibition of 

engorgement (compared to the percentage engorged), 1 nmol of PSK inhibited feeding by 

58 7% and 10 nmol of PSK stimulated feeding by 70.8% in 2004 (Fig. 3). For the 2005 

experiments, 1 nmol of PSK inhibited feeding by 45.5% and 10 nmol of PSK stimulated 

feeding by 42.7% (Fig. 3). 

Seasonality and Engorgement. Initially, the experiments with sulfakinins led me 

to question what the normal percentage of engorgement was for the flies throughout the 

season. During the 2004 field season, I noted increases and decreases in the percentage of 

females engorging using the parafilm membranes from the beginning of the season and to 

the end of the season. I measured the percentage of females engorging during the 

following season as well. A lower percentage of flies engorged during the beginning and 
/ 

end of the season and a higher percentage of flies engorged during the ‘peak’ season, 

when fed through parafilm membranes (especially for 2005). In 2005, there were two 

peaks (13 July and 19 July) in the engorgement behavior during the middle of the season 

(Fig. 4). Towards the end of the season, T. nigrovittatus engorged less than ‘peak’ season 

flies. The mean percentage of flies that engorged for the 2004 (27.95 ± 8.62) and 2005 

(18.54 ± 6.37) field seasons did not differ statistically when exposed to warmed blood 

through parafilm membranes (Fi, M = 0.77; P = 0.39) (Fig. 4). There was a significant 

statistical difference in the percentage of flies engorging using parafilm membranes 
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throughout the 2005 season (F10,17 = 2.58; P = 0.04). Data for 2004 were not statistically 

analyzed because there were not enough replicates for each date. However, at similar 

times during the month, the percentage of engorgement was similar in both years. 

For the Kimwipe feeding technique, there was a highly statistical significant 

difference in the percentage of females engorging throughout the 2005 season (F10,12 - 

5 07; P = 0.005) (Fig. 5). It is interesting to note that the percentage of females engorging 

spiked up (from 25.7% to 78%) on 30 July. The peaks and valleys over the season for 

flies exposed to blood-soaked Kimwipes were not as pronounced throughout the season 

as they were for flies exposed to parafilm membranes (Fig. 5). However, engorgement 

increased and decreased at similar times during the month for the two feeding techniques. 

Discussion 

Perisulfakinin and Satiety. This is the first study to examine sulfakinin in a 

hematophagous insect, as well as the first study using sulfakinin as a possible satiety 

factor to examine its effect on a natural insect population. Using a field-collected 

population has certain limitations, particularly in that the physiological and chronological 

age remains unknown, both of which can cause variability in the data. The lack of highly 

significant statistical effect on feeding inhibition could be a product of the uncontrolled 

variables that are present when examining the effect of sulfakinin in a natural population. 

Perisulfakinin has dose-dependent effect on the gorging behavior of T. 

nigrovittatus with the 10 nmol stimulating and 1 nmol inhibiting engorgement. The 

inhibition pattern of this species (58.7% in 2004 and 45.5% in 2005) at the 1 nmol dose 

of PSK is comparable to the previous research, which demonstrated a 60% inhibition of 

22 



feeding by B. germanica (Maestro et al. 2001) and a 55% inhibition of feeding by S. 

gregaria (Wei et al. 2000). 

The stimulation of engorgement is unexpected and has not been previously 

demonstrated in another insect with sulfakinin. It is possible that 10 nmol injections of 

PSK increase engorgement behaviorally by affecting probing through either a 

neurological pathway or physiologically through a water deficit pathway. On the other 

hand, increased engorgement could be a pharmacological effect of the drug since the 

endogenous amounts of SK that are released in tabanids, as other insects, are unknown. It 

is also possible that a highly significant effect was not observed in this species because 

the sulfakinin used (perisulfakinin from the cockroach, Periplaneta spp.) is not native to 

Tabanidae. 

The cockroach and locust are continual feeders that consume differing amounts of 

food. There is no evidence in any other rsearch (Maestro et al., 2001; Wei et al., 2000) to 

indicate that the authors included or removed individuals that did not feed in their 

analysis. Wei et al. (2000) and Maestro et al. (2001) reported insects taking meals but in 

smaller meal sizes. T. nigrovittatus normally feeds until repletion in the wild and only 
, „ / 

takes one blood meal in between each gonadotrophic cycle. The amount of blood 

engorged was not measured for this reason, and instead I measured the percentage of 

females engorging. Thus, it is interesting that low doses of sulfakinin deterred individual 

flies from taking a meal, as opposed to regulating the size of the meal, as it was shown by 

Wei et al. (2000) and Maestro et al (2001). The deterrence of individual flies from taking 

a meal also raises the question of whether the SK is affecting the probing mechanism 

differently from the engorgement mechanism, and is examined in chapter IV. 
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Horse flies, as most hematophagous flies, divert carbohydrates to the crop and 

blood meals to the midgut. Stoffolano (1983) showed that when horse flies engorge on 

blood they still take a sugar meal, or vice versa. A full blood meal does not satiate all 

nutritive feeding (i.e., carbohydrate) in this species; thus, feeding to repletion on a 

previous meal does not inhibit the feeding response to another nutrient. It is very likely 

then, as previously suggested by Stoffolano (1983), that there are different mechanisms 

regulating feeding for both carbohydrates and proteins in female T. nigrovittatus. 

Sulfakinins may be more important in regulating the meal size of sucrose feeding and 

may play a more significant role in the males, which do not blood feed and lack the 

distendable midgut. The effect of sulfakinin on sucrose feeding in this species has not 

been tested. 

The differences in the percentages of engorgement between the two field seasons 

in this study are most likely due to how long the flies were in the traps on the marsh. In 

2004, flies were collected once a week, whereas in 2005 they were collected every other 

day. In 2004, flies could have been in the traps anywhere from a week to just a couple 

hours. The difference between the shams (36.6% in 2004 versus 11% in 2005) suggests 
j 

that starvation and/or thirst could account for the higher engorgement in 2004 because 

flies would have been in the traps longer. It has been shown in tsetse flies that starvation 

changes the feeding thresholds so that a more starved fly will elicit a greater probing 

response (Brady 1973). Thus, the 2005 data may be more indicative of the fly’s response 

to PSK since their physiological condition was more controlled. 

Most of the female hematophagous insects studied to date appear to rely on the 

abdominal stretch receptors as the primary feedback mechanism for terminating blood 
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feeding and host seeking behavior (Adams 1999, Friend and Smith 1977, Gwadz 1969, 

Hocking 1971, Rice 1972). Why then would there be a need for a chemical satiety factor 

(e.g., sulfakinins) to regulate blood feeding when there appears to already be an effective 

mechanism in place? It may be that female horse flies rely on stretch receptors to relay 

messages via the ventral nerve cord as the primary mechanism inducing satiety following 

blood feeding and/or use chemical satiety factors (e.g., sulfakinins) to regulate 

carbohydrate feeding in both sexes. Satiation in insects, as in vertebrates, is surely not the 

result of one peptide, one hormone or one neural mechanism. There are probably many 

different mechanisms acting additively to produce satiety in insects. 

Seasonality and Engorgement. When the 2004 data were initially analyzed, the 

high and low engorgement pattern from the effect of the PSK led to the question of what 

the normal percentage of engorgement was throughout the season. A careful review of 

the literature revealed no data describing seasonal probing or engorgement (and 

ultimately aging) patterns in T. nigrovittatus. Nor is there a wealth of published 

information detailing whether this species emerge all at once in the beginning of the 

season or whether they are continually emerging on the marsh all season long. Freeman 

and Hansens (1972) published on collection methods of T. nigrovittatus in New Jersey 

and report larval collections from June 2 to July 6; however, the authors state that, 

“...larvae were still abundant in the marsh sod even during the summer peak of adult 

abundance.” The authors didn’t report when larval abundance on the marsh decreases (if 

at all) and when the peak adult abundance occurs. Notes on emergence for this species 

would be helpful in understanding whether the same flies that emerged in the beginning 

of the season are on the marsh all 3-4 weeks of the season, whether they have a peak 
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probing activity, and whether aging contributes to a decrease in their probing because of 

physiological and/or endocrinological degradation. 

The results from this study, specifically using the parafilm feeding technique, 

demonstrate an increase in engorgement in T. nigrovattus as the season peaks and a 

decrease in engorgement as the season ends. Presumably, all flies that enter the box traps 

in the field are in the blood-feeding mode. Why then are the engorgement rates different 

throughout the season? Why does the highest percentage of successful engorgement in 

the laboratory coincide with the peak abundance of T. nigrovittatus during the season? 

Senescence in T. nigrovittatus may influence host seeking behavior differently from 

engorgement behavior, possibly explaining the lower engorgement rates in the laboratory 

towards the end of the season, despite flies still being caught in the box traps. As the 

season progresses and flies begin to age on the marsh, they probably experience a 

physiological degradation of chemoreceptors, become less responsive to stimuli and less 

able to execute probing and ingestion. In addition, T. nigrovittatus probably also 

experiences a change in hormone levels, which could also account for the lack of 

engorgement response later in the season since hormones have been shown to affect 

probing in Culex mosquitoes (Meola and Petralia, 1980). 

The low engorgement in the beginning and end of the season makes biological 

sense when thinking about what the normal aging patterns probably are in the horse fly. 

The first collection of T. nigrovittatus in the marsh traps was on 4 July 2005. Most likely, 

those flies emerged sometime in the end of June, mated and laid eggs [oogenesis taking 

7-10 days, Magnarelli and Stoffolano (1980)] and were seeking their first blood meal. 

The host-seeking behavior resulted in getting the flies caught in the box traps. Based on 
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my observations, made through random dissections, none of the flies used in the 

beginning of the season had previously engorged. On 27 July 2005, I noted the first 

observations of flies that had produced at least two batches of eggs prior to being caught 

in the traps. This was based on conditions of the ovarioles, the distended midguts, and in 

several instances, the leftover remnants of blood meals in the midgut. Counting 

backwards 10 days (for oogenesis) means that the flies would have had a blood meal and 

mated somewhere around 17 July 2005. The females probably first mated another 10 

days before that (7 July 2005) without a blood meal, because they are autogenous, putting 

their emergence somewhere in the first week of July. Further, survivorship curves 

performed in the laboratory by Stoffolano and Majer (1997) showed that T. nigrovittatus 

could possibly live for about 20 days after engorgement, but the mean survivorship was 

about 9 days for blood-fed females. Thompson and Krauter (1978) showed similar results 

with less than 10% of the population surviving past 15 days in the laboratory, and zero 

percent survivorship after about 25 days in the laboratory. Therefore, it is entirely 

possible that the flies that emerged at the end of June and the first week of July are the 

same flies on the marsh at the end of July (i.e., towards the end of their season). It is 

likely then that aging, expressed here as the percentage of engorgement throughout the 

season, takes a toll on blood feeding in T. nigrovittatus. This concept has also been 

demonstrated by Mather and DeFoliart (1984) where the authors showed that older 

mosquitoes had reduced feeding success on squirrels and chipmunks. Fully understanding 

engorgement behavior, especially in light of seasonality, is important to uncovering all of 

the factors that affect T. nigrovittatus feeding behavior. 
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Figure 1. The effect of perisulfakinin (PSK) on engorgement by Tabanus 

nigrovittatus in 2004. PSK had a borderline significant effect on blood 000000- 
engorgement (F2/10 = 3.94; P = 0.054). The percentage of flies engorged was 
62.5% when injected with 10 nmol of PSK. Only 15.1% of flies engorged when 
injected with 1 nmol. The percentage of flies engorged for the sham treatment was 
36.6%. A total of 600 flies were used, with 120 flies per replicate and 5 replicates 
performed. Small bars represent SEM. 
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Figure 2. The effect of perisulfakinin (PSK) on engorgement by Tabanus 
nigrovittatus in 2005. PSK had a borderline significant effect on blood 
engorgement (F2, 27 = 3.17; P = 0.058). The percentage of flies engorged was 
15.7% when injected with 10 nmol, while only 6% of flies engorged when 
injected with 1 nmol. The percentage of flies engorged for the sham treatment was 
11%. A total of 600 flies were used, 60 flies per replicate and 10 replicates 
performed. Small bars represent SEM. 
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The Effect of PSK on Engorgement 
by T. nigrovittatus (July 2005) 
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Figure 3. The effect, expressed here as inhibition or stimulation, of PSK on 
engorgement by T. nigrovittatus. The peptide was injected at 1 nmol/fly and 10 
nmol/fly. In 2004, 1 nmol injections of PSK inhibited engorgement by 58.7%, 
while 10 nmol injections stimulated engorgement by 70.8%, compared to the 
sham-injected group. In 2005, injections of 1 nmol PSK reduced the percentage of 
flies gorging by approximately 45.5%, whereas injections of 10 nmol PSK 
increased the percentage of flies gorging through an artificial membrane by 
approximately 42.7%, compared to the sham-injected flies. 
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Figure 4. The seasonal engorgement response by T. nigrovittatus when fed 
through a parafilm membrane (July 2004 & 2005). Data points are similar for 
2004 and 2005, suggesting that females have a consistent pattern of engorgement 
in which there is a higher percentage of blood feeding during peak abundance in 
the season. 
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Figure 5. The seasonal engorgement response by T. nigrovittatus, comparing 
Kimwipe feeding technique to parafilm feeding technique (July 2005). The 
engorgement patterns between the two methods of blood feeding express similar 
peaks and valleys throughout the season; however, the flies exposed to blood 
through the Kimwipe feeding technique engorge at higher percentages. In 
addition, the flies exposed to blood through the Kimwipe feeding technique do 
not express lower percentages of engorgement in the beginning of the season as 
do the flies exposed to blood through the parafilm membrane feeding technique. 
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CHAPTER IV 

FACTORS AFFECTING ENGORGEMENT BY THE 
SALT MARSH HORSE FLY, TAB AN US NIGROVITTATUS. 

Abstract 

Feeding is one of the most important behaviors of an organism, yet the 

mechanisms that control blood feeding in the salt marsh horse fly remain largely 

unknown. Female Tabanus nigrovittatus were field collected and used in laboratory 

experimentation to explore physiological and behavioral factors that affect engorgement. 

Previous studies showed sulfakinins act as feeding satiety factors in insects. This study 

demonstrates that sulfakinins have differing effects on engorgement that is dependent on 

the feeding technique used in the laboratory. The satiety effect of sulfakinin on flies 

engorging using the blood-soaked Kimwipe feeding technique is not in agreement with 

previous experiments (see chapter III) using an alternate feeding technique with artificial 

membranes. This study is the first to demonstrate that the temperature of blood is a 

significant factor for engorgement in this species. Also, the percentage of flies engorging 

is significantly different depending on the feeding technique used. It is clear from these 

results that there are many factors that affect the successful engorgement of a blood meal 

in the salt marsh horse fly. 
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Introduction 

Tabanus nigrovittatus, commonly referred to as the greenhead horse fly, inhabits 

the salt marshes along the Atlantic coast of Massachusetts. This fly is only present on the 

marsh for 3-4 weeks, but can be collected in extremely high numbers. While research on 

its biology has come a long way over the years (see Stoffolano, 1979, Magnarelli and 

Stoffolano, 1980; Friend and Stoffolano, 1983; Stoffolano, 1983; Graham and Stoffolano, 

1983), a great deal of information remains unknown about what controls blood feeding. 

Understanding the feeding behavior of insects continues to be one of the most vital 

aspects of entomology, especially when trying to control hematophagous insects. 

Perisulfakinin and Engorgement. Very little is generally known about short¬ 

term feeding satiety regulation in insects (see Bernays and Simpson, 1982), and even less 

is known about long-term satiety regulation. Recent research with the neuropeptide 

sulfakinin has demonstrated short-term feeding inhibition in two non-hematophagous 

insects (Maestro et al., 2001; Wei et al., 2000). In the previous studies (chapter III) where 

I investigated the role of sulfakinin in the regulation of blood feeding in T. nigrovittatus, I 
l 

showed an inhibiting effect of 45.5% when insects were injected with 1 nmol of 

perisulfakinin (PSK) and blood-fed using artificial membranes. PSK at the 1 nmol dose 

inhibited individuals from engorging a blood meal and raised the question of whether 

PSK was affecting the probing mechanism or the ingestion process as a whole (Chapter 

III). The following experiments were conducted in order to determine whether sulfakinin 

has the same effect on engorgement when exposed to blood through an alternate 

laboratory feeding technique. The blood-soaked Kimwipes provide an alternative method 

of feeding that may not require the probing mechanism to be employed. 
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Temperature and Engorgement. Thermal stimuli are well known to be 

important factors in the successful engorgement of a blood meal in tsetse flies, 

mosquitoes, and Rhodnius spp. (Dethier, 1954,1957; Friend and Smith, 1977). However, 

to my knowledge, the effect of blood temperature on engorgement has not previously 

been shown for this species or other Tabanidae. Thus, experiments were conducted with 

blood-soaked Kimwipes in order to elucidate the effect of thermal stimuli on 

engorgement. 

Comparison of Two Feeding Techniques. Stoffolano (1979) found that the best 

method for feeding T. nigrovittatus was by providing grouped females with blood-soaked 

Kimwipes. He found that Kimwipe-soaked, group-fed females ingested significantly 

more blood (51.4 pi) than did parafilm, group-fed females (40 pi). However, the author 

did not look at the percentage of engorged flies per trial. In fact, an overwhelming 

number of papers on hematophagous arthropods and their feeding habits do not report the 

percentage of engorgement. Reporting percentages is important for understanding feeding 

success rates of blood feeders. Since the horse fly is thought to be an 4all-or-none blood 

feeder, recording the success rate (percentage engorged) of feeding, especially in 

response to certain factors, will allow researchers to gain better insight into all of the 

physiological and behavioral events that lead to a blood meal and provide greater 

knowledge in how to interrupt blood feeding. 

Materials and Methods 

Collecting and Maintaining Flies. Female host-seeking Tabanus nigrovittatus 

were field collected from box traps on the salt marshes of Essex Co., Massachusetts, 

during July 2005. Flies were laboratory maintained as previously described in Chapter II. 
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Prior to experimentation, all flies were deprived of granulated sucrose for 16-20 h. All 

flies used in experimentation were tested the day after being collected in the field. The 

exact chronological ages of all flies used are unknown. The first collection date for the 

2005 experiments was 4 July 2005 and field collections were made every other day 

consecutively throughout the season until the flies were no longer present on the marsh.. 

Perisulfakinin and Engorgement. Prior to experimentation, flies of 

approximately the same size were cold immobilized in the freezer. Sham-injected and 

treatment flies were injected with a 1 pi of solution in the second to last intersegmental 

membrane on the right ventral side of the abdomen. All flies were injected using a 30- 

gauge needle attached to a 25 pi glass gaslight Hamilton #1750 syringe (Hamilton Co., 

Reno, Nevada). Sham-injected flies were injected with Phormia saline (Chen and 

Friedman, 1975) and treatment flies were injected with perisulfakinin (Bachem, PA, 

USA) dissolved in Phormia saline. Treatment flies were injected with 1 nmol and 10 

nmol doses of perisulfakinin. The sulfakinin was prepared in a stock solution of 80% 

acetonitrile and 20% water, made up to 0.01% trifluoroacetic acid. Control flies (used in 

the experiments described below) were cold immobilized and set on ice for the same 

duration as the sham-injected and treatment flies, but were not injected with any solution. 

* 

After an individual fly was injected it was placed back on ice until the entire 

experimental group (20 flies per treatment) was completed. An experimental group 

consists of the control, sham, or treatment. The entire injection process for each group 

took less than 10 minutes. Each experimental group of flies was placed in a 23 cm3 metal- 

screened cage and the feeding assay was started. 
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There was zero mortality with all injections. All flies recovered from injections and 

resumed normal behavior in less than 5 minutes. 

For the feeding assay, citrated beef blood was warmed on a hot plate to 37° C and 

stirred with a magnetic stirrer. Kimwipes were placed on top of each 23 cm3 cage and the 

warmed blood was pipetted onto the Kimwipes until they had been completely soaked. A 

lamp with a 60-watt bulb was positioned over the cage to provide adequate light and keep 

the blood warmed to approximately 37° C. The flies were then allowed to feed ad libitum 

for one hour. 

After the feeding assays were completed, flies were killed in the freezer. Once 

dead, they were submerged in 70% ethanol and each one was held up to a light bulb to 

check for the presence of a blood meal. The abdomen of the flies appeared red if a blood 

meal was taken and appeared yellow if lacking one. Any questionable individuals were 

dissected to check for the presence of blood in the midgut. 

A total of 587 flies were used during experimentation with 10 replicates 

performed. A replicate is a single simultaneous run of all of the sham and treatment 

groups. All statistical comparisons were performed using ANOVA to compare the 

percentage of engorgement by treatment and post-hoc comparison using a Tukey-Kramer 

HSD test (JMP, SAS Institute Inc. 2005). The percentage of difference between the 

sham-injected group and the treatment group was calculated by using the following 

formula: 

% engorged by treatment 

- % engorged by sham x 100 = % Difference 

% engorged by sham 
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Temperature and Engorgement. The experiments testing the effect of blood 

temperature were run simultaneously with the perisulfakinin experiments. The procedures 

remained the same, but there were no injections made and ‘cold blood’ was kept at room 

temperature (no heating involved) for the feeding assay. In addition, a lamp was not 

positioned directly over the Kimwipes in the ‘cold blood’ experimental group, but the 

cage was placed next to the warmed, blood-soaked Kimwipe cage in order to still have 

access to adequate light. Also, control flies exposed to warmed blood using parafilm 

membrane were also run simultaneously in order to compare the normal percentage of 

engorgement to those exposed to blood-soaked Kimwipes. Approximately 20 flies were 

used for each treatment. Ten replicates were performed with 648 flies used in these 

experiments. An ANOVA was used to compare the percentage of engorgement by 

treatment and post-hoc comparison using a Tukey-Kramer HSD test was used (JMP, SAS 

Institute Inc. 2005). 

Comparison of Two Feeding Techniques. I compared the percentage of flies 

that engorged on an artificial membrane to the percentage of flies engorged on blood- 

soaked kimwipes. I also compared the two methods in alternate and successive feeding 

assays. A group of flies (20 flies for each experimental treatment) were allowed to blood 

feed ad libitum for 1 h using a parafilm membrane, by the method previously described in 

chapter II. After the time trial was finished, flies were cold immobilized and the number 

of flies that had taken a blood meal was counted. Those flies that blood fed were 

discarded and the flies that had not taken a blood meal were put back into another metal- 

screened cage and allowed to feed ad libitum for 30 minutes, using the Kimwipe feeding 

technique. At the end of the feeding assay the flies were killed and then recounted to 
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determine how many had engorged during the subsequent feeding method. The opposite 

feeding assay (i.e., Kimwipe-fed first and then parafilm-fed) was also tested to see if the 

order of the feeding technique had any effect. A total of 429 flies were used and 10 

replicates performed for each feeding technique. A r-test was used to compare the mean 

percentage (± SEM) of flies that had engorged in the first part of the feeding trial to those 

that had fed in the second part of the feeding trial (JMP, SAS Institute Inc. 2005). 

However, the data is presented in the form of the number of flies that fed out of the total 

flies exposed to blood using the two different techniques in order to amplify the 

differences. 

Results 

Perisulfakinin and Engorgement. Perisulfakinin (PSK) had no statistically 

significant effect on engorgement by T. nigrovittatus when fed using the warmed, blood- 

soaked Kimwipe technique (F2) 27 = 3.1; P = 0.06). The percentage of sham-injected flies 

engorged was 58.7%, while the percentage engorged for the 10 nmol and 1 nmol 

treatments was 72.6% and 70.5%, respectively (Fig. 6). While not statistically significant, 

10 nmol PSK stimulated engorgement by 23.7% and 1 nmol stimulated engorgement by 

20.1%, compared to the sham-injected experimental group. 

Temperature and Engorgement. The percentage of T. nigrovittatus engorging 

when offered warmed blood-soaked Kimwipes was 82.1%, while only 12% of the flies 

offered room temperature blood-soaked Kimwipes engorged. Only 19.2% of T. 

nigrovittatus engorged when fed using the parafilm membrane, compared to the 82.1% 

offered blood-soaked Kimwipes. The effect of feeding technique and the temperature of 

blood significantly effects engorgement (F2,27 = 91.9; P < 0.0001) (Fig. 7). According to 
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the Tukey-Kramer HSD test, the parafilm control and the Kimwipes soaked in room 

temperature blood are not significantly different. There is a significant interaction 

between warmed blood versus room temperature blood and parafilm versus Kimwipe 

feeding techniques. 

Comparison of Two Feeding Techniques. There is no significant difference in 

the mean percentage of females engorged when exposed to parafilm membranes first 

(15.8 ± 7.5) or second (32.0 ± 7.5) in the two separate assays (Fi,2o = 2.3; P = 0.14). Nor 

was there was a statistically significant difference in the mean percentage of females 

engorged when Kimwipe-exposed first (74.7 ± 5.5) compared to flies Kimwipe-exposed 

second (59.5 ± 5.5) in the two assays (Fi, is = 3.9; P = 0.07). Thus, the order of the 

feeding technique made no difference in the percentage of females engorging. 

When flies were exposed first to the membranes and second to the Kimwipes, the 

mean percentage of flies that fed using the parafilm (15.8 ± 4.9) was significantly lower 

than the mean percentage of flies that fed using Kimwipes (59.5 ± 4.9) (Fi, 18 = 39.1; P < 

0.0001). In other words, of the total number of flies (211) exposed to blood using a 

parafilm membrane first, only 34 flies engorged. Of the remaining 174 flies, those that 

did not engorge by probing the parafilm membrane, 101 flies did successfully engorge 

blood using the warmed, blood-soaked Kimwipes (Fig. 8). 

For the assay where the flies were exposed first to warmed, blood-soaked 

Kimwipes and second to the membranes, the mean percentage of flies that fed using the 

Kimwipes (74.7 ± 7.8) was significantly different from the mean percentage of flies that 

fed using the membranes (32.0 ± 7.8) (Fi, 20 = 14.9; P < 0.0012). Therefore, of the 218 

flies allowed to feed on warmed, blood-soaked Kimwipes first, 163 flies successfully 
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engorged. Out of the remaining 52 flies that failed to engorge a blood meal, 22 flies did 

successfully engorge blood through the parafilm membrane (Fig. 8) (Note: Some flies 

were lost during the transferring phase, accounting for the difference in numbers between 

feeding assays). 

Discussion 

Perisulfakinin and Engorgement. Previous research (chapter III) examining the 

effect of PSK on engorgement through a parafilm membrane in T. nigrovittatus showed 

that 10 nmol of PSK stimulated engorgement by 42.7%, while 1 nmol inhibited 

engorgement by 45.5% relative to the sham-injected group (2005 data). This study 

demonstrates the same trend of increased engorgement by the 10 nmol dose of PSK. 

However, the percentage of increased engorgement is lower when fed using blood-soaked 

Kimwipes (23.7%) compared to using parafilm membranes (42.7%) from previous 

experiments (chapter III). Interestingly, the 1 nmol dose of PSK does not demonstrate the 

same inhibition as previously observed in the parafilm membrane study (e.g., increased 

engorgement of 20.1% when fed using blood-soaked Kimwipes compared to inhibition of 

engorgement by 45.5% when fed using parafilm membranes). These experiments were 

designed to determine what effect sulfakinin has on engorgement in hematophagous 

insects and to determine if the type of laboratory feeding technique plays any role in the 

expression of the drug effect. The difference between the contrasting effects at the 1 nmol 

dose for the parafilm feeding technique (inhibition of engorgement by 45.5%) and the 

Kimwipe feeding technique (stimulation of engorgement by 20.1%) suggests that PSK 

may influence the probing mechanism since the parafilm technique requires the flies to 

puncture the membrane in order to blood feed. Other research found that sulfakinins, at 
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all doses, inhibited feeding in non-hematophagous insects (German cockroach, Blattodea 

germanica: Maestro et al., 2001; Desert locust, Schistocerca gregaria: Wei et al., 2000). 

The endogenous amounts of sulfakinins that naturally occur in the tabanid, as other 

insects, are unknown at this time, thus adding to the difficulty of determining whether the 

observed effects are a physiological or a pharmacological effect. It is possible that the 

lack of statistical significance is due to experimental testing being conducted on a wild 

population of flies (i.e., flies not raised in a laboratory). The chronological and 

physiological ages of the flies were unknown when testing and those factors could 

influence the fly’s response to PSK. 

If sulfakinin affected short-term satiety, it would be expected that meal size would 

be regulated in blood feeding (as was shown in the other non-hematophagous insects). 

The role of stretch receptors in regulating the blood meal size (i.e., short-term feeding 

satiety) in hematophagous insects has been well documented (Gwadz, 1969; Friend and 

Smith, 1977). Further, horse flies only require one blood meal between each 

gonadotrophic cycle. The implication of sulfakinin (specifically 1 nmol PSK) inhibiting 

probing suggests that it may act as a long-term satiety regulation mechanism, terminating 

probing and theoretically blood feeding until after oogenesis. It may be that sulfakinins 

act additively with the stretch receptors to produce short-term satiety and/or act on long¬ 

term blood-feeding regulation in this species. 

Temperature and Engorgement. Most studies examining engorgement in 

hematophagous insects do not report the percentage of insects that engorge, but rather 

report the amount of blood engorged. In the few studies that do report the percentages of 

hematophagous insects that successfully engorge (either through artificial membranes or 
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live hosts), those percentages are relatively low (30% by Aedes spp. on live hosts: Mather 

and DeFoliart, 1984; 27.3% by T. nigrovittatus fed by artificial membrane in the field: 

Thompson and Krauter, 1978). The percentage of engorgement by T. nigrovittatus using 

the parafilm membrane feeding technique (19.2%) is in agreement with the few studies 

that have reported percentages of engorgement. Reporting the percentage of engorgement 

is beneficial for those studies looking at feeding success rates and consequences of blood 

engorgement. 

There is a 62.9% difference in engorgement between the two feeding techniques 

(19.2% for parafilm membrane and 83.1% for Kimwipes). It is interesting how much of a 

significant difference there is in the engorgement response between the two different 

feeding techniques, especially when the method thought to be employed normally in the 

wild (probing through a membrane) by the fly is so much lower than the uncharacteristic 

way (open pools of blood) of encountering a blood meal. It is highly unlikely that the 

reason for increased engorgement on Kimwipes is because of tarsal stimulation from 

contacting the blood. Stoffolano et al. (1990) tested the chemosensilla from the tarsi, 

tibia, terminal end of the antenna, labrum and the labral groove to various substances. 

The authors found that all of the chemosensilla responded to salts and sugars; however, 

the only chemosensilla that responded to sera and plasma were those at the tip of the 

labrum and lining the labral groove. Chirov and Alekseyev (1970) were also able to show 

that tabanids would feed from free liquids (blood, water, and sugar water) when a pipette 

was inserted over the mouthparts with the labium moved aside. Friend and Stoffolano 

(1984) suggest, “...Mouthpart deployment may not play as significant a role in 

establishing the blood-feeding mode in pool feeders as it does in vessel feeders.” 
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However, it is unlikely that the flies would often encounter open pools of blood in the 

wild. The parafilm feeding assays are probably not as successful in eliciting engorgement 

because of the lack of other natural stimuli, which are missing in the laboratory. 

Thermal stimuli have proven to be an important factor in probing by other 

hematophagous insects (Dethier, 1954; Friend and Smith, 1977). However, this is the first 

study to examine the effect of blood temperature on the engorgement response in 

Tabanidae, especially using the Kimwipe feeding technique. T. nigrovittatus engorged 

significantly more on warmed blood than on blood that was kept at room temperature. 

The results of this study indicate that the flies are thermally stimulated by the warmed 

blood on the Kimwipes and once the chemosensilla on the labrum and labral groove 

contact the blood they are stimulated to engorge. The flies exposed to Kimwipes soaked 

in cold blood lacked the thermal stimulation and failed to engorge. 

Comparison of Two Feeding Techniques. Stoffolano (1979) showed that there 

are two types of techniques that can be used to feed T. nigrovittatus in the laboratory. The 

alternate and successive feeding assays were designed in order to have a better 

understanding of why there were low percentages of flies engorging using the parafilm 

feeding technique. I wanted to determine if the flies were not engorging because they 

were not in the blood-feeding mode or if the failure to engorge was because of missing 

stimuli. In both techniques, parafilm membrane and Kimwipes, there were always some 

flies that failed to engorge. When I took the flies that failed to feed through parafilm 

membranes and presented them with blood-soaked Kimwipes, I always observed a higher 

percentage of engorgement than in the original parafilm assay. The same pattern was 

observed when the Kimwipe assay was performed first in that more flies engorged by the 
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Kimwipe technique. While there was no statistical difference in the percentage of 

engorgement when examining the order of exposure using parafilm membranes, 

engorgement was higher for those flies previously exposed to blood-soaked Kimwipes. 

This may be due to the central excitatory state being elevated after having more contact 

with open pools of blood. It is interesting that 100% engorgement is never observed, 

especially because all of the flies should be in the blood-feeding mode since they were 

engaging in host-seeking behavior (i.e., collected from the field traps). The results 

suggest that there are cues missing from the parafilm feeding technique essential to 

stimulate the flies to successfully probe and ingest a blood meal in the laboratory. 

f 
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Figure 6. The effect of perisulfakinin (PSK) on engorgement using warmed, 
blood-soaked Kimwipes by T. nigrovittatus (July 2005). Engorgement was 
increased by 23.7% and 20.1% when injected with 10 nmol and 1 nmol of PSK 
(respectively), compared to the sham-injected group. However, the effect of PSK 
on engorgement using this feeding technique was not significant (F2,21 = 3.1; P = 
0.06). Small bars represent SEM. 
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Figure 7. The effect of blood temperature and feeding technique on the 
percentage of engorged female T. nigrovittatus. The percentage of flies engorged 
when offered warmed, blood-soaked Kimwipes was 82.1%. Flies offered room 
temperature (‘cold blood’), blood-soaked Kimwipes engorged less (12%), while 
19.2% of the flies offered warmed blood through artificial membranes (parafilm) 
engorged. The temperature of the blood meal and the feeding technique has a 
significant effect on engorgement (F2,27 = 91.9; P < 0.0001). Small bars represent 
SEM. 
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Figure 8. The engorgement response of female T. nigrovittatus during alternate 
and successive feeding assays. The data was analyzed using Mest to compare the 
mean percentage of flies that fed when exposed to parafilm first and blood-soaked 
Kimwipes second. There was a significant difference in mean percentage 
(± SEM) of flies that engorged using the parafilm assay first (15.8 ± 4.9) and the 
Kimwipe assay scond (59.5 ± 4.9) (Fh = 39.1; P < 0.0001). There were 20 flies 
used per experimental group (i.e., parafilm and Kimwipes) and 10 replicates 
performed. A total of 218 flies used in experimentation in the first assay. 
Important to note is that the data is graphed as the number of flies that engorged 
out of the total flies exposed to blood using each feeding technique in order to 
amplify the differences between the techniques. The alternate design was also 
tested, where flies were exposed to blood-soaked Kimwipes first and then to 
parafilm membranes second. There was a significant difference in mean 
percentage (± SEM) of flies that engorged when exposed to blood-soaked 
Kimwipes first (74.7 ± 7.8) and parafilm second (32.0 ± 7.8) (Fi, 2o = 14.9; 
P < 0.0012). There were 20 flies used per experimental group and 10 replicates 
performed. A total of 211 flies were used in experimentation during the assay. 
This study demonstrates that the lack of successful engorgement when flies are 
exposed to blood using an artificial membrane is not because the flies are not in 
the blood feeding mode. Rather, there are probably missing stimuli since the flies 
that failed to engorge using membranes fed more readily when exposed to blood- 
soaked Kimwipes. 

■* 
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CHAPTER V 

THE EFFECT OF DROSULFAKININ ON PROTEIN AND CARBOHYDATE 
INGESTION BY THE BLOW FLY, PHORMIA REGINA. 

Abstract 

Sulfakinins, which are thought to be satiety factors in invertebrates, have 

previously been shown to inhibit feeding in the German cockroach and desert locust. This 

is the first study to examine the effect of sulfakinin as a feeding satiety factor in the black 

blow fly, Phormia regina. Additionally, this is also the first study to examine the effect of 

sulfakinin on two of its nutrient requirements (i.e., carbohydrates and proteins). I found 

that drosulfakinin I (DrmSKI) significantly inhibited carbohydrate feeding by 44% at the 

most effective dose (10 nmol) in female flies. Statistically, there was no significant effect 

on males; however, injections of 10 nmol DrmSKI reduced carbohydrate feeding by 34% 

compared to the sham. Drosulfakinin had no effect on protein feeding and no significant 

inhibition was detected in females or males. The results of this study lend further support 

to the idea that carbohydrates and proteins are regulated by separate control mechanisms, 

especially in Calliphoridae. Finally, feeding satiety for carbohydrates is probably not the 

result of sulfakinins alone. 
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Introduction 

Despite the economical and medical importance of understanding feeding 

behavior in insects, there has been a lack of research focused on examining what role 

peptides and hormones have in feeding satiety. Phormia regina is arguably one of the 

most well understood insect models, especially in regards to feeding biology (see Dethier, 

1976), and therefore is an excellent insect to use when studying feeding satiation. The 

blow fly requires two different essential nutrients, carbohydrates and proteins, and 

consumes them separately. Examining the satiation regulation of these two nutrients 

separately provides a better understanding of the effects of the invertebrate neuropeptide, 

sulfakinin. To date, what is known about satiety in P. regina is based on a neural 

mechanism of feedback from the stretch of the crop for sugar feeding (Gelperin, 1967) 

and protein feeding (Belzer, 1979). Nothing has been proposed for the chemical aspects 

of satiation in the blow fly. 

\ 

Recently, sulfakinin has been identified as a feeding satiety factor in the German 

cockroach, Blattella germanica (Maestro et al., 2001), the desert locust, Schistocerca 

gregaria (Wei et al., 2000), and the salt marsh horse fly, Tabanus nigrovittatus (chapter 

III). Sulfakinins, at the most effective doses, reduced the meal size by 55% in the locust, 

60% in the cockroach, and inhibited blood engorgement by 45.5% in the horse fly. The 

blow fly is a more attractive insect model to study this neuropeptide because it consumes 

the necessary nutrients separately. The goal of the present study is to examine the role of 

sulfakinins in both carbohydrate and protein satiation in P. regina. 
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Materials and Methods 

Maintaining Flies. All flies used in the following experiments were reared and 

maintained according to Stoffolano (1974) under a 16:8 light/dark photoperiod with 

approximately 50% RH. All flies emerging within 24 h were considered one cohort, in 

order to standardize age and physiological state, and placed in a 23 cm metal-screened 

cage. The flies were provided access to aqueous sucrose (0.126 M) for 48 h and then at 

the end of the second day post-emergence, the flies were deprived of sucrose 16-20 h 

prior to experimentation. Flies still had access to water during the starvation period. 

Injection and Drug Preparation. Drosulfakinin I (DrmSKI) and drosulfakinin- 

II (DrmSKII) (R. J. Nachman, gift) was prepared in a stock solution of 80% acetonitrile 

and 20% water, made up to 0.01% trifluoroacetic acid and stored at -20° C. DrmSKI 

(FDDY[SO3H]GHMRFa) differs from DrmSKII (GGDDQFDDY[SO3H]GHMRFa) by 

the N-terminus extension of GGDDQ-. It is presumed that DrmSKII would have similar 

effects to DrmSKI as they only differ in the N-terminus. 

Flies from one cohort were randomly assigned to the different treatment groups 

and a single run of all of treatments was considered one replicate. Flies were cold 

immobilized, separated by sex, and held on ice until injections were administered. Sham- 

injected and treatment flies were injected with a 1 pi of solution into the intersegmental 

membrane of the abdomen, as previously described in chapter III. Sham-injected flies 

were injected with Phormia saline (Chen and Friedman, 1975) and treatment flies were 

injected with sulfakinin (1, 4, 7, and 10 nmol) dissolved in Phormia saline. After an 

individual fly was injected it was placed back on ice until the entire experimental group 

(10 flies for each treatment) was injected with the solution. The entire injection process 
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for each group took less than 10 minutes. Each experimental group of flies was placed in 

a glass Petri dish and the feeding assay was started. There was zero mortality with all 

injections. All flies recovered from injections and resumed normal behavior in less than 

10 minutes. 

Feeding Assay. For the feeding assay, sucrose and whole beef liver were offered 

separately and examined in both males and females separately. For the sucrose assay, 

amaranth dye [shown by Thompson and Holling (1974) as non-stimulating] was added to 

0.126 M sucrose in order to see the presence of the meal in dissections. Filter paper was 

cut in half and placed in the Petri dish so that two halves were side by side on the bottom 

of the dish. On one half of the filter paper, a piece of crumpled Kimwipe was added and 

the sucrose was pippetted onto the Kimwipe and filter paper until thoroughly soaked. The 

experimental group of flies was placed on the other half of filter paper. This design 

allowed flies to recover from their immobilization and have an area that was not soaked 

by the sucrose. For the beef liver assay, filter paper was again cut into half, but this time 

only one half was placed into the Petri dish. The approximately same-sized pieces of liver 

were placed on the non-filter paper side of the dish and then macerated with scissors. The 

experimental group of flies was added to the side of the Petri dish with the filter paper. 
* 

The flies were allowed to feed ad libitum during both sucrose and liver assays for 40 

minutes, which, based on preliminary experiments, had previously been determined as 

the optimal amount of time to observe an effect on food intake. 

Dissection and Analysis. After the feeding assay was completed, flies were killed 

and later dissected. The crop of the fly was carefully removed, near the point where the 

crop duct ends and the crop sac begins, and then weighed. In order to determine the 
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weight of the meal ingested, the mean weight (mg) of an empty crop (previously 

determined to be 0.38 mg, see Appendix A) was subtracted from the weight of the full 

crop. The weight (mg) of the meal ingested can be converted to volume (pi) imbibed for 

both sucrose and liver (see Appendix B). It should be noted that only the crop was 

examined and statistically analyzed, though almost every fly had a meal in the midgut. 

Some flies are reported in the results section as having not fed (i.e., the percentage fed 

results), but this refers to no meal being found in the crop. The percentage of insects that 

fed was not reported by Maestro et al. (2001) or Wei et al. (2000), nor did the authors 

state whether insects that failed to feed were included in their analysis. 

A total of 1,285 flies were used in experimentation for the DrmSKI assay, with 12 

replicates for carbohydrates and 14 replicates for proteins performed. A total of 1,679 

flies were used in experimentation for the DrmSKII assay, with 20 replicates for 

carbohydrates and 14 replicates for proteins performed. All statistical comparisons of the 

data were analyzed using ANOVA to compare the mean weight of the meal in the crop 

by treatment and the mean percentage of flies that fed by treatment. A Tukey-Kramer 

HSD test was used for further statistical analysis between the treatments (JMP, SAS 

Institute Inc., 2005). The percentage of difference between the sham-injected group and 

the treatment group was calculated by using the following formula: 

% engorged by treatment 

- % engorged bv sham x 100 = % Difference 

% engorged by sham 
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Results 

Drosulfakinin I. DrmSKI had a statistically significant effect on sucrose 

ingestion by female P. regina (F4> is6 = 4.89; P < 0.001; Fig. 9). A Tukey-Kramer HSD 

test showed that only the 10 nmol dose was significantly different from the sham-injected 

group. Injections of 10 nmol DrmSKI, the most effective dose, reduced sucrose ingestion 

by 44% relative to the sham-injected group (Table 1). DrmSKI did not have a statistically 

significant effect on sucrose ingestion by male P. regina (F4) 105 = 1.42; P = 0.23; Fig. 9). 

s 

However, at the most effective dose (10 nmol) sucrose feeding was reduced by 34% 

(Table 1). DrmSKI had no effect on protein ingestion by female or male P. regina 

(Female: F4;268 = 1.77; P = 0.14; Male: F4,192 = 0.18; P = 0.95; Fig. 10). 

Not all flies had the presence of a sucrose or liver meal in the crop. Hies that did 

not have a meal in the crop were not included in the statistical analysis of the meal size, 

though the percentage of flies with a meal in the crop was recorded. For females exposed 

to sucrose, 51% of the controls had a meal. Thus, 49% of the controls failed to have a 

meal in the crop. For males exposed to sucrose, 55% of the controls had a meal. For 
* 

females exposed to liver, 99% of the controls had the presence of a meal. When males 

were exposed to liver, 88% of the controls had the presence of a meal in the crop. The 

reason why some flies (i.e., 49% of the female control flies) failed to put a sucrose meal 

in the crop remains unclear. However, the percentage of flies that fed (i.e., had a meal in 

the crop) was not statistically different between the control and treatment groups for 

those exposed to sucrose (females: F5) 36 = 0.29; P = 0.92, males: F5,36 = 1.15; P = 0.35; 

Fig-11) or exposed to liver (females: F5,36 = 2.3; P = 0.06, males: F5,24 = 0.36; P = 0.87; 

Fig. 12). 
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Drosulfakinin II. Injections of DrmSKII did not have a significant effect on 

sucrose ingestion by female or male P. regina (Female: F4>177 = 0.58; P = 0.68; Male: 

F4,150 = 0.65; P = 0.63; Fig. 13). At the most effective dose (4 nmol), sucrose feeding was 

reduced by 16% relative to the sham-injected group in the females (Table 1). At the most 

effective dose (1 nmol) sucrose feeding was reduced by 24% (Table 1). Injections of 

DrmSKII had no effect on protein ingestion by females (F4> 284 = 1-52; P = 0.20; Fig. 14) 

or by males (F4) 296 = 2.15; P = 0.07; Fig. 14). 

As stated above, not all flies had the presence of a meal in the crop. Flies that did 

not feed (i.e., no meal in the crop) were not included in the statistical analysis of the size 

of the meal. However, the percentage of flies with a meal in the crop was recorded and 

analyzed. For females exposed to sucrose, 51% of the controls had the presence of a 

meal. For males exposed to sucrose, 37% of the controls had fed. For females exposed to 

liver, 94% of the controls had fed. When males were exposed to liver, 93% of the 

controls had a meal in the crop. The percentage of flies that had a meal in the crop was 

not statistically different between the control and treatment groups for those exposed to 

sucrose (females: Fs,54 = 0.74; P = 0.60, males: F5,54 = 0.66; P = 0.65; Fig. 15) or to liver 

(females: Fs,36 = 0.55; P = 0.73, males: Fs^ = 0.36; P = 0.87; Fig. 16). 

Discussion 

Sulfakinin in insects has been shown to have myotropic effects on the gut, 

stimulate the release of digestive enzymes, and inhibit feeding (Schoofs and Nachman, in 

press). Thus, sulfakinins appear to be physiologically (and structurally) homologous to 

the gastrin-cholecystokinin system in vertebrates (Schoofs and Nachman, in press). 
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However, sulfakinins have not expressed the same biological action in all of the insects 

that have been examined thus far, such as the lack of myotropism in the gut of two 

different species of blow flies (Duve et al., 1994; Haselton et al., 2006). This study 

demonstrates that sulfakinins do not act as a satiety factor for all nutrients (i.e., 

carbohydrates vs. proteins). 

The percentage of inhibition (34% for males, 44% for females) for flies injected 

with DrmSKI and exposed to sucrose (a carbohydrate source) is comparable to the 

previous research examining satiation in the desert locust (55%), in the German 

cockroach (60%), and inhibition of engorgement in the female salt marsh horse fly 

(45.5%). That DrmSKI had a greater effect on carbohydrate feeding in females and not 

protein feeding makes biological sense since females need a sizable protein meal for egg 

development. Since both nutrient types are directed to the crop, reducing the size of the 

carbohydrate meal allows for more space in the crop for protein when it is encountered, 

especially as protein in more difficult to encounter in nature. This ultimately allows for 

more space in the abdominal cavity for egg production as well. There was very little, if 

no observed inhibition at any of the doses of DrmSKI or DrmSKII when flies were 

exposed to liver (a protein source). At various concentrations of each nutrient, for both 

sexes and both drugs, 81% of the cases (or 13 of the 16 possible combinations) showed a 

decrease in feeding for the sucrose assays, while only 25% (or 4 of the possible 16 

combinations) showed a decrease in feeding for the protein assays (Table 1). This 

supports the assertion that sulfakinins, at least for females, affect sucrose feeding more 

than protein feeding. Factors affecting protein satiation may be controlled by another 
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mechanism(s), such as foregut and abdominal stretch receptors for protein inhibition in 

blow flies (Gelperin, 1967; Belzer, 1979). 

DrmSKII inhibited sucrose ingestion in females at a lower dose (4 nmol instead of 

10 nmol in DrmSKI) and the percentage of inhibition (16%) was considerably lower 

compared to DrmSKI (44%). The percentage of inhibition (24%) when males were 

exposed to sucrose and injected with DrmSKII was also lower compared to the effect of 

DrmSKI (34%). Like the females, the most effective dose (1 nmol) was at a lower 

concentration compared to the effect of DrmSKI (10 nmol). 

Reporting the percentage of feeding is important as an indicator of successful 

feeding throughout all treatments. Neither Maestro et al. (2001) or Wei et al. (2000) 

reported the percentage of feeding or stated whether insects that failed to feed were 

included in their analysis of the inhibition of meal size. In the current study only 51% of 

the female controls (for both DrmSKI and DrmSKII) put a sucrose meal in the crop, 

meaning 49% failed to. It is unclear why some flies failed to feed for the sucrose assays, 

yet almost all of the flies (> 90%) exposed to liver stored a meal in the crop. The 

difference between the sucrose and liver assays may be due to the importance of protein 

for reproduction. The percentage of flies that had a sucrose or liver meal in the crop was 

not statistically different between the controls and treatments, lending further support to 

the idea that sulfakinins are not influencing whether the flies feed or not, but rather affect 

the size of the meal once the insect begins feeding. 

Protein satiation and carbohydrate satiation are likely controlled separately in 

most of the Diptera (Stoffolano, 1979; Belzer, 1978; 1979; Simpson and Bemays, 1983), 

thus lending further support to differing effects of sulfakinin on the separate nutrients. 
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Furthermore, other insect feeding control mechanisms have been identified by several 

authors. The neural mechanisms (i.e., stretch receptors, chemosensory adaptation, etc.) 

outlined by Bernays and Simpson (1982) and biogenic amines (i.e., serotonin) (Dacks et 

al., 2003) have all been shown to affect short-term feeding satiety in insects. Specifically, 

Bowden and Dethier (1986) showed that abdominal stretch receptors functioned in 

terminating a meal and determining the meal size. In addition, work by Aguilar et al. 

(2004) compared the anti-alimentary activity effects of perisulfakinin (PSK) and 

leucomyosuppressin (LMS) in B. germanica. The authors showed that both PSK and 

LMS had myostimulatory effects on the gut. However, food accumulated in the foregut 

and decreased in the hindgut when injected with LMS, while there were no observable 

differences in food accumulation when injected with PSK. The authors postulate that the 

mechanisms for feeding inhibition by LMS and PSK are different and that LMS inhibits 

feeding because of the persistence of signals from the stretch receptors in the gut, 

whereas PSK probably inhibits feeding by acting on the CNS. 

Sulfakinins have been shown to have myotropic actions on the gut of the 

cockroach and locust, yet it has not been demonstrated in the Diptera (Duve et al., 1994; 

Haselton, 1994). Research by Duve et al. (1994) and Haselton et al. (2006) showed that 

sulfakinins had no myostimulatory or myoinhibitory actions on the crop in Calliphoridae. 

The lack of a myotropic response by sulfakinins in flies suggests they may inhibit feeding 

by acting on the CNS, as proposed by Aguilar et al. (2004) in the cockroach. The 

difference between my findings and that of the other two laboratories might be due to the 

fact that I was examining satiety regulation in two very different types of feeders (i.e., 

cockroaches and locusts versus flies) with drastically different digestive systems. In other 
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words, cockroaches and locusts have a linearly arranged digestive system whereas the 

Diptera have a diverticulated system (i.e., a diverticulated crop for food storage). All food 

ingested by locusts and cockroaches must pass through the foregut (crop), midgut and 

hindgut with no diversion to different organs. When the blow fly ingests a meal, the food 

is diverted to both the diverticulted crop and midgut. When the midgut is full, the cardiac 

sphincter closes and all other food is stored in the crop (Simpson and Bemays, 1983). 

When the midgut empties, food is then re-shunted up to and into the midgut for digestion 

(Simpson and Bemays, 1983). With the exception of the effect of DrmSKI on sucrose 

feeding by females, we did not observe a strong dose-dependent inhibitory response with 

any of the other combinations of assays, so it may be that chemical satiation alone (i.e., 

sulfakinin) is not a strong enough satiety signal to produce significant feeding inhibition 

in this insect. 

In conclusion, in P. regina sulfakinins (particularly DrmSKI) inhibit sucrose 

feeding, but not protein feeding. Therefore, the two nutrient sources probably are under 

9 * ' 

different control mechanisms. Also, sulfakinins probably act additively in the blow fly (as 

CCK does in vertebrates) with other mechanisms, like stretch receptors and biogenic 

amines. One biogenic amine, serotonin, has been shown to inhibit sucrose feeding in the 

flesh fly (Neobellieria bullata: Dacks et al., 2003) and inhibit protein feeding in the blow 

fly (P. regina: Stoffolano, unpublished data). Sulfakinins are thought to be homologous 

to vertebrate cholecystokinin (CCK). In research using rats, Hayes and colleagues (2004) 

showed that cholecystokinin-induced satiety requires the inhibition of gastric emptying 

and showed that gastric distention induced CCK activation of serotonin (5-HT3) 

receptors (Hayes et al., 2006). In vertebrates, the biological actions of CCK are mediated 
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by vagal sensory nerve fibers (VSNF), and it is the release of serotonin by 

gastrointestinal stimulation that activates the VSNF (reviewed in Hayes et al., 2006). 

Further, Hayes and Corvasa (2005) demonstrated that CCK and serotonin act 

synergistically to inhibit feeding. Thus, it seems highly unlikely that sulfakinins act alone 

in invertebrates to produce satiety. 
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Table 1. The effect of sulfakinin on the percentage of feeding inhibition is shown. 
Negative percentages reflect a reduction in feeding, whereas positive percentages reflect 
an increase in feeding. Percentages are rounded to the nearest whole number. Flies that 
failed to feed (i.e., no meal found in the crop) were not included in this analysis. This is 
the same data that is presented in Figures 10, 11, 14, and 15, except this table is looking 
at the percentage of reduction in meal size, whereas the figures examine the amount of 
meal ingested._ 

Percentage of Feeding Inhibition 

Sucrose DRMSKI-Female DRMSKI-Male DRMSKII-Female DRMSKII-Male 

10 nmol -44% -34% 6% -15% 

7 nmol -10% -20% -6% -18% 

4 nmol -9% 6% -16% -12% 

1 nmol 12% -16% -7% -24% 

Protein 

10 nmol 0% 1% 8% 18% 

7 nmol 12% 3% -11% -4% 

4 nmol 18% 4% -7% 20% 

1 nmol 8% -3% 0% 9% 
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Figure 9. DrmSKI significantly inhibited sucrose feeding (F4, 156 = 4.89; 
P < 0.001) by females. There was a 44% feeding inhibition at the 10 nmol dose. 
DrmSKI did not have a statistically significant effect (F4> 105 = 1.42; P = 0.23) on 
sucrose feeding by males, however, at the most effective dose (10 nmol) feeding 
was inhibited by 34%. Out of all of the treatments, only the 10 nmol dose for 
females was significantly different from the sham-injected group. Small bars 
represent SEM. 
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Figure 10. There was no significant effect of DrmSKI on ingestion for females 
(F4,268 = 1.77; P = 0.14) or males exposed to liver (F4,192 = 0.18; P = 0.95). Small 
bars represent SEM. 

1 
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Effect of DrmSKI on Protein Ingestion 
by P. regina 
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Figure 11. The effect of Drosulfakinin I on the percentage of flies fed on sucrose. 
There was no significant effect on the percentage of flies that imbibed a meal for 
either females (F5,36= 0.29; P = 0.92) or males (Fs,35= 1.15; P = 0.35). Small bars 
represent SEM. 

* 
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Figure 12. The effect of Drosulfakinin I on the percentage of flies fed on liver. 
There was no significant effect on the percentage of flies that imbibed a meal for 
either females (Fs, 36 = 2.3; P = 0.06) or males (Fs, 24 = 0.36; P = 0.87). Small bars 
represent SEM. 
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Figure 13. DrmSKII had no significant statistical effect on sucrose feeding 
(F4,177 = 0.58; P = 0.68) by females. At the most effective dose (4 nmol) feeding 
was inhibited by 16%, relative to the sham-injected group. There was also no 
statistically significant effect (F4j 150 = 0.65; P = .63) for males exposed to 
sucrose; feeding was inhibited by 24% at the 1 nmol dose compared to the sham- 
injected group. Small bars represent SEM. 
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Figure 14. DrmSKII had no significant effect on protein ingestion for females 
(F4.284 = 1.52; P = 0.20) or males (F4,296 = 2.15; P = 0.07). Small bars represent 
SEM. 

■* 
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Effect of DrmSKII on Protein Ingestion 
by P. regina 
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Figure 15. The effect of Drosulfakinin II on the percentage of flies fed on 
sucrose. There was no significant effect on the percentage of flies that imbibed a 
meal for either females (Fs, 54 = 0.74; P = 0.60) or males (F5,54 = 0.66; P = 0.65). 
Small bars represent SEM. 
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Figure 16. The effect of Drosulfakinin II on the percentage of flies fed on liver. 
There was no significant effect on the percentage of flies that imbibed a meal for 
either females (F5,36 = 0.55; P = 0.73) or males (F5,36 = 0.36; P = 0.87). Small 
bars represent SEM. 
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The Effect of DrmSKII on Percentage Fed When 
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CHAPTER VI 

GENERAL DISCUSSION 

Despite the economic importance that insect feeding habits have on the quality of 

human life, there remain many aspects of feeding behavior undiscovered. The salt marsh 

horse fly and the black blow fly were used in experimentation in order to investigate 

several physiological and behavioral factors that affect feeding and satiety. Both an odor 

attractant (i.e., octenol) and the temperature of the blood meal were found to significantly 

stimulate blood feeding in the horse fly. The results of these experiments also 

demonstrate that the percentage of flies engorging fluctuates throughout season, with a 

peak in engorgement seemingly coinciding with peak horse fly abundance and activity on 

the marsh. 

Little information is known about the role of sulfakinins as satiety factors in 

insects. There are currently only two papers (Maestro et al., 2001; Wei et al., 2000) 

published on the effect of sulfakinin on feeding inhibition. The horse fly and blow fly are 

excellent insect models to use because they require two different nutrients, proteins and 

carbohydrates. At the most effective dose, sulfakinin reduced the percentage of females 

engorging a blood meal by 45-58%. For the blow fly, sulfakinin (DrmSKI) significantly 

inhibited sucrose feeding by 44% in the females, and while not statistically significant, 

inhibited sucrose feeding by 34% in the males. Sulfakinin had no effect on protein 

feeding in the blow fly. The effect of sulfakinin on feeding in the Diptera is dependent on 

the type of nutrient source (i.e., carbohydrates and proteinaceous materials, which include 

blood) and even the feeding method used (i.e., parafilm membrane versus blood-soaked 

Kimwipes). 
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The horse fly and blow fly may be relatively closely related species, but have 

drastically different modes of feeding and probably drastically different mechanisms of 

control. Sulfakinin inhibited engorgement of any blood meal by the horse fly. Reflecting 

on how it might be working endogenously, sulfakinin may be released during the blood 

meal once the horse fly has a sufficient meal to produce a batch of eggs. After they are 

able to produce a batch of eggs host seeking is arrested and oogenesis takes about 7-10 

days. They do not search or probe for another meal during egg production. So, 

biologically it makes sense that exogenous amounts of sulfakinin would inhibit the fly 

from taking an entire blood meal. 

For the blow fly, exogenous injections of SK was affecting the size of the sucrose 

meal, yet had no effect on protein feeding. Exogenous sulfakinin probably has little to no 

effect on protein meal size in the blow fly because of the importance of protein for 

reproduction. For that reason, the blow fly probably has a lower threshold level for 

controlling protein feeding. In other words, they will readily accept a meal and probably 

need a much stronger cue or the additive actions from other mechanisms to inhibit protein 

feeding. 

Like vertebrate satiation, feeding control in insects is surely not the result of one 

mechanism. Sulfakinins are probably acting with other peptides, hormones, biogenic 

amines, and neural mechanisms. It is important to continue to identify neuropeptides that 

are involved in the feeding regulation of insects and to continue the research necessary 

for understanding how these neuropeptides work and their mode of action. This is 

especially vital as the neuropeptides involved in feeding satiety have been suggested as 

possible alternative targets for insect control (Nachman et al., 2005). Understanding the 
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mechanisms that control feeding also requires knowing the factors that lead to successful 

feeding in insects, especially if satiety factors (i.e., neuropeptides) are going to be used in 

applied research with pesticides. The traditional methods for controlling insects have 

proven to be economically burdensome and many have negative environmental impacts 

on non-target organisms. For T. nigrovittatus, control efforts are even more important due 

to the fragility of the salt marshes they inhabit. Therefore, the use of naturally occurring 

neuropeptides to influence satiety, and more importantly engorging behavior, makes for 

an attractive proposal for future research, and tabanid control. It is imperative for future 

research to identify sulfakinin antagonists and receptor cells in order to make conclusions 

concerning the function of sulfakinin and its relationship to feeding satiety regulation, 

especially among the insects. The results of the experiments described in this thesis 

indicate that there are several behavioral factors that affect feeding in the salt marsh horse 

fly, T. nigrovittatus, and physiological factors, specifically sulfakinin affecting satiation 

of blood feeding in the horse fly and sucrose feeding in the blow fly. 
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APPENDIX A 

MEAN WEIGHT OF AN EMPTY P. REGINA CROP 

In order to determine the mean weight of an empty crop, adult flies from one 

cohort (3 days post-emergence) were fed 0.126 M sucrose and were then starved 16-20 

hours before dissections. Thirteen randomly chosen flies were dissected and the crop was 

removed and placed on filter paper. The crop was then opened up and any liquid present 

was squeezed out with No. 5 forceps and blotted on the filter paper. The empty crop was 

weighed and recorded (see Table 2). The mean weight (± SEM) of an empty crop was 

determined to be 0.38 mg (± 0.05). 

89 



Table 2. Mean weight of an empty crop. 

Fly Weiqht (mg) of Empty Crop 

1 0.40 

2 0.30 

3 0.10 

4 0.30 

5 0.10 

6 0.80 

7 0.40 

8 0.50 

9 0.60 

10 0.30 

11 0.40 

12 0.30 

13 0.40 

Mean 
(± SEM) 0.38 (± 0.05) 
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APPENDIX B 

CONVERSION DATA FOR MICROLITERS TO 
MILIGRAMS OF SUCROSE AND LIVER 

In order to determine the volume of the meal imbibed by the fly, preliminary 

experiments were conducted in order to determine the weight (mg) of various microliters 

of 0.126 M sucrose (Table 3 and Fig. 18) and digested liver. These conversions are 

essential, especially when making comparisons with other investigators where they report 

only weight and not volume, or vise versa. Knowing the weight (mg) of the volume (pi) 

of nutrients and the weight of an empty crop (Appendix A) expedited the process of 

measuring the volume of meal imbibed by each individual fly during the feeding assays 

described in chapter IV. In order to determine how many pi of the meal was imbibed, I 

subtracted the weight of an empty crop from the weight of a crop with a meal in it. I was 

able to weigh the crops of the individual flies and convert that to the volume of meal 

imbibed instead of dissecting each crop open to remove and measure the contents. In 

order to get the weight of a liver meal, I fed several flies whole liver, ad libitum, for 30 

min. After feeding, the flies were dissected and the liver meals that were consumed were 

extracted from the crops using a micropipette. All of the consumed liver meals from the 

flies’ crops were combined together on parafilm in a Petri dish. Microliter increments 

were then weighed, repeated three times, and recorded (see Table 4 and Fig. 19). 
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Table 3. Conversion data for microliters to milligrams of 
0.126M sucrose. 

Microliter 
Weight- 

a 
Weight- 

b 
Weight- 

c 
Average 

(mg) 
1 1.6 1.2 1.3 1.37 

2 2.6 2.5 2.6 2.57 

3 3.2 2.1 2.6 2.63 

4 3.5 3.6 3.9 3.67 

5 5.2 4.6 5.6 5.13 

6 5.7 4.4 6.6 5.57 

7 7.6 6.9 6.6 7.03 

8 6.9 7.9 7.9 7.57 

9 9.2 8.9 9 9.03 

10 9.8 9.4 9.9 9.70 

11 10.5 10.7 10.6 10.60 

12 11.8 11.7 10.9 11.47 

13 12.4 12.8 12.7 12.63 

14 13.6 13.8 12.2 13.20 

15 14.6 14.6 14.4 14.53 

16 15.2 15.6 15.7 15.50 

17 16.8 16.7 15.2 16.23 

18 17.6 16.9 17.2 17.23 

19 18.6 18.6 18:1 18.43 

20 18.8 19.5 19.7 19.33 
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Figure 18. Conversion data (expressed as a regression line) for microliters to 
milligrams of 0.126M sucrose. 
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Table 4. Conversion data for microliters to milligrams of a liver meal. Whole beef liver 
was fed to the flies. The liver meal was extracted from the crops of the flies, combined 
together in a Petri dish, and then weighed in various microliter amounts. 

Microliter Weight-a Weight-b Weight-c 
Average 

(mg) 
1 1.5 1.4 1.7 1.53 

2 2.3 1.9 2.2 2.13 

3 3.1 3.1 2.9 3.03 

4 4.7 4.5 3.6 4.27 

5 5.3 5.7 5.6 5.53 

6 6.9 6 5.7 6.20 

7 8.6 8.4 7.7 8.23 

8 8.9 7.9 8.2 8.33 

9 10.2 10.4 9.6 10.07 

10 10.7 10.9 10.7 10.77 

11 13.2 13.7 12.2 13.03 

12 14 13.5 13 13.50 

13 14.6 14.4 14.8 14.60 

14 15.8 15.5 15.8 15.70 

15 16.2 15.9 16.3 16.13 

16 18.2 17.4 17.80 

17 18.9 19 18.95 

18 19.6 19.5 19.55 

19 20.5 19.9 20.20 

20 20.9 19.8 20.35 

21 22.2 22.3 22.25 

22 23.9 24.1 24.00 

23 25.6 24.2 24.90 

24 25.4 25.9 25.65 

25 27.5 26.7 27.10 
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Figure 19. Conversion data (expressed as a regression line) for microliters to 
milligrams of liver is shown. 
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